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Recent years have seen much interest in the study of systems
characterized by multiple interacting components. A class of
statistical models called graphical models, in which graphs are
used to represent probabilistic relationships between variables,
provides a framework for formal inference regarding such
systems. In many settings, the object of inference is the network
structure itself. This problem of ‘‘network inference’’ is well
known to be a challenging one. However, in scientific settings
there is very often existing information regarding network
connectivity. A natural idea then is to take account of such
information during inference. This article addresses the question
of incorporating prior information into network inference. We
focus on directed models called Bayesian networks, and use
Markov chain Monte Carlo to draw samples from posterior
distributions over network structures. We introduce prior dis-
tributions on graphs capable of capturing information regarding
network features including edges, classes of edges, degree
distributions, and sparsity. We illustrate our approach in the
context of systems biology, applying our methods to network
inference in cancer signaling.

Bayesian networks � biological networks � graphical models �
protein signaling

A class of models called graphical models (1–3) is widely used
for formal statistical inference regarding systems of multi-

ple interacting components. A graphical model consists of a
graph, describing probabilistic relationships between variables,
and parameters specifying conditional distributions implied by
the graph. In many settings, questions of interest concern the
graph itself. For example, in molecular biology, we may be
interested in saying something about which molecules or com-
binations of molecules influence one another; in the social
sciences we may be interested in relationships between various
economic and demographic factors.

Inference on graphical model structure (4–8) is widely
recognized to be a challenging problem, partly because of the
vast space of possible graphs for even a moderate number of
variables. Yet, equally, an understanding of the relevant
scientific domain may suggest that not every possible graph is
equally plausible, and that certain features should be regarded
as a priori more likely than others. Where available, such
knowledge is a valuable resource, making the question of how
to capture and exploit it an important one. In this article, we
address precisely this question. We focus on directed graphical
models called Bayesian networks, and use Markov chain
Monte Carlo (MCMC) for network inference. We seek to take
account of detailed information concerning network features
such as individual edges, edges between classes of vertices, and
sparsity. In many settings, such beliefs follow naturally from a
consideration of the underlying science or semantics of the
variables under study. We present priors for beliefs of this kind
and show examples of how these ideas can be used in practical
settings.

Network Inference
We begin by reviewing basic ideas and notation for Bayesian
networks, with an emphasis on inference regarding network

features. A Bayesian network (1, 2) consists of (i) a directed
acyclic graph G � (V(G), E(G)), whose vertices V represent
random variables X1, . . . , Xp of interest, and whose edge-set E
contains edges describing conditional independencies between
those variables, and (ii) parameters � that specify conditional
distributions implied by G. In particular, the graph G implies
that each variable is conditionally independent of its nonde-
scendants given its immediate parents. Importantly, this means
that the joint distribution over X1, . . . , Xp can be factorized
into a product of local terms, such that p(X1, . . . , Xp � G) �
�i�1

p p(Xi � PaG(Xi)), where PaG(Xi) is the set of parents of Xi
in graph G.

The goal of network inference is to make inferences regard-
ing the graph G itself. Let X represent a p � n data matrix,
where n is the number of multivariate samples available. Using
Bayes’ theorem, the posterior probability P(G � X) of graph G
is given (up to proportionality) by p(X � G)P(G), where p(X � G)
is the (marginal) likelihood and P(G) a prior distribution over
directed acyclic graphs; we refer to the latter as a ‘‘network
prior.’’

Assume that the form of the conditional distributions p(Xi
� Pa(Xi)) is known, and let � represent a complete set of model
parameters. Then, the marginal likelihood p(X � G) can be
evaluated by integrating over model parameters �. This article
is concerned with inferences regarding the graph G itself, and
the ideas presented here are applicable for any choice of
conditional distributions and parameter priors under which the
marginal likelihood can be evaluated. In our experiments, we
follow previous authors (4) in assuming parameter indepen-
dence and using multinomial conditionals and Dirichlet priors.
This gives the following well known closed-form marginal
likelihood:

p�X � G� � �
i�1

p �
j�1

qi ��N�ij�

��N�ij � Nij�
� �

k�1

ri ��N�ijk � Nijk�

��Nijk�
, [1]

where Nijk is the number of observations in which Xi takes the
value k, given that PaG(Xi) has configuration j; qi is the number
of possible configurations of parents PaG(Xi); and ri is the
number of possible values of Xi. N�ijk are Dirichlet hyperpa-
rameters. Finally,

Nij � �ri

k � 1 Nijk

and

N�ij � �ri

k � 1 N�ijk
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MCMC on Networks. The number of possible graphs grows super-
exponentiallye with the number of variables p, precluding an
exhaustive enumeration of the posterior distribution beyond p �
6 or so. Thus, although we can evaluate the posterior probability
of a graph up to a multiplicative constant, we cannot consider
every possible graph during inference. This motivates the use of
computational methods to characterize posterior distributions
over graphs; here, we use a Metropolis–Hastings sampler (5, 7,
10) for this purpose.

Let �(G) denote a neighborhood around a directed acyclic
graph G, consisting of every directed acyclic graph that can be
obtained by adding, deleting or reversing a single edge in G.
Define proposal distribution Q as follows:

Q�G�; G� � � 1
���G��

if G� � ��G�

0 otherwise
. [2]

The acceptance ratio is then � �
P�G� �X)Q�G ;G��

P�G �X)Q�G� ;G�
. A

proposed graph G�, drawn from Q, is accepted with probability
min(1, �) and otherwise rejected. If accepted, G� is added to the
sequence of samples drawn and becomes the current graph. Else,
G is added to the sequence of samples and remains the current
graph. The proposal distribution Q gives rise to an irreducible
Markov chain, since there is positive probability of reaching any
part of the state space (5, 7). Standard results (10) then
guarantee convergence of the Markov chain to the desired
posterior P(G � X).

Inferences Regarding Network Features. The sampling procedure
gives rise to samples G (1), . . . , G(T). An important property of
these samples is that, provided the Markov chain has converged
to its stationary distribution, they provide a means by which to
compute the expectation of essentially any network feature.
Specifically, if �[�(G) � X] is the expectation, under the posterior
P(G � X), of a function �(G), then

�̂���G� �X	 �
1
T�

t�1

T

��G �t�� . [3]

is an asymptotically valid estimator of �[�(G) � X].
An important special case of Eq. 3, which we shall make use

of below, concerns the posterior probability of an individual edge
e, or P(e � X). Summing over graphs gives P(e � X) � �[IE(G)(e)
� X] (where IA denotes the indicator function for set A). Applying
Eq. 3 then gives the following asymptotically valid estimate of
posterior edge probability:

�̂�IE�G��e� � X	 �
1
T �

t�1

T

IE�G�t���e� , [4]

where, G(t) � (V(G(t)), E(G(t))).

Informative Priors on Networks
We begin with a motivating example highlighting some of the
kinds of prior beliefs that are encountered in practice and that
we might like to take account of during inference. We then
introduce network priors in a general way, before looking at
examples of such priors for specific kinds of prior information.

Finally, we look briefly at the use of MCMC proposal distribu-
tions based on network priors.

A Motivating Example. Table 1 shows 14 proteins that are com-
ponents of a biological network called the epidermal growth
factor receptor or EGFR system (11, 12). Here, each protein is
a ligand, a receptor, or a cytosolic protein; for our present
purposes, these may be regarded as well defined classes of
variable. Our goal is to infer structural features of the biological
network in which these components participate.

The biochemistry of the system provides us with some prior
knowledge regarding network features, which we would like to take
account of during inference. Some illustrative examples of the kind
of knowledge that might be available include the following.

S1. Ligands influence cytosolic proteins via ligand–receptor
interactions. As a consequence, we do not expect them to
directly influence cytosolic proteins. Equally, we do not expect
either receptors or cytosolic proteins to directly influence
ligands.

S2. Certain ligand–receptor binding events occur with particu-
larly high affinity; these include EGF and AMPH with EGFR,
NRG1 with ERBB3, and NRG1 and NRG2 with ERBB4.
Equally, the receptors EGFR, ERBB3, and ERBB4 are all
capable of influencing the state of ERBB2 (via heterodimer
formation and transphosphorylation). In addition, there is
much evidence indicating that Raf can influence MEK, which
in turn can influence ERK.

S3. Since we observe ligand-mediated activity at the level of
cytosolic proteins, we expect to see a path from ligands to
receptors, and from receptors to cytosolic proteins.

These beliefs correspond to information regarding network
structure: S1 contains information concerning edges between
classes of vertices, S2 contains information regarding individual
edges, and S3 contains higher-level information regarding paths
between classes of vertices.

General Framework. We now introduce a general form for our
network priors. Let f(G) be a real-valued function on graphs that
is increasing in the degree to which graph G agrees with prior
beliefs (a ‘‘concordance function’’). Then, for potentially mul-
tiple concordance functions {fi(G)}, we suggest a log-linear
network prior of the form

P�G� 
 exp� ��
i

wif i�G�� , [5]
eThe number Np of possible directed acyclic graphs with p vertices is given by the recurrence
formula (see ref. 9 for details): Np�¥

p
i�1(�1)i�1(p

i )2i(p�i)N(p�i) with N1 �1. This gives, e.g.,
N10  4.2 � 1018 and N14  1.4 � 1036.

Table 1. Some components of the epidermal growth factor
receptor system

Protein Type

EGF Ligand
AMPH Ligand
NRG1 Ligand
NRG2 Ligand
EGFR Receptor
ERBB2 Receptor
ERBB3 Receptor
ERBB4 Receptor
GAP Cytosolic protein
SHC Cytosolic protein
RAS Cytosolic protein
Raf Cytosolic protein
MEK Cytosolic protein
ERK Cytosolic protein

14314 � www.pnas.org�cgi�doi�10.1073�pnas.0802272105 Mukherjee and Speed

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
4.

11
5.

20
9.

16
2 

on
 M

ar
ch

 1
6,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
84

.1
15

.2
09

.1
62

.



where � is a parameter used to control the strength of the prior.
Here, in the spirit of ref. 13, we use weights wi to control the
relative strength of individual concordance functions, with w1 set
to unity to avoid redundancy. We discuss setting strength
parameters below. [Note that the only way in which the prior
enters into MCMC-based inference is via the prior odds P(G�)/
P(G) in favor of proposal G�; it is therefore sufficient to specify
the prior up to proportionality.]

Individual Edges. Suppose we believe that certain edges are a
priori likely to be present or absent in the true data-generating
graph. Let E� denote a set of edges expected to be present
(‘‘positive edge-set’’) and E� a set of edges expected to be absent
(‘‘negative edge-set’’). We assume that these two sets are dis-
joint. Then, we suggest the following network prior:

P�G� 
 exp��� �E�G� � E�� � �E�G� � E���� [6]

Here, the concordance function is a counting function on individual
edges, with the prior attaining its maximum value if and only if G
contains all of the positive edges and no negative edges.

Edges Between Classes of Vertices. The network prior given by Eq.
6 may also be used to capture beliefs regarding edges between
classes of vertices.f Let {Ck} be a set of classes into which vertices
v � V can be categorized, with C(v) denoting the class to which
vertex v belongs. Suppose we wish to penalize graphs displaying
edges between vertices of class i and j. This can be accomplished
by using the prior specified by Eq. 6 with a negative edge-set E�

containing all such edges:

E� � �e � �vl,vm�:C�vl� � Ci,C�vm� � Cj�. [7]

Positive priors on edges between vertex classes can be defined in
a similar fashion.

Network Sparsity. In many settings, parsimonious models are
desirable both for reasons of interpretability and amelioration of
overfitting. Since Bayesian networks factorize joint distributions
into local terms conditioned on parent configurations, model
complexity can grow rapidly with the number of parents. Con-
trolling the in-degree of graphs is therefore a useful means of
controlling model complexity.g The in-degree indeg(v) of a
vertex v � V is the number of edges in edge-set E leading into
v; that is, indeg(v) � �{(vi, vj) � E : vj � v}�. Let �(G) �
maxv�V(G)indeg(v) be the maximum in-degree of graph G. Then,
the following network prior penalizes graphs having in-degree
exceeding �indeg but remains agnostic otherwise:

P�G� 
 exp�� min�0,� indeg � ��G��� [8]

The priors introduced up to this point are sufficient for the
experiments presented below. However, to illustrate the full
generality of network priors, we briefly discuss two further types
of prior information.

Higher-Level Network Features. In some cases, we may wish to
capture prior knowledge concerning higher-level network features
that cannot be described by reference to sets of individual edges. To
take but one example, we may believe that there ought to be at least
one edge between certain classes of vertices, as in S3. Let EC be a
set of ordered pairs of classes such that (Ci, Cj) � EC means that we

believe there ought to be at least one edge from class Ci to class Cj.
Then, we suggest using the prior in Eq. 5 with concordance function
f(G) � �(Ci,Cj)�EC

I��[�(v1,v2)�E(G)�((C(v1), C(v2)), (Ci, Cj))] (where
�� is the set of positive integers and � the Kronecker delta
function).

Degree Distributions. We may have reason to believe that the degree
distribution of the underlying network is likely to be scale-free. The
degree deg(v) of a vertex v is the total number of edges in which
vertex v participates. The degree distribution of a graph G is a
function 	G(d) � �{v � V(G) : deg(v) � d}� describing the total
number of vertices having degree d. A graph is said to have a
scale-free degree distribution if 	G follows a power-law with 	G(d)

 d�
, 
 � 0 such that log(	G(d)) is approximately linear in log(d).
Accordingly, the negative correlation coefficient between
log(	G(d)) and log(d) is a natural choice for a concordance function
for the scale-free property, giving a network prior P(G) 

exp(�� r(log(	G(d)), log(d))) (where r(�, �) denotes the correlation
coefficient of its arguments).

Prior-Based Proposals. The prior P(G) provides information re-
garding which graphs are a priori more likely. Yet, the proposal
distribution in Eq. 2 is uniform over neighborhood �(G). A
natural idea, then, is to exploit prior information in guiding the
proposal mechanism; here, we suggest one way of doing so that
we have found empirically to be useful in accelerating conver-
gence. We suggest a proposal distribution of the form

QP�G�;G�
�
�Q if P�G�� � P�G�
1 if P�G�� � P�G�

1��Q if P�G�� � P�G�
0 if G����G�

[9]

where, �Q  1 is a parameter controlling the degree to which the
proposal mechanism prefers a priori likely graphs.

The proposal distribution specified by Eq. 9 ensures that all
graphs in �(G) have a nonzero probability of being proposed,
thereby preserving irreducibility and convergence to the desired
posterior. Now, large values of �Q will result in frequent proposals
of a priori likely graphs, but because of the ‘‘Hastings factor’’ Q(G;
G�)/Q(G�; G) will also lead to low acceptance rates for such graphs.
However, consideration of the form of the acceptance ratio yields
a simple heuristic for determining �Q. Let �f denote the median
nonzero value of the absolute difference �f(G�) � f(G)� in the values
of the concordance function for G� and G (this can be determined
during diagnostic sampling runs). Then, setting �Q � max(1, 	
exp(1

2
��f)), 	 � 1, suffices to ensure that (i) a priori likely graphs do

not suffer low acceptance ratios, and (ii) if the overall prior is too
weak to permit a prior-based proposal, the proposal distribution in
Eq. 9 reverts to the uniform distribution of Eq. 2. For example, for
the counting function in Eq. 6 and neighborhoods constructed by
single edge changes, �f(G�) � f(G)� is typically unity, giving �Q �
max(1, 	 exp(�/2)). (When using prior-based proposals, by default
we set 	 � 1/2.)

Constructing a Prior. We now consider two aspects of constructing
a network prior: the qualitative question of what information to
include, and the quantitative question of how to decide on a
value for the strength parameter �.

In a scientific domain, information to include in the prior must
be derived from what is understood regarding the system under
study. Although this process of extracting domain information is
necessarily a subjective enterprise, we favor a conservative
approach in which only information about which there is a broad
consensus is included in the prior. We provide an example from
cancer signaling below.

We address the question of prior strength in two steps. We first
engage in a process of elicitation aimed at setting the strength

fExamples of knowledge pertaining to vertex classes are abundant in molecular biology,
where the classes may represent distinct types of molecule thought to influence one
another in specific ways.

gAn alternative is to consider the total number of edges in the graph; see ref. 8 for an
example of this approach.
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parameter � approximately to within an order of magnitude; this
is accomplished in consultation with collaborators and by ref-
erence to the well known Jeffreys’ scale (14), which relates odds
ratios to intuitive degrees of belief. We then carry out a
sensitivity analysis to check that results obtained are robust to
changes in � around the elicited value; we show examples of
sensitivity analysis below. In the present article, we set param-
eters wi to unity. However, the formulation presented in Eq. 5
allows for the weighting of multiple sources of prior information;
this is an important topic in its own right but one that we do not
address further here.

A Simulation Study
Data. We simulated data for the p � 14 variables described
previously in Table 1, using the data-generating graph shown in
Fig. 1C. Details of our data-generating model are as follows: the
random variables are binary {0, 1}; all conditional distributions
are Bernoulli, with success parameter p depending upon the
configuration of the parents. In particular, root nodes are
sampled with p � 0.5, whereas for each child node, p � 0.8 if at
least one parent takes on the value 1, and p � 0.2 otherwise.
Sample size was n � 200.

Priors. The graph shown in Fig. 1C is based on the epidermal
growth factor receptor system alluded to in the motivating
example above. We constructed informative network priors
corresponding to the beliefs S1 and S2 described above. We used
S1 and S2 to define a negative edge-set E� and positive edge-set
E�, respectively; these edge-sets were then used to specify a
network prior using Eq. 6. S3 was not used in these experiments.
To investigate the effects of priors containing erroneous infor-
mation, we also constructed a mis-specified prior that included
incorrect information regarding individual edges.h This allowed
us to consider a realistic scenario in which the prior is largely
reasonable but contains a number of entirely false beliefs. In all
cases, � was set to unity. We based all inferences on a single, long
run of T � 50,000 iterations for each prior, with 5,000 samples
discarded as ‘‘burn-in’’ in each case.i

ROC Analysis. Our knowledge of the true data-generating graph
allowed us to construct receiver operating characteristic or ROC
curves from calls on individual edges. Let G* � (V*, E*) denote
the true data-generating graph. As before, let P(e � X) denote the
posterior probability of an edge e � (vi, vj). Then, the set of edges

called at threshold � � [0, 1] is E� � {e : P(e � X)  �}, the number
of true positives is �E� � E*� and the number of false positives is
�E� � E*�. ROC curves were constructed by plotting, for each
sampler, the number of true positives against the number of false
positives parameterized by threshold �; these are shown in Fig.
1 A and B. We also show results obtained by using absolute log
odds ratios ��ij� for each pair (i, j) of variables; these are a natural
measure of association for binary variables and provide a simple,
baseline comparison. Finally, we show results obtained by draw-
ing samples from the prior itself (‘‘prior only’’).

These ROC curves are obtained by comparison with the true
edge-set E* and in that sense represent ‘‘gold-standard’’ com-
parative results. The posterior distribution provides substantial
gains in sensitivity and specificity over both prior alone and data
alone (i.e., the flat prior), suggesting that inference is indeed able
to usefully combine data and prior knowledge.

Prior Sensitivity. We investigated sensitivity to the strength pa-
rameter � by performing ROC analyses as described above for
a range of values of � from 0.1 to 10. Fig. 2 shows the resulting
area under the ROC curve (AUC) plotted against �, for the
correctly specified prior. The good results obtained by using the
informative prior hold up across a wide rangej of values of �.

A Biological Network
Protein signaling networks play a central role in the biology of
cancer. There remain many open questions regarding cancer-
specific features of signaling networks, especially at the level of
protein phospho-forms and isoforms. In this section, we present

hSpecifically, it includes in its negative edge-set edges from Raf to MEK and from MEK to
ERK, and in its positive edge-set an edge from Ras to ERK.

iFor diagnostic purposes, we first performed several short (T � 10,000) runs with different
starting points. In each case, we found that monitored quantities converged within a few
thousand iterations, giving us confidence in the results obtained by using the subsequent
single, longer run.

0.1 0.2 0.5 1 2 5 10
0.8

0.85

0.9

0.95

1

λ

A
U

C (Flat prior)

(Log odds ratio)

Fig. 2. Sensitivity analysis for synthetic data. Area under the ROC curve (AUC)
is plotted against the strength parameter, for an informative prior. The area
under the ROC curve captures, as a single number, the correctness of calls on
edges across a range of thresholds; higher scores indicate lower error rates. For
comparison, we show also AUC results for a flat prior and log-odds ratios as
horizontal lines.

jIndeed, given the exponential form of the prior, this represents a very wide range of
strength regimes.

0 10 20 30 40 50 60 70 80
0

4

8

12

16

# False positives

# 
T

ru
e 

po
si

tiv
es

 

 

Posterior
Mis−specified prior
Flat prior
Log odds ratio
Prior only

Full ROC curves

0 4 8 12 16
0

4

8

12

16

# False positives

# 
T

ru
e 

po
si

tiv
es

 

 

Posterior
Mis−specified prior
Flat prior
Log odds ratio
Prior only

Detail of (a) Data-generating graph

A B C

Fig. 1. Receiver operating characteristic (ROC) curves for synthetic data. True positive rates are plotted against false positive rates across a range of thresholds,
providing a comprehensive summary of sensitivity and specificity. Also shown is the true data-generating graph.
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some results obtained in an analysis of protein signaling in breast
cancer, using the methods introduced above.

Data. Proteomic data were obtained for the 11 protein phospho-
forms and isoforms shown in Fig. 3; these included two receptors,
PDGF and C-MET (both are receptor tyrosine kinases or
RTKs); two phospho-forms of AKT; two isoforms of MKK; two
isoforms of ERK; MNK1; and two downstream proteins known
to be involved in translational control, ELF4E and EIF2B. The
data were obtained from an assay performed by Kinexus on a
panel of 18 breast cancer cell lines. Preprocessing comprised (i)
setting all zeros to 1/100 of the smallest nonzero value, (ii) taking
logs, and (iii) discretizing where possible into active and inactive
states or else around the median for each protein. This gave rise
to binary data for each of the 11 proteins.

Priors. Our prior beliefs concerning the network can be summa-
rized as follows. The receptors are expected to have edges going
only to ERKs and AKTs. This reflects known biology in which
RTKs influencek these proteins (15, 16). The AKTs and ERKs
are in turn expected to have edges going only to the downstream
proteins ELF4E and EIF2B, and in the case of ERK only,
additionally to MNK1; MNK1 is expected to have edges going
only to ELF4E and EIF2B (17). Our prior beliefs concerning
MKKs are few: we expect only that they should not have edges
going directly to the receptors. We constructed a network prior
corresponding to these beliefs using Eqs. 6 and 7. In addition,
because of the small sample size, we used sparsity-promoting
prior Eq. 8 with �indeg � 3. Following the prior elicitation
strategy discussed above, we set � � 3. As before, we used short
diagnostic runs (T � 10,000) to check for convergence, followed
by a single long run of T � 50,000 iterations, with a ‘‘burn-in’’ of
5,000 samples. A prior-based proposal was used, using Eq. 9 with
�Q set (automatically) to max(1, 1

2
exp(�/2)) � 2.24. (The resulting

acceptance rate was 0.23.)

Single Best Graph. Fig. 3 shows the single most probable graph
encountered during sampling. Each edge e is annotated with the
corresponding posterior probability P(e � X). Note that some
edges in the posterior mode have relatively low probability: this
highlights the danger of relying on simple mode-finding rather
than posterior simulation for inference in problems of this kind.

Network Features. Eq. 3 provides a means by which to compute
probabilities or posterior odds concerning network features. To
take but one example in the present context, a biologically

important question concerns the influence of MKK on ERK
phosphorylation. We computed the posterior odds in favor of
MKK 3 ERK connectivity (i.e., at least one edge from MKKs
to ERKs) versus no such connectivity (no edge from MKKs to
ERKs). The posterior odds in favor of MKK 3 ERK connec-
tivity are 42, suggesting that MKK directly or indirectly influ-
ences ERK activation in the cell lines under study. Interestingly,
the corresponding odds under the flat prior are just under 2.
Although no prior information was provided concerning MKK
3 ERK connectivity specifically, network inferences of this kind
are embedded within an overall graph embodying the joint
distribution of all variables under study and therefore implicitly
take account of specified prior beliefs, even when these concern
other parts of the network.

Prior Sensitivity. To investigate sensitivity to prior strength, we
looked at the agreement between results obtained under differ-
ent values of strength parameter �. We considered five values of
strength parameter �, as well as a flat prior and samples drawn
from the prior only (with � � 3). This gave seven different prior
settings, each of which led to a set of posterior edge probabilities.
Fig. 4 shows Pearson correlations for these posterior edge
probabilities, for all pairs of prior settings: values close to unity
indicate posteriors that are effectively very close. Inferences
using the informative prior with different values of � are in very
close agreement, yet differ from both the flat prior and from the
informative prior alone. This gives us confidence that (i) infer-
ence integrates both data and prior information, and (ii) results
are not too sensitive to the precise value of �.

Discussion
In this article, we discussed the use of informative priors for
network inference. In our view, informative network priors play
two related roles. First, they allow us to capture valuable domain
knowledge regarding network features. Second, they facilitate a
refining or sharpening of questions of interest, in effect playing
a role analogous to formulating an initial set of hypotheses but
with much greater flexibility. Indeed, our investigation started
out as a simpler, correlational analysis of components in cancer
signaling. The complex nature of relationships between such
components motivated us to move toward a multivariate ap-
proach, while the need to sharpen our questions in light of rich
but uncertain biochemical knowledge motivated the work pre-
sented here on network priors. Our work forms part of a growingkThis takes place via SH2-domain-containing molecules that are not analyzed here.

Fig. 3. Posterior mode for protein data. Edges are annotated with posterior
edge probabilities.

Fig. 4. Prior sensitivity for protein data. Seven different prior settings
(informative prior with strength parameter � 1, 2, 3, 4, 5; flat prior; and prior
only) each give rise to a set of posterior edge probabilities. The image shows
Pearson correlations between these posterior edge probabilities for all pairs
of prior settings.
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trend in the computational biology literature (including refs.
19–21) toward network inference schemes that take account of
prior information of various kinds.

In many settings of interest, from molecular biology to the social
sciences, relatively small sample sizes add to the challenge of
network inference. This motivated us to focus our simulation
experiments on the small-sample setting; we found that informative
priors permit effective inference under these conditions, offering
substantial gains over flat priors. We note also that the sample size
of the protein phosphorylation data analyzed here was orders of
magnitude smaller than in a previous application of Bayesian
networks to protein signaling (18); this further motivated a need to
make use of existing knowledge regarding the system.

We note that the network priors introduced here permit a
prior preference for one graph over another even when both
graphs imply the same conditional independence statements.
For example, if we believe that a variable A is capable of
physically influencing B, or that A precedes B in time, we may
express a preference for A3 B over B3 A. In our experience,
in the context of practical scientific inquiry, it can be useful to
incorporate outside information of this kind.

Friedman and Koller (6) have proposed an interesting ap-
proach to network inference, in which samples are drawn from
the space of orders, where an order � is defined as a total order
relation on vertices such that if Xi � PaG(Xj) then i � j. The

appeal of this approach lies in the fact that the space of orders
is much smaller than the space of graphs. On the other hand, the
use of order space means that network priors must be translated
into priors on orders, and inferences on graph features carried
out via order space. Furthermore, the authors’ own experiments
show that sampling in order space offers no real advantage at
smaller sample sizes.

There remains much to be done in extending the methods
presented in this article to higher-dimensional problems. One
approach to rendering such problems tractable would be to place
strong priors on some parts of the overall network. This would,
in effect, amount to using background knowledge to focus
limited inferential power on the least well understood, or
scientifically most interesting, parts of the system. Our current
applied efforts are directed toward questions in cancer biology
where we have found the ability to specify priors directly on
networks and make posterior inferences on network features to
be valuable in casting biologically interesting questions within a
statistical framework.
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