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Community detection, the division of a network into dense subnetworks with only sparse connections
between them, has been a topic of vigorous study in recent years. However, while there exist a range of
effective methods for dividing a network into a specified number of communities, it is an open question
how to determine exactly how many communities one should use. Here we describe a mathematically
principled approach for finding the number of communities in a network by maximizing the integrated
likelihood of the observed network structure under an appropriate generative model. We demonstrate the
approach on a range of benchmark networks, both real and computer generated.
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The large-scale structure of empirically observed net-
works, such as social, biological, and technological networks,
is often complex and difficult to comprehend [1]. Community
detection, the division of the nodes of a network into densely
connected groups with only sparse between-group connec-
tions, is one of the most effective tools at our disposal for
reducing this complexity to a level where network topology
can be more easily understood and interpreted. The develop-
ment of algorithmic methods for community detection has
been the subject of a large volume of recent research [2–4], as
a result of which we now have a number of efficient and
sensitive detection techniques that are able to findmeaningful
communities in real-world settings [4–11].
A fundamental limitation of most of these methods,

however, is that they only divide networks into a fixed
number of groups, so that one must know in advance how
many groups one is looking for. Normally, one does not have
this information, which significantly diminishes the useful-
ness of community detection as an analytic tool. In this
Letter, we present a rigorous, first-principles solution to
this problem in the form of an algorithm that, when applied
to a given network, returns the number of communities the
network contains. The algorithm makes use of widely
accepted methods of statistical inference coupled with a
numerical approach that scales efficiently to large networks.
There have been a number of previous approaches

proposed for this problem, among which perhaps the best
known is the method of modularity maximization [5,12],
which is a method both for choosing the number of
communities and for performing the community division
itself. This method is employed in, for example, the widely
used Louvain algorithm [8], but it suffers from being only
heuristically motivated and there are instances where it is
known to give incorrect results [13,14]. More rigorous
approaches include the maximization of various approx-
imations to integrated data likelihoods for generative net-
work models, including Laplace-style approximations [15],

variants of the Bayesian information criterion [16,17], and
variational approximations [18]. Perhapsmost similar to our
work is that of Ref. [19], which uses an exact integral of the
likelihood for a stochastic blockmodel, as we do, but makes
a number of other approximations and also employs a non-
degree-corrected model, making it unsuitable for applica-
tions to most real-world network data. Also of note is the
minimum description length method of Ref. [20], which at
first sight is based on different ideas but can be shown to be
equivalent to maximizing an integrated likelihood, though it
uses a differentmodel and different numerical methods [21].
Our approach, like much of the recent work in this area, is

based on methods of statistical inference, in which one
defines a model of a network with community structure and
then fits that model to observed network data. The param-
eters of the fit tell us about the community structure in much
the sameway that the fit of a straight line through a set of data
points can tell us about their slope. The model most
commonly employed in this context is the stochastic block
model [11,22,23]. In this model, one specifies the number
of nodes n in the network along with the number k of
communities or groups, and then one assigns each node in
turn to one of the groups at random, with probability γr
of assignment to community r (where r runs from 1 to k).
Note that we must have

P
k
r¼1 γr ¼ 1 for consistency.

Once all nodes have been assigned to a group, one places
undirected edges independently at random between pairs of
distinct nodes with probabilities ωrs, where r and s are the
groups towhich the nodes belong. If the diagonal parameters
ωrr are greater than the off-diagonal ones, this produces a
network with traditional community structure.
In practice, this model is often studied in a slightly

different formulation in which one places not just a single
edge between any pair of nodes i, j but a Poisson distributed
number with mean ωrs or half that number when i ¼ j [11].
In this variant of the model, the generated network may
contain both multiedges and self-edges, which is in a sense
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unrealistic—most real networks contain neither. But in
typical situations the edge probabilities are so small
that both multiedges and self-edges occur with very low
frequency, and the model is virtually identical to the first
(Bernoulli) formulation given above. At the same time,
the Poisson formulation is significantly easier to treat
mathematically. In this Letter, we use the Poisson version.
This definition of the model specifies its behavior in the

“forward” direction, for the generation of random artificial
networks, but our interest here is in its use in the reverse
direction for inference, where we hypothesize that an
observed network was generated using the model and then
estimate by looking at the network which parameter values
must have been used in the generation [23,24].
Let the observed network be represented by its adjacency

matrix A, with elements aij ¼ 1 if distinct nodes i and j are
connected by an edge (or, by convention, aii ¼ 2 for self-
edges) and aij ¼ 0 if nodes are not connected, and let the
assignment of nodes to groups be represented by a vector g
with elements gi equal to the group to which node i is
assigned. Then the probability, or likelihood, that the model
generates a particular network A and group assignment g,
given the parameters γ, ω, and k, is

PðA; gjγ;ω; kÞ
¼ Pðgjγ; kÞPðAjg;ωÞ

¼
Y
i

γgi
Y
i

�
1

2
ωgigi

�
aii=2

e−ωgigi
=2
Y
i<j

ω
aij
gigje

−ωgigj

¼
Y
r

γnrr
Y
r

ωmrr
rr e−n

2
rωrr=2

Y
r<s

ωmrs
rs e−nrnsωrs ; ð1Þ

where nr ¼
P

iδgi;r is the number of nodes in group r
(with δij being the Kronecker delta) and mrs is the number
of edges running between groups r and s, given by
mrs ¼

P
ijaijδgi;rδgj;s for r ≠ s or half that number when

r ¼ s. [We have neglected an overall multiplicative con-
stant in (1), since it cancels out of later calculations
anyway.] Note that there is no requirement that all k groups
be nonempty: k represents the number of groups nodes
can potentially occupy, not the number they actually do.
Indeed, it is crucial to allow for the possibility of empty
groups for our calculations to be correct.
We can use Eq. (1) to derive the probability Pðk; gjAÞ

that, given an observed network A, the block model from
which it was generated had k groups and group assignment
g, by an exact integral over the parameters [19,20,25]. We
assume maximum-entropy (least informative) prior prob-
ability distributions on the unknown quantities k, γ, and ω,
which implies, for instance, that the prior on k is uniform
between the minimum and maximum allowed values of
k ¼ 1 and k ¼ n, meaning that PðkÞ ¼ 1=n, independent of
k. The prior on the group assignment probabilities γ is also
uniform, but because of the constraint

P
rγr ¼ 1 it occu-

pies a more complicated space, a regular simplex with k
vertices and volume 1=ðk − 1Þ!, so that the prior probability
density is PðγjkÞ ¼ ðk − 1Þ!. For ω, we set the scale of the

prior (and hence the density of the network) by requiring
that the mean of the edge probability ωrs be equal to the
observed average edge probability in the network as a whole
p ¼ 2m=n2, wherem is the observed number of edges in the
network. Then themaximum-entropy prior is an exponential
PðωÞ ¼ p−1e−ω=p. (Approaches of this kind,where the prior
is chosen to match features of the input data, are known as
“empirical Bayes” techniques and typically give consistent
results in the large-n limit [26,27]).
Given the prior probabilities, we now have

Pðk; gjAÞ ¼ PðkÞPðgjkÞPðAjgÞ
PðAÞ ; ð2Þ

where

PðgjkÞ ¼
Z

Pðgjγ; kÞPðγjkÞdγ ¼ ðk − 1Þ!
ðnþ k − 1Þ!

Yk
r¼1

nr!;

ð3Þ
PðAjgÞ ¼

Z
PðAjg;ωÞPðωÞdω

¼
Y
r

mrr!

ð1
2
pn2r þ 1Þmrrþ1

Y
r<s

mrs!

ðpnrns þ 1Þmrsþ1
: ð4Þ

The probability PðAÞ in the denominator of (2) is unknown
but cancels out of later calculations [and we have again
neglected an overall multiplicative constant in (4), for the
same reason].
We can regard the values k and g as defining a “state” of a

statistical mechanical system with probability Pðk; gjAÞ.
We will sample states of this system in proportion to this
probability using Markov chain Monte Carlo importance
sampling [28,29]. Then an estimate of the probability
PðkjAÞ of having k communities given the observed
network A is given simply by the histogram of values of
k over the Monte Carlo sample, and the most likely value of
k is the one for which PðkjAÞ is greatest (although in many
cases the complete distribution over k can offer more
insight than just its largest value alone).
This defines the method for estimating the number of

groups k. It remains only to choose the Monte Carlo
procedure. In order to sample over both k and g, we use
two different Monte Carlo steps.
To sample over group assignments g for given k, we

perform steps consisting of the movement of a single node
from one group to another. One could perform such steps
using the classic Metropolis-Hastings rejection scheme,
but we have found better efficiency (especially for
larger values of k) with a so-called heat-bath algorithm
[28], in which a randomly chosen node i is assigned a new
group r from among the k possibilities with probabilities
Pðgi¼ rjk;AÞ¼Pðk;gi¼ rjAÞ=PsPðk;gi ¼ sjAÞ, all other
gi being held constant.
To sample values of k with g held constant, we perform

steps inwhich thevalue of k is either increased or decreased by
1. For group assignments g having atmostk nonemptygroups,
the probabilities Pðk; gjAÞ and Pðkþ 1; gjAÞ are related by
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Pðkþ 1; gjAÞ
Pðk; gjAÞ ¼ Pðkþ 1ÞPðgjkþ 1ÞPðAjgÞ=PðAÞ

PðkÞPðgjkÞPðAjgÞ=PðAÞ

¼ k!=ðnþ kÞ!
ðk − 1Þ!=ðnþ k − 1Þ! ¼

k
nþ k

; ð5Þ

where we have made use of Eqs. (2) and (3) and the fact that
PðkÞ ¼ 1=n is independent of k. Thus, an appropriate
Monte Carlo step is one in which with equal probability
we propose either to decrease or increase k by 1; moves k →
k − 1 are always accepted (provided they are possible at all,
i.e., whenever g has k − 1 or fewer nonempty groups), and
moves k → kþ 1 are accepted with probability k=ðnþ kÞ.
This procedure constitutes a complete algorithm for

determining the best-fit value of k, but, helpful though it
is as an illustration of the proposed method, it turns out to
perform poorly in most real-world situations, for well-
understood reasons. The ordinary stochastic block model
used here is known to give a poor fit, and hence poor
results, for most real-world network data, because it fails to
match the broad degree distributions commonly observed
in such data [11,19]. The solution to this problem is to use a
more elaborate model, the degree-corrected stochastic
block model, which is able to fit networks with any degree
distribution. In this model, one defines an additional set of
continuous-valued node parameters θi, one for each node i,
and the expected number of edges between any pair of
nodes i, j becomes θiθjωrs, where again r and s are the
groups to which the nodes belong. As discussed in
Ref. [11], the parameters θi allow us to independently
control the average degree of each node and hence match
any desired distribution, while the parameters ωrs control
the community structure as before.
The model is not yet completely specified, however,

because there is an arbitrary constant in the definition of θi:
If we increase all the θi in group r by a factor of cr and
correspondingly decrease all ωrs by a factor of crcs, the
probability distribution over networks remains the same,
regardless of the values of the cr. In the language of
statistics, the model parameters are not identifiable. To fix
the arbitrary constants, one must specify a normalization
for the θi in each group, which can be done in a variety of
ways. In our work, we impose the condition that the
average value of θi be 1 in every group:

1

nr

X
i

θiδgi;r ¼ 1; ð6Þ

for all r. This choice is convenient, since it has the effect of
making the average number of edges between two different
groups r and s equal to

P
ijθiθjωrsδgi;rδgj;s ¼ nrnsωrs. In

other words, with this choice ωrs represents the average
probability of an edge between nodes in groups r and s, just
as it does in the standard stochastic block model.
With these definitions, the likelihood of a network A

within the degree-corrected model, given a group assign-
ment g and parameter sets θ, ω, is

PðAjg; θ;ωÞ ¼
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2
θ2iωgigi
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r<s

ωmrs
rs e−nrnsωrs ;

ð7Þ
where di ¼

P
jaij is the observed degree of node i, we

have used (6) in the second equality, and we have again
neglected an unimportant multiplicative constant.
We assume maximum-entropy priors as before, which

again implies an exponential distribution p−1e−ω=p for ω.
For θ, it implies a uniform distribution over the regular
simplex defined by Eq. (6). Integrating over θ and ω, we
find the value of PðAjgÞ in the degree-corrected model to be
the same as that for the uncorrected model [Eq. (4)] except
for an extra multiplicative factor of

Q
r∶nr≠0n

κr
r ðnr − 1Þ!=

ðnr þ κr − 1Þ!, where κr ¼
P

idiδgi;r is the sum of the
degrees of the nodes in group r. All other formulas remain
the same as for the uncorrected model. Modest though the
change in PðAjgÞ might seem, it produces a substantial
difference in the behavior of the model, giving us a method
that nowworkswell onnetworkswith any degree distribution.
Implementation of the complete method is straightfor-

ward. At each time step, we perform either a group-update
Monte Carlo step with probability 1 − q or a k-update step
with probability q, where q ¼ 1=ðnþ 1Þ, so that one k
update is performed on average for every n group updates
(one “sweep” of the system in the language of Monte Carlo
simulation). The run time per sweep is linear in n, and we
typically perform a few thousand sweeps in total, recording
the value of k at regular intervals. The calculations for the
figures in this Letter took seconds to minutes per network on
a standard desktop computer, depending on the network size.
The largest systemwehave studied comprised about 100 000
nodes and 800 000 edges and required an hour of running
time for 10 000 Monte Carlo sweeps. On some networks,
particularly those with very weakly connected communities,
the algorithmcan get stuck inmetastable states, inwhich case
faster equilibration may be achieved by performing repeated
runs on the same network with random initial conditions and
using the results from the run that achieves the highest
average likelihood. The computer code for our implementa-
tion of the method is available on the web [30].
Wehave tested themethodona rangeof different networks,

including computer-generated (“synthetic”) networks with
known community structure as well as real-world examples.
Figure 1 shows results for synthetic networks generated using
the standard (non-degree-corrected) stochastic block model
with edge probabilities ωrs equal to cin=n when r ¼ s
(in-group connections), cout=n when r ≠ s (between-group
connections), and cin > cout, so that the network shows
traditional assortative structure. Figure 1(a) shows results
for the likelihoodPðkjAÞ for networks with a range of values
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of k, and, as the figure shows, the algorithm overwhelmingly
assigns the highest likelihood to the correct value of k in every
case. We can make the problem more challenging by de-
creasing the difference cin − cout between the numbers of in-
and out-group connections, thereby generating networkswith
weaker community structure that should be harder to detect.
Typical community detection algorithms show progressively
poorer performance as structureweakens, and it canbeproved
that when it is sufficiently weak the structure becomes
undetectable by any means, a phenomenon known as the
detectability transition [31,32]. We see similar behavior in
detecting the number of communities, as shown in Fig. 1(b),
where we apply our algorithm to 1000 networks for each of
several values of cin − cout while holding k fixed and plot the
fraction of runs on which we arrive at the correct answer for
the number of groups. Below the detectability threshold, the
algorithmfails to determine the correct result, as all algorithms
must, but, as we move above the threshold, performance
improves, and for larger values of cin − cout the algorithm
once again returns the correct answer on almost every run.
Figure 2 shows the results of tests of the algorithm on four

real-world networks whose community structure is widely
agreed upon: the well-studied “karate club” network of
Zachary [33], which is generally thought to have two
groups; the dolphin social network of Lusseau et al. [34],
also thought to have two groups; the coappearance network
of fictional characters in the novel Les Miserables by Victor
Hugo [12], with six groups corresponding to major subplots

of the story; and the network of games betweenDivision I-A
American college football teams in the year 2000 [12], with
11 groups corresponding to the established conferences of
United States collegiate sports competition (or, arguably, 12
if one includes the independent teams that do not belong
to any conference). The figure shows histograms of the
estimated probabilities PðkjAÞ for each of these four net-
works, and the peak probability falls at the agreed-upon
value in each case—at k ¼ 2, 2, 6, and 11, respectively. In
each case, the accepted value easily outweighs any other and
the choice of group number is clear, except in the case of the
karate club network, for which k ¼ 2 does receive the most
weight but k ¼ 1 comes a close second. This is an interesting
finding in the context of this particular network, which
comes from a study of a university student club that was a
single group at the time the network was observed but broke
into two shortly afterwards. Our results fit this observation
neatly, indicating that the network could be construed either
as a single community or as a pair of communities.
Once the value of k for a network has been determined,

one does not necessarily need to perform a separate
calculation to determine the community structure itself.
Since our Monte Carlo procedure samples group assign-
ments g from the distribution Pðk; gjAÞ, one can simply
examine the subset of sampled assignments corresponding
to the inferred value of k to get an estimate of the posterior
distribution over network divisions. In particular, one can
calculate the marginal probability that a node belongs to
any given group to within an overall constant from Pðgi ¼
rjk; AÞ ∝ P

gδgi;rPðk; gjAÞ and then assign each node to the
group for which this probability is largest, obviating the
need for other methods of fitting the block model, such as
the maximization of the profile likelihood [11,23].

(a) (b)

FIG. 1. Tests of the method on synthetic networks generated
using the stochastic block model. (a) The diameter of the points
represents the likelihood PðkjAÞ of inferred values of k as a
function of true k for networks with k groups of size 250 nodes
each. Each node has an average of 16 edges connecting it to its
own group and eight edges to each other group. For each value
of k, we performed ten runs of 2000 Monte Carlo sweeps each
(plus 1000 for equilibration) and took our results from the run that
found the highest average likelihood. Correct inference would
place the most weight along the dashed diagonal line. (b) The
fraction of runs detecting the correct number of groups in
stochastic block models with k ¼ 4 groups of 250 nodes each
and average degree 16, as a function of the strength of the
community structure. The vertical dashed line represents the
theoretical detectability threshold below which every algorithm
must fail. Each point is an average over 1000 networks, and
success is defined as assigning an absolute majority of the
probability PðkjAÞ to the correct value of k.
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FIG. 2. Posterior probabilities PðkjAÞ calculated using the
method of this Letter for four real-world networks with known
community structure, as described in the text. For each network,
we performed ten runs of 50 000 Monte Carlo sweeps each (plus
50 000 for equilibration), taking our results from the run that finds
the highest average likelihood.
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In summary, we have given a first-principles method for
inferring the number of communities into which a network
divides. In tests, the method, based on simultaneous
Monte Carlo sampling of the distribution of community
divisions and community number, gives correct answers on
a range of benchmark networks with known community
structure. The method can be scaled up, without significant
modification, to allow the analysis of data sets with
hundreds of thousands of nodes or more.
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