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Abstract. We propose an efficient strategy to infer sparse Hopfield network based on magnetizations and
pairwise correlations measured through Glauber samplings. This strategy incorporates the �1 regularization
into the Bethe approximation by a quadratic approximation to the log-likelihood, and is able to further
reduce the inference error of the Bethe approximation without the regularization. The optimal regulariza-
tion parameter is observed to be of the order of M−ν where M is the number of independent samples. The
value of the scaling exponent depends on the performance measure. ν � 0.5001 for root mean squared error
measure while ν � 0.2743 for misclassification rate measure. The efficiency of this strategy is demonstrated
for the sparse Hopfield model, but the method is generally applicable to other diluted mean field models.
In particular, it is simple in implementation without heavy computational cost.

1 Introduction

The inverse Ising problem is intensively studied in sta-
tistical physics, computational biology and computer sci-
ence in the few past years [1–4]. The biological ex-
periments or numerical simulations usually generate a
large amount of experimental data, e.g., M independent
samples {σ1, σ2, . . . ,σM} in which σ is an N -dimensional
vector with binary components (σi = ±1) and N is the
system size. The least structured model to match the
statistics of the experimental data is the Ising model [5]:

PIsing(σ) =
1

Z(h,J)
exp

⎡
⎣∑

i<j

Jijσiσj +
∑

i

hiσi

⎤
⎦ , (1)

where the partition function Z(h,J) depends on the
N -dimensional fields and N(N−1)

2 -dimensional couplings.
These fields and couplings are chosen to yield the same
first and second moments (magnetizations and pairwise
correlations, respectively) as those obtained from the ex-
perimental data. The inverse temperature β = 1/T has
been absorbed into the strength of fields and couplings.

Previous studies of the inverse Ising problem on
Hopfield model [6–10] lack a systematic analysis for treat-
ing sparse networks. Inference of the sparse network also
has important and wide applications in modeling vast
amounts of biological data. Actually, the real biologi-
cal network is not densely connected. To reconstruct the
sparse network from the experimental data, an additional
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penalty term is necessary to be added into the cost func-
tion, as studied in recovering sparse signals in the con-
text of compressed sensing [11–13] or in Ising model se-
lection [4,14]. This strategy is known as �1-regularization
which introduces an �1-norm penalty to the cost func-
tion (e.g., the log-likelihood of the Ising model). The
regularization is able to minimize the impact of finite
sampling noise, thus avoid the overfitting of data. The
�1-regularization has been studied in the pseudo-likelihood
approximation to the network inference problem [15] and
in the setting of sparse continuous perceptron memoriza-
tion and generalization [16]. This technique has also been
thoroughly discussed in real neural data analysis using
selective cluster expansion method [17,18]. The cluster
expansion method involves repeated solution of the in-
verse Ising problem and the computation of the clus-
ter entropy included in the expansion (cluster means a
small subset of spins). To truncate the expansion, clus-
ters with small entropy in absolute value are discarded
and the optimal threshold needs to be determined. Addi-
tionally, the cluster size should be small to reduce the
computational cost while at each step a convex opti-
mization of the cost function (see Eq. (9)) for the clus-
ter should be solved. This may be complicated in some
cases. The pseudo-likelihood maximization [15] method
relies on the complete knowledge of the sampled config-
urations, and involves a careful design of the numerical
minimization procedure for the pseudo-likelihood (e.g.,
Newton descent method, or interior point method) at
a large computational cost (especially for large sample
size). In this paper, we provide an alternative way to
reconstruct the sparse network by combining the Bethe
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approximation and the �1-regularization, which is much
simpler in practical implementation. We expect that the
�1-regularization will improve the prediction of the Bethe
approximation. To show the efficiency, we apply this
method to the sparse Hopfield network reconstruction.

Our contributions in this work are two-fold. (1) We
provide a regularized quadratic approximation to the neg-
ative log-likelihood function for the sparse network con-
struction by neglecting higher order correlations, which
yields a new inference equation reducing further the in-
ference error. Furthermore, the implementation is much
simple by saving the computational time. (2) Another sig-
nificant contribution is a scaling form for the optimal reg-
ularization parameter is found, and this scaling form is
useful for choosing the suitable regularization. Most im-
portantly, the method is not limited to the tested model
(sparse Hopfield model), and is generally applicable to
other diluted mean field models and even real data anal-
ysis (e.g., neural data). The outline of the paper is as fol-
lows. The sparse Hopfield network is defined in Section 2.
In Section 3, we present the hybrid inference method by
using the Bethe approximation and �1-regularization. We
test our algorithm on single instances in Section 4. Con-
cluding remarks are given in Section 5.

2 Sparse Hopfield model

The Hopfield network has been proposed in reference [19]
as an abstraction of biological memory storage and was
found to be able to store an extensive number of random
unbiased patterns [20]. If the stored patterns are dynami-
cally stable, then the network is able to provide associative
memory and its equilibrium behavior is described by the
following Hamiltonian:

H = −
∑
i<j

Jijσiσj , (2)

where the Ising variable σ indicates the active state of the
neuron (σi = +1) or the silent state (σi = −1). For the
sparse network storing P random unbiased binary pat-
terns, the symmetric coupling is constructed [21,22] as

Jij =
lij
l

P∑
μ=1

ξμ
i ξμ

j , (3)

where l is the average connectivity of the neuron; l ∼ O(1)
independent of the network size N . Note that in this
case, the number of stored patterns can only be finite.
In the thermodynamic limit, P scales as P = αl where α
is the memory load. No self-interactions are assumed and
the connectivity lij obeys the distribution:

P (lij) =
(

1 − l

N − 1

)
δ(lij) +

l

N − 1
δ(lij − 1). (4)

Mean field properties of the sparse Hopfield network
have been discussed within replica symmetric approx-
imation in references [23,24]. Three phases (paramag-
netic, retrieval and spin glass phases) have been ob-
served in this sparsely connected Hopfield network with

arbitrary finite l. For large l (e.g., l = 10), the
phase diagram resembles closely that of extremely di-
luted (limN→∞ l−1 = limN→∞ l/N = 0, such as l = ln N)
case [25,26], where the transition line between paramag-
netic and retrieval phase is T = 1 for α ≤ 1 and that
between paramagnetic and spin glass phase T =

√
α for

α ≥ 1. The spin glass/retrieval transition occurs at α = 1.
To sample the state of the original model equation (2),

we apply the Glauber dynamics rule:

P (σi → −σi) =
1
2

[1 − σi tanhβhi] , (5)

where hi =
∑

j �=i Jijσj is the local field neuron i
feels. In practice, we first randomly generate a con-
figuration which is then updated by the local dynam-
ics rule equation (5) in a randomly asynchronous fash-
ion. In this setting, we define a Glauber dynamics step
as N proposed flips. The Glauber dynamics is run to-
tally 3 × 106 steps, among which the first 1 × 106 steps
are run for thermal equilibration and the other 2 × 106

steps for computing magnetizations and correlations, i.e.,
mi = 〈σi〉data , Cij = 〈σiσj〉data − mimj , where 〈· · · 〉data
denotes the average over the collected data. The state of
the network is sampled every 20 steps after thermal equi-
libration (doubled sampling frequency yields the similar
inference result), which produces totally M = 100 000 in-
dependent samples. The magnetizations and correlations
serve as inputs to our following hybrid inference algorithm.

3 Bethe approximation with �1 regularization

The Bethe approximation assumes that the joint proba-
bility (Boltzmann distribution, see Eq. (1)) of the neuron
activity can be written in terms of single-neuron marginal
for each single neuron and two-neuron marginal for each
pair of adjacent neurons as

PIsing(σ) 	
∏
(ij)

Pij(σi, σj)
Pi(σi)Pj(σj)

∏
i

Pi(σi), (6)

where (ij) runs over all distinct pairs of neurons. This ap-
proximation is exact on tree graphs and asymptotically
correct for sparse networks or networks with sufficiently
weak interactions [27]. Under this approximation, the free
energy (− ln Z) can be expressed as a function of con-
nected correlations {Cij} (between neighboring neurons)
and magnetizations {mi}. The stationary point of the free
energy with respect to the magnetizations yields the fol-
lowing self-consistent equations:

mi = tanh

⎛
⎝hi +

∑
j∈∂i

tanh−1 (tijf(mj , mi, tij))

⎞
⎠ , (7)

where ∂i denotes neighbors of i, tij = tanhJij and

f(x, y, t) =
1 − t2 − √

(1 − t2)2 − 4t(x − yt)(y − xt)
2t(y − xt)

.
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Using the linear response relation to calculate the con-
nected correlations for any pairs of neurons, we ob-
tain the Bethe approximation (BA) to the inverse Ising
problem [28,29]:

Jij = − tanh−1

[
1

2(C−1)ij
(aij − bij) − mimj

]
, (8)

where C−1 is the inverse of the connected correlation ma-
trix, aij =

√
1 + 4LiLj(C−1)2ij , Li = 1 − m2

i and bij =√
(aij − 2mimj(C−1)ij)

2 − 4(C−1)2ij . The couplings have
been scaled by the inverse temperature β. Note that fields
can be predicted using equation (7) after we get the set of
couplings. Hereafter we consider only the reconstruction
of the coupling vector. In fact, the BA solution of the cou-
plings corresponds to the fixed point of the susceptibility
propagation [7,27], yet it avoids the iteration steps in sus-
ceptibility propagation and the possible non-convergence
of the iterations. It was also found that the BA yields a
good estimate to the underlying couplings of the Hopfield
network [7]. In the following analysis, we try to improve
the prediction of BA with �1-regularization.

The cost function to be minimized in the inverse Ising
problem can be written as the following rescaled negative
log-likelihood function [30]:

S(h,J|m,C) = − 1
M

ln

[
M∏

μ=1

PIsing(σμ|h,J)

]

= ln Z(h,J) − hTm − 1
2
tr(JC̃), (9)

where mi = 〈σi〉data and C̃ij = 〈σiσj〉data. hT denotes the
transpose of the field vector while tr(A) denotes the trace
of matrix A. The minimization of S(h,J|m,C) in the
N(N+1)

2 -dimensional space of fields and couplings yields
the following equations:

mi = 〈σi〉 , (10a)

Cij = 〈σiσj〉 − 〈σi〉 〈σj〉 , (10b)

where the average is taken with respect to the Boltzmann
distribution equation (1) with the optimal fields and cou-
plings (corresponding to the minimum of S). Actually, one
can use Bethe approximation to compute the connected
correlation in the right-hand side of equation (10b), which
leads to the result of equation (8).

To proceed, we expand the cost function around its
minimum with respect to the fluctuation of the coupling
vector up to the second order as

S(J) 	 S(J0) + ∇S(J0)T J̃ +
1
2
J̃THS(J0)J̃, (11)

where J̃ defines the fluctuation J̃ ≡ J − J0, where J0 is
the (near) optimal coupling vector. ∇S(J0) is the gradi-
ent of S evaluated at J0, and HS(J0) is the Hessian ma-
trix. The quadratic approximation to the log-likelihood

has also been used to develop fast algorithms for esti-
mation of generalized linear models with convex penal-
ties [31]. We have only made explicit the dependence of S
on the coupling vector. The first order coefficient van-
ishes due to equation (10). Note that the Hessian ma-
trix is an N(N − 1)/2 × N(N − 1)/2 symmetric ma-
trix whose dimension is much higher than that of the
connected correlation matrix. However, to construct the
couplings around neuron i, we consider only the neuron
i-dependent part, i.e., we set l = i in the Hessian matrix
χij,kl = 〈σiσjσkσl〉 − 〈σiσj〉 〈σkσl〉 where ij and kl run
over distinct pairs of neurons. This simplification reduces
the computation cost but still keeps the significant con-
tribution as proved later in our simulations. Finally we
obtain

S(J) 	 S(J0) +
1
2

∑
ij,ki

J̃ij(C̃jk − C̃ijC̃ki)J̃ki

+ λ
∑
ij

|J0,ij + J̃ij | (12)

where an �1-norm penalty has been added to promote the
selection of sparse network structure [14,17,32]. λ is a pos-
itive regularization parameter to be optimized to make
the inference error (see Eq. (14)) as low as possible. The
�1-norm penalizes small but non-zero couplings and in-
creasing the value of the regularization parameter λ makes
the inferred network sparser. In the following analysis, we
assume J0 is provided by the BA solution (a good approx-
imation to reconstruct the sparse Hopfield network [7],
yielding a low inference error), then we search for the new
solution to minimize the regularized cost function equa-
tion (12), finally we get the new solution as follows,

J
(i)
ij = J0,ij − λ

∑
k

sgn(J0,ik)[Ci]−1
kj , (13)

where sgn(x) = x/|x| for x �= 0 and (Ci)kj = C̃kj −
C̃jiC̃ik. Equation (13) results from ∂S(J)

∂Jij
= 0 which

gives J̃TCi = ΛT , where Λj = −λsgn(J0,ij) (j �= i) and
J̃j = Jij − J0,ij (j �= i). J

(i)
ij represents couplings around

neuron i. To ensure the symmetry of the couplings, we
construct Jij = 1

2 (J (i)
ij + J

(j)
ji ) where J

(j)
ji is also given by

equation (13) in which i and j are exchanged. The in-
verse of Ci or Cj takes the computation time of the order
O(N3), much smaller than that of the inverse of a suscep-
tibility matrix χ.

We remark here that minimizing the regularized cost
function equation (12) corresponds to finding the optimal
deviation J̃ which provides a solution to the regularized
cost function. We also assume that for small λ, the devi-
ation is small as well. Without the quadratic approxima-
tion in equation (11), no closed form solution exists for
the optimal J, however, the solution can still be found by
using convex optimization techniques. Similar equation to
equation (13) has been derived in the context of recon-
structing a sparse asymmetric, asynchronous Ising net-
work [33]. Here we derive the inference equation (Eq. (13))
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for the static reconstruction of a sparse network. We will
show in the next section the efficiency of this hybrid strat-
egy to improve the prediction of the BA without regular-
ization. To evaluate the efficiency, we define the recon-
struction error (root mean squared (rms) error) as

ΔJ =

⎡
⎣ 2

N(N − 1)

∑
i<j

(J∗
ij − J true

ij )2

⎤
⎦

1/2

(14)

where J∗
ij is the inferred coupling while J true

ij is the true
one constructed according to equation (3). Other perfor-
mance measures for sparse network inference will also be
discussed in the following section.

4 Results and discussions

We simulate the sparsely connected Hopfield network of
size N = 100 at different temperatures. The average con-
nectivity for each neuron l = 5 and the memory load
α = 0.6. As shown in Figure 1a, the �1-regularization in
equation (13) does improve the prediction on the sparse
network reconstruction. The improvement is evident in
the presence of high quality data (e.g., in the high tem-
perature region, see the inset of Fig. 1a). However, the
relative inference error (improvement fraction) shown in
the inset of Figure 1a gets smaller as the temperature de-
creases. This may be due to insufficient samplings [10] of
glassy states at the low temperatures. The glassy phase
is typically characterized by a complex energy landscape
exhibiting numerous local minima. As a result, the phase
space we sample develops higher order (higher than second
order) correlations whose contributions to the regularized
cost function cannot be simply neglected, which explains
the behavior observed in the inset of Figure 1a. In this
case, the pseudo-likelihood method or more complex se-
lective cluster expansion can be used at the expense of
larger computation times. For comparison, we also show
the inference error of BA with prior knowledge of the net-
work connectivity, i.e., the sparseness is known in advance
with only the true non-zero couplings to be predicted. The
comparison confirms that the Ci matrix obtained from
correlations in the data contains useful information about
the sparsity of the network, and this information can be
extracted by using �1-regularization in equation (13).

An accurate pruning of the network can be achieved by
simple thresholding (setting to zero some couplings whose
absolute values are below certain threshold) based on the
improved prediction. The receiver operating characteris-
tic (ROC) curves are given in Figure 1b for three typi-
cal examples of different network size, memory load and
connectivity. The ROC curve is obtained by plotting true
positive rate (the number of inferred non-zero couplings
with correct sign divided by the total number of true non-
zero couplings) against true negative rate (the number of
inferred zero couplings divided by the total number of true
zero couplings). A threshold δ = 0.01 is used to get the in-
ferred zero couplings. The ROC curve in Figure 1b shows

Fig. 1. (a) Improvement of the prediction by �1-regularized
BA on sparse Hopfield networks. The inference error by BA
with prior knowledge of the sparseness of the network is also
shown. Network size N = 100, the memory load α = 0.6 and
the mean node degree l = 5. Each data point is the average over
five random sparse networks. The regularization parameter has
been optimized. The inset gives the relative inference error de-

fined as
ΔBA

J −Δ
reg
J

ΔBA
J

versus the inverse temperature. (b) The re-

ceiver operating characteristic curve for three typical examples
(T = 1.4). Each data point corresponds to a value of λ for �1-
regularized BA. The solid symbol gives the result of BA with-
out regularization. Parameters for these three examples are
(N, P, α) = (40, 3, 0.6), (100, 3, 0.6), (100, 5, 1.2), respectively.

that one can push the inference accuracy towards the up-
per right corner (high true positive rate as well as high
true negative rate) by tuning the regularization parame-
ter. Note that BA without regularization reports low true
negative rate.

We also explore the effects of the regularization pa-
rameter on the reconstruction, which are reported in
Figure 2a. With increasing λ, the inference error first de-
creases, then reaches a minimal value followed by an in-
creasing trend in the range we plot in Figure 2a. This
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Fig. 2. (a) Reconstruction error ΔJ versus the regulariza-
tion parameter λ at T = 1.4. Inference results on three ran-
dom instances are shown. The inference errors by applying
BA without regularization on these three random instances
are ΔJ = 0.006108, 0.006049, 0.005981, respectively. (b) Cor-
rect classification rate (CCR) versus the regularization pa-
rameter λ at T = 1.4. The instances are the same as those
in (a). The CCR of BA without regularization are CCR =
0.9224, 0.9178, 0.9162, respectively. (c) The optimal λopt versus
the number of samples M (T = 1.4). Each point is the mean
value over five random realizations of the sparse Hopfield net-
work. The standard error is nearly zero and not shown. The lin-
ear fit shows that λopt = λ0M

−ν with λ0 � 0.6883, ν � 0.5001
for rms error and λ0 � 0.0675, ν � 0.2743 for CCR measure.

implies that the optimal regularization parameter guides
our inference procedure to a sparse network closest to the
original one. The inference quality can also be measured
by the fraction of edges (ij) where the coupling strength
is classified correctly as ‘positive’, ‘zero’ or ‘negative’. We
call this quantity correct classification rate (CCR). Re-
sults for three typical examples are reported in Figure 2b.
With increasing λ, CCR first increases and then decreases.
The optimal regularization parameter corresponding to
the maximum is slightly different from that in Figure 2a.
By using regularized BA (Eq. (13)), one can achieve a
much higher value of CCR, and furthermore the compu-
tational cost is not heavy. Interestingly, the optimal value
of λ yielding the lowest inference error (rms error) has the

order of O(
√

1
M ) for fixed network size (usually M  N),

which is consistent with that found in references [4,14].
We verify this scaling form by varying M and plotting
the optimal λ in Figure 2c. The linear fit implies that the
scaling exponent ν 	 0.5. However, this scaling exponent
depends on the performance measure. Taking the CCR
measure yields a smaller value ν 	 0.2743, as shown in
Figure 2c as well. We also find that the magnitude of the
optimal regularization parameter shows less sensitivity to
specific instances and other parameters (e.g., the temper-
ature, memory load or network size), since the number of
samplings M dominates the order of the magnitude. The
specific optimal value becomes slightly different across dif-
ferent instances of the sparse network in the low temper-
ature region, where its mean value shifts to a bit larger
value for rms error measure or a bit smaller value for CCR
measure, as the temperature further decreases. The num-
ber of samplings M determines the order of the magni-
tude, which helps us find the appropriate strength for the
regularization parameter. In the real application, the true
coupling vector is a priori unknown. In this case, the regu-
larization parameter can be chosen to make the difference
between the measured moments and those produced by
the reconstructed Ising model as small as possible.

Finally, we give the comparison of performance mea-
sured by misclassification rate in Figure 3. According
to the above definition, misclassification rate equals to
1 − CCR. Low misclassification rate is preferred in the
sparse network inference. Figure 3a shows the performance
versus inverse temperature. The misclassification rate is
lowered by a substantial amount using the hybrid strat-
egy. Especially in the high temperature region, the error
approaches zero while BA still yields an error of the order
of O(10−2). As displayed in Figure 3b, the hybrid strategy
is also superior to BA when the memory load is varied, al-
though the misclassification rate grows with the memory
load. Compared with BA, the �1-regularized BA yields a
much slower growth of the error when α increases. Even
at the high memory load α = 1.4, the hybrid strategy is
able to reconstruct the network with an error 4.3% while
at the same memory load, the error of BA is as large as
18.9%. Note that as α changes, the average connectivity
also changes. Figure 3b illustrates that our simple infer-
ence strategy is also robust to different mean node degrees.
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Fig. 3. Comparison of performance measured by misclassifi-
cation rate. Each data point is the average over five random
sparse networks. The regularization parameter has been op-
timized. (a) Misclassification rate versus inverse temperature.
Network size N = 100, the memory load α = 0.6 and the mean
node degree l = 5. (b) Misclassification rate versus memory
load. Network size N = 100, temperature T = 1.4 and P = 5.

5 Conclusion

We propose an efficient hybrid inference strategy for re-
constructing the sparse Hopfield network. This strategy
combines Bethe approximation and the �1-regularization
by expanding the objective function (negative log-
likelihood function) up to the second order of the coupling
fluctuation around its (near) optimal value. The hybrid
strategy is simple in implementation without heavy com-
putational cost, yet improves the prediction by zeroing
couplings which are actually not present in the network
(see Figs. 1 and 3). We can control the accuracy by tuning
the regularization parameters. The magnitude of the opti-
mal regularization parameters is determined by the num-
ber of independent samples M as λopt ∼ M−ν . The
value of the scaling exponent depends on the performance

measure. ν 	 0.5 for root mean squared error measure
while ν 	 0.2743 for misclassification rate measure. By
varying the value of the regularization parameter, we show
that the reconstruction (rms) error first decreases and
then increases after the lowest error is reached. Similar
phenomenon is observed for the change of misclassifica-
tion rate with the regularization parameter. We observe
this phenomenon in the sparse Hopfield network recon-
struction, and this behavior may be different in other
cases [17]. The efficiency of this strategy is demonstrated
for the sparse Hopfield model, but this approximated re-
construction method is generally applicable to other di-
luted mean field models if we can first find a good solution
(yielding low inference error) to the inverse Ising problem
without regularization.

Helpful discussions with Yoshiyuki Kabashima and valuable
comments from anonymous referees are gratefully acknowl-
edged. This work was supported by the JSPS Fellowship for
Foreign Researchers (Grant No. 24 · 02049).
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27. M. Mézard, T. Mora, J. Physiol. Paris 103, 107 (2009)
28. F. Ricci-Tersenghi, J. Stat. Mech. 2012, P08015 (2012)
29. H.C. Nguyen, J. Berg, J. Stat. Mech. 2012, P03004 (2012)
30. V. Sessak, R. Monasson, J. Phys. A 42, 055001 (2009)
31. J. Friedman, T. Hastie, R. Tibshirani, J. Stat. Soft. 33, 1

(2010)
32. J. Hertz, Y. Roudi, J. Tyrcha, arXiv:1106.1752 (2011)
33. H. Zeng, J. Hertz, Y. Roudi, arXiv:1211.3671 (2012)

http://www.epj.org

	Introduction
	Sparse Hopfield model
	Bethe approximation with 1 regularization
	Results and discussions
	Conclusion
	References

