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Abstract
Graph representation learning (GRL) is critical for
extracting insights from complex network struc-
tures, but it also raises security concerns due
to potential privacy vulnerabilities in these rep-
resentations. This paper investigates the struc-
tural vulnerabilities in graph neural models where
sensitive topological information can be inferred
through edge reconstruction attacks. Our re-
search primarily addresses the theoretical under-
pinnings of cosine-similarity-based edge recon-
struction attacks (COSERA), providing theoreti-
cal and empirical evidence that such attacks can
perfectly reconstruct sparse Erdős–Rényi graphs
with independent random features as graph size
increases. Conversely, we establish that sparsity is
a critical factor for COSERA’s effectiveness, as
demonstrated through analysis and experiments
on stochastic block models. Finally, we explore
the resilience of (provably) private graph repre-
sentations produced via noisy aggregation (NAG)
mechanism against COSERA. We empirically
delineate instances wherein COSERA demon-
strates both efficacy and deficiency in its capacity
to function as an instrument for elucidating the
trade-off between privacy and utility. 1

1. Introduction
With the surging developments of graph representation learn-
ing (GRL) (Hamilton et al., 2017b), there has been growing
apprehensions concerning the security challenges associ-
ated with the deployment of graph neural models in real-
world scenarios (Dai et al., 2022). GRL models harness
the topological information of the underlying graph for pro-
ducing high-quality predictions or graph representations.
Meanwhile, these models bear the risk of inadvertently di-
vulging the same topological information through the graph
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representations they produce. Such kind of security risks
have been empirically validated through the examination
of the attacking performance of edge reconstruction algo-
rithms (Duddu et al., 2020; He et al., 2021; Wu et al., 2022a;
Zhou et al., 2023), among which the simplest form of attack
based solely on the representation similarity of node pairs
is shown to achieve strikingly strong performance, with-
out the requirement of additional knowledge like encoder
architecture or auxiliary datasets (He et al., 2021).

Despite the empirical evidence of topological vulnerabili-
ties of graph representations, theoretical explanations de-
lineating the effectiveness of such attacks remain largely
unexplored: As demonstrated in previous studies (Duddu
et al., 2020; He et al., 2021), similarity-based attacks are
remarkably effective against sparse graphs that exhibit a
generalized homophily pattern, i.e., there exists a signifi-
cant correlation between the similarity of node features and
edge adjacency information. This phenomenon posits that
feature similarity may serve as a confounding factor, poten-
tially impacting the efficacy of similarity-based attacks. It
is therefore valuable to understand the influence of graph
properties, such as feature similarity and sparsity, on the
edge reconstruction process of the attacking procedures.

Beyond their capability in characterizing the vulnerabilities
of representations, attacking algorithms may also function
as empirical attestations of privacy-preserving inference
protocols that fulfill formal privacy guarantees such as dif-
ferential privacy (Cummings et al., 2023, Section 4). As an
illustrative case, membership inference attacks can be em-
ployed for auditing differential privacy (Tramer et al., 2022).
Since edge reconstruction is equivalent to edge membership
inference on graphs (Zhang et al., 2023), it is thus pertinent
to explore the performance of similarity-based attacks when
confronted with privacy-preserving graph representations
(Sajadmanesh et al., 2023; Wu et al., 2023).

In this paper, we take initial steps toward a principled un-
derstanding of structural vulnerabilities of graph representa-
tions under the cosine-similarity-based edge reconstruction
attack (hereafter abbreviated as COSERA) which is ar-
guably the most operable attack in many practical scenarios.
In particular, we establish the following theoretical as well
as empirical findings:
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(i) Success modes of COSERA Through applying
COSERA to sparse Erdős–Rényi graphs equipped with
independent random node features, we show that COSERA
is able to achieve perfect reconstruction as the graph size
goes to infinity. The result indicates that feature similarity
is not necessary for COSERA to succeed. Synthetic experi-
ments are conducted to empirically validate our theory.

(ii) Failure modes of COSERA We show, through the-
oretical analysis and corroborative synthetic experiments,
performance lower bounds when applying COSERA to
stochastic block models (SBM) with independent random
node features: When the underlying SBM has Θ(1) intra-
group connection probability, edge recovery through graph
representations becomes provably hard.

(iii) COSERA as a privacy auditing tool We evaluate
COSERA against graph representation generated via noisy
aggregation (NAG). We show theoretical protection guaran-
tees of NAG and empirically identify instances that manifest
the competencies and limitations of COSERA as a mecha-
nism for eliciting the privacy-utility trade-off. Notably, we
find cases when NAG offers substantial protection against
COSERA even when its privacy guarantee is vacuous.

2. Related works
In this section, we present a concise survey of related lit-
erature. An augmented version with more discussions is
postponed to appendix A.

2.1. Edge reconstruction attacks on graphs

Recent literature instantiates a variety of edge reconstruction
attacks with differing adversary models in terms of capa-
bilities and knowledge. Initially proposed by (Duddu et al.,
2020), COSERA demonstrated high success with limited
information access. Later studies introduced more potent
adversaries with additional knowledge, such as node fea-
tures and structural data(Zhang et al., 2021; He et al., 2021;
Zhou et al., 2023), or even the ability to maliciously ma-
nipulate the graph structure (Wu et al., 2022a; Meng et al.,
2023). On the theory side, Chanpuriya et al. (2021) pro-
posed an algorithm that provably recovers graph structure
based on representations generated via DeepWalk. Zhang
et al. (2023) showed that when block structure exists in the
underlying graph, the performance of COSERA is uneven
across nodes in different blocks. Zhou et al. (2023) use
information-theoretic arguments to construct more powerful
attacks than COSERA. Nevertheless, the aforementioned
studies did not provide a theoretical rationale for the practi-
cal vulnerabilities manifested as a result of the COSERA.

2.2. Protection against edge reconstruction attacks

Edge differential privacy (EDP)(Nissim et al., 2007) is a
prominent privacy model safeguarding against edge recon-
struction attacks. Algorithms like DP-SGD (Abadi et al.,
2016) can provide private GNN models that protect individ-
ual training sample membership. However, these methods
don’t ensure privacy during inference(Chien et al., 2023).
Current inference-time privacy solutions include edge-wise
randomized response (Wu et al., 2022a) and noisy aggre-
gation (NAG) mechanisms (Sajadmanesh et al., 2023; Wu
et al., 2023; Chien et al., 2023). Approaches based on the
information bottleneck principle, such as regularization or
optimization techniques (Wang et al., 2021; Zhou et al.,
2023), have been proposed to limit privacy leakage, but they
typically rely on crude approximations of mutual informa-
tion and lack a solid theoretical foundation.

3. Preliminaries
Setup and notations Consider an undirected graph G =
(V,E) with n = |V | nodes associated with node features
X ∈ Rn×d. Denote A as the corresponding adjacency
matrix and D as the diagonal matrix with the v-th diagonal
entry being the degree of node v. In this paper, we will study
victim models taking a simple form of graph neural encoder,
the linear graph neural network (Wu et al., 2019) which has
been widely adopted in previous theoretical studies on graph
neural networks (Awasthi et al., 2021; Xu et al., 2021; Wu
et al., 2022b). Specifically, the node representation matrix
of an L-layer linear GNN is computed as:

H(L) =
(
(D + I)

−1
(A+ I)

)L
XW, (1)

where the identity matrix is added for ensuring self-loops,
and W ∈ Rd×d is a learnable weight matrix. Throughout
this paper, we will assume the node feature dimension and
the hidden dimension to be equal to d and refer to this as the
feature dimension, as otherwise we may add an extra input
projection step to fulfill this requisite. We further denote
∥W∥op and κ(W ) as the operator norm (i.e., largest singular
value) and condition number (i.e., the ratio of largest and
smallest singular value) of matrix W .

Threat model We assume the adversary knows the node
set V and is able to inquire node representations of an ar-
bitrary node subset Vvictim ⊂ V . Hereafter we will refer
to the subgraph induced via Vvictim as the victim subgraph
Gvictim = (Vvictim, Evictim). The goal of the adversary is
to recover an arbitrary fraction of Evictim based on the ac-
quired node representations H

(L)
victim = {h(L)

v , v ∈ Vvictim}.
The adversary manifests practically in scenarios such as
the deployment of graph neural models (Wu et al., 2022a)
and vertical federated learning (Zhou et al., 2020), wherein
clients reciprocally exchange node embeddings to facili-
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tate collaborative modeling. In our analysis, it is usually
convenient to let the victim node set be the entire node
set V , and we occasionally drop the subscription without
misunderstandings.
Remark 3.1. The proposed adversary is weak in the sense
that only black-box access to model outputs is available
without any other prior information such as model architec-
ture and auxiliary datasets, which is conventionally deemed
indispensable in attack paradigms against privacy (Nasr
et al., 2021). Furthermore, the adversary’s objective is no-
tably ambitious, as it encompasses the potential targeting
of the complete set of edges within the victim subgraph.
This stands in contrast to stronger adversary models, such as
the one employed in membership inference attacks (Nissim
et al., 2007), where the adversary possesses the capacity to
compromise all aspects except for ascertaining the presence
of a particular victim edge.

The COSERA is conducted in an embarrassingly simple
manner, with the adjacence relation between node u and
node v inferred as:

ÂCOSERA
uv (τ) =

1 if ⟨h(L)
u ,h(L)

v ⟩∥∥∥h(L)
u

∥∥∥
2

∥∥∥h(L)
v

∥∥∥
2

≥ τ,

0 otherwise
(2)

where the cutoff threshold τ is allowed to depend on the
embedding set Hvictim but is uniform across all edge deci-
sions. Hereafter without misunderstandings, we will drop
the superscript in (2) and denote Â(τ) as the reconstructed
adjacency matrix under threshold τ . To measure the perfor-
mance of the attack, we use false positive rate (FPR) and
false negative rate (FNR) defined as

FPR
(
Â, A; τ

)
=

∑
u,v 1

(
Âuv(τ) = 1, Auv = 0

)
∑

u,v 1 (Auv = 0)
,

FNR
(
Â, A; τ

)
=

∑
u,v 1

(
Âuv(τ) = 0, Auv = 1

)
∑

u,v 1 (Auv = 1)
.

(3)

We further define the error rate ERR as the summation of
FPR and FNR. Employing these metrics facilitates a more
nuanced characterization of attack performance, particularly
when the underlying graph is sparse.

Intuitively, the success of COSERA is determined by the
correlation between node representation similarity and edge
presence. Previous empirical observations demonstrate the
effectiveness of COSERA against graphs that exhibit strong
correlations between node feature similarity and edge pres-
ence (He et al., 2021). We will refer to such kinds of graphs
as being homophilous in a generalized sense (Jin et al., 2022;
Luan et al., 2023). Due to the message-passing nature of
GNN encoders, it is intuitively reasonable that recursive ag-
gregation of node representations strengthens the correlation

and results in successful edge reconstructions. However, it
is non-trivial whether COSERA mechanism may succeed
in the absence of the aforementioned generalized homophily
pattern, which motivates our first analysis.

4. COSERA against sparse Erdős–Rényi
graphs

In this section, we study the behavior of COSERA with
the underlying (victim) graph generated following the
Erdős–Rényi structure G ∼ Ger(n, p). Here, the adjacency
matrix is generated such that each entry is independently
distributed (up to symmetric constraints Auv = Avu) fol-
lowing a Bernoulli distribution Ber(p). We focus on the
sparse regime when p = O

(
logn
n

)
. We further assume

that the node features Xv’s are generated i.i.d. according
to an isotropic Gaussian distribution Xv ∼ N(0, Id). It fol-
lows that the correlation of node feature similarity and edge
presence is zero. The following theorem characterizes the
effectiveness of COSERA under the Erdős–Rényi setup.

Theorem 4.1. Let C1 be a universal constant and G ∼
Ger(n, p). Assume the following:

(i) The graph generation mechanism satisfies p ≤ C1
logn
n .

(ii) The depth of GNN encoder L and the feature dimension
d satisfies d ≫ (C2 log n)

6L+2
log n with C2 = 1.5C1.

(iii) The condition number of the GNN encoder weight satis-
fies

(κ(W ))
2 ≤

√
d

log n
/8(C2 log n)

3L. (4)

Then there exists a threshold τ = Θ
(

1
(C2 logn)2L

)
such that

with probability at least 1− 2
n2 , the following holds:

FNR
(
Â, A; τ

)
= 0, FPR

(
Â, A; τ

)
≤ (C2 logn)2L

n . (5)

Theorem 4.1 implies that, even when COSERA can not
borrow strength from the homophily nature of the under-
lying graph, it is able to produce accurate reconstructions
when the graph size is sufficiently large. An additional
intriguing implication from theorem 4.1 pertains to the de-
pendence of reconstruction performance on the GNN en-
coder depth L: Provided that the node feature dimension is
sufficiently large, the reconstruction performance degrades
when the depth of the encoder increases, which is related
to the renowned phenomenon of oversmoothing in GNN
literature (Wu et al., 2022b). Intuitively, as the depth of
GNN encoders increases, the resulting node representations
tend to converge (Oono & Suzuki, 2019), becoming less
distinct from one another. This convergence diminishes
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the discriminative capacity of similarity metrics, thereby
impairing their sensitivity.
Remark 4.2 (Practicality). Theorem 4.1 requires the node
feature dimension d to grow in a polylog(n) rate, a condi-
tion which may not consistently align with practical sce-
narios. At present, this requirement is a byproduct of our
proof strategy. In section 7.1 we will further examine the
implications of feature dimensionality. The existence of a
threshold that theorem 4.1 manifests might not guide the
choice of threshold in practice. Instead, we may rely on
heuristics or side-information (He et al., 2021) to determine
the threshold.
Remark 4.3 (Extensions). The consequence of theorem
4.1 extends to setups with looser generative requirements
under minimal modifications to the proof. In particular,
the isotropic Gaussian distribution assumption of node fea-
tures can be relaxed to other distribution families like sub-
Gaussian type distributions with a weak dependence among
distinct coordinates. Moreover, our result also holds even
when the edge probability p between nodes u and v depends
on node features (i.e., p = puv is a function of Xu and Xv),
as long as p = O( logn

n ).

5. COSERA against dense SBMs
In this section, we reveal the limitation of COSERA by
constructing a reconstruction problem that is provably hard.
We consider the following stochastic block model (Abbe,
2018), where each node is assigned a community member-
ship from one of K groups k(v) ∈ [K]. The (u, v)-th entry
of the adjacency matrix is generated as

Auv ∼
{

Ber(p), if k(u) = k(v)

Ber(q), otherwise
. (6)

For ease of presentation, we further assume that the groups
share the same size, i.e., n is a multiple of K. Denote the
generation mechanism as G ∼ Gsbm(n,K, p, q). We have
the following result:

Theorem 5.1. Let G ∼ Gsbm(n,K, p, q) and p = Θ(1).
Assume the GNN encoder to be of depth L and feature
dimension d ≫ max{log n/p2,K2 log3 n} with the weight
matrix being the identity matrix. Then with probability at
least 1− 1/n2, for any fixed τ ∈ [0, 1], one of the following
three statements must hold:

(i) FPR
(
Â, A; τ

)
≥ 1−p

2K and FNR
(
Â, A; τ

)
≥ q

2 .

(ii) FPR
(
Â, A; τ

)
≥ 1−p

2K + 1−q
2 .

(iii) FNR
(
Â, A; τ

)
≥ p

2K + q
2 .

According to theorem 5.1, given any cutoff threshold if the
within-group connection probability is of the order Θ(1)

and the number of groups K does not diverge (Otherwise,
we will return to the sparse regime in section 4) , the perfor-
mance of COSERA measured by error rate ERR is lower
bounded by non-vanishing constants when the feature di-
mension is sufficiently large. The theorem characterizes
the inherent limitations of COSERA when the underlying
graph is dense. As K gets large, the lower bound of false
positive/negative rate decreases. It indicates that COSERA
is more successful when the graph is less connected.
Remark 5.2. Alternatively, we may interpret theorem 5.1 as
manifesting instances where COSERA is constrained to dis-
cerning only population-level relational information—such
as the affiliation of two nodes to a common group—rather
than identifying the existence of specific edges when the
underlying graph is dense and admits certain group-wise
structures.

6. Provable defense by noisy aggregation
Having demonstrated the susceptibility of GNN representa-
tions to COSERA, it becomes an intriguing research ques-
tion to examine the behavior of COSERA within the context
of privacy-preserving GRL: In this paper, we explore the
defensive efficacy of noisy aggregation (NAG), which has
been proposed recently as a provably privacy-preserving
algorithm (Sajadmanesh et al., 2023; Wu et al., 2023) under
the edge differential privacy model (Nissim et al., 2007).
Concretely, we study an L-layer noisy GNN with the l-th
layer computed recursively as:

h(l)
v = T

AGG

Wlh
(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

, u ∈ N(v)

+ ϵ

 , (7)

where N(v) := N(v) ∪ {v} denotes node v’s extended
neighborhood and h

(l)
v denotes the representation of node v

at the l-th layer. The aggregation mechanism AGG is a per-
mutation invariant function that defines the message-passing
process and T is some (possibly) non-linear transform. The
NAG framework is interpreted as a noisy aggregation of
l2-normalized node representations, with the additive per-
turbation generated from a zero-mean isotropic Gaussian
distribution with scale σ, i.e., ϵ ∼ N(0, σ2Id). Let H(l)

denote the node representation matrix corresponding to the
output the l-th GNN layer, and let H = {H(l)}0≤l≤L de-
note all the intermediate representations produced by the
underlying GNN with weights W = {Wl}l∈[L]. The fol-
lowing theorem characterizes the defensive capability of
NAG under several standard choices of AGG:

Theorem 6.1. For any adversary A that has access to the
output H of an L-layer GNN under NAG with weights W
and produces an estimate of the adjacency matrix of the
underlying graph Â = A (H,W), we have the following
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lower bound:

inf
Â

min
u∈V,v∈V

[
P
(
Âuv = 1|Auv = 0

)
+ P

(
Âuv = 0|Auv = 1

)]
≥ 1−

√√√√1− exp

(
−C

∑
l∈[L] ∥Wl∥2op

σ2

)
.

(8)

Here the constant C depends on the AGG mechanism of
the GNN. In particular, if AGG is summation pooling (Xu
et al., 2018), mean pooling (Hamilton et al., 2017a) or GCN
pooling (Kipf & Welling, 2016) then C = 1; If AGG is
max pooling (Hamilton et al., 2017a) or attentive pooling
(Veličković et al., 2018) then C = 4.

The adversary in theorem 6.1 is much stronger than the
COSERA adversary which only has access to H(L). In
fact, the adversary in theorem 6.1 might be further strength-
ened to having the prior knowledge of the precise (proba-
bilistic) generative mechanism of the target graph and the
result still holds. Theorem 6.1 indicates that for any node
pairs, the summation of type-I error and type-II error (in
the language of binary hypothesis testing (Lehmann et al.,
1986)) incurred by any such adversary is lower bounded by
a constant, which will be significantly above zero when the
noise scale is of the same order to the operator norms of
the weight matrices of the GNN encoder. However, imple-
menting NAG with a large noise scale essentially destroys
model utility. Moreover, according to recent empirical ob-
servations (Carlini et al., 2019), in practice even when the
formal privacy guarantee is vacuous, i.e., the lower bound
is close to zero, we may still get decent protection against
practical adversaries with limited knowledge. It is therefore
of interest to examine how NAG protects the edge privacy
against COSERA in practice. This investigation could pro-
vide additional empirical evidence regarding the potential
of COSERA as an instrument for auditing private GRL al-
gorithms such as NAG. Specifically, we consider two noisy
training schemes for obtaining the model weights W:

Unconstrained scheme We choose a fixed noise scale σ
during both training and inference without explicit control
over the weights W. The resulting model might not produce
meaningful privacy guarantees in the sense of theorem 6.1
as the operator norms of weights W are determined by the
training dynamics.

Constrained scheme We choose a fixed noise scale σ dur-
ing both training and inference and use normalization tech-
niques (Miyato et al., 2018) to provide a priori control of
model weights W, thereby providing tighter control of for-
mal privacy level according to theorem 6.1.

We will empirically inspect the protection of NAG repre-
sentations trained via both unconstrained and constrained
schemes against COSERA in section 7.2.
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Figure 1: Attacking efficacy of COSERA over sparse
Erdős–Rényi graphs, with each grid’s value indicating
COSERA’s performance measured in either AUROC (first
row) or ERR (second row) metric.

7. Experiments
7.1. Synthetic experiments

In this section, we conduct experiments using synthetic
datasets to empirically verify the theoretical developments
in section 4 and section 5.

Erdős–Rényi experiments In our first experiment, we test
COSERA on graph representations produced by (1) over
Erdős–Rényi graphs with edge probability p = logn

n with
graph size n ∈ {100, 500, 1000}. We set the weight to be
the identity matrix and further present results under random
weights in appendix C.1. We vary the feature dimension
d ∈ {2j , 2 ≤ j ≤ 11} and network depth 1 ≤ L ≤ 10 in
order to obtain a fine-grained assessment of COSERA. We
measure the performance of the attack under two metrics:
AUROC and the ERR as defined in section 3, minimized
over the choice of threshold τ . We present the evaluations
in figure 1. The results corroborate with our theoretical
developments: We demonstrate that COSERA is able to
achieve near-perfect reconstruction of all edges only in the
”large d, small L” regime. Notably, we find COSERA to
be less successful under relatively deep network architec-
tures (i.e., L ≥ 5) when the feature dimension is sufficiently
large. Yet the behaviors in small d regimes appear to be
less predictable, a phenomenon we hypothesize may be at-
tributable to an inadequate concentration of inner products
in instances where the feature dimension is relatively small.
Furthermore, the influence of the feature dimension appears
to be more pronounced than that of the network depth. This
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Figure 2: Attacking efficacy of COSERA over dense SBM
graphs, with each grid’s value indicating COSERA’s per-
formance measured in either AUROC (first row) or ERR
(second row) metric.

suggests that a greater number of features, despite their in-
dependence from graph topology, lead to potentially more
privacy risks as transmitted through GNN representations.
Conversely, augmenting the network depth does not nec-
essarily correlate with an elevation in the success rate of
COSERA.

SBM experiments In our second experiment, we test
COSERA graph representations over SBM graphs with
K = 3, p = 0.3, q = 0.05, with the rest of the experimental
setups analogous to that in the Erdős–Rényi experiments.
The evaluations are presented in figure 2. The results re-
veal the presence of a pronounced barrier that hinders the
success of the attack across a wide range of configurations
corresponding to different network depths and feature di-
mensions. Furthermore, we observe that the results tend to
stabilize as the size of the graph increases.

To investigate the impact of SBM structure on the per-
formance of COSERA, we fix the GNN architecture at
L = 1 and evaluate on a graph with 100 nodes and node
feature dimension d = 2048. Note that we choose a rel-
atively large node feature dimension to ensure that the
assumption listed in theorem 5.1 is approximately met.
We vary the SBM within-group probability according to
p ∈ {0.1, 0.3, 0.5, 0.7} and the number of groups according
to 1 ≤ K ≤ 20. The results, plotted in figure 3, suggest
that in general, the attacking performance is positively cor-
related with the number of groups K since more groups
yield stronger sparsity according to the SBM generation law.
This phenomenon is also in accordance with theorem 5.1.
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Figure 3: Performance of COSERA on SBM with varying
K and p. All plots are based on 5 independent trials with
shades indicating one standard deviation.

7.2. Empirical protection of NAG against COSERA

In this section, we empirically study the defensive perfor-
mance of noisy aggregation (7) against COSERA under the
5 analyzed AGG mechanisms listed in theorem 6.1. We will
use the Planetoid datasets (Yang et al., 2016) for evaluation.
Due to space limits, we report results on the Cora and Cite-
seer datasets in the main text and postpone the complete
report in appendix C.2.

Experimental setup We consider a transductive node clas-
sification setting and use the standard train-test splits. The
GNN models are trained using the training labels and eval-
uated on the test nodes. The performances of COSERA
are evaluated on the subgraphs induced by the test nodes.
We report the configuration of GNN encoding, as well as
the attacking pipeline and training hyperparameters in ap-
pendix C.2.1. We use the following two types of training
configurations as proposed in section 6:

Unconstrained scheme Under the unconstrained scheme,
we use aggressive perturbation plans by applying noise with
scale range σ ∈ {0, 1, 2, 4}, with σ = 0 indicating no
protection, and d ∈ {2i, 5 ≤ i ≤ 13}.

Constrained scheme Under the constrained scheme, we
adopt the spectral normalization technique (Miyato et al.,
2018) to control the spectral norm of each layer at approx-
imately 1 (with relative error < 10%). We use conserva-
tive perturbation plans by applying noise with scale range
σ ∈ {0, 0.01, 0.05, 0.1, 0.5, 1}, and d ∈ {2i, 5 ≤ i ≤ 13}.
Note that with σ = 1, we obtain a non-vacuous lower bound
according to (8).

The model utilities are measured using classification accu-
racy and attack performances are measured by ERR. We
will additionally investigate the attack performance under
the AUROC metric in appendix C.2.

Results and observations The experimental evaluations
are presented in figure 4 for the unconstrained scheme and
in figure 5 for the constrained scheme. We summarize our
observations and findings as follows:

Without protections, COSERA is more effective for
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(a) GNN model performance over Cora and Citeseer datasets under 5 different aggregation types.
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(b) Attacking performance of COSERA over Cora and Citeseer datasets under 5 different aggregation types.

Figure 4: Privacy-utility trade-off on Cora and Citeseer datasets using the unconstrained training scheme. The horizontal
axes measure feature dimension d in log2 scale and the vertical axes stand for performance measures All plots are based on
5 independent trials with shades indicating one standard deviation.

larger d While previous works (Duddu et al., 2020; He
et al., 2021) has elucidated the vulnerability of graph rep-
resentations in the Planetoid datasets, our results further
augment previous research by demonstrating a monotonic
relationship between COSERA efficacy and d.

COSERA empirically elicits privacy-utility trade-off un-
der the constrained scheme When the noise level is moder-
ate, i.e., σ ∈ {0.01, 0.05}. The result demonstrates that pri-
vacy and utility are, at least to some extent, at odds: Under
lower noise level, COSERA is able to achieve non-trivial
success especially when d is small. Furthermore, raising the
feature dimension d results in both a decrease in utility as
well as an increase in privacy. This is actually predictable:
Since we explicitly control the operator norm to be around
1, a larger d implies a smaller ”signal-to-noise ratio” with
the signal being (loosely) defined as the magnitude of the

aggregated node representations.

COSERA losses power against NAG using larger ds in
the unconstrained scheme A surprising evidence according
to figure 4 and 5 is that when the feature dimension d is suf-
ficiently raised, i.e., d > 1024, the attacking performances
exhibit U-shaped ERR curves. Consequently, we are able
to achieve decent protection against COSERA (AUROC
< 0.6 or ERR > 0.8) while at the same time incurring slight
degradation in model utility (> 0.7 Accuracy in Cora and
Pubmed) Moreover, the phenomenon is more evident for
higher noise levels. The outcome seems favorable insofar as
we have identified GNN solutions that manifest both high
performance and a degree of privacy since the training pro-
cedure is ostensibly unrelated to the attacking mechanism.
But does that sound too good to be true?

A closer look at GNN solutions obtained via NAG in the
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(b) Attacking performance of COSERA over Cora and Citeseer datasets under 5 different aggregation types.

Figure 5: Privacy-utility trade-off on Cora and Citeseer datasets using the constrained training scheme. The semantic
interpretation of the axes is analogous to that depicted in figure 4

unconstrained scheme As COSERA is just one form of at-
tack mechanism under a weak adversary, protecting against
COSERA does not necessarily imply strict notions of pri-
vacy. Motivated by theorem 6.1, we conduct a spectrum
study regarding the GNN solutions obtained via NAG in the
unconstrained scheme. Specifically, we plot the operator
norm of the weight matrices corresponding to the GNN lay-
ers across all scenarios and report them in the last column
in figure 13 in appendix C.3. The results exhibit a rapidly
growing trend of weights’ operator norms regarding the in-
crease of both feature dimension d and noise level σ. For
GNN models trained using noisy aggregation under large ds,
the corresponding bounds according to (7) become vacuous,
i.e., practically zero. Additionally, these solutions may ex-
hibit diminished robustness, as the corresponding Lipschitz
constants are likely to be inadequately regulated (Yang et al.,
2020). To conclude, we have found successful empirical
defenses against COSERA without satisfying strict notions

of privacy, suggesting that COSERA has limitations as a
tool for auditing private GRL training procedures.

Impact of different AGG mechanisms According to figure
4 and 5, the previously discovered phenomenons are present
for all the 5 aggregation types. Nevertheless, the degree
to which these phenomena exhibit varies with the specific
type of aggregation employed. Notably, the behaviors of AT-
TENTION, MEAN, and GCN pooling display similarities
attributable to their shared mechanism in (weighted) aver-
age aggregation. Conversely, the efficacy of the COSERA
against Noisy Aggregation (NAG) when SUM and MAX
pooling are utilized appears less susceptible to changes in d.

8. Discussion and conclusion
In this paper, we have studied the behavior of the COSERA
adversary by characterizing its performance against different
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kinds of underlying graph structures as well as encoding
mechanisms, both in theory and through extensive empirical
evaluations. Notwithstanding, several research problems
warrant further study, which we discuss in appendix D.

9. Impact statements
The pervasive integration of graph representation learning
(GRL) into various sectors, from social networks to bioinfor-
matics, underscores the necessity of addressing the security
and privacy risks inherent in these technologies. This paper
contributes to the understanding of such risks by dissect-
ing the structural vulnerabilities of graph representations
under cosine-similarity-based edge reconstruction attacks
(COSERA). Our work has significant ethical implications
and societal consequences, as we aim to balance the need for
advanced data analytics with the imperative of safeguarding
individual and community privacy.

Theoretically articulating the success and failure modes of
COSERA, our research offers a framework for evaluating
GRL models against potential privacy breaches. The in-
sights gained can guide the development of more secure
algorithms that resist inadvertent information disclosure. By
highlighting the efficacy of COSERA in various settings,
this paper also underscores the potential for such attacks to
serve as auditing tools for privacy-preserving mechanisms,
thereby fostering the creation of more trustworthy GRL
systems.

As GRL technologies continue to evolve, our work calls
attention to the importance of proactive privacy research in
the field. It encourages the industry to adopt privacy-by-
design principles and serves as a reminder to policymakers
to consider the implications of GRL in legislation around
data protection. Future societal consequences hinge on our
ability to reconcile the benefits of GRL with the privacy
rights of individuals, necessitating ongoing research, trans-
parent practices, and informed governance to navigate this
complex landscape.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Abbe, E. Community detection and stochastic block mod-
els: recent developments. Journal of Machine Learning
Research, 18(177):1–86, 2018.

Awasthi, P., Das, A., and Gollapudi, S. A convergence
analysis of gradient descent on graph neural networks.

Advances in Neural Information Processing Systems, 34:
20385–20397, 2021.

Canonne, C. L. A short note on an inequality between kl
and tv. arXiv preprint arXiv:2202.07198, 2022.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song,
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A. Related works
Typically, there exist two categories of private information that may potentially be compromised during the training or
deployment phases of graph neural network models: The (sensitive) node attributes and the adjacency relation between
nodes. In this paper we focus on the later category since edge adjacency relations are less informative, i.e., for each pair of
nodes, the existence of an edge constitutes only a single bit of information.

A.1. Edge reconstruction attacks on graph-structured data

Contemporary developments on edge reconstruction attacks differ significantly in their conceptualization of adversaries,
particularly in terms of their capabilities (Zhang et al., 2021; 2022) and the extent of prior knowledge they possess about the
GRL model and the underlying graph dataset (He et al., 2021). The mechanism of COSERA was first proposed in (Duddu
et al., 2020) and later studies in (He et al., 2021). Empirical evidences suggest that with only black-box access to node
representations, the COSERA mechanism obtains a high success rate (AUC > 0.9 for the Citeseer dataset). Subsequent
developments have explored stronger attacks under more powrful adversaries. In (He et al., 2021) the authors investigated
the impact of an adversary’s prior knowledge, including the possession of node features, partial graph structure, and access
to a shadow dataset, on the success rate of corresponding attack strategies. Inspire by information bottleneck,(Zhou et al.,
2023) improves COSERA via carefully exploiting intermediate representations produced by GNNs. Notably, despite
the adversaries in (He et al., 2021; Zhou et al., 2023) being equipped with substantially more information compared to
COSERA, the resulting enhancement in attack performance exhibited by these adversaries demonstrates only marginal
improvements relative to COSERA. The GraphMI attack (Zhang et al., 2021) disables the adversary from being able to
acquire node representations but instead requires access to node features and labels, as well as white-box access to the
GNN model. Recent works explored influence-based attacking schemes, wherein the adversary is allowed to alter the graph
information: The LinkTeller attack (Wu et al., 2022a) manipulates node features while (Meng et al., 2023) infiltrates the
underlying graph with malicious nodes.

A.2. Theoretical explorations in graph recovery from neural representations

In (Chanpuriya et al., 2021), the authors proposed an algorithm that provably recovers graph structure based on representa-
tions generated via DeepWalk, which is a factorizaton-based procedure and different from GNN-produced representations.
In (Zhang et al., 2023) the authors showed that when block structure exists in the underlying graph, the performance of
COSERA is uneven across node in different blocks. In (Zhou et al., 2023), the authors use information-theoretic arguments
to construct more powerful attacks than COSERA. Nevertheless, the aforementioned studies did not provide a theoretical
rationale for the practical vulnerabilities manifested as a result of the COSERA.

A.3. Privacy protection against edge reconstruction attacks

Edge differential privacy (EDP) (Nissim et al., 2007) is the most popular privacy notion that offers a formal protection
against edge reconstruction attacks. Standard private training algorithms like DPSGD (Abadi et al., 2016) may produce
GNN models that is provably private in the sense that membership information of any individual training sample is limitly
disclosed. 2 However, such approaches do not provide privacy during inference time (Chien et al., 2023). Protection
mechanisms against inference-time adversaries are mostly based on noisy version of GNN encoding such as edge-wise
randomized response (Wu et al., 2022a) that provides very strong privacy protection yet being overly destructive to model
utility. Noisy aggregation (NAG) mechansims (Sajadmanesh et al., 2023; Wu et al., 2023; Chien et al., 2023) are recently
proposed that empirically achieves better privacy-utility trade-offs. Inspired by the information bottleneck principle, (Wang
et al., 2021; Zhou et al., 2023) proposed to use regularization or saddle-point optimization techniques to control privacy
leakage. Yet these proposals are not principled in theory.

2Note that this require a careful sensitivity analysis with respect to the correct privacy model like EDP.
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B. Proofs of Main Theorems
B.1. Proof of theorem 4.1

In the proof, for notational simplicity, we abuse notation by treating A = A+ I and D = D + I (i.e., self-edge is included
in the edge graph). We then define A(L) := A · ...︸︷︷︸

L times

·A and p
(L)
ij := ((D−1A)L)ij .

To prove the result, we require the following lemmas.

Lemma B.1. Let B(n, p) denote the binomial distribution with probability p and size n.

1. Suppose X dominates B(n, p). For any a > 0, we have

P(X < np− a) ≤ exp{−a2/2np}. (9)

2. Suppose X is dominated by B(n, p). For any a > 0, we have

P(X > np+ a) ≤ min{exp{−a2/2np+ a3/(np)3}, exp{− a2

2np+ 2a/3
}}. (10)

Proof of Lemma B.1 is standard and we omit it here.

Lemma B.2. Given a graph with edge probability p (p ≤ C1
logn
n ), then

P(
∑
j

Ai1jAi2j ≥ 1) ≤ C2
(log n)2

n
, (11)

where i1, i2 are two nodes uniformly randomly sampled from the graph (C2 = 1.5C1).

Proof of Lemma B.2. By the monotonicity, we only need to consider the case when p ≡ C1
logn
n . By Lemma B.1, we know

that C1

2 log n ≤ ∑
j Aij ≤ 3C1

2 log n with high probability at least 1 − 1/n2 all i ∈ [n] when C1 is a sufficiently large
constant.

According to the independence between Ai1j and Ai2j (i1 ̸= i2), we could easily compute that

E[
∑
j

Ai1jAi2j ] = E[E[
∑
j

Ai1jAi2j |
∑
j

Ai1j ]]

≤ 3C1

2
log n · C1 log n

n
+

1

n2
· n · C1 log n

n

≤ 3C2
1

log2 n

n
. (12)

We then have P(
∑

j Ai1jAi2j ≥ 1) ≤ 3C2
1
log2 n

n by Markov inequality. Note that
∑

j Ai1jAi2j only takes integer value. In

other words, P(
∑

j Ai1jAi2j = 0) ≥ 1− 3C2
1
log2 n

n .

Lemma B.3. Given a graph with edge probability p (p ≤ C1
logn
n ), then

P(
∑
j

A
(L)
i1j

A
(L)
i2j

≥ 1) ≤ (C2 log n)
2L

n
, (13)

where i1, i2 are two nodes uniformly randomly sampled from the graph.

Proof of Lemma B.3. By recalling the definition of A
(L)
ij that A(L)

ij equals one only when node i and node j can be

connected within a path of length L. Therefore, with probability at least 1− 1/n2, it holds |N (L)
j | ≤ ( 3C1 logn

2 )L, where

N (L)
j := {i : A(L)

ij = 1}

13
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Note that, given fixed j, Ai1jAi2j is greater than 0 only if i1, i2 ∈ N (L)
j . By the symmetry, we know that this happens with

probability at most
|N (L)

j |(|N (L)
j |−1)

n(n−1) when i1, i2 are uniformly randomly sampled. Therefore, by union bound, we have

P(
∑
j

A
(L)
i1j

A
(L)
i2j

≥ 1) ≤
∑
j

|N (L)
j |(|N (L)

j | − 1)

n(n− 1)

≤ (1.5C1 log n)
2L

n− 1
, (14)

which concludes the proof.

Proof of the theorem. For any pair of two nodes i and j, we next recall the formula of cosine similarity, cos θ(H(L)
i , H

(L)
j ),

cos θ(H
(L)
i , H

(L)
j ) :=

⟨H(L)
i , H

(L)
j ⟩√

⟨H(L)
i , H

(L)
i ⟩ · ⟨H(L)

j , H
(L)
j ⟩

, (15)

which will be used recurrently in the following main proof.

According to the generation mechanism of node features (i.e., isotropic Gaussian assumption), we have that | 1d∥Xj∥2− 1| ≤
3
√

logn
d and | 1d ⟨Xj , Xj′⟩| ≤ 3

√
logn
d for all j, j′ with probability at least 1− 1/n2.

Case 1: without considering the learnable weight matrix W . For the numerator in cos θ(H
(L)
i1

, H
(L)
i2

), when i1 and i2 are
truly connected, we have

⟨H(L)
i1

, H
(L)
i2

⟩ =

n∑
j=1

p
(L)
i1j

p
(L)
i2j

∥Xj∥2 +
∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

≥ p
(L)
i1i1

p
(L)
i2i1

∥Xi1∥2 +
∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

≥ 1

|N (L)
i1

||N (L)
i2

|
∥Xi1∥2 +

∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

≥ 1

(C2 log n)2L
− 3

√
log n

d
(use the fact that

∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

≤ 1)

≥ 2

3
· 1

(C2 log n)2L
(16)

when d > 9(C2 log n)
4L+2 · log n. On the other hand, when i1 and i2 are not connected, by Lemma B.3, we know there are

at most (C2 logn)2L

n · n(n− 1)/2 pairs of i1, i2 such that
∑

j p
(L)
i1j

p
(L)
i2j

> 0. For the rest of pairs, we have

⟨H(L)
i1

, H
(L)
i2

⟩ =
∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

≤ 3

√
log n

d

<
1

3
· 1

(C2 log n)3L+1
, (17)

when d > 9(C2 log n)
6L+2 · log n.
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For the denominator (∥H(L)
i1

∥ · ∥H(L)
i2

∥)1/2, we give the upper and lower bounds of ∥H(L)
i ∥. We can compute

⟨H(L)
i , H

(L)
i ⟩ =

n∑
j=1

p
(L)
ij p

(L)
ij ∥Xj∥2 +

∑
j ̸=j′

p
(L)
ij p

(L)
ij′ ⟨Xj , Xj′⟩

≤ 1 + 3

√
log n

d

< 1 +
1

3
· 1

(C2 log n)2L+1
, (18)

where we use the fact that
∑

j p
(L)
ij p

(L)
ij ≤ 1. Conversely, we have

⟨H(L)
i , H

(L)
i ⟩ =

n∑
j=1

p
(L)
ij p

(L)
ij ∥Xj∥2 +

∑
j ̸=j′

p
(L)
ij p

(L)
ij′ ⟨Xj , Xj′⟩

≥ 1

(C2 log n)L
− 3

√
log n

d

≥ 1

(C2 log n)L
− 1

3
· 1

(C2 log n)2L+1
, (19)

where we use the fact that
∑

j p
(L)
ij p

(L)
ij ≥ 1/(C2 log n)

L when |N (L)
i | ≤ (C2 log n)

L.

To sum up, cos θ(H(L)
i1

, H
(L)
i2

) is at least

2

3
· 1

(C2 log n)2L
/(1 +

1

3(C2 log n)2L+1
) ≥ 1

2
· 1

(C2 log n)2L
(20)

when node i1 and i2 are connected. On the other hand, cos θ(H(L)
i1

, H
(L)
i2

) is at most

1

3
· 1

(C2 log n)3L+1
/(

1

(C2 log n)L
− 1

3
· 1

(C2 log n)2L+1
) <

1

2
· 1

(C2 log n)2L
(21)

for all pairs (except at most (C2 logn)2L

n · n(n− 1)/2 pairs) of disconnected nodes i1 and i2.

By choosing the cutoff τ = 1
2 · 1

(C2 logn)2L
, with probability at least 1− 2/n2, we have the false negative is zero and the

false positive is (C2 logn)2L

n .

Case 2: with considering the learnable weight matrix W . Additionally, if the learnable weight W is taken into account, we
can derive the following results. We define κ1 and κ2 to be the largest and smallest positive constants such that

κ1⟨X,X ′⟩ ≤ ⟨WX,WX ′⟩ ≤ κ2⟨X,X ′⟩

holds. It is easy to see that κ2/κ1 = (κ(W ))2. Then the parallel version of (16) becomes

⟨H(L)
i1

, H
(L)
i2

⟩ ≥ κ1
2

3

1

(C2 log n)2L
. (22)

The parallel version of (17) becomes

⟨H(L)
i1

, H
(L)
i2

⟩ ≤ 3κ2

√
log n

d
. (23)

The parallel version of (18) becomes

⟨H(L)
i , H

(L)
i ⟩ ≤ κ2(1 + 3

√
log n

d
). (24)
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The parallel version of (19) becomes

⟨H(L)
i1

, H
(L)
i2

⟩ ≥ κ1(
1

(C2 log n)L
− 3

√
log n

d
). (25)

Combining above results, we have that

cos θ(H
(L)
i1

, H
(L)
i2

) ≥
κ1

2
3

1
(C2 logn)2L

κ2(1 + 3
√

logn
d )

≥ κ1

2κ2

1

(C2 log n)2L
=: cut1(L) (26)

when i1, i2 are connected and d ≫ log2 n and

cos θ(H
(L)
i1

, H
(L)
i2

) ≤
3κ2

√
logn
d

κ1(
1

(C2 logn)L
− 3
√

logn
d )

≤ 4κ2

κ1

√
logn
d

1
(C2 logn)L

=: cut2(L) (27)

when i1, i2 are not connected and d ≫ (C2 log n)
6L+2 log n.

Therefore as long as d ≫ (C2 log n)
6L+2 log n and

(
κ1

κ2
)2 ≥ 8(C2 log n)

3L ·
√

log n

d
(28)

holds, we can choose any cutoff τ between cut1(L) and cut2(L) so that false negative rate is zero and false positive rate is
no larger than (C2 log n)

2L/n. This completes the proof.

B.2. Proof of theorem 5.1

To prove the desired result, we first need the following lemmas. In the rest of proof, we abuse the notation by treating p as
p0 and q as q0.

By applying the Hoeffding’s inequality, we can obtain the following two lemmas.
Lemma B.4. It holds |∑j:i,j in the same group Aij − n

K · p0| ≤ 3 log n =: ϵ1 for all i with probability at least 1− 1/n2.

Lemma B.5. Suppose i is in group k, it holds |∑j:i,j in the group k′ (̸= k) Aij − n
K · q0| ≤ min{ 1

2
n
K · q0, 3 log n} =: ϵ2 for all

i with probability at least 1− 1/n2.

Combining Lemma B.4 and Lemma B.5, we have the following lemma.
Lemma B.6. It holds |∑j Aij − ( n

K · p0 + (n− n
K ) · q0)| ≤ ϵ1 + (K − 1)ϵ2 with probability at least 1− 2/n2.

In summary, with high probability confidence, Lemma B.6 gives the characterization of degree (i.e. number of neighbours)
of every node i.

We then make a step forward and characterize the normalized degree p
(L)
ij for L ≥ 2 in the following lemmas.

Lemma B.7. With probability at least 1− 1/n2, it holds that |A(2)
ij − ( n

K p20 + (n− n/K)q0p0)| ≤ 6 log n+ 1
2

n
K · q0 for

i, j from the same group and |A(2)
ij − ( n

K p0q0 + (n− n/K)q20)| ≤ min{ 2
3 (

n
K p0q0 + (n− n/K)q20), 3(K − 1) log n} for

i, j from different groups.

Lemma B.8. For L ≥ 2, suppose there exist constants a(L)
1 and a

(L)
2 such that |A(L)

ij − a
(L)
1 | ≤ ϵ

(L)
1 when i, j are in the

same group and |A(L)
ij − a

(L)
2 | ≤ ϵ

(L)
2 when i, j are not in the same group. It holds that

|A(L+1)
ij − a

(L+1)
1 | ≤ ϵ

(L)
1 i, j in the same group

|A(L+1)
ij − a

(L+1)
2 | ≤ ϵ

(L)
2 i, j not in the same group, (29)
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with

a
(L+1)
1 := (a

(L)
1

n

K
p0 + a

(L)
2 (n− n/K)q0),

a
(L+1)
2 := a

(L)
1

n

K
q0 + a

(L)
2

n

K
p0 + a

(L)
2 (n− 2n/K)q0

ϵ
(L+1)
1 := ϵ

(L)
1

n

K
p0 + ϵ1a

(L)
1 + ϵ1ϵ

(L)
1 + ϵ

(L)
2 (n− n/K)q0 + (K − 1)ϵ2a

(L)
2 + (K − 1)ϵ2ϵ

(L)
2 ,

ϵ
(L+1)
2 := ϵ

(L)
1

n

K
q0 + ϵ2a

(L)
1 + ϵ2ϵ

(L)
1 + ϵ

(L)
2

n

K
p0 + ϵ1a

(L)
2 + ϵ1ϵ

(L)
2 + ϵ

(L)
2 (n− 2n/K)q0 + (K − 2)ϵ2a

(L)
2 + (K − 2)ϵ2ϵ

(L)
2 .

Proof of Lemma B.7 is a special case of that of Lemma B.8. In the following, we prove Lemma B.8.

Proof of Lemma B.8. By the definition, we know A
(L+1)
ij =

∑
j′ A

(L)
ij′ Aj′j .

When i, j are from the same class (w.l.o.g, we denote it as class 1), then it holds

|A(L+1)
ij − (a

(L)
1

n

K
p0 + a

(L)
2 (n− n/K)q0)|

= |
∑
j′

A
(L)
ij′ Aj′j − (a

(L)
1

n

K
p0 + a

(L)
2 (n− n/K)q0)|

≤ |
∑

j′ in class 1

A
(L)
ij′ Aj′j − a

(L)
1

n

K
p0|+ |

∑
j′ not in class 1

A
(L)
ij′ Aj′j − a

(L)
2 (n− n/K)q0|

= ϵ
(L)
1

n

K
p0 + ϵ1a

(L)
1 + ϵ1ϵ

(L)
1 + ϵ

(L)
2 (n− n/K)q0 + (K − 1)ϵ2a

(L)
2 + (K − 1)ϵ2ϵ

(L)
2 . (30)

Therefore, we can let a(L+1)
1 := (a

(L)
1

n
k p0 + a

(L)
2 (n − n/K)q0) and ϵ

(L+1)
1 := ϵ

(L)
1

n
K p0 + ϵ1a

(L)
1 + ϵ1ϵ

(L)
1 + ϵ

(L)
2 (n −

n/K)q0 + (K − 1)ϵ2a
(L)
2 + (K − 1)ϵ2ϵ

(L)
2 .

When i, j are not from the same class (w.l.o.g. we assume i is from class 1 and j is from class 2), then it holds

|A(L+1)
ij − (a

(L)
1

n

K
q0 + a

(L)
2

n

K
p0 + a

(L)
2 (n− 2n/K)q0)|

= |
∑
j′

A
(L)
ij′ Aj′j − (a

(L)
1

n

K
q0 + a

(L)
2

n

K
p0 + a

(L)
2 (n− 2n/K)q0)|

≤ |
∑

j′ in class 1

A
(L)
ij′ Aj′j − a

(L)
1

n

k
q0|+ |

∑
j′ in class 2

A
(L)
ij′ Aj′j − a

(L)
2

n

K
p0|

+|
∑

j′ not in class 1 & 2

A
(L)
ij′ Aj′j − a

(L)
2 (n− 2n/K)q0|

≤ ϵ
(L)
1

n

K
q0 + ϵ2a

(L)
1 + ϵ2ϵ

(L)
1 + ϵ

(L)
2

n

K
p0 + ϵ1a

(L)
2 + ϵ1ϵ

(L)
2

+ϵ
(L)
2 (n− 2n/K)q0 + (K − 2)ϵ2a

(L)
2 + (K − 2)ϵ2ϵ

(L)
2 . (31)

Therefore, we can let a(L+1)
2 := a

(L)
1

n
K q0 + a

(L)
2

n
K p0 + a

(L)
2 (n− 2n/K)q0 and ϵ

(L+1)
2 := ϵ

(L)
1

n
K q0 + ϵ2a

(L)
1 + ϵ2ϵ

(L)
1 +

ϵ
(L)
2

n
K p0 + ϵ1a

(L)
2 + ϵ1ϵ

(L)
2 + ϵ

(L)
2 (n− 2n/K)q0 + (K − 2)ϵ2a

(L)
2 + (K − 2)ϵ2ϵ

(L)
2 .

By above induction, it can be seen that, for any fixed L, ϵ(L)
1 /a

(L)
1 = Op(

logn
n ), ϵ(L)

2 /a
(L)
1 = Op(

logn
n ). It also holds

a
(L)
2 /a

(L)
1 = Op(

logn
n ) when true edge probability satisfies q0 = Op(

logn
n ), and ϵ

(L)
2 /a

(L)
2 = Op(

logn
n ) when q0 ≫ logn

n .

Recall the definition that p(L)
ij = ((D−1A)L)ij , therefore p

(L)
ij ∝ A

(L)
ij for any fixed i. In other words, for fixed L ≥ 2, we
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have

p
(L)
ij := p̄

(L)
ij +Op(

k log n

n2
) =

a
(L)
1

n
K · a(L)

1 + (n− n
K ) · a(L)

2︸ ︷︷ ︸
=:p

(L)
1

+Op(
k log n

n2
), i, j in the same group,

p
(L)
ij = p̄

(L)
ij +Op(

k log n

n2
) =

a
(L)
2

n
K · a(L)

1 + (n− n
K ) · a(L)

2︸ ︷︷ ︸
=:p

(L)
2

+Op(
k log n

n2
), i, j not in the same group. (32)

Here, on a very high level, we can treat p̄(L)
ij as the population version of ((D−1A)L)ij . When i, j in the same group, then

p̄
(L)
ij ≡ p

(L)
1 . Otherwise, p̄(L)

ij ≡ p
(L)
2 . With above preparations, we are ready to prove the theorem as follows.

Proof of the theorem. We need to consider the case L ≥ 2 and L = 1 separately.

Case 1: L ≥ 2. We define X̄k :=
∑

i∈ group k Xi and r(L) := a
(L)
2 /a

(L)
1 . For the numerator in cos θ(H

(L)
i1

, H
(L)
i2

), when i1
and i2 are in the same group (w.l.o.g, suppose it is group 1), we have

⟨H(L)
i1

, H
(L)
i2

⟩ =

n∑
j=1

p
(L)
i1j

p
(L)
i2j

∥Xj∥2 +
∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

=

n∑
j=1

p̄
(L)
i1j

p̄
(L)
i2j

∥Xj∥2 +
∑
j ̸=j′

p̄
(L)
i1j

p̄
(L)
i2j′

⟨Xj , Xj′⟩+ error (33)

= p
(L)
1 p

(L)
1 ⟨X̄1, X̄1⟩+ 2

∑
k ̸=1

p
(L)
1 p

(L)
2 ⟨X̄1, X̄k⟩+

∑
k ̸=1

p
(L)
2 p

(L)
2 ⟨X̄k, X̄k⟩

+
∑

k ̸=k′ ̸=1

p
(L)
2 p

(L)
2 ⟨X̄k, X̄k′⟩+ error

= p
(L)
1 p

(L)
1

n

K
+ (K − 1)p

(L)
2 p

(L)
2

n

K
+Op((K − 1)p

(L)
1 p

(L)
2

n

K

1√
d

(34)

+(K − 1)(K − 2)p
(L)
2 p

(L)
2

n

K

1√
d
) + error,

where (34) uses the property of node feature generation mechanism that ⟨X̄k, X̄k⟩ = n
K (1 +

√
1/d) for any k and

⟨X̄k, X̄k′⟩ = Op(
n

K
√
d
) for k ̸= k′. Here the error term in (34) is error :=

∑n
j=1(p

(L)
i1j

p
(L)
i2j

− p̄
(L)
i1j

p̄
(L)
i2j

)∥Xj∥2 +∑
j ̸=j′(p

(L)
i1j

p
(L)
i2j′

− p̄
(L)
i1j

p̄
(L)
i2j′

)⟨Xj , Xj′⟩, which can be controlled as follows.

|error| = |
n∑

j=1

(p
(L)
i1j

p
(L)
i2j

− p̄
(L)
i1j

p̄
(L)
i2j

)∥Xj∥2 +
∑
j ̸=j′

(p
(L)
i1j

p
(L)
i2j′

− p̄
(L)
i1j

p̄
(L)
i2j′

)⟨Xj , Xj′⟩|

≤ |
n∑

j=1

(p
(L)
i1j

p
(L)
i2j

− p̄
(L)
i1j

p̄
(L)
i2j

)∥Xj∥2|+ |
∑
j ̸=j′

(p
(L)
i1j

p
(L)
i2j′

− p̄
(L)
i1j

p̄
(L)
i2j′

)⟨Xj , Xj′⟩|

≤ C
(k log n

n2
+
∑
j

k log n

n2

√
log n

d

)
= Op(

k log n

n2
+

k log n

n

√
log n

d
), (35)

where (35) utilizes the fact that
∑

j p̄ij ≡ 1 for any i and (32) by adjusting the constant.
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When i1, i2 are not in the same group (w.l.o.g, suppose i1 in group 1 and i2 in group 2), we have

⟨H(L)
i1

, H
(L)
i2

⟩ =

n∑
j=1

p
(L)
i1j

p
(L)
i2j

∥Xj∥2 +
∑
j ̸=j′

p
(L)
i1j

p
(L)
i2j′

⟨Xj , Xj′⟩

=

n∑
j=1

p̄
(L)
i1j

p̄
(L)
i2j

∥Xj∥2 +
∑
j ̸=j′

p̄
(L)
i1j

p̄
(L)
i2j′

⟨Xj , Xj′⟩+ error

= p
(L)
1 p

(L)
2 (⟨X̄1, X̄1⟩+ ⟨X̄2, X̄2⟩) + (p

(L)
1 p

(L)
1 + p

(L)
2 p

(L)
2 )⟨X̄1, X̄2⟩

+(p
(L)
1 p

(L)
2 + p

(L)
2 p

(L)
2 )

∑
k ̸=1,2

⟨X̄1 + X̄2, X̄k⟩+
∑
k ̸=1,2

p
(L)
2 p

(L)
2 ⟨X̄k, X̄k⟩

+
∑

k ̸=k′ ̸=1,2

p
(L)
2 p

(L)
2 ⟨X̄k, X̄k′⟩+ error

= 2p
(L)
1 p

(L)
2

n

K
+ (K − 2)p

(L)
2 p

(L)
2

n

K

+Op((p
(L)
1 p

(L)
1 +Kp

(L)
1 p

(L)
2 +K2p

(L)
2 p

(L)
2 )

n

K

√
1

d
) + error. (36)

To sum up, if i1, i2 are in the same group, cos θ(H(L)
i1

, H
(L)
i2

) satisfies

cos θ(H
(L)
i1

, H
(L)
i2

)

=
⟨H(L)

i1
, H

(L)
i2

⟩√
⟨H(L)

i1
, H

(L)
i1

⟩ · ⟨H(L)
i2

, H
(L)
i2

⟩

=
p
(L)
1 p

(L)
1

n
k + (K − 1)p

(L)
2 p

(L)
2

n
K

p
(L)
1 p

(L)
1

n
K + (K − 1)p

(L)
2 p

(L)
2

n
K + C

(
(Kp

(L)
1 p

(L)
2 +K2p

(L)2
2 ) n

K
√
d
+Op(

K logn
n ( 1n +

√
logn
d )
)
)

= 1︸︷︷︸
cut1(L)

−op(1) (37)

as long as d ≫ K2 log3 n/b2.

If i1, i2 are not in the same group, cos θ(H(L)
i1

, H
(L)
i2

) satisfies

cos θ(H
(L)
i1

, H
(L)
i2

)

=
⟨H(L)

i1
, H

(L)
i2

⟩√
⟨H(L)

i1
, H

(L)
i1

⟩ · ⟨H(L)
i2

, H
(L)
i2

⟩

=
2p

(L)
1 p

(L)
2

n
K + (K − 2)p

(L)
2 p

(L)
2

n
K + C

(
(Kp

(L)
1 p

(L)
2 +K2p

(L)2
2 ) n

K
√
d
+Op(

K logn
n ( 1n +

√
logn
d )
)
)

p
(L)
1 p

(L)
1

n
K + (K − 1)p

(L)
2 p

(L)
2

n
K

=
2r(L) + (K − 2)r(L)2

1 + (K − 1)r(L)2︸ ︷︷ ︸
cut2(L)

+op(1). (38)

Remark. As L → ∞, r(L) will converge to 1. Therefore, cut2(L) will eventually equal 1 ≡ cut1(L).

Case 2: L = 1. For notational convenience, we define X̃
(i)
k,1 :=

∑
i∈ group k b

(i)
i,1Xi where b

(i)
i,1’s are i.i.d. Bernoulli random

variables with success probability p0 and X̃
(i)
k,2 :=

∑
i∈ group k b

(i)
i,2Xi where b

(i)
i,2’s are i.i.d. Bernoulli random variables with

success probability q0.
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Then it is straightforward to calculate that, if i1, i2 are in the same group 1, it holds

⟨H(1)
i1

, H
(1)
i2

⟩ =d
1

Di1Di2

(
⟨X̃(i1)

1,1 , X̃
(i2)
1,1 ⟩+

∑
k ̸=1

⟨X̃(i1)
1,1 , X̃

(i2)
k,2 ⟩+

∑
k ̸=1

⟨X̃(i1)
k,2 , X̃

(i2)
1,1 ⟩

+
∑
k ̸=1

⟨X̃(i1)
k,2 , X̃

(i2)
k,2 ⟩+

∑
k,k′ ̸=1

⟨X̃(i1)
k,2 , X̃

(i2)
k′,2⟩

)
=

1

Di1Di2

(n
k
p20 + (K − 1)

n

K
q20 +Op(p0

n
√
log n

K
√
d

+
√
p0q0

n
√
log n√
d

+Kq0
n
√
log n√
d

)
)
. (39)

Similarly, if i1, i2 are not in the same group (w.l.o.g, they are in group 1 and 2 respectively), it holds

⟨H(1)
i1

, H
(1)
i2

⟩ =d
1

Di1Di2

(
⟨X̃(i1)

1,1 , X̃
(i2)
1,2 ⟩+ ⟨X̃(i1)

2,2 , X̃
(i2)
1,1 ⟩+ ⟨X̃(i1)

1,1 , X̃
(i2)
2,1 ⟩+ ⟨X̃(i1)

2,2 , X̃
(i2)
1,2 ⟩

+
∑
k ̸=1,2

⟨X̃(i1)
1,1 + X̃

(i1)
2,2 , X̃

(i2)
k,2 ⟩+

∑
k ̸=1,2

⟨X̃(i1)
k,2 , X̃

(i2)
1,2 + X̃

(i2)
2,1 ⟩

+
∑
k ̸=1,2

⟨X̃(i1)
k,2 , X̃

(i2)
k,2 ⟩+

∑
k,k′ ̸=1,2

⟨X̃(i1)
k,2 , X̃

(i2)
k′,2⟩

)
=

1

Di1Di2

(
2
n

k
p0q0 + (K − 2)

n

K
q20 +Op(p0

n
√
log n

K
√
d

+
√
p0q0

n
√
log n√
d

+Kq0
n
√
log n√
d

)
)
. (40)

Moreover, if i1 = i2, it holds

⟨H(1)
i1

, H
(1)
i1

⟩ =d
1

Di1Di1

(
⟨X̃(i1)

1,1 , X̃
(i1)
1,1 ⟩+ 2

∑
k ̸=1

⟨X̃(i1)
1,1 , X̃

(i1)
k,2 ⟩⟩

+
∑
k ̸=1

⟨X̃(i1)
k,2 , X̃

(i1)
k,2 ⟩+

∑
k,k′ ̸=1

⟨X̃(i1)
k,2 , X̃

(i1)
k′,2⟩

)
=

1

Di1Di2

(n
k
p0 + (K − 1)

n

K
q0 +Op(p0

n
√
log n

K
√
d

+
√
p0q0

n
√
log n√
d

+Kq0
n
√
log n√
d

)
)
. (41)

To sum up, we arrive at

cos θ(H
(1)
i1

, H
(1)
i2

)

=
⟨H(1)

i1
, H

(1)
i2

⟩√
⟨H(1)

i1
, H

(1)
i1

⟩ · ⟨H(1)
i2

, H
(1)
i2

⟩

=
n
k p

2
0 + (K − 1) n

K q20
n
k p0 + (K − 1) n

K q0 +Op(p0
n
√
logn

K
√
d

+
√
p0q0

n
√
logn√
d

+Kq0
n
√
logn√
d

)

=
n
k p

2
0 + (K − 1) n

K q20
n
k p0 + (K − 1) n

K q0︸ ︷︷ ︸
cut1(1)

+op(1) (42)

for i1, i2 from the same group, when d ≫ log n. Similarly, we have

cos θ(H
(1)
i1

, H
(2)
i2

)

=
⟨H(1)

i1
, H

(1)
i2

⟩√
⟨H(1)

i1
, H

(1)
i1

⟩ · ⟨H(1)
i2

, H
(1)
i2

⟩

=

n
k p

2
0 + (K − 1) n

K q20 +Op(p0
n
√
logn

K
√
d

+
√
p0q0

n
√
logn√
d

+Kq0
n
√
logn√
d

)
n
k p0 + (K − 1) n

K q0

=
2n
k p0q0 + (K − 2) n

K q20
n
k p0 + (K − 1) n

K q0︸ ︷︷ ︸
cut2(1)

+op(1) (43)
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for i1, i2 from different groups, when d ≫ log n/p20.

Therefore, for any fixed L ≥ and any fixed cutoff τ ≥ cut1(L), then COSERA will predict at least pK n
K · ( n

K − 1)/2 +
qK(K − 1)/2 + n

K · n
K truly connected pairs as dis-connected. In other words, we have the false negative rate is at least

p/(2k) + q/2. If the cutoff τ is between cut2(L) and cut1(L), then COSERA will predict at least (1− p)K n
K · ( n

K − 1)/2
truly dis-connected pairs as connected and predict at least qK(K − 1)/2 + n

K · n
K truly connected pairs as dis-connected.

That is, false positive rate is at least (1− p)/(2k) and false negative rate is at least (1− q)/2. If the cutoff τ is less than
cut2(L), then COSERA will predict at least (1 − p)K n

K · ( n
K − 1)/2 + (1 − q)K(K − 1)/2 + n

K · n
K truly connected

pairs as dis-connected. That is, false positive rate is at least (1− p)/(2k) + (1− q)/2. This completes the proof.

B.3. Proof of theorem 6.1

Before starting the proof, we restate the concrete definitions of the (NAG enabled)-GNNs involved in the theorem in the
message-passing form as in (7):

Mean pooling (Hamilton et al., 2017a) This is the most standard form of message passing GNN. With the un-normalized
and un-perturbed version analyzed in section 4 and 5:

h(l)
v = ReLU

 1

dv + 1

∑
u∈N(v)∪{v}

Wlh
(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

+ ϵ

 (SAGE-meanpool)

Summation pooling (Xu et al., 2018) This is a simplified version of the GIN model which is also analyzed in (Wu et al.,
2023):

h(l)
v = ReLU

 ∑
u∈N(v)∪{v}

Wlh
(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

+ ϵ

 (GIN)

Max pooling (Hamilton et al., 2017a) In its un-normalized and un-perturbed version, this corresponds to the mostly used
SAGE model:

h(l)
v = ReLU

 max
u∈N(v)∪{v}

Wlh
(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

+ ϵ

 (SAGE-maxpool)

GCN pooling (Kipf & Welling, 2016) The GCN pooling takes the form

h(l)
v = ReLU

 1√
dv + 1

∑
u∈N(v)∪{v}

Wlh
(l−1)
u

√
du + 1

∥∥∥h(l−1)
u

∥∥∥
2

+ ϵ

 (GCN)

Attentive pooling (Veličković et al., 2018) This is also know as the GAT model. To simplify notations, let h̃
(l)
v =

h
(l)
v /

∥∥∥h(l)
v

∥∥∥
2
, then the GAT model is recursively defined as

h(l)
v = ReLU

 ∑
u∈N(v)∪{v}

αuvWlh̃
(l−1)
u + ϵ


αuv =

exp
(

LeakyReLU
(
⟨βsrc,Wlh̃

(l−1)
u ⟩+ ⟨βdst,Wlh̃

(l−1)
v ⟩

))
∑

u∈N(v)∪{v} exp
(

LeakyReLU
(
⟨βsrc,Wlh̃

(l−1)
v ⟩+ ⟨βdst,Wlh̃

(l−1)
v ⟩

))
(GAT)

where βsrc, βdst ∈ Rd are learnable vector parameters.

The theorem is a consequence of the following lemma:
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Lemma B.9. Fix an arbitrary node pair (u, v). Let H1 and H0 be the collection of node representations generated under
Auv = 1 and Auv = 0, respectively. It follows that the Kullback-Leibler divergence between H1 and H0 is bounded:

DKL (H1 ∥ H0) ≤ C

∑
l∈[L] ∥Wl∥2op

σ2
. (44)

Here the constant C = 1 for (SAGE-meanpool), (GIN) and (GCN); and C = 4 for (SAGE-maxpool) and (GAT).

Proof of lemma B.9. The proof is essentially a proof of Rényi differential privacy similar to that in (Wu et al., 2023). First
we fix a single l-th layer of GNN defined in (7). We rewrite (7) as:

h(l)
v = T

AGG

Wlh
(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

, u ∈ N(v) ∪ {v}

+ ϵ

 := T
(
h̃(l−1)
v + ϵ

)
(45)

Let the corresponding representation matrix be H
(l)
1 for Auv = 1 and H

(l)
0 for Auv = 0 for any l ∈ [L]. Further denote

H̃ l
a = {h̃(l)

v,a}v∈V as the intermediate representation defined as in (45) with Auv = a, a ∈ {0, 1}. Then by standard results
on Rényi divergence (Mironov, 2017), we have

DKL
(
H l

1 ∥ H l
0

)
=

∥∥∥H̃(l)
1 − H̃

(l)
0

∥∥∥2
2

2σ2
(46)

For some input H l−1. It follows that given all the other edges, the only terms that contributes to
∥∥∥H̃(l)

1 − H̃
(l)
0

∥∥∥2
2

are∥∥∥h̃(l)
v,1 − h̃

(l)
v,0

∥∥∥2
2

and
∥∥∥h̃(l)

u,1 − h̃
(l)
u,0

∥∥∥2
2
. Next we give the derivation of various GNN architectures:

The case of (SAGE-meanpool) We let dv to be the degree of v assuming Auv = 1. Further let g(l)v =
Wlh

(l−1)
u∥∥∥h(l−1)

u

∥∥∥
2

We have:

∥∥∥h̃(l)
u,1 − h̃

(l)
u,0

∥∥∥
2
=

∥∥∥∥∥∥ 1

dv + 1

g(l−1)
v − 1

dv

∑
u∈N(v)\{v}

g(l−1)
u

∥∥∥∥∥∥
2

(47)

≤ 1

2

∥∥∥g(l−1)
v

∥∥∥
2
+

1

dv

∑
u∈N(v)\{v}

∥∥∥g(l−1)
u

∥∥∥
2

 (48)

≤ 1

2

∥Wl∥op +
1

dv

∑
u∈N(v)\{v}

∥Wl∥op

 (49)

= ∥Wl∥op (50)

Analogously we have
∥∥∥h̃(l)

u,1 − h̃
(l)
u,0

∥∥∥2
2
≤ ∥Wl∥2op and thus DKL

(
H

(l)
1 ∥ H

(l)
0

)
≤ ∥Wl∥2

op

σ2 . The result follows from adaptive
composition as in (Mironov, 2017, Proposition 1).

The case of (GIN) This follows by combining the preceding argument with (Wu et al., 2023, Proposition 1).

The case of (GCN) This follows by combining the preceding argument with (Wu et al., 2023, Proposition 2).

The case of (SAGE-maxpool) The result follows from the following fact that
∥∥∥maxu∈N(v) gu −maxu∈N\{v} gu

∥∥∥
2

attains

its maximum when gv = −gu,∀u ∈ N\{v} since all the gus are unit vectors.
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Figure 6: Attacking efficacy of COSERA over sparse Erdős–Rényi graphs, with each grid’s value indicating COSERA’s
performance measured in either AUROC (first row) or ERR (second row) metric.

Proof of theorem 6.1. We view the reconstruction problem regarding Auv as a binary hypothesis testing problem

H0 : Auv = 0 v.s. H1 : Auv = 1. (51)

Then according to hypothesis testing theory (Lehmann et al., 1986), we have

inf
Â

[
P
(
Âuv = 1|Auv = 0

)
+ P

(
Âuv = 0|Auv = 1

)]
≥ 1− dTV (H1,H0) , (52)

where we use dTV (H1,H0) to denote the total variation distance of distributions induced by H1 and H0 respectively. By
the Bretagnolle–Huber bound Canonne (2022, Theorem 1), we have

dTV (H1,H0) ≤
√
1− exp (−DKL (H1 ∥ H0)) (53)

The result then follows by combining (52), (53) and lemma B.9.

C. Further experiments
C.1. Synthetic dataset with random GNN weights

The experimental setup in this section is basically the same as that in section 7.1, except that the model weights are generated
by the following process: For an L-layer Linear GNN, we generate the weight matrix as:

W = W1 × · · · ×WL. (54)

Here each Wl, 1 ≤ l ≤ 10 is a random matrix generated using the initialization method proposed in (He et al., 2015).
The evaluations are shown in figure 6. The results exhibit a similar pattern to figure 1 where the weight matrix is set to
identity. However, the attacking performance differs between the two scenarios: When the matrix W is poorly conditioned
(a consequence of the construction (54)), the attacking performance degrades especially when the feature dimension d is not
sufficiently large.

C.2. A complete report of privacy-utility assessments on Planetoid datasets

C.2.1. TRAINING CONFIGURATIONS AND ATTACKING PIPELINE

Network design For node v with label yv , the prediction is defined as

ŷv = arg max
c∈[C]

dec (enc (G,W) [v]) [c], (55)

where we use [·] to denote the operation of vector index. Here the encoder enc is designed via stacking L noisy GNN layers
(in the sense of NAG) with aggregation mechanism AGG ∈ {MEAN,SUM,GCN,ATTENTION,MAX} as defined above.
Note that the encoder maps input node features into node representations of dimension d, which might be larger than the
number of classes C. The decoder dec is a linear map that maps node representations to predictions.
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Attacking paradigm The attacking procedure of COSERA will be based on the node representations produced by the
GNN encoder enc under a dimension of d. The attack is conducted over the node representations corresponding to the test
subset, i.e., the victim subgraph is the subgraph induced by the test nodes.

Training configurations Across all the experiments, we fix the GNN model to be of depth 2 and use full-batch training
for 1000 steps(epochs) using the Adam optimizer with a learning rate of 0.001.

C.2.2. UNCONSTRAINED SCHEME

We plot the full experimental results under the unconstrained scheme for the Cora, Citeseer and Pubmed datasets in figure 7,
figure 8 and figure 9, respectively, where we evaluate the performance of COSERA under both ERR and AUROC metrics.
The result is consistent with those findings listed in section 7.2.
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(a) GNN model performance over Cora dataset under 5 different aggregation types.
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(b) Attacking performance of COSERA over Cora dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Cora dataset (measured by AUROC) under 5 different aggregation types.

Figure 7: Privacy-utility trade-off on Cora dataset using the unconstrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.

C.2.3. CONSTRAINED SCHEME

We plot the full experimental results under the constrained scheme for the Cora, Citeseer and Pubmed datasets in figure
10, figure 11 and figure 12, respectively, where we evaluate the performance of COSERA under both ERR and AUROC
metrics. The result is consistent with those findings listed in section 7.2.

C.3. Spectrum study of GNN solutions obtained under the unconstrained scheme

We plot the operator norms of the GNN layers in figure 13. The results demonstrate that the operator norms grow at a rapid
rate with the increase of the feature dimension d, rendering strict privacy guarantee vacuous.
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(a) GNN model performance over Citeseer dataset under 5 different aggregation types.

5 6 7 8 9 10 11 12 13

log2 d

0.0

0.2

0.4

0.6

0.8

1.0

E
R

R

ATTENTION, Citeseer

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.0

0.2

0.4

0.6

0.8

1.0

E
R

R
SUM, Citeseer

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.0

0.2

0.4

0.6

0.8

1.0

E
R

R

GCN, Citeseer

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.0

0.2

0.4

0.6

0.8

1.0

E
R

R

MAX, Citeseer

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.0

0.2

0.4

0.6

0.8

1.0

E
R

R

MEAN, Citeseer

σ =0.0

σ =1.0

σ =2.0

σ =4.0

(b) Attacking performance of COSERA over Citeseer dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Citeseer dataset (measured by AUROC) under 5 different aggregation types.

Figure 8: Privacy-utility trade-off on Citeseer dataset using the unconstrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.

D. Discussions
D.1. Stronger adversary for dense graphs or deep encoders

We have shown the limitations of COSERA over dense SBM graphs as well as deep GNN encoders. As our analysis applies
to the specific COSERA adversary, it is thus of interest to ask whether there exists stronger attacking paradigms that is
provably effective against dense graphs or deep GNN encoders. On the flipside, it is also valuable to understand whether the
phenomenon of oversmoothing may fundamentally affect the performance of any black-box adversary.

D.2. Quantifying the advantage of adversaries with more knowledge

Despite its effectiveness, the knowledge available to COSERA is rather limited. Although previous study (He et al.,
2021) has shown empirical evidences that equipping the adversary with more capability may results in stronger attacking
algorithms, theoretical explication of these enhancements has yet to be articulated. In particular, it is of interest to quantify
the amplification of adversarial capacity afforded by scenarios in which the adversary is granted white-box access to the
model weights or node features.

25



On provable privacy vulnerabilities of graph representations

5 6 7 8 9 10 11 12 13

log2 d

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

ATTENTION, Pubmed

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

SUM, Pubmed

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

GCN, Pubmed

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

MAX, Pubmed

σ =0.0

σ =1.0

σ =2.0

σ =4.0

5 6 7 8 9 10 11 12 13

log2 d

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

MEAN, Pubmed

σ =0.0

σ =1.0

σ =2.0

σ =4.0

(a) GNN model performance over Pubmed dataset under 5 different aggregation types.
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(b) Attacking performance of COSERA over Pubmed dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Pubmed dataset (measured by AUROC) under 5 different aggregation types.

Figure 9: Privacy-utility trade-off on Pubmed dataset using the unconstrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.

26



On provable privacy vulnerabilities of graph representations

5 6 7 8 9 10 11 12 13

log2 d

0.2

0.4

0.6

0.8

A
C

C

ATTENTION, Cora

σ =0.0

σ =0.01

σ =0.05

σ =0.1

σ =0.5

σ =1.0

5 6 7 8 9 10 11 12 13

log2 d

0.2

0.4

0.6

0.8

A
C

C

SUM, Cora

σ =0.0

σ =0.01

σ =0.05

σ =0.1

σ =0.5

σ =1.0

5 6 7 8 9 10 11 12 13

log2 d

0.2

0.4

0.6

0.8

A
C

C

GCN, Cora

σ =0.0

σ =0.01

σ =0.05

σ =0.1

σ =0.5

σ =1.0

5 6 7 8 9 10 11 12 13

log2 d

0.2

0.4

0.6

0.8

A
C

C

MAX, Cora

σ =0.0

σ =0.01

σ =0.05

σ =0.1

σ =0.5

σ =1.0

5 6 7 8 9 10 11 12 13

log2 d

0.2

0.4

0.6

0.8

A
C

C

MEAN, Cora

σ =0.0

σ =0.01

σ =0.05

σ =0.1

σ =0.5

σ =1.0

(a) GNN model performance over Cora dataset under 5 different aggregation types.
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(b) Attacking performance of COSERA over Cora dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Cora dataset (measured by AUROC) under 5 different aggregation types.

Figure 10: Privacy-utility trade-off on Cora dataset using the constrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.
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(a) GNN model performance over Citeseer dataset under 5 different aggregation types.
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(b) Attacking performance of COSERA over Citeseer dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Citeseer dataset (measured by AUROC) under 5 different aggregation types.

Figure 11: Privacy-utility trade-off on Citeseer dataset using the constrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.
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(a) GNN model performance over Pubmed dataset under 5 different aggregation types.
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(b) Attacking performance of COSERA over Pubmed dataset (measured by ERR) under 5 different aggregation types.
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(c) Attacking performance of COSERA over Pubmed dataset (measured by AUROC) under 5 different aggregation types.

Figure 12: Privacy-utility trade-off on Pubmed dataset using the constrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes stands for performance measures All plots are based on 5 independent
trials with shades indicating one standard deviation.
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(a) Spectrum study on the Cora dataset under 5 different aggregation types.
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(b) Spectrum study on the Citeseer dataset under 5 different aggregation types.
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(c) Spectrum study on the Pubmed dataset under 5 different aggregation types.

Figure 13: Spectrum study on the Planetoid datasets under the unconstrained training scheme. The horizontal axes measure
feature dimension d in log2 scale and the vertical axes measures the operator norm of the projection weights of the GNN.
All plots are based on 5 independent trials with shades indicating one standard deviation.
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