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Studying complex relations in multivariate datasets is a common task in psychological science.
Recently, the Gaussian graphical model has emerged as an increasingly popular model for char-
acterizing the conditional dependence structure of random variables. Although the graphical
lasso (`1-regularization) is the most well-known estimator across the sciences, it has several
drawbacks that make it less than ideal for model selection. There are now alternative forms of
regularization that were developed specifically to overcome issues inherent to the `1-penalty.
To date, this information has not been synthesized. This paper provides a comprehensive survey
of nonconvex regularization that spans from the smoothly clipped absolute deviation penalty
to continuous approximations of the `0-penalty (i.e., best subset) for directly estimating the
inverse covariance matrix. A common thread shared by these penalties is that they all enjoy
the oracle properties, that is, they perform as though the true generating model were known
in advance. To ensure their theoretical properties are general, I conducted extensive numerical
experiments that indicated superior and more than competitive performance when compared to
glasso and non-regularized model selection, respectively, all the while being computationally
feasible for many variables. In addition, the important topics of tuning parameter selection
and statistical inference in regularized models are reviewed. The penalties are employed to
estimate the dependence structure of post-traumatic stress disorder symptoms. The discussion
includes several ideas for future research, including a plethora of information to facilitate their
study. I have implemented the methods in the R package GGMncv.
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Studying complex relations in multivariate datasets is a
common task in psychological science. Cognitive neurosci-
entists model brain connectivity with the goal of unearthing
functional and structural associations between cortical re-
gions (Ortiz, Munilla, Álvarez-Illán, Górriz, & Ramírez,
2015). In clinical psychology, researchers wish to bet-
ter understand the intricate web of symptom interrelations
that underlie mental health disorders (Borsboom, Cramer,
Schmittmann, Epskamp, & Waldorp, 2011; McNally, 2016).
To this end, Gaussian graphical modeling (GGM) has
emerged as an oft-used tool in the chest of research psychol-
ogists. The basic idea is to characterize multivariate relations
by learning the conditional dependence structure, that is, the
partial correlation “network” (Epskamp & Fried, 2018; Ep-
skamp, Waldorp, Mottus, & Borsboom, 2018). The cortical
regions or symptoms are “nodes” and the featured connec-
tions linking nodes are “edges” that graphically represent the
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conditional dependence structure.
Inherent to Gaussian graphical modeling is the problem

of covariance selection (Dempster, 1972), in that the off-
diagonal elements of the inverse covariance (precision) ma-
trix capture the dependence structure, that, when standard-
ized and signed reversed, yield partial correlation coeffi-
cients. Even with a moderate number of variables, this can
pose computational challenges, because, with p variables,
there are 1

2 ·p(p−1) potential edges.1 Hence, the model space
of possible conditional dependence graphs is 2

1
2 p(p−1) (Mo-

hammadi & Wit, 2015a). As a result, the GGM has served as
a methodological testing grounds of sorts, where algorithms
are continuously developed with the goals of accurate model
selection and computational feasibility (for but a few of the
possibilities see Fan, Liao, & Liu, 2016).

Perhaps the most widely known method is the graphical
lasso (a.k.a., “least absolute shrinkage and selection opera-
tor,” Friedman, Hastie, & Tibshirani, 2008; Tibshirani, 1996;
Witten, Friedman, & Simon, 2011), which adds a penalty to

1On the other hand, in the ubiquitous case of model selection
in regression there are only p potential coefficients (the number of
possible models is 2p).
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the estimation function that is based on the sum of the abso-
lute values of the edges (i.e., `1-regularization). The effect
of this penalty is to push smaller estimates to exactly zero,
thereby achieving covariance selection. Although psycho-
logical data is rarely high-dimensional (n < p, Williams &
Rast, 2019; Williams, Rhemtulla, Wysocki, & Rast, 2019),
which indicates estimation accuracy is not (usually) a prob-
lem (Williams & Rodriguez, 2020), it is important to note
that glasso and related forms of regularization are still com-
putationally attractive. This is because best subset model se-
lection with, say, the maximum likelihood estimator (MLE),
requires an intensive combinatorial search–this quickly be-
comes an insurmountable challenge for covariance selection
in particular. This computational advantage has contributed
to the widespread use of `1-regularization in the sciences, in-
cluding psychology, where it emerged as the de facto default
in clinical applications (Epskamp & Fried, 2018)

However, in the statistics literature, it has long been
known that the `-penalty has several drawbacks, includ-
ing that it is less than ideal for model selection. In fact,
Mazumder, Friedman, and Hastie (2011) explicitly noted the
following:

...greedier methods like subset regression and
the nonconvex methods we discuss here achieve
sparser models than the lasso for the same or
better prediction accuracy, and enjoy superior
variable-selection properties (p. 1125).

This quote captures that `1-regularization is known to have
an inflated false positive rate (Figure 5 in Williams et al.,
2019) and will not necessarily converge on the true model
(Figure 3 in Williams & Rast, 2019). Indeed, it has also been
suggested to “interpret the second ‘s’ in lasso as screening
rather than selection” (p. 278, Tibshirani, 2011). In regres-
sion, this is due to a rather strong assumption known as the
irrepresentable condition (Zhao & Yu, 2006) and mutual in-
coherence (Wainwright, 2009). This is unlikely to hold with
many variables, unless the ground truth is extremely sparse
(see Table 1 in Zhao & Yu, 2006), which is not typically the
case in psychological applications (see Table 2 in Wysocki
& Rhemtulla, 2019). Note that an analogous assumption
similarly applies in GGMs (see Equation 28 in Ravikumar,
Wainwright, Raskutti, & Yu, 2011). These limitations form
the primary impetus for nearly two decades of ongoing re-
search exploring alternative forms of regularization. Unfor-
tunately, these alternatives have yet to find their way into the
psychological literature. For example, lasso was recently de-
scribed for model selection in regression (McNeish, 2015),
all the while penalties known to overcome the limitations of
lasso have been readily available to research psychologists
for decades (e.g., Fan & Li, 2001). Bringing the psycholog-
ical literature up to date with the current statistical literature
is thus long overdue.

In addition to model selection consistency2 (or lack
thereof), there are other important limitations of `1-
regularization. In particular, it does not enjoy the so-called
oracle properties:

1. The true model is selected, with a probability tending
to 1, as the sample size becomes large.

2. The parameters are asymptotically normal and they
have the same asymptotic variance as non-regularized
estimation.

In other words, “the penalized likelihood estimators work as
well as if the correct submodel were known in advance” (p.
1348, Fan & Li, 2001). Other desirable properties include
unbiasedness, which runs contrary to the common, albeit
naive view, that trading in variance for bias is necessarily
desirable. This is because removing the bias is required to
make statistical inference (Javanmard & Montanari, 2013)
and it can also improve predictive accuracy (p. 16, Hastie,
Tibshirani, & Wainwright, 2015). And note that the bias of
lasso does not necessarily dissipate as n → ∞, that is, “in
general they [non-zero estimates] are not consistent” (p. 91,
Friedman, Hastie, & Tibshirani, 2001). There are a variety
of approaches to debias the estimates, such as re-estimating
the model with only the selected predictors using ordinary
least squares (i.e., lasso + OLS, Belloni & Chernozhukov,
2013), the desparsified estimator of Javanmard and Monta-
nari (2013), and the relaxed lasso (Meinshausen, 2007). An
alternative for bias mitigation has been investigating noncon-
vex penalization. To this end, Fan and Li (2001) introduced
the smoothly clipped absolute deviation (SCAD) penalty that
enjoys the oracle properties and it reduces bias to the large
edges (those that are likely to be nonzero). Likewise, another
popular choice for improved model selection is the minimax
concave penalty of C. H. Zhang (2010).

Although SCAD and MCP are the most well-known non-
convex penalties, there are several others that have been
developed over the years. And there is reason to suspect
that these may have competitive performance. For example,
while best subset selection (a.k.a, the `0 penalty) is computa-
tionally intensive, as it requires fitting every possible model
(but see Hazimeh & Mazumder, 2020), it is often consid-
ered the gold standard for model selection. This is because
the penalty is applied directly to the number of parameters,
that is, the `0 (pseudo) norm. Hence, forms of regularization
that approximate the `0 penalty are highly desirable. This
was explicitly noted in Zhao and Yu (2006), that interestingly
enough also proved the irrepresentable condition:

Therefore, to get universal consistency, we need
to reduce the amount of shrinkage on the param-
eters that are away from zero and regularize in a

2This refers to selecting the true model as n→ ∞
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more similar fashion as `0-penalty. However, as
a consequence, this breaks the convexity of the
lasso penalty, therefore more sophisticated algo-
rithms are needed for solving the minimization
problems (p. 2554).

There are now a variety of nonconvex penalties, including
algorithms for their estimation, that were specifically devel-
oped with those goals in mind. To date, however, this infor-
mation has not been synthesized in the psychological litera-
ture.

This paper includes three major contributions. First, non-
convex penalties, spanning from the SCAD and MCP to
those that approximate the `0-penalty, are thoroughly re-
viewed with the most common psychological applications
in mind (i.e., assuming there are sufficiently more obser-
vations than variables or low-dimensional data). Although
these penalties have purported benefits compared to `1-
regularization, they have not been compared with data com-
mon to psychology. Hence, the second contribution is a sim-
ulation study characterizing their performance for model se-
lection. This includes determining whether they offer advan-
tages compared to non-regularized methods. In contrast to
convex problems, nonconvex optimization presents several
challenges. To this end, the final major contribution is a re-
view of computational approaches for implementing noncon-
vex penalties in Gaussian graphical models. To my knowl-
edge, no software exists for this purpose, so I have imple-
mented the methodology in the R package GGMncv.

Additionally, there are important aspects of regulariza-
tion that have not been discussed in the psychological liter-
ature. This includes turning insensitive regularization and
approaches for making statistical inference which is not
straightforward in regularized models. These topics are also
discussed, with the hope that nonconvex penalties are used
judiciously in substantive applications.

The paper is organized as follows. The Gaussian graphical
model is first introduced. The next section includes a review
of nonconvex penalties. The following section reviews ap-
proaches for selecting the tuning parameter for nonconvex
penalties. A simulation study is then provided, where var-
ious nonconvex penalties are compared to non-regularized
estimation and `1-regularization with simulation, with the
goal of determining their suitability for psychological appli-
cations. The following section reviews challenges and ap-
proaches for making statistical inference. The discussion in-
cludes several ideas for further research into the properties of
nonconvex regularization.

The Gaussian Graphical Model

A Brief Note on Generality

In this work, I assume that the data are continuous and
normally distributed, that is, multivariate Gaussian. Accord-

ingly, I rely heavily upon the Pearson partial correlation co-
efficient to keep the exposition manageable. This does not
limit the generality of this work, in that all ideas can seam-
lessly be applied to polychoric (Pearson, 1900), Spearman’s
rank (S. Kim, 2015), the so-called Gaussian rank estimator
(i.e., based on Van Der Waerden scores, see references in
Boudt, Cornelissen, Croux, & Boudt, 2012), and Kendall’s
tau based partial correlations (Johnson, 1979), each of which
are commonly used in the Gaussian graphical modeling lit-
erature (Hoff, 2007; Liu, Han, Yuan, Lafferty, & Wasserman,
2012; Mohammadi & Wit, 2015a). This far-reaching appli-
cability is due to requiring only an estimate of the covariance
matrix.

Model Formulation

For multivariate normal data (Baba, Shibata, & Sibuya,
2004; Baba & Sibuya, 2005), a GGM captures conditional
relations that are typically visualized to infer the underlying
dependence structure (i.e., the partial correlation “network”;
Højsgaard, Edwards, & Lauritzen, 2012; Lauritzen, 1996).
There is an undirected graph that is denoted G = (V, E), con-
sists of a vertex V = {1, . . . , p} and an edge set E ⊂ V × V .
The former refers to “nodes” that are, say, symptoms in a
psychopathology scale, whereas E is the estimated network
structure. Let y = (y1, . . . , yp)′ be a random vector indexed
by the graph’s vertices that is assumed to follow a multivari-
ate normal distribution, y ∼ Np(µ,Σ), with the mean vector
µ = (01, . . . , 0p)′ and a p × p positive definite covariance
matrix Σ. In the following, we use Y to denote the n× p data
matrix, where each row corresponds to the observations from
the ith individual i = {1, . . . , n}.

The undirected graph is obtained by determining which
off-diagonal elements in the precision matrix, Θ = Σ−1, are
nonzero. That is, (i, j) ∈ E when nodes i and j are determined
to be conditionally dependent and set to zero otherwise. Note
that standardizingΘ and reversing the sign yields partial cor-
relations, that is,

ρi j·z =
−θi j√
θiiθ j j

, (1)

where z contains the nodes conditioned on. Note that it is
possible to determine E by using Bayesian (Williams & Mul-
der, 2020) or frequentist hypothesis testing for each partial
correlation (Drton & Perlman, 2005). When using noncon-
vex or `1- regularization (that is convex), however, the stan-
dard approach is to work with the inverse correlation matrix,
R−1, that is,

Θ = R−1 =
(
dΣd
)−1
, (2)

where d is a diagonal matrix with dii = 1/
√
σii. This is done

to ensure that the parameters are on the same scale. In what
follows, the off-diagonal elements of Θ are denoted as θ.
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Nonconvex Regularized Estimation

To estimate the conditional dependence structure for a
class of nonconvex penalties,3 the penalized likelihood is de-
fined as

l(R−1) = log det R−1 − tr(RR−1) −
∑
i, j

pλi j,γ(|R
−1
i, j |), (3)

where R is the sample correlation matrix and pλ,γ(.) is a
generic penalty function (Gao, Pu, Wu, & Xu, 2009), with
the regularization parameter, λ, that controls the amount of
penalization, such that there are a range of possibilities, de-
pending on λ and γ. The additional parameter γ influences
the shape of the penalty (Breheny & Huang, 2011). One
point of emphasis is the subscripts on λi j that effectively al-
lows each parameter to be differentially regularized. It is this
feature that differentiates nonconvex from `1-regularization.
Indeed, by replacing pλ,γ(.) with pλ(.) in Equation 3, this re-
sults in the `1 penalized likelihood. Assuming a common
value for λ is less than ideal because it is agnostic towards the
signal (or lack thereof) in the data. Accordingly, “the lasso
penalty increases linearly in the magnitude of its argument.
As a result, it produces substantial biases in the estimates for
large regression coefficients” (p. 524, Fan, Feng, & Wu,
2009). As described in Zhao and Yu (p. 2554, 2006), this
bias (or “over-shrinkage of the nonzeros”) contributes to the
issues of `1-regularization for model selection. Nonconvex
penalization can reduce this bias, in that, as described be-
low, the penalty is permitted to be a function of θi j. This
can allow values likely to be nonzero the chance to escape
regularization, whereas, depending on the penalty function,
values likely to be zero are penalized harshly.

Connection to Bayesian Regularization

Before proceeding to describe various nonconvex penal-
ties, it is worth highlighting an interesting connection to the
current Bayesian literature. The most recent regularization
approaches, such as the horseshoe prior distribution (Y. Li,
Craig, & Bhadra, 2017; Piironen & Vehtari, 2017), also aim
to reduce the bias incurred by the Bayesian lasso (Khondker,
Zhu, Chu, Lin, & Ibrahim, 2013; T. Park & Casella, 2008;
H. Wang, 2012). The basic idea is eloquently stated in Car-
valho, Polson, and Scott (2009):

The horseshoe prior has two interesting features
that make it particularly useful...Its flat, Cauchy-
like tails allow strong signals to remain large
(that is, un-shrunk) a posteriori. Yet its infinitely
tall spike at the origin provides severe shrinkage
for the zero elements (p. 74).

These are the very advantages of using nonconvenx penal-
ties, especially those that approximate the `0 (pseudo) norm,

under a penalized likelihood framework. Although a com-
parison with Bayesian methods is beyond the scope of this
paper, it suffices to note that the above goals are readily ac-
complished with nonconvex regularization, with the added
benefit of avoiding the cumbersome nature of MCMC algo-
rithms. I refer interested readers to Van Erp, Oberski, and
Mulder (2019) for an overview of Bayesian regularization
(including the horseshoe prior distribution).

Nonconvex Penalties

In this section, several nonconvex penalties are intro-
duced. This cannot be an exhaustive review, as there are nu-
merous penalties that are very similar to one another. In these
cases, the reader is provided with relevant references and the
most common penalty is presented. Furthermore, although
there are nonconvex penalties that have three tuning param-
eters (see section 2.1 in D. Kim, Lee, & Kwon, 2018), this
review focuses on those penalties with one additional tuning
parameter (denoted γ in Equation 3). Finally, the relevant
literature is faithfully summarized but it should be noted that
it remains unclear whether their theoretical properties gen-
eralize to a variety of situations (this is fully investigated in
Section Numerical Experiments).

Smoothly Clipped Absolute Deviation

The lasso was introduced in Tibshirani (1996). Not long
after, five years to be exact, it was conjectured in Fan and Li
(2001) that `1-regularization does not enjoy the oracle prop-
erty. The theoretical results in Fan and Li (2001) demon-
strated that the `1-penalty can be consistent for model selec-
tion and consistently estimate the parameters, but it cannot
satisfy both properties simultaneously (see Theorem 2 and
Remark 1 in Fan & Li, 2001). For the former, this requires
that

√
nλ → ∞, whereas, for the latter, root-n consistency

requires that λ = O(n−1/2) (p. 1353, Fan & Li, 2001). To
achieve both properties simultaneously, Fan and Li (2001)
proposed the SCAD penalty defined on [0,∞], that is,

pλ,γ(θ)


λ|θ| if |θ| ≤ λ
2γλ|θ| − θ2 − λ2

2(γ − 1)
if λ < |θ| ≤ γλ

λ2(γ + 1)
2

if |θ| > λγ

(4)

for λ ≥ 0 and γ > 2. Note that the penalty is clearly a
function of θ (Figure 1). On the other hand, the `1-penalty
function is simply λ|θ|. Although the formulation in Equa-
tion 4 opens the door for various possible combinations of
λ and γ, setting γ = 3.7 is a common choice that was mo-
tivated by minimizing Bayesian risk (p. 1351, Fan & Li,

3This general class includes those nonconvex penalties with two
tuning parameters.
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2001). Furthermore, it was shown that selecting γ with, say,
cross-validation, did not provide notable benefits.

In addition to the oracle properties, Fan and Li (2001) out-
lined three more desirable characteristics for a penalty, each
of which is satisfied by the SCAD:

1. Unbiasedness: The resulting estimator is nearly un-
biased when the true unknown parameter is large to
avoid unnecessary modeling bias.

2. Sparsity: The resulting estimator...automatically sets
small estimated coefficients to zero to reduce model
complexity.

3. Continuity: The resulting estimator is continuous...to
avoid instability in model prediction (p. 1349, Fan &
Li, 2001).

These are important to acknowledge because they have
served as benchmarks for developing nonconvex penalties
over the years. Indeed, all of the following penalties have
these three characteristics, in addition to the oracle proper-
ties.

Minimax Concave Penalty

Another popular nonconvex penalty is the MCP that was
introduced in (C. H. Zhang, 2010). The penalty function,
again defined on [0,∞], is written as

pλ,γ(θ)


λθ −

θ2

2γ
if θ ≤ γλ

1
2
γλ2 if θ > γλ

(5)

for λ ≥ 0 and γ > 1. It is common to set γ to 2.0, although se-
lecting it is also a possibility. The MCP closely resembles the
SCAD, that is, “Both penalties begin by applying the same
rate of penalization as the lasso, and reduce that rate to 0 as
θ gets further away from zero” (p. 237, Breheny & Huang,
2011). To make sense of this, it is informative to consider the
derivative of Equation 5, that is,

p′λ,γ(θ)

λ −
|θ|

γ
if θ ≤ γλ

0 if |θ| > γλ
(6)

Hence, when |θ| is greater than λγ, the rate of penalization is
zero. Note one key distinction between the SCAD and MCP
is when the penalty is relaxed for increasingly larger values.
This is illustrated in Figure 1.

In C. H. Zhang (2010), it was proven that the MCP does
not require the irrepresentable condition, which is necessary
for consistent model selection for the `1-penalty, although it
rarely holds in practice. This theoretical result has a direct
bearing on psychological applications in particular. At its
crux, the irrepresentable condition states that the important

and unimportant predictors cannot be correlated (at least not
too much, i.e., the total “irrelevant” covariance is below 1).
However, in fields such as clinical psychology, it is common
to estimate the dependence structure of psychometric scales
that, by construction, contain highly correlated variables. Al-
though beyond the scope of this work, it is possible to eval-
uate this assumption in GGMs (i.e., Equation 28 in Raviku-
mar et al., 2011). This was formally done in Heinävaara,
Leppä-aho, Corander, and Honkela (p. 104 of 2016) for gene
regulatory “networks,” and I too have evaluated it and found
the assumption essentially never holds, unless there is only,
say, three or four variables, which is very uncommon (Table
1 in Wysocki & Rhemtulla, 2019). The failure of glasso for
these kinds of data was recently highlighted in Williams and
Rast (2019) and Williams et al. (2019). An open question,
to be addressed below, is whether the MCP (and the other
penalties) holds up across a gamut of situations.

Approximating the `0-Penalty

Recall in the introduction that it was noted that a desirable
penalty would closely mimic the behavior of best subset se-
lection. Although this is not accomplished by either SCAD
or MCP, there are a variety of nonconvex penalties that were
designed specifically to approximate the `0-penalty, that is,

pλ(θ) = λI{θ , 0} =

λ if θ , 0
0 if θ = 0.

(7)

This penalty is ideal because the “estimators are penalized
according to the number of nonzero parameter estimates;
thus, model complexity is penalized in a straightforward and
intuitive way” (p. 929, Dicker, Huang, & Lin, 2013). For
the goal of model selection, there are two main drawbacks
of best subset selection. The first is computational, because
it is a so-called NP-hard problem that requires exploring
all possible combinatorial subsets. This is perhaps not an
insurmountable challenge for normal data, given multiple
regression can be used to estimate the dependence struc-
ture (“neighborhood selection” Meinshausen & Bühlmann,
2006), but directly estimating Θ is necessary for ordinal
data with few categories in particular (Rhemtulla, Brosseau-
Liard, & Savalei, 2012). Second, regarding the three proper-
ties described above, the solution is discontinuous rather than
exhibiting continuity. This can translate into the estimator
being relatively unstable (p. 2354 in Breiman, 1996)

Notice that these limitations have little to do with the
overall performance for model selection, as it has long
been known that (non-regularized) best subsets with, say,
the Bayesian information criterion, will provide consistent
model selection in the familiar setting of a fixed number of
variables and an increasing sample size (e.g., Casella, Girón,
Martinez, & Moreno, 2009). This setting is relevant to psy-
chology, for example, when using a psychometric scale, p is
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indeed fixed and the objective is to have an adequate sample
size, or “power,” to detect the majority of edges.4 Hence, the
key advantage of employing regularization in these situations
for model selection is computational in nature. This also ap-
plies to the following penalties, where the idea is to have the
performance of best subset selection, all the while providing
a computationally efficient and continuous solution.

Seamless `0 Penalty. For multiple regression, Dicker et
al. (2013) introduced the seamless `0-penalty (SELO). This
can be written as

pλ,γ(θ) =
λ

log(2)
log
( |θ|
|θ| + γ

+ 1
)
, (8)

for γ > 0. Note that when γ → 0, say, γ = 0.01, this ap-
proximates pλ(θ) ≈ λI{r , 0} in Equation (7). Hence, γ pro-
vides the desired property of continuity that overcomes this
issue of best subsets. This can be seen in Figure 1, where the
SELO and `0 penalties are juxtaposed. Importantly, the per-
formance of SELO does not depend heavily on γ (Table 2 in
Dicker et al., 2013). As a result, it is common to set γ = 0.01.
The SELO has proven quite influential, for example, it has
since been extended to generalized linear (Z. Li, Wang, &
Lin, 2012), Cox regression (Y. Shi, Xu, Cao, & Jiao, 2019),
multivariate panel (H. Zhang, Sun, & Wang, 2013), propor-
tional hazard (Yongxiu, Yuling, Yueyong, & Yanyan, 2018),
and quantile regression models (Ciuperca, 2015). Further-
more, Y.-y. Shi, Cao, Yu, and Jiao (2018) generalized SELO
(GSELO) in that the original formulation in Equation (8) was
shown to belong to a more general family of penalties (see
Table 1 in Y.-y. Shi et al., 2018).

Atan Penalty. In Y. Wang and Zhu (2016), an arctan-
gent penalty was introduced (ATAN). The ATAN penalty
function is defined on [0,∞) and it is written as

pλ,γ(|r|) = λ
(
γ +

2
π

)
arctan

( |θ|
γ

)
, (9)

for γ > 0. Y. Wang and Zhu (2016) suggested fixing γ to
0.01. A key feature of Equation (9) is that there is a di-
rect relationship between the `0 and `1 penalties. That is, as
γ → ∞, this results in `1-regularization. On the other hand,
as γ → 0, this approximates the `0-penalty. This differenti-
ates the ATAN from the SELO penalty, as γ in the SELO does
not govern a continuous transition from the `1 to `0 penalties.
This is illustrated in Figure 1.

Illustrative Penalty Functions

Figure 1 includes each penalty function for several choices
of γ (λ = 1). In each panel, as a reference point, the `0 and
`1 penalties are also included. First note the discontinuity of
the `0-penalty, that is, it has an “all-or-nothing nature” (Van-
Derwerken, 2011). This aggressiveness can produce insta-
bility (Breiman, 1996). In contrast, although the `1-penalty
function is continuous, it increases linearly with the size of θ.

This results in nonvanishing bias, even with the sample size
is large. Intuitively, this is the opposite of what we would
like to be the case, in that, ideally, large effects should not
be penalized harshly. This is one useful aspect of nonconvex
regularization that can be seen for each penalty in Figure 1.

For the SCAD and MCP, it is clear that they resemble the
`1-penalty for small values of θ, but the penalties tapper for
larger values of θ. The difference is “the way that they make
the transition” (p. 10, Breheny & Huang, 2011), with the
MCP immediately parting ways from `1-regularization. Re-
call that the SELO and ATAN penalties approximate the `0-
penalty. For both, as γ → 0, the penalty function becomes
more similar to best subset selection. However, it is also clear
that the penalty is continuous which satisfies the continuity
property described in Fan and Li (2001). Of note is the ATAN
penalty, where, as γ increases from zero, it gradually moves
from the `0 to the `1-penalty. I find this property lends itself
to an intuitive understanding of approximating the `0 penalty
(Equation 1).

Illustrative Regularization Paths

Figure 2 includes regularization paths for each penalty.
These were obtained from 20 post-traumatic stress disorder
symptoms (Armour et al., 2017). This illustrates the par-
tial correlations across a range of λ values. The nature of
each penalty function can be seen in the paths. For exam-
ple, for `1-regularization, large values are heavily penalized,
which is expected given the linear increase in the penalty
function. Moreover, the regularization happened immedi-
ately (with small λ values), and, at some point in the path,
all relations were eventually “pushed” to zero.

The nonconvex penalties have much different paths. No-
tice that large values escaped regularization early in the path,
especially for the SELO and ATAN penalties. On the other
hand, small values were quickly pushed to zero (e.g., for the
ATAN penalty). Again, this is advantageous because it can
produce nearly unbiased estimates, which is a desirable fea-
ture for parameter estimation (Fan & Li, 2001) and prediction
(Hastie et al., 2015), in addition to improving model selec-
tion (e.g., when the irrepresentable condition does not hold,
Zhao & Yu, 2006). Second, several relations were never
“pushed” to zero, even for very large λ values. This is due
to the additional tuning parameter, γ, which ensures that val-
ues likely to be nonzero can “escape” penalization. In other
words, signal in the data is incorporated into the estimator.

4In general, p is typically much smaller than n in the social-
behavioral sciences. The `1-penalty, on the other hand, is often
studied, including rather elaborate proofs therein, when n < p. This
entails strong assumptions (e.g., sparsity) over and above the cus-
tomary assumptions (e.g., independent errors).
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A B

Figure 1. Panel A includes example penalty functions pλγ(θ). The `1 penalty increases linearly with the size of θ. In nonconvex
regularization, the penalty diminishes for larger values (a desirable feature). Panel B includes the respective derivatives p′λγ(θ).
The SELO and ATAN penalty derivatives approach that of the `0 penalty (i.e., best subset) as γ → 0, whereas the SCAD
and MCP begin with same rate as lasso but then taper off to zero (notice that the MCP immediately departs ways from the `1
penalty).
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Figure 2. Example regularization paths for partial correlations estimated from 20 PTSD symptoms (Armour, Fried, Deserno,
Tsai, & Pietrzak, 2017). The one-step estimator in Algorithm 2 was used for the nonconvex penalties, with γ fixed to 3.7
(SCAD), 2 (MCP), 0.1 (SELO), and 0.1 (ATAN). Note that early on (small λ values), when using the SELO and ATAN
penalties in particular, the larger values “escaped” regularization. Conversely, the linearity of the `1 penalty is readily apparent
and large values are penalized early in the path.

Computational Details

The success of lasso is in large part due to computational
feasibility (not because it is superior than alternatives). This
allows for scaling to ultra high-dimensional data, such as ge-
netic regulatory networks, that often include more than 1,000
variables (and thus potentially millions of edges). For exten-
sions to glasso, say, jointly estimating several GGMs, the
number of variables investigated are very rare in psycholog-
ical applications (p = 500 and p = 1000, Danaher, Wang,
& Witten, 2014). The computational advantage is due to
the convexity of the `1 objective function. This allows for
developing highly efficient algorithms (i.e., via convex opti-
mization). The first major advancement was the Least Angle
Regression (LARS) that was introduced with the goal of pro-
viding a “less greedy version of traditional forward selection
methods” (p. 204, Efron, Hastie, Johnstone, Tibshirani, &
others, 2004). As a bonus, it was shown that a simple mod-
ification to the LARS algorithm could be used to estimate
lasso regression, with the benefit of being much faster than
alternatives (Efron et al., 2004). More recent advances are
coordinate-decent algorithms that are under the hood of the

popular R packages glmnet (Friedman, Hastie, & Tibshirani,
2010) and glasso (Friedman et al., 2008).

On the other hand, a primary limitation of the nonconvex
penalties is computational in nature. In my view, they are
too readily dismissed for this reason “[nonconvex objective
functions] are interesting but seem difficult, as even the com-
putation of the global solution is infeasible in general” (see
the rejoinder in Lockhart, Taylor, Tibshirani, & Tibshirani,
2014). This was also noted in Bühlmann and Meier (2008):

The SCAD-penalty function has been often crit-
icized from a computational point of view as it
corresponds to a nonconvex objective function
which is difficult to minimize...(p. 1534).

This applies more generally to all nonconvex penalties. The
underlying issue is that convergence of a convex function en-
sures a unique solution (i.e., the global minimum), whereas
there is no such guarantee for nonconvex functions. This
problem is exacerbated in high-dimensional data, although it
should be noted that these situations are uncommon in the
psychological literature (Table 2 in Wysocki & Rhemtulla,
2019). A pragmatic argument to this “issue” was put forth
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Algorithm 1: The local linear approximation (LLA) algorithm

1. Initialize Θ̂ = Θ̂(initial) and compute the adaptive weight (i.e., penalty function derivative)

Ŵ(0)
= (ŵ(0)

i j ) = p′λi j,γ
(|θ̂(0)

i j |)

2. For k = 1, 2, . . . repeat until convergence

(2.a) Obtain Θ̂(k) by maximizing the following penalized likelihood (Fan et al., 2009)

Θ̂(k) = log det Θ − tr(ΣΘ) -
p∑

i=1

p∑
j=1

ŵ(k−1)
i j · |θi, j|

(2.b) Update the weight matrix Ŵ(k)

θ̂(k)
i j = p′λi j,γ

(|θ̂(k)
i j |)

Note. The initial value is the maximum likelihood estimate.

in Fan, Xue, and Zou (2014), that is, “It is perfectly fine that
the computed local solution is not the global minimizer, as
long as it has the desired properties.” Moreover, this was also
proved for precision matrices (section 3.3 in Fan et al., 2014).
Furthermore, as described below, it turns out that there are
accurate approximations to various nonconvex penalties that
retain their oracle properties.

Local Linear Approximation. Zou and Li (2008) is a
seminal work for computing the nonconvex penalized like-
lihood. The first advancement was an iterative algorithm
based on local linear approximation (LLA). This overcame
two major drawbacks of previous approaches, such as the lo-
cal quadratic approximation (LQA) described for computing
the SCAD penalty (section 3.3 in Fan & Li, 2001). First,
the LQA requires the deletion (based on some threshold) of
small relations because ridge regression is used to solve the
problem, thereby providing a fully connected graph (i.e., no
variable selection) (p. 1517 Zou & Li, 2008). Note that this is
distinct from `1-regularization, where small values are often
deleted after the model is selected by default (e.g., Haslbeck
& Waldorp, 2015), due to many false positive selections.5 On
the other hand, the LLA automatically provides a sparse so-
lution. The second advantage of LLA is computational, that
is, Fan et al. (2009) demonstrated that employing noncon-
vex penalties in GGMs can be recast in terms of iteratively
weighted `1-regularization. The importance of this cannot
be understated: at each step of the algorithm, coordinate-
descent algorithms (e.g., those implemented in glasso) can
accommodate nonconvex penalties.

The LLA is provided in Algorithm 1. The modification to
the `1 penalized likelihood is slight, in that the derivative of a
given penalty function is used as the regularization parameter
(i.e., λi j in Equation 3). At each step, the derivative is com-
puted for each element of the glasso estimator, p′λ,γ( ˆ|θ|)(k−1),

which then serves as λ(k)
i j for the kth step of the algorithm.

This is repeated until convergence.
One-Step Estimator. The second major contribution of

Zou and Li (2008) was describing one-step estimators. A
drawback of a fully iterative LLA (Algorithm 1) is that reach-
ing convergence can require a large number of steps (itera-
tions), each of which requires solving Equation 3 and com-
puting the derivative of the penalty function. The one-step
estimator, as the name implies, requires computing each only
once. This is accurate “provided that the initial estimates are
good enough” (p. 1511, Zou & Li, 2008). This accuracy of
this approach is due to computing the derivative of θ̂, which
is estimated from the data and it determines the amount of
regularization for each relation. In high-dimensional settings
(n < p), the question of a “good enough” initial value is chal-
lenging, given the maximum likelihood estimator (MLE) is
not available.6 In this case, it is common to use the custom-
ary ridge estimator (p. 1423, Zou, 2006) or marginal ordinary
least squares estimates (M. Wang, Wang, & Wang, 2014). In
low-dimensional settings, however, using the MLE is recom-
mended for the initial estimate of Θ. Hence, in the most
common psychological applications, it is straightforward to
compute p′λ,γ(θ̂). A one-step algorithm is provided in Algo-
rithm 2.

Software

The vast majority of software that implements noncon-
vex penalties is for regression modeling, including the MCP

5The false positives inherent to the `1-penalty are typically small
in magnitude. This is fully described in Meinshausen and Yu (p.
267, 2009). It is nonetheless important to note, by itself (no post-
processing), lasso has limitations for model selection.

6The MLE also becomes unstable when p→ n, but, typically, n
(observations) is sufficiently larger than p (nodes) in psychological
applications.
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Algorithm 2: One-step estimator algorithm

1. Initialize Θ̂(initial) and compute the adaptive weight (i.e., penalty function derivative)

Ŵ = (ŵi j) = p′λi j,γ
(|θ̂i j|)

2. Obtain Θ̂ by maximizing the following penalized likelihood (Fan et al., 2009)

Θ̂ = log det Θ − tr(ΣΘ) -
p∑

i=1

p∑
j=1

ŵi j · |θi, j|

3. Use Θ̂ as the final estimate

Note. The initial value is the maximum likelihood estimate.

and SCAD in the popular R package ncvreg (Breheny &
Huang, 2011). Furthermore, the recent R package ncpen
implements a total seven nonconvex penalties for regression
models (D. Kim et al., 2018). To my knowledge, there are
no R packages that specifically feature nonconvex penalties
for GGMs. A honorable mention is pgraph that includes the
SCAD (using LLA), but note that the package was built for
a newly developed projection-based method (Fan, Feng, &
Xia, 2020).

To address this dearth of software, I developed the R pack-
age GGMncv that includes all noncovex penalties described
in this work. There are additional penalties as well (see the
Appendix). Furthermore, both the LLA (Algorithm 1) and
the one-step estimator (Algorithm 2) are implemented, reg-
ularization paths can be visualized (e.g., Figure 2), there are
a variety of approaches for selecting the tuning parameter,
and a recent method for making statistical inference in reg-
ularized GGMs is available (Section Statistical Inference).
Together, GGMncv is a comprehensive toolbox that was
specifically developed for psychological science.7

Tuning Parameter Selection

Because these conconvex penalties have two tuning pa-
rameters, their selection is especially important to consider.
First, the regularization parameter, λ, determines the amount
of penalization, with λ = 0 providing the MLE of Θ and
λ → ∞ an empty graph. Second, γ governs the shape of the
penalty function, which then has a direct bearing on the rate
of penalization (Figure 2). Whereas there is a large literature
on choosing λ,8 including with customary information crite-
rion for model selection (e.g., Foygel & Drton, 2010), cross-
validation (Feng & Yu, 2013), and the stability approach to
regularization selection Liu, Roeder, and Wasserman (2010),
there is less information about selecting γ (besides that it
is commonly fixed). From a computational perspective, it
would be advantageous to reduce the number of models fit-
ted, which can be achieved by fixing either λ or γ. In what

follows, recent approaches that avoid data-driven selection
are described, in addition to the customary approach of using
an information criterion.

Information Criteria

It is commonplace to select a model according to mini-
mizing (or maximizing) some information criterion. In the
context of regularization, this is different than using non-
regularized estimation. This difference arises from the lat-
ter directly applying a penalty to the MLE, whereas, for the
former, the penalized likelihood is first solved with, say, a
constraint on the sum of edge weights (`1-regularization).
Hence, if the estimator itself is not consistent (e.g., if the
irrepresentable condition is not satisfied), then the theoreti-
cal properties of a given information criterion will not nec-
essarily apply (p. 1042, Y. Kim, Kwon, & Choi, 2012). This
was noted in Bühlmann and Van De Geer (2011) “The BIC
criterion is described which, however, has no theoretical jus-
tification for variable selection with the lasso ” (p. 17). Ac-
cordingly, any approach based on only the solution path of
the `1-penalty will need to satisfy the necessary assumptions
(Ravikumar et al., 2011; Zhao & Yu, 2006). Nonetheless, it
is common practice to use an information criterion with `1-
regularization in psychology, which I also adopt in the nu-
merical experiments.

On the other hand, there is a theoretical justification for
using, say, BIC, in combination with nonconvex penalties.
That is, when λ is selected with BIC, the desirable property
of model selection consistency is not compromised. This
is due to the consistency of the solution path being proven
for the MCP (C. H. Zhang, 2010) and SCAD Y. Kim and
Kwon (2012). Gao, Pu, Wu, and Xu (2012) extended those
results to GGMs, that demonstrated the consistency of using

7Of course, GGMncv can also be used for high-dimensional
data.

8For an overview of these approaches, interested readers are re-
ferred to Wysocki and Rhemtulla (2019).
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BIC with the SCAD penalty. Similar results are also pro-
vided for the SELO (Dicker et al., 2013) and ATAN penal-
ties (Y. Wang & Zhu, 2016). Notably, these are all for low-
dimensional data, that is, when n is sufficiently larger than p.
Of course, this also requires many assumptions that are be-
yond the scope of this work. Their generality is investigated
with numerical experiments.

Generalized Information Criteria. All information
criteria can be understood as penalizing the likelihood, with
each differing in the severity of the penalty. Following
Y. Kim et al. (2012), it is thus informative to consider a
generic formulation for negative 2 times the log-likelihood,
that is,

−2ln(Θ̂) = −2
[n
2

logdetΘ̂ − tr(ŜΘ̂)
]

(10)

where Θ̂ is the estimated precision matrix (e.g., for a given
λ and γ) and Ŝ is the sample-based covariance matrix. With
Equation 10 in hand, it is straightforward to define a variety
of GICs, of which the well-known Akaike Information crite-
rion and Bayesian Information criterion are special cases.

Akaike Information Criterion. There are at least two
justifications for AIC model selection: (1) expected out-of-
sample prediction, since AIC and leave-one-out cross valida-
tion (LOO-CV) are asymptotically equivalent (Y. Zhang &
Yang, 2015) ; and (2) minimizing Kullback-Leibler (KL) di-
vergence from the target and approximating data generating
model (Burnham & Anderson, 2004). AIC is computed as

AIC = −2ln(Θ̂) + 2 · |E|, (11)

where |E| refers to the cardinality of the edge set, that is, the
number of edges. The properties of AIC are well-known, in-
cluding that it is not consistent for model selection. This also
applies to model selection with LOO-CV (Gronau & Wagen-
makers, 2018). This results in a relatively high false positive
rate that does not diminish with more data. In fact, Dziak,
Coffman, Lanza, Li, and Jermiin (2019) pointed out that AIC
has a direct correspondence to significance testing with a lib-
eral error rate. However, it would be a mistake to think model
selection consistency is the only goal worth pursing, for ex-
ample, in regression, “for any model selection criterion to
be consistent, it must behave suboptimally for estimating the
regression function” (p. 937, Yang, 2005). The latter matters
most for prediction (or estimating the regression function),
whereas consistent model selection limits spurious associa-
tions. Hence, when prediction is of interest, while also being
tolerant of spurious associations, AIC can be used as a com-
putationally efficient approximation to LOO-CV, given they
are asymptotically equivalent (Stone, 1977).

Bayesian Information Criterion. The Bayesian infor-
mation criterion also has two primary justifications: (1) ex-
pected out-of-sample prediction, since minimizing BIC is

equivalent to leave-v-out cross-validation, where v = n
[
1 −

1/(log(n) − 1)
]

(Shao, 1997); and (2) minimizing BIC ap-
proximates selecting the most probable model, assuming the
true model is in the candidate set (Raferty, 1995). When the
true model is not in the set, this is referred to as the m-open
setting (Bernardo & Smith, 2001), wherein selecting based
on BIC minimizes the KL-divergence from the true model
(Yao, Vehtari, Simpson, & Gelman, 2017). In GGMs, BIC is
computed as

BIC = −2ln(Θ̂) + log(n) · |E|, (12)

where |E| is the number of edges. Note that, compared to
AIC, the likelihood is penalized more harshly, that is, log(n)
instead of 2, which produces a model including fewer edges.
It might be tempting to think, given the known model se-
lection consistency of BIC, that this would also apply to us-
ing it in concert with the `1-penalty. This is not the case,
necessarily, as lasso still requires strong assumptions over
and above, say, maximum likelihood, to converge on the true
model. This does not apply to non-regularized estimation
with the `0-penalty or nonconvex penalties, assuming that p
does not increase with n, that is, the standard asymptotic set-
ting (p/n → 0). An open question is whether approxima-
tions to the `0 maintain this property in situations known to
be challenging for lasso (Section Numerical Experiments).

Alternative Criteria. There are numerous additional cri-
teria. For example, BIC is typically studied in fixed and
moderate p settings. However, in high-dimensional data, or
when p grows with n, BIC will start to over select. In these
situations, it is common to use the extended BIC that adds
4 · |E| · γ · log(p) to Equation 12 (Chen & Chen, 2008; Foygel
& Drton, 2010). There are many other options, including
the Risk Inflation Criterion (|E| · 2 · log(p), Foster & George,
1994), the modified RIC (2 · (log(p) + log(log(p))), Foster &
George, 1994), and the GIC3 of Y. Kim et al. (2012) which is
consistent when the error distribution is heavy tailed to name
but a few.

I refer interested readers to Y. Kim et al. (2012) for a thor-
ough discussion of the theory underlying GICs (section 5 in-
cludes 6 GICs in total). A key takeaway is that “the range
of consistent model selection criteria is rather large, and it is
not clear which one is better with finite samples” (p. 1048
Y. Kim et al., 2012). It was noted, however, that the GICs
can be understood in reference to AIC and BIC, in that, for
a sparse model, a GIC can be selected with a larger penalty
added to Equation 10.

Tuning Insensitive Estimation

Given the sheer number of possibilities for selecting the
tuning parameters, this raises the question of whether it is
possible to side-step this issue altogether. To this end, there
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has been considerable work investigating optimal regulariza-
tion without the need for, say, selecting λ with an informa-
tion criterion. For lasso, the foremost challenge is that λ is
directly related to the residual variance, σ2 (or the “noise”
more generally), which is unknown in reality. In Belloni,
Chernozhukov, and Wang (2011), however, it was shown that
λ =

√
log(p)/n is the theoretically consistent regularization

parameter for the square root lasso which decouples the de-
pendence of λ on σ2. Similar results were provided for the
scaled lasso in (Sun & Zhang, 2012, 2013), where a “uni-
versal” regularization parameter was introduced. Although
these findings were initially for regression, they have since
been extended to graphical models. For example, the tuning
insensitive graph estimation and regression (TIGER) method
(X. Li, Zhao, Yuan, & Liu, 2015; Liu & Wang, 2017), it
was suggested for the glasso estimator (p. 1218, Janková &
van de Geer, 2015), and it serves as the default in the popular
R package SILGGM (R. Zhang, Ren, & Chen, 2018). In
simulation studies, a routine finding is that data-dependent
tuning parameter selection does not always seem necessary,
which allows for avoiding the computational intensive nature
of selecting λ.

For the nonconvex penalties discussed in this work, there
is an additional tuning parameter, γ, that could also be se-
lected. This opens the door to searching for some combina-
tion of λ and γ. To my knowledge, there are no formal proofs
for an optimal value of γ. Here to, however, selecting γ, as
opposed to setting it to some value, is not always necessary
(Dicker et al., 2013; Fan & Li, 2001). Of course, given that
the properties of nonconvex penalties are less studied than
lasso, it could very well be that both λ and γ should be se-
lected in data common to psychology.

Numerical Experiments

A routine finding is that nonconvex penalties regularly
outperform `1-regularization, for both the goal of model se-
lection and prediction. Furthermore, it has also been shown
that the approximate `0 penalties can outperform the more
common nonconvex penalties, including SCAD and MCP.
From my perspective, this is not too surprising because it is
hard to imagine a newly proposed method being published in
the statistics literature if it did not offer some benefit. How-
ever, it is commonplace in statistics papers to only include
small-scale simulations in which the conditions mirror the
methods’ assumptions, which are over and above customary
assumptions of, say, best subset selection with BIC. As an ex-
ample, although lasso can be consistent for model selection,
this requires assumptions that do not seem to hold in psy-
chological applications. In Williams et al. (2019), Williams
and Rast (2019), and Wysocki and Rhemtulla (2019), each
of which used data representative of the “network” litera-
ture, glasso was shown to have an inflated false positive rate
(e.g., > 25 %). Moreover, in Williams et al. (2019) and

Williams and Rast (2019), there was no discernible benefit
compared to non-regularized estimation. Accordingly, be-
fore unleashing nonconvex penalization upon psychological
science, there are several loose ends that must be addressed.

Open Questions

1. To date, most of the work on nonconvex penalties
has been in regression models. In Fan et al. (2009),
the one-step estimator for SCAD was used to es-
timate GGMs, where performance for model selec-
tion and classification accuracy was superior than `1-
regularization. However, the performance of the MCP,
SELO,and ATAN penalties has not been investigated
in GGMs.

2. In Williams et al. (2019), it was demonstrated that
`1-regularization fails (i.e., a high false positive rate)
when the true network is densely connected, which
is exacerbated by larger edge sizes (see Figure 6 in
Williams et al., 2019). Therefore, given psychologi-
cal networks are far from sparse, it is important to es-
tablish that these nonconvex penalties overcome those
issues.

3. To my knowledge, tuning insensitivity for λ has only
been used for nonconvex regularization in Shen, Chen,
Gu, and So (2016). It would be advantageous to avoid
data-driven model selection, either for λ or γ, which
is now commonplace in the regularization literature.
Hence, the adequacy of setting λi j =

√
log(p)/n must

be thoroughly investigated with nonconvex regulariza-
tion.

4. Finally, it is important to demonstrate that noncon-
vex regularization offers benefits compared to non-
regularized estimation. In this way, the literature does
not become inundated with superfluous methodology.

These questions are answered via simulation, that, in ad-
dition to the nonconvex penalties, includes the customary
glasso estimator and a non-regularized approach. The mod-
els are selected with BIC (Equation 12). Employing the `0
penalty, which requires exploring all possible models, is too
computational demanding for even a modest number of vari-
ables. Accordingly, the included non-regularized approach
is forward selection (Non-reg FS). Note that forward selec-
tion is considered a “locally optimal” version of best sub-
sets (p. 3, Hastie, Tibshirani, & Tibshirani, 2017). The R
package mixGGM was used to estimate the non-regularized
model (Fop, Murphy, & Scrucca, 2019) and GGMncv for the
regularized estimators (Williams, 2020a). Note that GGM-
ncv implements Algorithms 1 and 2 with glassoFast (Sustik,
Calderhead, & Clavel, 2018).
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Computational Time

An important advantage of the introduced methods is
computational, even for a moderate number of nodes, where
non-regularized methods can quickly become cumbersome.
To demonstrate this point, I computed the computational
time averaged across 10 simulation trials. Because the non-
convex penalties should be similar in timing, only the ATAN
penalty was included in this simulation. The time was com-
puted for the LLA (Algorithm 1) and one-step estimator (Al-
gorithm 2), for both fixed λ and selecting λwith the Bayesian
information criterion (γ was fixed to 0.01). The true network
structures were generated with the R package BDgraph using
the default settings (i.e., a random network and 30% connec-
tivity, Mohammadi & Wit, 2015b). The sample size was set
to n = 500 and p = {5, 10, . . . , 30}.

Results. Table 1 includes the results. The computational
advantage of the regularized models is apparent. For exam-
ple, with p = 30, the regularized methods were all under half
of a second, whereas the non-regularized method took nearly
40 seconds. It is important to note that the non-regularized
method (Non-reg FS) is not best subset selection (only a “lo-
cally optimal” version), which would take potentially hours
for p = 30. In this light, the computational advantages of
penalties that approximate the `0 are clear, in that the timing
is similar to glasso.

Besides estimating the dependence structure, this differ-
ence in time is also important because it eases the burden
of resampling. It is common to compute inclusion “proba-
bilities” with the non-parametric bootstrap. The basic idea
is to compute the proportion of bootstrap samples for which
each edge was selected (Figure 6.4 in Hastie et al., 2015).
Drawing 1,000 bootstrap samples with Non-reg FS would
take several hours (with p = 30). Conversely, the regularized
methods would take a matter of seconds.

Synthetic Partial Correlations

Recall Williams et al. (2019) demonstrated that the false
positive rate (FPR) of glasso is a function of the number
of nodes, sparsity, and edges size: the FPR increases with
more connections, which is further exacerbated by larger
edge sizes and more nodes (Figure 6 in Williams et al., 2019).
Accordingly, in this simulation, I follow the exact simulation
procedure in Williams et al. (2019) with the goal of determin-
ing whether these nonconvex penalties overcome the known
issues of `1-regularization. I investigated two sample sizes
(n = 500 and 5000), two values for p = {10 and 20}, and
5 sparsity levels η = {90%, 80%, . . . , 50%}. The magnitudes
of the partial correlations were varied by adjusting the de-
grees of freedom of the G-Wishart distribution (Mohammadi
& Wit, 2015b), corresponding to 90 % of the edge falling
within ± 0.40 and ± 0.25, for a given sparsity level. These
distributions were approximately normal, such that smaller
values were sampled more often than larger values. The net-
work structure was again random and all generating matrices
were positive definite. For each trial, the simulation proce-
dure followed these steps:

1. Generate data from a p× p dimensional G-Wishart dis-
tributed precision matrix Θ ∼ WG(d f , Ip), where Ip is
an identity matrix (Mohammadi & Wit, 2015a).

2. Estimate the conditional dependence structure with
glasso, SCAD, MCP, SELO, ATAN, and Non-reg FS.

3. Compute the FPR (1 - specificity).

The results were averaged across 50 simulation trials.
Results. Figure 3 includes the results. For glasso, first

notice the inflated FPR, as the graph becomes densely con-
nected, which is also affected by edge size. For example,
with p = 20 and n = 500, the FPR was less than 0.10 with
90% sparsity but nearly 0.60 with 50% sparsity for edges
±0.40. This reproduces the results in Williams et al. (2019).

Table 1
Computing time in seconds.

Number of nodes (p)
Method 5 10 15 20 25 30

ATANλ f ixed
one−step 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)

ATANλ f ixed
LLA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)

ATANλ selected
one−step 0.04 (0.01) 0.04 (0.01) 0.05 (0.01) 0.07 (0.02) 0.08 (0.02) 0.42 (0.70)

ATANλ selected
LLA 0.05 (0.01) 0.06 (0.01) 0.07 (0.02) 0.10 (0.01) 0.14 (0.03) 0.46 (0.49)

glassoλ f ixed 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
glassoλ selected 0.05 (0.03) 0.04 (0.01) 0.05 (0.01) 0.08 (0.02) 0.10 (0.02) 0.34 (0.46)

Non-reg FS 6.91 (0.20) 7.21 (0.32) 7.96 (0.55) 11.80 (1.87) 22.10 (4.62) 39.60 (10.4)

Note. The results are rounded to the second decimal place.
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Figure 3. Simulation results (Section Synthetic Partial Correlations). The idea here was to verify that the nonconvex penalties
overcome the issues inherent to glasso that were demonstrated in Williams et al. (2019). Namely, that the false positive
rate increases with connectivity (i.e., less sparse), the distribution of edge sizes, and the number nodes (p). Although not
completely immune, the nonconvex penalties are clearly less sensitive to those factors, with the added bonus of the false
positive rate diminishing to negligible levels with more data. The ± denotes that 90 % of the partial correlations were in that
range. Sparsity is the probability an edge was zero for a given network. Sparsity decreases when moving from the left to right.
The error bars denote one standard deviation.

It is apparent that each nonconvex penalty is less suscepti-
ble to those factors, although there was a slight increase in the
FPR. At worse, for example, was the MCP that went from a
FPR of nearly zero (90% sparsity) to roughly 0.10 (50% spar-
sity). The continuous approximations (SELO and ATAN) to
the `0-penalty fared even better, that is, they were more resis-
tant to the assumed sparsity. A noticeable increase, although
still relatively low compared to glasso, was observed for the
most densely connected graphs with n = 500. Importantly,
the FPR diminished in the larger sample size (n = 5, 000) for
all nonconvex penalties (less than 0.05 for all sparsity levels).
This indicates that contrary to glasso, in which, with even
n = 5, 000, the FPR is still very high (> .40) and thus far from
converging upon the true model (even though BIC was used),
these nonconvex penalties will apparently converge upon the
ground truth across a range of situations (which is expected
when using BIC).

When compared to Non-reg FS, the SELO and ATAN
penalties provided competitive performance, whereas the
SCAD and MCP had a higher FPR. Notably, the compara-
ble FPR of the SELO and ATAN penalties was achieved in
a fraction of the time (Table 1). Hence, when computational
feasibility is important, for example, when computing inclu-
sion “probabilities” and/or there is a large number of nodes,
the SELO and ATAN are the most promising when the goal
is to have the lowest FPR (or conversely to have the highest
specificity).

Empirical Partial Correlations

In my experience, generating conditional dependence
structures that reflect those observed in psychology is a chal-
lenging task. This is due to requiring a positive definite
matrix, while also having a dense network with a plausi-
ble distribution of edge sizes. To this end, following Ep-



NONCONVEX PENALTIES IN GAUSSIAN GRAPHICAL MODELS 15

ATAN SELO SCAD MCP glasso Non−reg FS

Specificity

25
0

50
0

10
00

20
00

40
00

80
00

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0S
co

re

Sensitivity

25
0

50
0

10
00

20
00

40
00

80
00

0.6

0.8

1.0

0.6

0.8

1.0

Sample Size

Hamming Distance

B
F

I
P

T
S

D

25
0

50
0

10
00

20
00

40
00

80
00

0

20

40

60

80

0

20

40

60

80

Figure 4. Simulation results (Section Empirical Partial Correlations). Note that specificity is 1 - the false positive rate and
sensitivity 1 - the false negative rate (i.e., analogous to “power”). Hamming distance is the number of position in which the
true and estimated adjacency matrices differ, with a score of zero denoting that the true structure was recovered. There are
two key takeaways: (1) all of the nonconvex penalties converged upon the generating model, similar to the non-regularized
method, but glasso did not; (2) the nonconvex penalties appear to strike a balance between glasso (very low specificity and the
highest sensitivity) and the non-regularized estimator (the highest specificity and the lowest sensitivity). This is reflected in
the Hamming distance scores, in that the nonconvex penalties were at worse comparable with Non-reg FS.

skamp (2016), I have found it useful to examine perfor-
mance for partial correlation matrices estimated from data.
Thus, in this section, network structures are derived from 20
PTSD symptoms (Armour et al., 2017) and 25 items mea-
suring personality (BFI Revelle, 2019). The true network
structure was obtained by first estimating the partial corre-
lation matrix and then setting absolute values less than 0.05
to zero. Note that this produced reasonably dense graphs
(PTSD: 38% sparsity; BFI: 61% sparsity) which provides
a litmus test of sorts for these nonconvex penalties (i.e.,
Figure 3) For each of the 50 simulation trials, specificity
(SPC), sensitivity (SN, analogous to “power”), and Ham-
ming distance (HD, the number of positions in the true and
estimated adjacency matrices that differ) were computed for
n = {250, 500, 1, 000, 2, 000, 4, 000, 8, 000}. For the noncon-
vex penalties, γ was set to the recommended default (SCAD:
3.7; MCP: 2; SELO: 0.01; ATAN: 0.01).

Results. Figure 4 includes these results. As a reference
point, first note that glasso had the lowest specificity, that
is, it had the highest FPR that always exceeded 0.25. As
expected, given the results in Figure 3, specificity was low-
est for the PTSD “network” (due to less sparsity). Of note,
sensitivity was the highest for glasso. In other words, rather
than limiting spurious associations, employing the `1-penalty
emphasizes discovery. This was also noted in regularized
structural equation models, “lasso kept more variables in the
model (more Type I and fewer Type II errors)” (p. 72, Ja-
cobucci, Brandmaier, & Kievit, 2019). However, the HD
scores indicated that glasso was, by far, the furthest away
from the true adjacency matrix (it did not approach the true
model).

All four nonconvex penalties, on the other hand, did not
have any of those issues. For example, with more data, speci-
ficity for each approached a perfect score. This is expected,
given BIC was used to select the model, which parallels the
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Figure 5. Simulation results (Section Tuning Parameter Selection). p(·) is a generic penalty function, with, say, p(·)selectλ
selectγ,

denoting that both λ and γ were selected. The non-regularized approach and glasso are included in each panel. These results
indicate that selecting both tuning parameters is unnecessary, with the SELO and ATAN penalties especially immune to which
are selected.
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Figure 6. The estimated conditional dependence structure of 20 PTSD symptoms (see Table B1).

proof provided in Gao et al. (2012). If the goal is to reduce
spurious associations, then the ATAN and SELO penalties
have clear benefits, as the FPR was the lowest in each dataset.
Interestingly, ATAN and SELO provided almost identical
scores. Conversely, SCAD and MCP had higher sensitiv-
ity than the ATAN and SELO penalties. THe HD scores,
however, indicated that each nonconvex penalty was quite
similar to one another, with each reducing to zero (indicating
convergence upon the generating structure).

Recall from Section Open Questions, I emphasized that
it was important to demonstrate that these methods have a
benefit compared to customary statistical approaches in psy-
chological science. In addition to computational (Table 1),
these results revealed competitive performance with Non-
reg FS. For example, although they had lower but still high
specificity, sensitivity was also higher. This translated into,

at worse, comparable scores for HD. Note that specificity
could be improved further by employing an alternative GIC.
Together, these nonconvex penalties provide a computation-
ally efficient solution without sacrificing the performance of
non-regularized model selection.

Tuning Parameter Selection

Thus far, all simulations have selected λ with BIC and
fixed γ to the recommended values. It could be that selecting
either one or possibly both can improve model selection. I in-
vestigated this possibility by selecting both λ and γ (denoted
p(·)selectλ

select γ), fixing λ (i.e.,
√

log(p)/n) and selecting γ (de-
noted p(·)fixedλ

select γ), as well as selecting λ and fixing γ (denoted
p(·)selectλ

fixed γ). As a reference point, glasso was also included
with λ fixed and selected, in addition to the non-regularized
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method (Non-reg FS). The PTSD partial correlations were
again used as the true network structure, which ensures per-
formance is evaluated in a dense setting. The results were
again averaged over 50 simulation trials.

Results. Figure 5 includes these results. The under-
whelming performance of glasso was again striking, given
each way of selecting the model with nonconvex penal-
ties provided superior performance. Interestingly, selecting
λ for glasso resulted in lower specificity than fixing it to√

log(p)/n, although both, in my opinion, leave much to be
desired. This indicates that the theoretically optimal regular-
ization parameter does not sidestep the underlying assump-
tions of the `1-penalty.

For SCAD and MCP, it appears that the choice of which
tuning parameter to select is a compromise between speci-
ficity and sensitivity. For example, p(·)selectλ

select γ had the highest
specificity but the lowest sensitivity. However, note the HD
scores were very similar. Of course, this does not suggest
that both γ and λ need to be selected to ensure the FPR is
low, as an alternative GIC can be employed that applies a
harsher penalty to the likelihood. The results of SELO and
ATAN were very interesting, in that they were essentially im-
mune to which tuning parameter was selected. Together, this
indicates that not much is gained (or lost) by searching for
some combination of γ and λ, and for the SELO and ATAN
penalties in particular, it does not seem to matter which is
selected.

Application

In this section, the nonconvex penalties are used to es-
timate the conditional dependence structure of 20 PTSD
symptoms (n = 221, Armour et al., 2017). All models were
selected with BIC. For the nonconvex penalties, γ was se-
lected and λ was set to

√
log(p)/n.

Results

The estimated conditional dependence structures are pro-
vided in Figure 5. The “networks” parallel the findings from
the experiments, namely that glasso included the most edges,
Non-reg FS had the fewest, and the nonconvex penalties were
similar to Non-reg FS but with a few more edges (but less
than half the number of glasso). The nonconvex penalties
were remarkably consistent with one another (differ at most
by 3 edges), with SELO and ATAN providing nearly identi-
cal edge weights.

A Brief Note on Interpretation. I emphasize that these
graphs are merely the estimated dependence structure. In
reference to the simulation results, sensitivity is low for all
methods with a small sample size (besides glasso). This
translates into missing quite a bit. Furthermore, just because,
say, the ATAN penalty converges on the true model in simu-
lation, this does not suggest it has nicely identified the most

important edges. To rule out meaningful relations, that is
evidence for conditional independence, this requires a confi-
dence interval9. In other words, no connection in the graph
does not suggest evidence for the null, and, further, at this
point, we cannot support the claim that the “thickest” lines
(i.e., the largest edges) are greater than any of the relations
pushed to zero. This glimpse into the dependence structure,
although limited, nonetheless provides what are likely to be
nonzero relations. This information can be harnessed to im-
prove future inquires.

Statistical Inference

I would be remiss to not discuss the important topic of
statistical inference. Because noncovex penalties have desir-
able properties, it might be tempting to think that these ap-
proaches lead to rich inference. This would be a mistake. In
my experience, researchers always want to do more than de-
tect nonzero relations in GGMs. For example, to determine
which edges are the strongest or to rule relations out of the
“network” (i.e., conditional independence), each of which re-
quires more than merely mining data. In other words, statis-
tical inference still requires a p-value or confidence interval,
neither of which is straightforward to obtain after data-driven
model selection (Leeb & Pötscher, 2005) or from regularized
estimators (Javanmard & Montanari, 2015). This is due to
difficulties obtaining a valid standard error. One approach
might be to employ the bootstrap. However, those intervals
will not have the correct coverage probabilities. The issue
was stated in Bühlmann, Kalisch, and Meier (2014):

The (limiting) distribution of such a sparse esti-
mator is non-Gaussian with point mass at zero,
and this is the reason why standard bootstrap
or subsampling techniques do not provide valid
confidence regions or p-values. Thus, we have
to use other approaches to quantify uncertainty
(p. 7).

Moreover, even for those values far from zero, the nonvanish-
ing bias and variance reducing properties of `1 penalization
also present challenges: the bootstrapped sampling distribu-
tion will often be too narrow and pulled towards zero, thereby
missing the true value excessively. Hence, the standard error
and resulting “confidence intervals” are not very meaningful
(see p. 18 in Goeman, Meijer, & Chaturvedi, 2018).

Although nonconvex penalties mitigate bias to some de-
gree, their sparsity inducing properties are still omnipresent.
Therefore, attempting to construct confidence intervals with
a bootstrap strategy should be avoided (see for example Leeb
& Pötscher, 2008; Pötscher & Leeb, 2009). Developing

9Bayesian hypothesis testing can also be used to gain evidence
for the null hypothesis (see for example Williams & Mulder, 2020)
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methods to make statistical inference from regularized es-
timators, possibly after model selection, is an active area of
research in the statistics literature.

Model Selection Bias

Although model selection is a customary practice in psy-
chology, what is less appreciated (or not considered at all)
is that “[after model selection] such inference enjoys none
of the guarantees that classical statistical theory provides
for tests and confidence intervals” (p. 802, Berk, Brown,
Buja, Zhang, & Zhao, 2013). This applies to both regular-
ized and non-regularized estimation. A critical assumption
of both a p-values and confidence interval is that the model
is fixed (pre-data), that is, it was not determined from the
data (post-data). When selecting a model, however, this cre-
ates the problem of conditional (on the selected model) in-
ference (see Section 2.1 in Devezer, Navarro, Vandekerck-
hove, & Buzbas, 2020). To make sense of this, consider that
edges will be selected when they are large, which necessar-
ily distorts the sampling distribution of the estimator (i.e.,
resulting in a truncated normal distribution, p. 5 in Meir
& Drton, 2017). As a result, corrections are needed to make
post-selection inference. Such examples include adjusting p-
values (e.g. Berk et al., 2013) and, for lasso, “ characterizing
the distribution of post-selection estimators conditioned on
the selection event” (p.1 in Lee, Sun, Sun, & Taylor, 2016).
For an overview of this topic, I refer interested readers to
Taylor and Tibshirani (2015).

Debiased Estimators

Avoiding model selection circumvents the issue of con-
ditional inference. The remaining issue for making statisti-
cal inference is overcoming the inherent bias and sparsity of
the estimator. To this end, related work focuses specifically
on debiasing `1-regularized estimates (Janková & van de
Geer, 2015; Javanmard & Montanari, 2013, 2015). Note that
this is sometimes referred to as depsarsiying (Van De Geer,
Bühlmann, Ritov, & Dezeure, 2014). The basic idea is to re-
move the bias and sparsity, after which confidence intervals
can be constructed. This was first worked out for regression,
and, more recently, it was extended to glasso in Janková and
van de Geer (2015). The debiased glasso estimator, T̂, is
defined as

T̂ = 2Θ̂ − Θ̂R̂Θ̂ (13)

with Θ̂ the glasso estimator of the precision matrix and R̂ the
sample-based correlation matrix. As the name implies, this
step removes the zeros and attempts to correct the bias from
the `1-penalty. The asymptotic variance is then given as

Var[T̂] = diag(T̂)diag(T̂)′ + T̂2
(14)

where diag(T̂) is a diagonal matrix with diag(t11, . . . , tpp).
This readily allows for computing p-values and confidence
intervals for each off-diagonal element of the desparsified es-
timator. The simulation results in Janková and van de Geer
(2015) showed that the desparsified confidence intervals pro-
vided advantages compared to maximum likelihood, but ot
should be noted that the smallest number of nodes consid-
ered was 80, with merely n = 250. This is not representative
of the psychological Janková and van de Geer (e.g., Table
2 in 2015). Accordingly, the advantage compared to simply
using significance testing with, say, non-regularized partial
correlations, is not entirely clear (Drton & Perlman, 2004,
2005; Williams & Rast, 2019).

Summary

I hope this section highlighted that using nonconvex reg-
ularization does not preclude statistical rigor: simply throw-
ing data at the algorithms in GGMncv does not nicely sort
the important from the unimportant. To reemphasize, just
because a value was set to zero, this does not provide evi-
dence for the null hypothesis and there is not necessarily a
difference between an edge that was detected and a relation
that was “pushed” to zero (Gelman & Stern, 2006). These
inferences would require a valid measure of uncertainty.

Nonconvex regularization can be used for the explicit goal
of data mining, which can provide the first glimpse into a de-
pendence structure. To answer richer questions, this requires
a valid measure of uncertainty, which, to date, appears to be
more easily obtained with non-regularized estimation (e.g.,
bootstrapping partial correlations that allows for comparing
relations within and between GGMs). Hence, when there is
a more refined research question, say, comparing edges or
ruling out edges, researchers should forgo model selection
and nonconvex regularization, using instead non-regularized
methods that readily provide an accurate sampling distribu-
tion.

Discussion

This paper surveyed nonconvex penalties for estimating
Gaussian graphical models in psychological science. Ad-
ditional topics included tuning parameter selection and the
long-standing challenges of making statistical inference from
regularized estimators. All of the penalties were shown to be
superior to glasso and more than competitive when compared
to non-regularized based model selection.

In addition to a comprehensive review, this work was also
the first to thoroughly compare these penalties in a variety
of settings. The idea here was to ensure that they overcome
the known issues of `1-regularization that were demonstrated
in Williams et al. (2019) and Williams and Rast (2019), in
addition to ensuring they offer benefits compared to non-
regularized estimation. Here it emerged that each penalty
does in fact overcome the issues inherent to lasso for model
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selection. The benefit compared to non-regularized estima-
tion was primarily computational in nature. This was not
completely unexpected, given that, in the ubiquitous case of
low-dimensional data, we already have excellent methods at
the ready. This computational advantage has practical utility
when there are many nodes or when resampling is needed
to compute edge inclusion “probabilites” (see for example
Abram et al., 2016; Bunea et al., 2011)

Although this work was not focused on finding a “win-
ner,” in my opinion the ATAN penalty is the most promising.
This is because the additional tuning parameter, γ, strikes a
balance between the `0 and `1 penalties, which lends itself
to more easily understanding the penalty function (Figure
1). And the ATAN was apparently immune to which tun-
ing parameter was selected (Figure 5). Of course, each form
of nonconvex regularization is clearly superior than the `1-
penalty for model selection, which indicates they are all vi-
able options for exploratory data analysis.

Future Directions

This review is not meant to be the final but the first word
on nonconvex regularization in psychological science. Ac-
cordingly, this work provides a solid foundation from which
future inquiry can be built. I offer the following suggestions
for further study of nonconvex penalization.

First, I did not look at estimation accuracy such as mean
squared error of the edges. This decision was made in part to
keep the results manageable. This can be investigated in the
future, although, from my experience, I do not think regular-
ization will provide notable benefits, assuming the p/n ratio
is sufficiently small (e.g., p = 20 and n = 200). One possi-
bility is to take advantage of the computational efficiency of
the one-step estimator (Algorithm 2), and then, once a model
is selected, estimating the MLE given those constraints (pp.
631 - 634 in Hastie, Tibshirani, & Friedman, 2008). This
is similar in spirit to Foygel and Drton (2010), that did this
with glasso, but in this case the solution path is obtained from
nonconvex regularization. Hence, even if nonconvex regular-
ization does not improve accuracy compared to the MLE, the
computational advantage is still omnipresent.

Second, I did not consider predictive accuracy or the pos-
sibility of overfitting, which is often assumed to be an ad-
vantage of regularization (but see Williams & Rodriguez,
2020). The predictive advantage of regularization depends
on the signal-to-noise ratio (SNR; R2

1−R2 ). In noisy settings,
with hardly variance explained, the relaxed lasso is advan-
tageous (Hastie et al., 2017), but this dissipates with more
signal and when p/n → 0. On the other hand, nonconvex
penalties (including the `0) are known to be less than ideal
in low SNR situations. In the “network” literature, where
nodes are items from psychometric scales, the SNR should
not be terribly low, Williams and Rodriguez (2020) showed
that non-regularized methods were at least competitive with

lasso for out-of-sample prediction. Accordingly, it would be
informative to look at a range of SNR values, especially those
for which model recovery is perhaps a bridge too far.

Third, ordinal data is commonly encountered in the social-
behavioral sciences. To this end, exploring these penalties
with polychoric partial correlations is an important future di-
rection. The nonconvex penalties depend on the initial esti-
mates, which is not typically an issue in the most common
situations, assuming it is “good enough” (p. 1511, Zou & Li,
2008). However, polychoric partials will typically have more
sampling variance (e.g., Williams, 2020b), which suggests
that the initial estimate for computing the derivative will also
have more variance than Gaussian data. Here shrinkage es-
timators should be investigated (e.g., Ledoit & Wolf, 2004;
Van Wieringen & Peeters, 2016). I anticipate that these find-
ings will generalize, with the potential challenge of overcom-
ing lower specificity for small sample sizes in particular (due
to variability in the initial estimate).

Forth, there are additional forms of regularization not con-
sidered in this work, such as, for example, the elastic net that
can strike a balance between `1 (lasso) and `2 (ridge) penal-
ties (Zou & Hastie, 2005). It should be noted that the elastic
net idea (e.g., to better accommodate multicollinearity) can
be used with the SCAD penalty (Becker, Toedt, Lichter, &
Benner, 2011; Zeng & Xie, 2014). Furthermore, the bridge
regression includes a broad class of possibilities (Frank &
Friedman, 1993), typically defined as `q (q > 0), that in-
cludes lasso (q = 1) and ridge (q = 2) as special cases. No-
tice that `q also includes an approximation to the `0 penalty
(q → 0, p. 2 in Frommlet & Nuel, 2016). The LQA and
LLA algorithms for (approximately) solving the `q penalized
likelihood were compared in (C. Park & Yoon, 2011). These
options could be explored in the future (the `q is implemented
in GGMncv).

Conclusion

I end with a note of caution. I encourage researchers to re-
sist over reliance upon nonconvex regularization, especially
when the end game is inference. It has its place, for exam-
ple, to gain the first glimpse into a dependence structure or
to formulate hypotheses to then test with inferential statis-
tics. With this in mind, nonconvex regularization is a viable
option for crude inquires.
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Appendix A
Additional Penalties

The following penalties are also implemented in the R pack-
age GGMncv. They were not included in the paper in
an effort to keep the exposition manageable. However,
they too are expected to overcome the various issues of `1-
regularization and also provide a computationally efficient
alternative to non-regularized model selection.

Smooth Integration of Counting and Absolute Deviation

The smooth integration of counting and absolute de-
viation penalty (SICA) was introduced in (Equation 9 in Lv,
Fan, & others, 2009). The basic idea was to modify the trans-
formed `1 penalty of Nikolova (2000), such that it provides a
family of penalties. The SICA penalty, noting that θ ∈ (0,∞),
is defined as

pλ,γ(|θ|) = λ
( |θ|(γ + 1)
|θ| + γ

)
(15)

for γ ∈ [0,∞). Figure 1 in Lv et al. (2009) visualizes
the penalty function. The resulting family of penalties “has
the interpretation of a smooth homotopy between `0 and `1
penalties” (p. 3502 in Lv et al., 2009). Note that this is also
the idea behind the SELO and ATAN penalties. Originally
introduced for penalized least squares, the SICA has since
been extended to Cox’s proportional hazard model (Y.-Y. Shi,
Cao, Jiao, & Liu, 2014) and the single index model (Cheng,
Zeng, Zhu, & others, 2017).

Exponential Penalty

There is an interesting line of research exploring “ex-
ponetial” penalties. To my knowledge, there are three such
penalties that turn out to be quite similar to one another. To
save space, the most recent is described here. Termed the
EXP penalty, Y. Wang, Fan, and Zhu (2018) proposed the
following penalty

pλ,γ(|θ|) = λ
(
1 − exp

|θ|
γ

)
(16)

for γ > 0. Note that when γ → 0, say, γ = 0.01, this also re-
sults in pλ,γ(θ) ≈ λI{θ , 0}, that is, a continuous approxima-
tion to the `0-penalty. Similar penalties can be found in Van-
Derwerken (p. 11, 2011) and Breheny (Equation 6 therein,
2015), with the latter for group lasso.

Log Penalty

The log penalty extends the elastic net family to ac-
commodate nonconvex penalties (Mazumder et al., 2011).
For example, the elastic net combines `1 and `2 regulariza-
tion, whereas this generalization ranges between `0 (best sub-
set) and `1 (lasso). The log penalty is defined as

pλ,γ(|θ|) =
λ

log(γ + 1)
log(γθ + 1) (17)

for γ > 0, with γ → 0+ approaching lasso and γ → ∞
approximating the `0-penalty. The log penalty was stud-
ied extensively with a one-step estimator in Zou and Li
(2008). Note that alternative algorithms with better conver-
gence properties are described in Gasso, Rakotomamonjy,
and Canu (2009).

Appendix B
Node Descriptions

Table B1
Node descriptions

Node Symptom
B1 Intrusive Thoughts
B2 Nightmares
B3 Flashbacks
B4 Emotional cue reactivity
B5 Psychological cue reactivity
C1 Avoidance of thoughts
C2 Avoidance of reminders
D1 Trauma-related amnesia
D2 Negative beliefs
D3 Blame of self or others
D4 Negative trauma-related emotions
D5 Loss of interest
D6 Detachment
D7 Restricted affect
E1 Irritability/anger
E2 Self-destructive/reckless behavior
E3 Hypervigilance
E4 Exaggerated startle response
E5 Difficulty concentrating
E6 Sleep disturbance
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