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The brain timewise: how timing shapes
and supports brain function

Riitta Hari and Lauri Parkkonen

Department of Neuroscience and Biomedical Engineering, Aalto University, FI-AALTO 00076,
Espoo, Finland

We discuss the importance of timing in brain function: how temporal

dynamics of the world has left its traces in the brain during evolution and

how we can monitor the dynamics of the human brain with non-invasive

measurements. Accurate timing is important for the interplay of neurons,

neuronal circuitries, brain areas and human individuals. In the human

brain, multiple temporal integration windows are hierarchically organized,

with temporal scales ranging from microseconds to tens and hundreds of milli-

seconds for perceptual, motor and cognitive functions, and up to minutes,

hours and even months for hormonal and mood changes. Accurate timing is

impaired in several brain diseases. From the current repertoire of non-invasive

brain imaging methods, only magnetoencephalography (MEG) and scalp elec-

troencephalography (EEG) provide millisecond time-resolution; our focus in

this paper is on MEG. Since the introduction of high-density whole-scalp

MEG/EEG coverage in the 1990s, the instrumentation has not changed dras-

tically; yet, novel data analyses are advancing the field rapidly by shifting

the focus from the mere pinpointing of activity hotspots to seeking stimulus-

or task-specific information and to characterizing functional networks.

During the next decades, we can expect increased spatial resolution and accu-

racy of the time-resolved brain imaging and better understanding of brain

function, especially its temporal constraints, with the development of novel

instrumentation and finer-grained, physiologically inspired generative

models of local and network activity. Merging both spatial and temporal infor-

mation with increasing accuracy and carrying out recordings in naturalistic

conditions, including social interaction, will bring much new information

about human brain function.
1. Introduction
Accurate timing is essential for human brain function. Still, current human brain

imaging is dominated by methods focusing on the spatial distributions of brain

activity by means of functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET). Although these methods are intrinsically sluggish,

they have been extremely informative in unravelling brain areas involved in

different types of processing. Recent development is moving the focus from

single brain areas to dynamic networks whose nodes and connection strengths

can change over time.

Less attention has been paid to temporally accurate recording methods, such

as magnetoencephalography (MEG) and electroencephalography (EEG), which

we discuss in this paper. We first describe temporal integration windows that

govern human brain function and their changes in brain disorders. We continue

by pondering what kind of traces the temporal dynamics of the environment has

left during evolution of the mammal brain. We then discuss the kind of timing

information that we can obtain with the current brain imaging tools, and we

end by speculating future developments in this field, especially related to our

own work on time-resolved MEG imaging of two-person recordings in the

study of the brain basis of social interaction and of other human cortical functions.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0170&domain=pdf&date_stamp=2015-03-30
mailto:riitta.hari@aalto.fi
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140170

2

 on March 30, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
2. Multiple time scales in brain function
(a) Perception, action and cognition
The relevant time scales of human perception, action and

cognition vary considerably [1]. The analysis of directional

hearing cues requires resolving temporal differences of just

50 ms, corresponding to 20 kHz, which is a factor of 1000

higher than the frequency of the typical brain rhythms occur-

ring at 10–20 Hz (cycle durations 50–100 ms). The strength

of these rhythms is modulated by external stimuli or tasks

at rates slower than approximately 2 Hz (approx. 500 ms).

The now very popular resting-state fluctuations of brain

activity are slower than approximately 0.2 Hz (approx. 5 s).

Acute emotions, such as anger and happiness, can arise

within seconds, but for mood changes the proper time scales

are in the range of minutes. Thus, the time scales of interest

vary from microseconds to subseconds, seconds, minutes

and even years, resulting in a multitude of ultradian, circadian

and annual rhythms; besides behaviour, many of these

rhythms can be seen at the level of brain signals [1,2].

Millisecond timing is needed for movements and percep-

tion, for example during dancing to the rhythm of music.

However, sensory processing in some conditions tolerates

inaccuracies up to hundreds of milliseconds. For example,

multisensory asynchrony is permitted up to 100–250 ms

(approx. 4–10 Hz), meaning that stimuli arriving at inter-

vals less than about 250 ms are perceptually fused to the

same object or event. Different tasks have different temporal

windows but also different requirements of accuracy and

error tolerance.

The brains are able to make temporally accurate predictions

of the consequences of the subject’s own actions; millisecond-

range temporal precision is realized via the efference copies

(via corollary discharges) that inform the sensory cortices

about the motor plans. For example, activity in human somato-

sensory cortex differs when the subject touches herself

compared with an identical stimulus delivered by someone

else, and this difference is observable already about 30 ms

after the touch [3]. Similarly, learned regularities in sensory

input can give rise to temporal predictions with subsecond

accuracy, as is reflected in, for example evoked responses in

the auditory cortex to omitted sounds, occurring within

200 ms from the time of the expected sound occurrence [4],

or as changes of brain rhythms to support prediction of

timing of external events [5,6].

(b) Hierarchy of time scales
Naturalistic visual [7] and auditory [8] stimulation have been

applied during fMRI scanning to reveal a hierarchy of time

scales from a few seconds to tens of seconds, expressed as topo-

graphically organized maps where the time windows are

longer the longer is the area’s distance from the early projection

cortex. MEG studies, based on the recovery rates of evoked

responses—with their sequences of different deflections each

reacting differentially to changes in stimulus repetition rate—

have pointed to a hierarchical order of much shorter time

intervals and demonstrated that one brain area can be, at the

same time, involved in processes spanning different time

scales [1].

The brain apparently operates in parallel on several time-

scales which are often nested and hierarchically organized.

The functional hierarchy may emerge as the result of self-
organization in a system containing multiple time scales, as

can be deduced from a network model controlling the phys-

ical body and the movements of a humanoid robot [9]. Quite

striking evidence of nested time windows exists for cortical

mechanisms underlying speech perception, with different

integration windows for consonants (20–50 ms), syllables

(200–300 ms) and sentences [10,11].

Several bodily rhythms are coupled to each other. For

example, the breathing rhythm has been suggested to serve,

during evolution, as a common clock for integration of mul-

tiple orofacial senses, such as sniffing-related smell and

vibrissae-movement-related touch [12]. Respiration as a fun-

damental function could also be one of the evolutionary

bases for the rhythmicity of speech. The rhythmical structure

is highly similar in human speech and monkey auditory calls,

and in both species the acoustic envelopes and the mouth

movements resemble each other at frequencies lower than

about 10 Hz [13], that is in the frequency range where abol-

ition of the temporal fluctuations of sounds and the

temporal modulations of their frequency patterns most

seriously disrupts speech understanding [14].

Generally, cross-frequency coupling of brain oscillations

is considered an important coordinating and integrating

mechanism of brain activity (e.g. [15,16]). It is a mechanism

for the global slow oscillations (usually their phase) to modu-

late the local fast oscillations (usually their amplitude). The

commonly used analysis tools have, however, been recen-

tly criticized, because of the easy appearance of spurious

cross-frequency coupling [17].

The neurophysiological mechanism supporting such

coupling could be that the synaptic oscillatory signal modu-

lates the length constant of neurons of the target area,

which in turn affects local spatio-temporal integration of

that area’s other synaptic inputs in a nonlinear manner—in

other words changing the electrotonic size of the pyramidal

neuron—and thereby makes the neuron’s output vary in

phase of the driving rhythm [18].
(c) Timing in brain disorders
Characteristic of many brain disorders is slowing of the back-

ground EEG/MEG rhythms as well as delays in sensory

processing as indicated by prolonged latencies of evoked

responses. For over 80 years, abnormalities of EEG rhythms

and the appearance of abnormal EEG signals have been

used as diagnostic tools of various brain disorders [19],

although the findings are often quite unspecific.

Clumsy and slow movements are often related, besides

lesions of the corticospinal pathways, to disorders of the

cerebellum and basal ganglia; for example, bradykinesia

(slowed-down movements) in Parkinson’s disease is associated

with changes in dopamine-dependent rhythms covering a

wide frequency range [20].

Timing deficits have been much discussed and debated

in dyslexia because the subjects are often slow in react-

ing to stimuli presented in rapid succession. One frequently

presented hypothesis is weakness of the magnocellular

pathways that normally transmits impulses to the cortex

about 10 ms earlier than the other fibres [21], or the sensory

slowing could be secondary to sluggish attention shifting

[22]. Whatever their origin may be, these timing dis-

orders contribute to but apparently do not exhaustively

explain dyslexia.

http://rstb.royalsocietypublishing.org/
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3. Temporal constraints for brain architecture
(a) How temporal dynamics was impregnated into

our brains
An interesting question is how the different temporal scales

have emerged in the human brain during evolution and onto-

geny. Evolutionary pressure has arisen from the necessity of

the organism, for its survival and reproduction, to perceive

and act in the dynamical environment. Additional temporal

constraints have arisen from the need to communicate.

Nature is full of concurrently active time scales to which

organisms have to adapt and be able to react. Importantly,

these basic environmental constraints are quite similar in all

mammals living on land. The most evident consequences

are the annual and circadian rhythms in various bodily func-

tions, but in a similar way the dynamical environment with

all its time scales is the apparent driving force for the hier-

archical organization of both temporal and spatial scales in

brain activity [1].

When facing the same force, larger masses move or oscil-

late slower than smaller ones, as dictated by Newton’s second

law. Think, for example, how differently the wind moves the

trunk and the small branches of a tree. Thus, a general inverse

relationship exists between the speed of passive responses

(and active movements) and the size of real-world objects

(and organisms). Physical quantities reflecting such random

motion typically manifest a 1/f spectrum (corresponding to

‘pink noise’) where the power and frequency of the signal

are inversely related. This kind of a relationship, generally

called a powerlaw, is omnipresent in the physical world

and also common in biological systems. It is thus to be

expected that the long evolutionary exposure to the dynami-

cal environment would have led the small spatial scales and

short temporal windows to coexist in the same brain regions,

similarly to how they coexist in the physical environment.

The above analyses of temporal and spatio-temporal

windows [1,7,8] support this prediction.
(b) Preservation of brain rhythms across species
The importance of timing for brain function becomes evident

from the surprising preservation of the frequencies of brain

rhythms across mammals, in whom the brain volume

varies by a factor of 17 000 as recently reviewed [23]. Such

regularities are evident across species although, at least in

humans, the detailed frequencies and the reactivity of brain

rhythms have a clear genetic component as well [24]. This

similarity of brain rhythm frequencies is in strong contrast

to for example breathing rhythm and heart rate, which

scale inversely with animal size.

According to Buzsaki et al. [23], the reasons for the brain-

rhythm similarity could be related to intrinsic biophysical

properties of neurons and microcircuits involved in the gen-

eration of the rhythms. These processes impose the

temporal limits for synchrony that as such are closely related

to the timing between pre- and postsynaptic firing (and

thereby synaptic plasticity) as well as to second-messenger

processes that make the plastic changes permanent.

Another interesting constraint, also mentioned by Buzsaki

et al. [23], is the mechanics of the effector systems, especially

the contraction mechanisms of skeletal muscles where the

properties of myosin and actin filaments, and especially
their interaction (contraction) speed, have remained largely

similar across mammals. Consequently, both the input and

output systems of all animals equipped with these physio-

logical ‘devices’ need to keep approximately similar timing.

In other words, the temporo-spatial properties and regu-

larities of the environment have, during evolution, shaped

both the sensory and motor systems, and less directly also

the executive functions that are temporally constrained by

sensing and acting.
(c) How to wire a brain
It is beneficial for an animal to react to danger or a threat as

rapidly as possible, thus relying on fast transmission channels.

The conduction velocity of an axonal fibre depends on the fibre

diameter: in a myelinated axon the velocity increases linearly

as a function of the diameter, whereas in an unmyelinated

fibre it increases only as the square root of the diameter.

Although thin unmyelinated fibres are metabolically expensive

(because of the increased capacitance of the membrane com-

pared with myelinated fibres) they still are very common in

the brain. One may thus wonder—given the importance of

accurate timing and speed for survival—why the brain

spends energy on such thin, slowly conducting fibres.

Estimating from the fibre diameter distribution of the

human corpus callosum [25], time lags between the hemi-

spheres vary from 3 to 300 ms. Very strikingly, in all

mammals the shortest transmission times between the hemi-

spheres—independently of the brain size—remain about the

same, shorter than 5 ms [26], because a fraction of the thickest

fibres scales with brain size.

It is evident that one cannot keep accurate timing in large

mammal brains just by increasing the diameter of all axons,

as such a design would lead to a catastrophic increase of

the brain size [27], making delivery impossible. The required

high-speed information transfer is thus realized by a signifi-

cant increase in the diameter of only a small fraction of

axons in the corpus callosum, which is enough to keep the

delays short without spending too much of the expensive

brain volume. Evolution has, however, preserved the slow

but dense thin fibres, thereby guaranteeing good connectivity

at a compromised speed.

An interesting parallel is seen in the current development

of interconnections on semiconductor chips where space is

also at a premium [28]: a large number of thin (slow) connec-

tions form a dense local wiring on the chip, whereas thick

(fast) wires are used for global communication on the chip.

Similarly to in the brain, the connections in semiconductor

integrated circuits can be either fast or dense but not both at

the same time without leading to problems of packaging and

space. Thus, similar compromises have taken place both in

chip design and in the evolution of the mammal brain.

Many studies and theoretical treatises consider the brain as

a small-world network, where long-range connections are

sparse and contacts between distant areas come as a surprise.

The presence of small-world network structure has been

recently challenged at local scales, because retrograde tracing

has demonstrated several clusters of connections that have

not previously been seen with other methods [29], thereby

suggesting that the cortical connectivity matrix can be very

dense at local scales [30]. At the level of the whole brain, how-

ever, the connectivity is predicted by an exponential distance

model where connections are lognormally distributed, with

http://rstb.royalsocietypublishing.org/
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short connections weighted strongly but long connections

available to connect distant areas [31]. This view of rare long-

distance connections fits nicely with the above discussion

about the fibre-thickness distributions.

We have previously suggested [1] that the dispersion of the

interhemispheric timing because of the wide distribution of

conduction velocities in the connecting fibres is useful also in

keeping the system flexible, as it prevents excessive ‘neurons

that fire together, wire together’ phenomenon that would

otherwise freeze and dedifferentiate the system. Cortical

dedifferentiation has been demonstrated in monkeys expo-

sed to repetitive monotonous hand movements so that the

resulting clumsiness resembled occupational repetitive-strain

syndrome [32].
.R.Soc.B
370:20140170
4. Time-resolved brain imaging
(a) Basics of magnetoencephalography and

electroencephalography
Monitoring neuronal activity at the speed it occurs requires

measuring the electric activity within neurons. While several

invasive techniques exist to perform these measurements

both in vitro and in vivo, MEG and EEG are currently the

only non-invasive ways to record electric activity of neuronal

populations. The bulk of MEG and EEG signals are generated

by postsynaptic currents in the apical dendrites of cortical pyr-

amidal neurons; in EEG, we record the potential distribution

caused by these currents on the scalp, whereas in MEG we col-

lect the information by measuring the tiny magnetic fields

produced by the currents (for reviews, see [33,34]).

MEG is currently performed almost exclusively with

superconducting SQUID (superconducting quantum interfer-

ence device) sensors that have the exquisite sensitivity to pick

up the weak, extracranial neuromagnetic fields. Yet, for a mea-

surable signal, synchronized activation of tens of thousands of

nearby neurons is needed, both because the signals are tiny and

because currents into opposite directions within the cortex

result in considerable cancellation (figure 1a,b). Response

averaging is often necessary to uncover the signal of interest

amidst noise due to instrumentation, biological artefacts and

background brain activity.

MEG and EEG excel in picking up transient evoked

responses as well as rhythmic brain activity (figure 1c). How-

ever, with MEG and EEG, it is typically difficult to record

slowly changing brain signals that are associated, for

example, with slowly rising sounds or with cognitive tasks

that are not driven by temporally accurate external stimuli.

This problem can be alleviated to some extent by using con-

tinuous dynamic stimuli crafted to elicit evoked responses at

a distinct frequency. Such a ‘frequency tagging’ approach

allows to probe so slowly changing brain states that they as

such could not provide temporally accurate triggers for

analysis of brain signals that are time-locked to certain

events, for example, the perceptual states associated with

ambiguous visual stimuli [35].

Both MEG and particularly EEG sensor signals are a mix-

ture of several neural sources, and to disentangle their timing

source modelling is needed. Thus, even if accurate localiz-

ation of the activity is not the main target, high spatial

resolution is beneficial as it allows spatial separation between

signals arising from different sources. MEG performs
considerably better than EEG in this respect, which has impli-

cations for studies of functional connectivity between brain

regions. Yet, the limited spatial resolution may give rise to

spurious functional connectivity unless the estimation

excludes in-phase correlations. Similarly, a priori selection of

regions-of-interest, as opposed to performing full-brain or

whole-cortex analysis, can give misleading results as the

activity of the sources not accounted for in the model may

leak in to the estimated time series of the selected areas.

MEG, similarly to fMRI, is employed increasingly to

explore connectivity, causality and network structure. How-

ever, the whole brain imaging community still has problems

with proper functional connectivity measures since the

widely applied measures tell about correlations, not about

causal relationships. Data-driven analyses are beneficial in clas-

sifying responses or ‘decoding’ mental contents from the

responses. For example, single-trial MEG responses seem to

contain information about low-level visual features (here

spatial frequencies of gratings) already at the time of the earliest

cortical evoked responses, at about 50 ms [36].
(b) Limitations of the current
magnetoencephalography/electroencephalography
approaches

Even with electrophysiological methods we are biased

to responses attributable to the fastest fibres, whereas the

signalling in the slower ones is very difficult to detect because

of the larger temporal dispersion. A robust example is

the compound action potential of a peripheral nerve that is

dominated by the signals from the fastest (thickest) myeli-

nated fibres and only after averaging some contributions

can be seen from the slower conducting myelinated fibres,

and signals from unmyelinated fibres typically remain invis-

ible. Thus, there is more happening than our recordings

can tell.

Even single-unit recordings directly from the monkey

cortex may not clarify the activation order of different brain

areas: despite a general progression from anatomically

lower to higher visual cortices in monkeys, the firing is tem-

porally overlapping [37], and it is thus difficult to specify

temporal boundaries for a hierarchy of brain areas. Normal

causality measures or even partial coherence measures typi-

cally fail if the communication between the brain areas

overlaps heavily in time. A further problem is that most

brain areas have reciprocal connections, which still hampers

the directionality analyses. However, it might be possible to

separate incoming and outgoing signalling, at least to some

extent, because the feedback and feed-forward connections,

landing to different depths in the cortex, employ different fre-

quencies [38]. In macroscopic brain imaging experiments,

especially those carried out with fMRI, a common approach

to look at the connectivities of different brain regions is dyna-

mical causal modelling which can tell about the directions of

information flow, given a predetermined connectivity pat-

tern, but naturally not about the cortical layers that are

involved [39].

Despite their good agreement in studying sensory projec-

tion cortices (e.g. [40]), MEG/EEG and fMRI often imply

different spatial patterns for brain activation even in similar

cognitive tasks and in the same subjects (e.g. [41]). It has

been suggested that one should first find the activated

http://rstb.royalsocietypublishing.org/
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areas (blobs) with fMRI and then use MEG or EEG to deter-

mine the temporal relationships between these areas.

However, this approach would work only if the physiological

sources of both MEG/EEG and fMRI were identical. Discre-

pancies between the methods are to be expected to some

extent as fMRI reflects neural activity only indirectly, via

the BOLD (blood oxygenation-level dependent) signal arising

from neurovascular coupling, whereas MEG/EEG pick up

signals directly related to the neuronal activity (for time

courses, see figure 1c). Another apparent difference between

the methods, not yet discussed in the literature as far as we

know, is that MEG/EEG weights strongly the fastest-

conducting pathways, whereas fMRI probably receives its

main contribution from neuronal ensembles that are connected

via slow and thin fibres, thereby apparently reflecting func-

tionally different brain activations. This difference further

emphasizes the complementary nature of these methods.
(c) Future methods for non-invasive time-resolved brain
imaging

How could we improve non-invasive time-resolved imaging of

the human brain? First of all, the measurements should be per-

formed as close to the neural generators as possible. However,

with an intact skull, the distance from the outside of the head to

the closest sources in the cortex is at least 1.5 cm, which sets an

upper bound for the spatial frequencies (how fast the signals

change in space) and thereby for the resolution any MEG or

EEG sensor array can provide. In the present-day SQUID-

based magnetometers, the sensors are as far as 4–5 cm from

the most superficial sources. Since MEG picks up signals

mostly from sources in fissural cortex, the sensor-to-source dis-

tance can approach even 7 cm. In children, when measured

with the current adult-head-optimized devices, these numbers

are even larger if both hemispheres are to be measured

http://rstb.royalsocietypublishing.org/
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simultaneously. However, a few MEG systems designed for

infant heads are already available. Moreover, by recording

just one hemisphere at a time with an adult MEG device on

which the baby’s head rests, the distances to sources are

efficiently minimized.

The large distances are mostly due to the very low tempera-

tures required by the SQUID sensors; the necessary thermal

insulation for a vessel containing liquid helium (4 K ¼

–2698C) typically occupies at least 2 cm and makes it impossible

to fabricate arrays adaptable to the head size and shape. Thus,

disposing of the cryogenics would allow sensors closer to the

cortex. To move in this direction, one could employ SQUIDs

made of high-critical-temperature superconducting materials,

which enable operation at liquid nitrogen (T ¼ 77 K ¼

–1968C) temperatures and possibly allow for an adaptable

sensor helmet. However, the sensitivity of the current high-Tc

SQUIDs is an order of magnitude worse than that of their

liquid-helium-cooled low-Tc cousins (typically 3 fT/
p

Hz in

the white-noise region) used in today’s MEG systems. This limit-

ation has prevented the widespread use of high-Tc SQUIDs for

MEG even though it has already been shown that MEG signals

can be recorded with high-Tc SQUIDS [42].

Optically pumped magnetometers (OPMs), also known

as atomic magnetometers, are another viable alternative to

low-Tc SQUIDs. In particular, the spin-exchange relaxation-

free OPMs provide sensitivities comparable to those of the

best low-Tc SQUIDs [43] and they have indeed been demon-

strated to be capable of recording MEG [44,45]. Since OPMs

do not require cooling, but only moderate heating (and the

heat can be easily insulated), they can be placed right on

the scalp, much like EEG electrodes on an EEG cap. However,

the dynamic range and frequency response of OPMs are not

yet optimal for MEG.

Both of these technologies would allow magnetic-field

measurements within millimetres from the scalp, which

would increase the spatial resolution of MEG provided that

the noise level of the sensors remains sufficiently low. Yet,

the thickness of the intervening skull imposes a hard limit on

spatial resolution, and it is therefore unrealistic to assume

that MEG could ever delineate simultaneously active cortical

regions within a few millimetres, unless very specific and accu-

rate neurophysiological models are available. To fully exploit

the more proximal measurements and thus the potential for

capturing higher spatial frequencies, the number of channels

should be increased compared with today’s MEG systems

with about 300 channels. However, the remaining about

15-mm distance to the nearest sources reduces the benefit of

having sensors packed more densely than about every 15 mm.

There is still room to improve the noise level of the mag-

netic sensors, including low-Tc SQUIDs, but would that

help? At low frequencies (below, say, 50 Hz), the background

brain activity typically exceeds the instrumentation noise by

an order of magnitude and therefore improvements in sensi-

tivity do not readily translate into improvements in spatial

resolution. However, within the high gamma band (more

than 60 Hz) and above, the situation is quite different as no pro-

minent brain rhythms exist at those high frequencies. In

spectral density, spontaneous brain activity seems to be on

par with instrumentation noise at around 100 Hz and then

falls below it at higher frequencies. Therefore, further reduction

of sensor noise shall improve the visibility of high-frequency

responses, particularly of the high gamma band. The funda-

mental limit is set by the noise due to the thermal motion of
charged particles in the body, which is estimated to be about

0.2 fT/
p

Hz [46].

Sources in deep brain structures are generally poorly visible

in MEG. In special cases that allow excessive trial averaging,

responses from for example the auditory brainstem can be

recorded and their sources identified [47]. Placing the sensors

on the scalp as described above does not substantially improve

the detectability of these deep sources, although it remarka-

bly improves the detection of the superficial sources, since

the signal attenuation happens largely as cancellation by the

fields due to the volume currents (J. Iivanainen, M. Stenroos &

L. Parkkonen 2014, unpublished data). On the other hand, low-

ering the noise level of the sensors would be beneficial provided

that cortical activity at similar frequencies does not mask the

signals from deep sources.

Action potentials, as opposed to postsynaptic currents, are

very poorly visible in MEG and EEG due to their quadrupolar

sources and low probability for synchronous appearance

during the short duration of the potential. However, action poten-

tials at axon bends and extracellular conductivity boundaries

show a dipolar component whose signal could be measured at

a distance (and has been done so in peripheral nerves). Yet, the

problem of lacking temporal synchronization remains, and con-

certed action potentials have been non-invasively detected only

in a few cases (at frequencies around 600 Hz), but if future devel-

opments in instrumentation greatly increase the sensitivity at

high frequencies (200–2000 Hz), rather small groups of axons

with near-simultaneous action potentials could be detected

non-invasively. This possibility would substantially expand our

window to investigate timing in the brain, allowing for example

the evaluation of the functional significance of millisecond-range

temporal differences.

While the previous discussion pertains mostly to instru-

mentation, modelling of the signal sources probably plays an

increasingly important role in the future. So far, current dipoles

with no amplitude priors have been used almost exclusively as

the model for each source, but more detailed, biophysically and

physiologically inspired generative models could be more

informative of the underlying neural processes. These multi-

level models could facilitate the much-needed bridging of

spatial scales as they could integrate detailed descriptions of

single neurons, models of population activity and non-invasive

macroscopic measurements.

Inverse modelling algorithms could benefit from full

Bayesian approaches that not only integrate information from

multiple imaging methods but also allow the estimation of

source locations, source time series and even functional net-

works at a single step to alleviate problems with limited

spatial resolution. Should the improvements in instrumenta-

tion provide much higher signal-to-noise ratios than available

today, the inverse models could also estimate the extent of

the active brain areas.

In the future, MEG and EEG may not be the only non-

invasive ways of measuring electric signalling of neurons.

It has been suggested that, for example, neural currents could

generate an MRI contrast by dephasing the spins due to the

local neuromagnetic fields. While such direct neuronal current

imaging is a very tempting approach as it does not suffer from

an ill-posed inverse problem as MEG and EEG do, the effects

are so weak (currently perhaps two orders of magnitude

below what can be measured) that their detection will remain

extremely challenging. In addition, a long acquisition time

will probably be needed for detecting these subtle changes,
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which renders the temporal resolution poor even though one is

recording a reflection of the fast neuronal events.

Future brain research may also take advantage of recording

devices implantable on the cortex to extract signals for control-

ling, for example, a prosthetic limb (for a review see [48]). These

invasive brain–machine interfaces may develop rapidly and

bring useful by-products to basic neuroscience as well.

Moreover, recent advantages in spintronics have enabled min-

iaturized yet highly sensitive magnetic field detectors that

operate at body temperature and can record neural activity

right on the cortex [49]. Similar sensors can also be integrated

on needle-like probes (d , 100 mm) that can be inserted into

the cortex. The likely benefit of magnetic measurement versus

electric recording of local neural activity is increased spatial

selectivity, i.e. the ability to attribute the signals to specific

neurons, as well as the higher sensitivity to intracellular than

extracellular currents of intact neurons.

The contribution of action potentials to these micro- and

meso-scale measurements of the future will probably be

much larger than it is to MEG and EEG. Therefore, these

invasive techniques will provide not only a spatially sharper

but also physiologically complementary picture of brain

activity with respect to MEG/EEG. An important advantage

will be the possibility to look at the timing of single spikes at

sub-millisecond resolution.
5. Brains in interaction
One can criticize the current brain imaging, with all its great

advances, as representing ‘spectator science’ with the assump-

tion that humans (and their brains) are only reactive, so that the

ongoing state-changes triggered by the interacting partner, or

the physical environment, are not taken into account. Instead,

the subject is exposed to a range of crafted stimuli from check-

erboard patterns to movies. In reality, however, people are

actively participating in the events, not only observing them.

Although social interaction is among the most complex

functions that humans (and their brains) perform, it appears

surprisingly easy. For example, during conversation, turns

are usually taken effortlessly, smoothly and in a temporally

accurate manner so that, over different languages and cul-

tures, the gaps between the turns are typically only a few

hundred milliseconds, or even less [50]. Such brief intervals

cannot reflect just reactions to the end of the previous speak-

er’s utterance; instead the conversation participants have to

be synched so that they can unconsciously predict when

the other speaker is going to finish their turn at talking.

We have proposed ‘two-person neuroscience’ (2PN) as an

approach to study the physiological basis of social interaction

[51]. One of the main experimental goals of 2PN could be to

differentiate interactive [52] versus reactive states of human

social interaction by measuring brain signals from dyads

instead of single actors. How big the gain will be from the

investments to these rather complicated simultaneous measure-

ments of two persons remains to be seen in the future. Anyhow,

2PN set-ups seem necessary for studies of real social interaction

whenever people mutually regulate their dynamic coupling, co-

adapting their behaviours. Whether we should take the 2PN

approach instead of the easier and more controlled 1PN

approach (a spectator view) depends essentially on the timing

of the behaviour of interest; phenomena where information is

exchanged between the participants at time intervals shorter
than 100 ms would need time-resolved brain imaging methods,

such as MEG or EEG.

Motivation for two-person ‘hyperscanning’ also derives

from the fact that the human brain and mind are shaped

from cradle to grave by the interaction with other people.

It is even thought that sociality has drastically driven the

evolution of the human brain [53]. Importantly, sociality is

a group property emerging in relation to other people.

From the experimental point of view, it is evident that with-

out measuring two persons at the same time the natural

social interaction is difficult or impossible to tackle because

the interaction sequences cannot be repeated so that the

subjects’ brain activity could be measured sequentially.

For 2PN purposes, we have recently built a set-up for sim-

ultaneous MEG-to-MEG recordings between two sites. The

first measurements were carried out between laboratories

5 km apart in Finland [54], and more recently experiments

have been run between our laboratory in Finland and another

similarly equipped laboratory in Belgium. The main advan-

tage of MEG over EEG in this kind of 2PN recordings is

that the sources of the signals (e.g. of modulation of brain

rhythms) can be more accurately identified.

Still, the analysis of 2PN data is extremely challenging.

Several approaches are possible. One can compute hypercon-

nectivity, a measure of functional connectivity between the

two brains (instead of estimating connectivity between

areas of the same brain). Especially interesting would be to

track the time-varying modulations of the connectivity. Inter-

subject correlations (earlier studied with both fMRI and MEG

between subjects who were successively viewing the same

movie, e.g. [55–58]) can in the 2PN setting also inform

about contextual features typical to that situation only.

When data are available from both brains, we can look for

correlations between the two sets of brain signals, without

explicit reference to the external events.

Combining behavioural and body-state parameters to the

analysis (e.g. data from motion-capture or accelerometer sen-

sors, or various measures of the autonomous nervous system

function including for example heart rate and its variability)

will inform how the brain and body act in synchrony, both

within one person and between the two subjects involved

in social interaction.
6. Timewise insights into brain function
It is now increasingly realized that in addition to the connec-

tome, the structural architecture of the brain, information

about neuronal timing is quintessential for understanding

the human brain function as well as the behaviour as an

emergent property of the brain as a whole. Neurodynamics

has even been stated to be the focus of ‘postconnectome

science’ [59], meaning that it is not enough to treat the

nodes of neural networks solely as places of some activity;

instead, information is needed about the local dynamics of

the nodes as such, as well as their relative timings.

To draw attention to the importance of timing in brain

function, Kopell and co-workers [59] recently introduced

the dynome as the collection of both experimental and model-

ling data dealing with the dynamical structure in the brain

and its relation to cognition. Similarly, Calhoun et al. [60]

introduced the chronnectome, where functional connectivity

may be temporarily changing.
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Improved recording accuracy also brings up new questions.

The Defense Advanced Research Projects Agency (DARPA) of

the USA is, according to media information, considering single-

neuron recording from ‘behaving soldiers’ in the field. What

would such information tell? How many neurons should we

measure to learn something about the percepts or aims of the

person? How would we find these cells? How informative

would single neurons be as correlates to behaviour?

And what if we had transparent human brains, similar to

the mouse brain treated with the CLARITY technique [61]?

How much would it help if we were able to measure and

follow each action potential and each synaptic activation?

Would it be acceptable to integrate the functions of all neur-

ons, interneurons and glial cells in small volumes of brain

tissue, such as cortical columns? How should we simplify

the models to make them computationally tractable yet

physiologically meaningful? Are all synapses and neurons

essential, or are they important only occasionally in certain

contexts? In other words, would it really be necessary to

simulate each single neuron, or should one immediately

proceed to a much larger grain level and then rely on the

self-organization of the extensive training and plasticity of

the units and their connections?

Apparently the problem is not the laborious collection of

data, but making sense of them. For that purpose, we defi-

nitely should improve the theoretical framework and have

models that could be used to make temporo-spatial predic-

tions of new data (even though we are still missing any real

‘brain theory’, perhaps except for the idea that the brain

develops and works like a Bayesian inference system) and

to make a link from elements to circuits and behaviour.

If we build models with all details—even surviving the

abundance of big data [62]—the models will be as difficult to

understand as the original biological systems. Thus, we need

to simplify down to a level of an analysis unit that is proper

for each complexity level. One guideline might be to change

from one level to the next whenever (and only when) some

emergent properties arise in the system. Emergence itself is a

dynamical process, which does not exist in static systems.

An example of a well-known connectome is the structural

architecture of the Caenorhabditis elegans nervous system, com-

prising 302 neurons. This structure has been known for a

quarter of century and is extensively studied to find out how

neural circuitry arises from the interconnected neurons [63]. In

such a well-understood system, it might also be possible to

find out how much the properties of the neurons can be simpli-

fied without losing the emergent properties of the whole

circuitry. Ongoing megaprojects in the USA focus on develop-

ment of new technology that would allow the study, in small

mammals, of mesoscopic circuitries that we currently know

very little about. Of course, the questions related to the details

of the elements and the emergent properties of the networks

can be also studied with simulations provided that the

temporo-spatial details of the system are fully known.

When pondering about the proper analysis unit, it is good to

remember that quite complex behaviour is possible with very

simple architecture. For example, ‘Breitenberg vehicles’ [64],

simple robots with only uncomplicated control circuits (such

as, when a light sensor detects a wall, turn away from the

wall, etc.), result in behaviour that for an outside observer

seems intelligent. At a little more advanced level, many chil-

dren, and even adults, are fascinated by movements of robotic

vacuum cleaners that they consider intentional.
7. Predicting versus creating the future
Predicting the future is not a rewarding task. However, the

future is not totally unwritten but rather shaped by the pro-

gress until the present moment and by the plans that people

have for the future. Single researchers and serendipitous dis-

coveries can quickly change the main direction of science.

With the large crowd of scientists some main directions of

discoveries can be guessed and even directed by, for example,

funding policies and inspiring role-model scientists. The pre-

dictability of research directions also increases as more and

more research is made in larger units that require consider-

able investments. In trying to win the necessary funding,

many scientists start to behave as opportunists; bees fly

where the nectar is, which again increases the power of the

funding agencies in directing the science.

The best means to predict the near future is to extrapolate

from the past; for example, by predicting tomorrow’s weather

from that of today as the weather conditions of two succes-

sive days are highly correlated. But predictions of future

innovations are stated to often overestimate short-term devel-

opments and to underestimate long-term changes.

It is expected that in the years to come, old ideas and

research questions will reappear and be tested with more rigor-

ous and accurate methods. For example, the relationship

between behaviour and brain function can be assessed more

accurately with the improved instrumentation and better inte-

gration of multilevel temporo-spatial information and

modelling covering multiple temporal and spatial scales. Big

data are already now changing the way we do research, and

data-driven machine learning approaches are likely to continue

to advance our understanding of human brain function.

We would like to see the development of a solid theoretical

framework for human brain function and more understanding

of brain dynamics in naturalistic situations, as well as measure-

ments of multiple persons at the same time. When we move

from the laboratory environment to naturalistic conditions,

the picture of brain function may change as dramatically as

happened when it first became possible to make neurophysio-

logical recordings from awake animals and humans in contrast

to the previous experiments limited to anaesthetized animals.

The focus of current brain imaging has been much on

healthy (student) populations, but should be equally broad-

ened to all age groups. Time-resolved brain imaging may

be especially suitable for the study of brain development

from neonates to adolescents, when the transmission delays

change drastically as a function of increased myelination

and changes in neuronal transmission. Moreover, it would

be beneficial to study more extensively subjects with special

abilities, and not only patients with damaged brains.

Finally, brain function does not explain everything about

human behaviour and mind. One has to consider the body,

environment and culture as well.
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