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1. Introduction

We study a classical problem of graph theory, namely the size and number of matchings on
various types of random graphs. This problem has been intensively studied for a long time
by mathematicians and computer scientists [1]. Here we address it using some techniques
developed in the statistical mechanics of spin glasses [2]. Such approaches have been used
in recent years to describe successfully the typical cases of random combinatorial problems,
e.g. weighted matching (or assignment) [3], the travelling salesman problem [4], the vertex
cover on random graphs [5], K-satisfiability [6, 7], or the colouring of random graphs [8].

Here we apply the cavity method [9] to describe the matchings on ensembles of sparse
random graphs with a given degree distribution. We work within the replica symmetric
(RS) version of the cavity method, and we argue that it gives exact results for these
problems. In fact we show how the method reproduces several known results about
the size of the maximum matching (which is also the maximum number of self-avoiding
dimers) and the existence of the perfect matchings (the possibility of covering the graph
with N/2 dimers). This also confirms the previous result by Zhou and Ou-Yang [10], who
also used the cavity method, but in a different way (we discuss below the differences of
our approaches).
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Our main new result is the computation of the entropy, i.e. the leading order of the
logarithm of the number of solutions, of matchings with a given size in large sparse random
graphs. We derive both an algorithm to compute this entropy for arbitrary graphs with
a girth (the length of the shortest graph cycle) that diverges in the large size limit, and
an analytic result for the entropy in regular and Erdös–Rényi random graph ensembles.

The cavity method is not yet proved to be a rigorous tool; however, it is widely
believed—at least by physicists—to be exact, and in some cases its predictions have been
confirmed rigorously. Let us mention the work of Talagrand [11], who, using some of
the tools developed by Guerra [12], proved the validity of the Parisi formula for the
partition function of Sherrington–Kirkpatrick model (Parisi’s original work [13] uses the
replica method, but it can be reformulated in cavity terms [2]). Aldous [14] developed the
local weak convergence method and proved the ζ(2)-limit for the random assignment
problem, initially found in [3]. In this same problem, Bayati et al [15] proved the
convergence of a ‘belief propagation’ algorithm, which is basically the replica symmetric
cavity method, for finding the lowest weight assignment in generic bipartite graphs.
Recently, Bandyopadhyay and Gamarnik [16] have used this local weak convergence
strategy to derive some results on the entropies in the problems of graph colouring and
independent sets, in regions of parameters where the RS cavity solution is the correct
one. The local weak convergence method was also used for weighted matchings in sparse
random graphs in [17].

Because of these recent developments, and of the simple replica symmetric nature
of the matching problem, we believe that it should be possible to turn all our results
into rigorous statements. We hope that this work will also turn out to be useful in the
opposite direction, i.e. that working on rigorous proofs of our results for matching will
help to develop the rigorous version of the cavity method.

The matching problem on a graph is equivalent to a physical model of dimers. This
was mostly studied on planar graphs (lattices), where there is a beautiful method by
Kasteleyn [18], which shows how to count exactly dimer arrangements (perfect matchings).
On non-planar regular graphs a Bethe mean field approximation, which is known to be
exact on a Bethe lattice, has been developed in [19], and references therein. Our work
generalizes these results and gives the solution of dimer models on sparse random graphs.

The paper is organized as follows. In section 2 we set up our notations and overview
the main known results for the matching on sparse random graphs. In section 3 we
introduce the cavity approach to the matching problem and derive the size of maximum
matching and the entropy of matchings of a given size on a typical random graph. We
also describe approximate polynomial algorithms for sampling and counting matchings on
a given graph. In section 4 we give results for the size and the number of matchings for
the ensemble of regular and Erdös–Rényi random graphs, and we show that the replica
symmetric ansatz is stable for these two ensembles. In section 5 we discuss the alternative
1RSB solution at zero temperature which was obtained by Zhou and Ou-Yang [10]. The
conclusion summarizes this work and gives some perspective on how it could be turned
into rigorous results.

2. Background and notations

Consider a graph G(V, E) with N vertices (N = |V |) and a set of edges E. A matching
of G is a subset of edges M ⊂ E such that each vertex is incident with at most one edge
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in M . In other words, the edges in the matching M do not touch each other. The size
of the matching, |M |, is the number of edges in M . We denote the size of the maximum
possible matching by |M∗|. The trivial relation |M∗| ≤ N/2 follows from the definition. If
a maximum matching covers all the vertices, |M∗| = N/2, we call M∗ a perfect matching.

Finding a maximum matching in a given graph G is a polynomial problem. For
instance, the algorithm of [20] solves this problem with a computational complexity

proportional to O(|E|
√
|V |).

How many matchings of size |M∗| can we actually find in G? No exact polynomial
algorithm to answer this question is known. Counting the number of matchings of a given
size was proven [21] to belong to the #P -complete (sharp P-complete) class of problems.
It means that if an exact polynomial algorithm for this problem existed we could also count
solutions of all the other problems belonging to the NP class. It is generally believed that
a polynomial procedure to solve #P -complete problems does not exist. For this reason it
is very useful to develop methods to count matchings fast (in polynomial time) but only
approximately. Several works have been done in this direction [22]–[24].

In this paper we study not only properties of matchings on a given graph G but also
on ensembles G of large sparse random graphs. When we claim that a property A is true
for a typical random graph G ∈ G we mean that when G is chosen from the ensemble
with its natural probability law, the probability that A is true goes to one as the size of
G grows to infinity.

2.1. Rigorous results for matching on random graphs

In this section we give some known rigorous results for matchings on random graphs.
From the point of view of matching, the simplest ensemble is the one of r-regular random
graphs, i.e. all graphs where every vertex has degree (number of neighbours) r. In this
ensemble the measure is uniform over all r-regular graphs.

Theorem 1 ([25]). If r ≥ 3 and the number of vertices N is even then almost every r-
regular graph has a perfect matching. Denote by NG the number of perfect matchings of
an r-regular graph G. Then its first two moments are

E(NG) ≈
√

2e1/4[(r − 1)r−1/rr−2]N/2, (1)

E[(NG)2] ≈
√

r − 1

r − 2
e−(2r−1)/4(r−1)2

E(NG)2. (2)

In the statistical physics language we call the logarithm of the first moment
log [E(NG)] the annealed entropy of perfect matchings and the typical average E[logNG]1

the quenched entropy of perfect matchings. Due to the concavity of logarithmic function
the upper bound for the quenched entropy follows from (1)

E[logNG] ≤ log [E(NG)] = N [(r − 1) log (r − 1) − (r − 2) log r]/2 + O(1). (3)

1 We should write E[log (NG + 1)] for the quenched entropy to avoid −∞ for graphs which do not have any perfect
matching.
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http://dx.doi.org/10.1088/1742-5468/2006/05/P05003


J.S
tat.M

ech.
(2006)

P
05003

The number of matchings in random graphs

In section 4.1 we will show that for r-regular graphs the quenched entropy is in
fact the same as the annealed one, i.e. in (3) the bound is tight. Note that the fact
that E[(NG)2] ∼ [E(NG)]2 to leading exponential order is not enough to prove that the
quenched and annealed entropy are equal.

In this paper we will be interested in random graphs with a fixed degree distribution:
we call Q(k) the probability that a randomly chosen vertex has degree k, in the asymptotic
limit of large graphs. In particular, in Erdös–Rényi (ER) random graphs, where every
edge is present with probability p = c/(N − 1), the degree sequence is Poissonian
Q(k) = e−cck/k!. Because of the existence of a fraction e−c of isolated vertices perfect
matchings almost surely do not exist in ER graphs. The size of maximum possible
matching was computed in a seminal paper of Karp and Sipser [26].

Theorem 2 ([26]). The maximum matching in an Erdös–Rényi random graph with N sites
and mean degree c has on average size

E(|M∗|) =
1 − p1(c) + p2(c) − cp1(c) + cp1(c)p2(c)

2
N, (4)

where p1(c) is the smallest solution of equation p = exp[−c exp(−cp)] and p2(c) =
1 − exp[−cp1(c)].

When c < e there is only one solution for p1(c). When c ≥ e another pair of solutions
for p1(c) appears.

2.2. Karp–Sipser leaf removal, the core

The Karp–Sipser theorem was originally proven by analysing a greedy leaf removal
algorithm [26]. This algorithm consists of two steps.

(1) Given a graph G, if there are leaves choose randomly one of them i and its incident
edge (ij). Put this edge to the matching and remove the two vertices i and j. Delete
at the same time all the edges incident with j. Repeat until there are no leaves.

(2) If there are no leaves in G choose randomly an edge (ij) with uniform probability,
add it to the matching and erase all the edges incident with i and j. Go to step (1).

We define as a core of the graph all the non-single vertices (and edges between them)
which remain in the graph after the first step of the leaf removal procedure. The core
does not depend on the history of the leaf removal [27]. Karp and Sipser proved that for
c ≤ e the core is small (zero asymptotically), whereas for c > e the core covers a finite
fraction of all the vertices. They also proved that when a large (or order N) core exists,
asymptotically all its nodes can be matched.

We call v(c) the fraction of vertices in the core of a typical ER random graph of
average degree c, l(c)N the number of edges in the core, and m(c)N the number of edges
matched in the leaf removal procedure. It is known [27] that

v(c) = p3(1 − cp1), l(c) =
c

2
p2

3, m(c) = p2 −
c

2
p2

1, (5)

where p1 and p2 are the same parameters as in theorem 2 of Karp and Sipser, and
p3 = 1 − p1 − p2.

doi:10.1088/1742-5468/2006/05/P05003 5
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Properties of the core were also studied in [28] and [29]. From these results it follows
that the degree distribution in the core is Poissonian-like

Q(0) = Q(1) = 0 , Q(k) =
e−cp3(cp3)

k

Ck!
for k > 1, (6)

where C is a normalization constant. We will study connections between the Karp–Sipser
leaf removal and our method in section 3.4.1.

2.3. The annealed average

We denote by NG(x) the number of matchings of size |M | = xN/2 in a graph G. Its
expectation E[NG(x)] in the random r-regular graph ensemble can be computed as the
number of all possible matchings of size |M | times the leading order of the number of all
r-regular graphs which contain a given matching M , divided by the leading order of the
number of all r-regular graphs. We keep in mind that r is finite and N → ∞. This gives
the annealed entropy:

log E[NG(x)]

N
=

(
x − r

2

)
log r +

r − x

2
log (r − x) − (1 − x) log (1 − x) − x

2
log x. (7)

Again, thanks to the concavity of the logarithm, the quenched entropy cannot be larger
than the annealed one, E[log (N )]/N ≤ log E(N )/N . We will see in section 4.1 that for
r-regular graphs this upper bound is actually tight.

In the ensemble of ER random graphs the expectation of the number of matchings of
size |M | = xN/2 is computed in the very same way and reads

E[NG(x)] ≈ exp

{
Nx

2

[
ln

c

x
− 1 − 2

(
1

x
− 1

)
ln (1 − x)

]}
. (8)

If the exponent is negative (which happens for c < e and x sufficiently large) then
there is almost surely no matching of size |M | in graph G. On the other hand, if the
exponent is positive then equation (8) provides us with an upper bound on the quenched
(typical) entropy

E{log [NG(x)]}
N

≤ log E(N )

N
=

x

2

[
ln

c

x
− 1 − 2

(
1

x
− 1

)
ln (1 − x)

]
. (9)

For ER random graphs the bound is not tight. From equation (8) we see that for c > e
the average number of perfect matchings (x = 1) is exponentially large. But we know that
for a typical ER graph no perfect matching exists (due to the presence of isolated vertices).
The reason is that E[NG(x)] is dominated by a few exceptional graphs G which have a
huge number of perfect matchings. The correct quenched average E{log [NG(x)]}/N will
be computed in section 4.2.

3. Cavity method: general formalism

3.1. Statistical physics description

We describe a matching by the variables si = s(ab) ∈ {0, 1} assigned to each edge i = (ab)
of G, with si = 1 if i ∈ M and si = 0 otherwise. The hard constraints that two edges

doi:10.1088/1742-5468/2006/05/P05003 6
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Figure 1. On the left, an example of a graph with six nodes and six edges. On
the right, the corresponding factor graph with six functional nodes (squares) and
six variable nodes (circles).

in a matching cannot touch impose that, on each vertex a ∈ V ,
∑

b,(ab)∈E s(ab) ≤ 1. To
complete our statistical physics description, we define for each given graph G an energy
(or cost) function which gives, for each matching M = {s}, the number of unmatched
vertices:

EG(M = {s}) =
∑

a

Ea({s}) = N − 2|M |, (10)

where Ea = 1 −
∑

b s(ab). The Boltzmann probability law in the space of matchings is
defined by

PG(M) =
1

ZG(β)
e−βEG(M), (11)

where β is the inverse temperature and ZG(β) is the partition function.
We use a factor graph representation [30] of the Boltzmann probability (11). With

a graph G we associate a factor graph F(G) as follows (see figure 1): to each edge of G
corresponds a variable node (circle) in F(G); to each vertex of G corresponds a function
node (square) in F(G). We shall index the variable nodes by indices i, j, k, . . . and function
nodes by a, b, c, . . .. The variable i takes value si = 1 if the corresponding edge is in the
matching, and si = 0 if it is not. For a given configuration s = {s1, . . . , s|E|}, the weight
of function node a is

ψa(s) = I




∑

i∈V (a)

si ≤ 1



 e−β(1−
∑

i∈V (a) si), (12)

where V (a) is the set of all the variable nodes which are neighbours of function node a,
and the total Boltzmann weight of a configuration is

∏
a ψa(s)/ZG(β). Later on, when

confusion cannot occur, we denote V (a) just as a.
We want to compute the internal energy EG(β) (the expectation value of the number

of unmatched vertices) and the entropy SG(β) (the logarithm of the number of matchings).
For β → ∞ (zero temperature limit) these two quantities give the ground state properties,
i.e. respectively the size and entropy of the maximum size matchings.

We are interested in the ‘thermodynamic’ limit of large graphs (N → ∞), and we
shall compute expectations over ensembles of graphs of the densities of thermodynamical
potentials ε(β) = E[EG(β)]/N and s(β) = E[SG(β)]/N , as well as the average free energy
density

f(β) =
−1

βN
E[log ZG(β)] =

1

N
E[FG(β)] = ε(β) − 1

β
s(β). (13)

doi:10.1088/1742-5468/2006/05/P05003 7
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j

b

i

a

Figure 2. Part of the factor graph used to compute P i→a
si

.

The reason for this interest is that one expects, for reasonable graph ensembles, FG(β) to
be self-averaging. This means that the distribution of FG(β)/N becomes more and more
sharply peaked around f(β) when N increases.

3.2. The cavity method at finite temperature

In the following we use the cavity method at the replica symmetric (RS) level, as described
in [9]. We introduce a ‘cavity’ in the factor graph by deleting the function node a and its
incident edges, and we denote by P i→a

si
the probability that variable i takes value si (see

figure 2). Because of the local tree-like structure of the (sparse) graphs that we study, it
is reasonable to assume that the P j→b

sj
for j ∈ b − i are uncorrelated. This is the main

assumption of the cavity method at the RS level (see [9]) and we will check later on its
self-consistency. Using this assumption one gets

P i→a
si

=
1

Ci→a

∑

{sj}

I

(

si +
∑

j∈b−i

sj ≤ 1

)

e−β(1−si−
∑

sj)
∏

j∈b−i

P j→b
sj

, (14)

where Ci→a is a normalization constant.
For every edge between a variable i and a function node a, we define a cavity field

hi→a as

e−βhi→a ≡ P i→a
0

P i→a
1

. (15)

The recursion relation between cavity fields is then

hi→a = − 1

β
log

[

e−β +
∑

j∈b−i

eβhj→b

]

. (16)

This is one form of the ‘belief propagation’ equations [30, 31]. The cavity fields can be
interpreted as messages living on the edges of the factor graph, with some consistency rules
on the function nodes, and one can try to solve them by an iterative ‘message passing’
procedure.

Assuming that one has found the cavity fields, one can deduce from them the various
marginal probabilities and the free energy. For instance, the expectation value (with
respect to Boltzmann’s distribution) of the occupation number si of a given edge i = (ab)

doi:10.1088/1742-5468/2006/05/P05003 8
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is given by

〈si〉 =
1

1 + e−β(hi→a+hi→b)
. (17)

To compute the free energy we first define the free energy shift ∆Fa+i∈V (a) after
addition of a function node a and all the edges i around it, and the free energy shift ∆Fi

after addition of an edge i = (ab). These are given by

e−β∆Fa+i∈V (a) = e−β +
∑

i∈a

eβhi→a

, (18)

e−β∆Fi = 1 + eβ(hi→a+hi→b). (19)

The total free energy is then [9, 32]

FG(β) =
∑

a

∆Fa+i∈V (a) −
∑

i

∆Fi. (20)

This form of free energy is variational, i.e. the derivative ∂(βFG(β))/∂hi→a vanishes if and
only if the fields hi→a satisfy (16). This allows us to compute easily the internal energy

EG(β) =
∑

a

e−β −
∑

i∈a hi→aeβhi→a

e−β +
∑

i∈a eβhi→a +
∑

i

(hi→a + hi→b)eβ(hi→a+hi→b)

1 + eβ(hi→a+hi→b)

= N − 2
∑

i

〈si〉 =
∑

a

1

1 +
∑

i∈a eβ(1+hi→a)
. (21)

The second and third equalities have been derived using equation (16). In the last term we
can recognize the probability that a node a is not matched. The entropy is then obtained
as

SG(β) = β[EG(β) − FG(β)]. (22)

All the equations (14)–(22) hold on a single large sparse graph G. In section 3.4 we
will describe how to use them to build algorithms for counting and sampling the matchings
on a given graph.

We now study the typical instances in an ensemble of graphs. We denote the average
over the ensemble by E(·). We assume that the random graph ensemble is given by a
prescribed degree distribution Q(k). Let us call Pβ(h) the distribution of cavity fields
over all the edges of a large typical graph from the graph ensemble. It satisfies the
following self-consistent equation:

Pβ(h) =
∞∑

k=1

k

c
Q(k)

∫ k−1∏

i=1

[
dhiPβ(hi)

]
δ

[

h +
1

β
log

(

e−β +
∑

i

eβhi

)]

. (23)

The term kQ(k)/c is the normalized degree distribution of the function node a when one
picks up uniformly at random an edge a − i from the factor graph; c =

∑
k kQ(k) is

the mean degree. This equation for distribution Pβ(h) can be solved numerically by a
technique of population dynamics [9].

doi:10.1088/1742-5468/2006/05/P05003 9
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The average of the free energy density is then

f(β) =
E[FG(β)]

N
= − 1

β

∞∑

k=0

Q(k)

∫ k∏

i=1

[
dhiPβ(hi)

]
log

(

e−β +
∑

i

eβhi

)

+
c

2β

∫
dh1 dh2 Pβ(h1)Pβ(h2) log

(
1 + eβ(h1+h2)

)
. (24)

This expression for the free energy is in its variational form (see [9]), i.e. the functional
derivative δf(β)/δPβ(h) vanishes if and only if Pβ satisfies (23). The average energy
density is then equal to

ε(β) =

∞∑

k=0

Q(k)

∫ k∏

i=1

[
dhiPβ(hi)

] e−β −
∑

i h
ieβhi

e−β +
∑

i e
βhi

+
c

2

∫
dh1dh2Pβ(h1)Pβ(h2)

(h1 + h2)eβ(h1+h2)

1 + eβ(h1+h2)
. (25)

The average entropy density is

s(β) = β[ε(β) − f(β)]. (26)

All our computations up to now rely on the only assumption (the ‘RS cavity
assumption’) that the neighbours of a node in a cavity are uncorrelated. A necessary
condition for the validity of this assumption is that the following nonlinear (spin-glass)
susceptibility be finite [33, 34]:

χSG =
∑

i

E(〈s0si〉2c) =
∞∑

d=0

αd
E(〈s0sd〉2c). (27)

Here 〈s0si〉c is the connected correlation function between reference edge 0 and edge i,
αd is the average number of vertices at distance d from the edge 0, for general degree
distribution α =

∑∞
k=0 k(k + 1)Q(k + 1)/c. The susceptibility is finite if and only if

λT = lim
d→∞

α
[
E(〈s0sd〉2c)

]1/d
< 1. (28)

We will call λT the finite temperature stability parameter. A necessary condition for the
RS cavity assumption to hold is that λT < 1.

Using the fluctuation–dissipation relation when edge i is at distance d from edge 0
we have for the correlation function

E(〈s0sd〉2c) = CE

[(
∂hd

∂h0

)2
]

= CE

[
d∏

i=1

(
∂hi

∂hi−1

)2
]

, (29)

where C is a d-independent constant. The field hi is according to (16) a function of hi−1

and other fields h
(k)
i−1 incoming to hi; see figure 3.

hi = − 1

β
log

[

e−β + eβhi−1 +

pi−1∑

k=1

eβh
(k)
i−1

]

. (30)

The number pi−1 of the incoming fields is chosen according to the probability
distribution Q2(pi−1) of the number of neighbours of a node given this node already has
two other neighbours, Q2(k) = (k + 2)(k + 1)Q(k + 2)/(αc); in particular for Poisson

distributions Q2 = Q. The values of the fields h
(k)
i−1 are chosen randomly from the

distribution (23).
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Figure 3. Chain of the cavity fields used to compute the finite temperature
stability parameter.

3.3. Zero temperature limit

The zero temperature limit (β → ∞) corresponds to the ground state (maximum
matching) of our system. Let us investigate the explicit behaviour of that limit.

Our numerical studies of (23) show that for large β the cavity field distribution Pβ(h)
peaks around three different values h ∈ {0,±1}.

P(h) = p1δ(h − 1) + p2δ(h + 1) + p3δ(h), (31)

where p1, p2 and p3 are the weights (probabilities) of h = 1, −1 and 0. The cavity field
update (16) becomes

hi→a = −max
j∈b−i

(−1, hj→b). (32)

These equations may also be derived by working directly at zero temperature as
in [35]. We define the cavity energy Ei→a

si
as the ground state energy of the subgraph

containing edge i when constraint a is absent (figure 2) and edge i takes value si. The
analogue of (14) is

Ei→a
si

= min
{sj}

I

(

si +
∑

j∈b−i

sj ≤ 1

)[
∑

j∈b−i

Ej→b
sj

+ (1 − si −
∑

j∈b−i

sj)

]

. (33)

If one defines the cavity fields as

hi→a = Ei→a
0 − Ei→a

1 (34)

then (33) gives back the cavity field update (32). The difference between cavity energies
when i is (is not) matched may be ±1 or 0, and these are the three possible values of
cavity fields.
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Equation (23), taken in the β → ∞ limit, shows that

p1 =
1

c

∞∑

k=0

(k + 1)Q(k + 1)pk
2, (35)

p2 =
1

c

∞∑

k=0

(k + 1)Q(k + 1)[1 − (1 − p1)
k], (36)

p3 =
1

c

∞∑

k=0

(k + 1)Q(k + 1)[(1 − p1)
k − pk

2]. (37)

The possible solutions to these equations depend on the distribution Q(k).

(a) There always exists a solution with p3 = 0, p1 = 1 − p2.

(b) For graphs without leaves, Q(1) = 0, there exists a solution with p3 = 1, p1 = p2 = 0.

(c) For graphs with leaves Q(1) > 0 a solution with 0 < p1, p2, p3 < 1 exists if the mean
degree is sufficiently large.

Let us stress at this point that our numerical solution of (23) for the cavity field
distribution at very small but nonzero temperatures corresponds to case p3 > 0, (b) or
(c). In other words, whereas at zero temperature there exist two mathematically possible
solutions of (35)–(37), at arbitrary small temperature only the one with p3 > 0 exists.
In the rest of this section we describe this ‘small temperature’ solution. Case (a), which
exists only at strictly zero temperature, and which forbids the cavity fields h = 0, will be
discussed in section 5.

Using (24) the ground state energy, related to the size of the maximum matching, is

ε0 = Q(0) +

∞∑

k=1

Q(k)[pk
2 + (1 − p1)

k − 1] + cp1(1 − p2). (38)

If we consider solution (b) for p1, p2, p3 for graphs with no leaves, Q(1) = 0, then
the ground state energy is ε0 = Q(0), i.e. asymptotically all the non-isolated vertices
are matched. In other words, in an ensemble of random graphs with minimal degree
two (e.g. regular graphs) almost every graph has an almost perfect matching. This is
in agreement with the result of Karp and Sipser [26] and also with a stronger result of
Frieze and Pittel [36], who also found the (small) number of vertices which cannot be
matched.

To compute the average ground state entropy we need to expand the free energy
at low temperatures f(β → ∞) = e0 − s0/β + O(1/β2). This requires us to study the
‘evanescent’ parts of the cavity fields [37], i.e. the leading corrections to their value at
β = ∞. Numerically we have observed that at β  1 the three delta peaks (31) keep
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their weights (p1, p2, p3) and spread as

h = 1 +
log ν

β
for the peak around h = 1, (39)

h = −1 +
log µ

β
for the peak around h = −1, (40)

h =
log γ

β
for the peak around h = 0. (41)

From (23) we derive self-consistently the distributions A of the evanescent cavity fields
ν, µ, γ

A1(ν) =
∞∑

k=0

C1(k)

∫ k∏

i=1

[dµiA2(µi)] δ

(
ν − 1

1 +
∑

i µi

)
, (42)

A2(µ) =

∞∑

k=1

C2(k)

∫ k∏

i=1

[dνiA1(νi)] δ

(
µ − 1

∑
i νi

)
, (43)

A3(γ) =
∞∑

k=1

C3(k)

∫ k∏

i=1

[dγiA3(γi)] δ

(
γ − 1

∑
i γi

)
, (44)

where the combinatorial factors C1, C2, C3 are given by C1(k) = (k + 1)pk
2Q(k + 1)/p1c,

C2(k)= (pk
1/k!)

∑∞
m=k ((1 − p1)

m−kQ(m + 1)(m + 1)!/(m − k)!p2c), C3(k)= (pk
3/k!)

∑∞
m=k

(pm−k
2 Q(m+1)(m+1)!/(m−k)!p3c). Using equations (39)–(44) we expand the free energy

to order 1/β and get the ground state entropy of maximum matchings

s0 =
∞∑

k=1

pk
3

k!

∞∑

m=k

pm−k
2 Q(m)m!

(m − k)!
log

(
k∑

i=1

γi

)

− cp1p3log γ − cp2
3

2
log (1 + γ1γ2)

− cp1(p1 + p3)log ν +

∞∑

k=1

pk
1

k!

∞∑

m=k

(1 − p1)
m−kQ(m)m!

(m − k)!
log

(
k∑

i=1

νi

)

+

∞∑

k=0

Q(k)pk
2 log

(

1 +

k∑

i=1

µi

)

− cp1p2log (1 + µν) , (45)

where the overlines denote expectations over independent random variables with
distribution A1 (for ν-variables), A2 (for µ-variables), and A3 (for γ-variables).

To conclude this section we describe the zero temperature version of the stability
analysis for the cavity assumption. What follows is equivalent to the stability analysis of
the replica symmetric assumption with respect to replica symmetry breaking for discrete
sets of cavity fields [38]. Here we will describe this stability analysis in an intuitive way
as a spread of changes in the cavity field update that is analogous to what is called bug
proliferation in the context of the stability of the one step replica symmetry breaking
ansatz [33, 34, 39].

Consider a node b with k + 1 neighbours, figure 2. Choose one incoming cavity field
hj→b and one outgoing field hi→a. Now consider probability Pk(αo → γo|αi → γi) that
the value of the outgoing field changes from αo ∈ {±1, 0} to γo ∈ {±1, 0} providing the
incoming one has been changed from αi ∈ {±1, 0} to γi ∈ {±1, 0}. More precisely, P is
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the probability of having a set of k−1 other incoming fields such that it causes the change
αo → γo given that the change αi → γi happened. There are eight different combinations
of cavity fields such that Pk(αo → γo|αi → γi) is nonzero

Pk(1 → −1|−1 → 1) = Pk(−1 → 1|1 → −1) = pk−1
2 , (46)

Pk(1 → 0|−1 → 0) = Pk(0 → 1|0 → −1) = pk−1
2 , (47)

Pk(−1 → 0|1 → 0) = Pk(0 → −1|0 → 1) = (p2 + p3)
k−1, (48)

Pk(−1 → 0|1 → −1) = Pk(0 → −1|−1 → 1) = (p2 + p3)
k−1 − pk−1

2 . (49)

In the first step we change a cavity field from αi to γi. The average probability of change
αo to γo that follows is

P (αo → γo|αi → γi) =

∞∑

k=0

Q2(k)Pk+1(αo → γo|αi → γi). (50)

The most important change is given by the largest eigenvalue λmax of the matrix P .
In analogy with (27) we are interested in the stability parameter λ0 = αλmax

λ0 = α

√√√
√

∞∑

k=0

Q2(k)pk
2

√√√
√

∞∑

k=0

Q2(k)(p2 + p3)k. (51)

If λ0 > 1, the total number of changes after many steps will diverge and we cannot hope
the cavity assumption will be valid. On the other hand, if λ0 < 1, then the first change
will not spread very far and the RS assumption is locally stable.

Note also that λ0 and λT→0 are not equal, because they count different quantities.
But we expect that their positions relative to the threshold value of unity are the same.
In other words, both of them correctly describe the stability at zero temperature. The
advantage of λ0 is that it is far easier to compute than the d → ∞ limit of λT,d (28)–(29).

3.4. Algorithms following from the cavity method

3.4.1. Zero temperature message passing and leaf removal. The zero temperature limit
of the cavity field update (32) can be seen as a message passing (warning propagation)
algorithm. The interpretation of the three different cavity fields is the following: h = 1
means ‘I want you to match me’, h = −1 means ‘I want you not to match me’, h = 0 means
‘No preferences, do what you want’. The interpretation of the cavity field update (32) is
the following.

• If one or more of my neighbours wants me to match them, I match one of them, and
I send do not match me.

• If none of my neighbours wants me to match it, and at least one of them does not
have any preferences I send no preferences, do what you want.

• If all of my neighbours are saying do not match me, or if I have no neighbours, I send
match me.

doi:10.1088/1742-5468/2006/05/P05003 14
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This message passing procedure starting from all the h = 0 is equivalent to the step
(1) of the Karp and Sipser leaf removal procedure in the following sense: run the message
passing until you find a fixed point. Then the edges where a message h = 1 or h = −1 is
sent from at least one side are exactly those edges which have been matched or removed
in the leaf removal procedure. Consequently the edges in the core are those which have
zero sent from both sides. Using equation (16) at a very small temperature we can use
arbitrary initial conditions.

3.4.2. Uniform sampling. Solving the BP equations (16) on a given graph G by iterations
allows us to sample typical matchings from Boltzmann’s distribution (11) at inverse
temperature β (i.e. matchings of size [1 − EG(β)]/2).

Such a sampling can be done as follows: one chooses a variable node i, computes
〈si〉 from (17), and generates the value of si as si = 1 with probability 〈si〉, and si = 0
with probability 1 − 〈si〉. Once si has been fixed, this imposes that all the fields hi→a

(for all function nodes a connected to i) are equal either to +∞ (if si = 1) or to −∞ (if
si = 0). One runs again the BP equations, with these extra constraints, and iterates this
procedure.

3.4.3. Counting matchings on a single graph. Our results may be also used to estimate
the size (25) and number of matchings (26) on arbitrary spare large graph G. The size
of the maximum matching is obtained from the zero temperature limit of (20) or (21);
this is not very interesting since the solution to this problem is well known; see, e.g., [20].
An algorithm to compute approximately the number of matchings of given size is more
interesting.

INPUT: The graph, the inverse temperature β, a maximum number of iterations

tmax.
OUTPUT: The entropy of matchings SG = logNG of size (1 − EG)/2. If at the

end EG = −1 the procedure failed to converge.

(1) Initialize all the cavity fields hi→a to some random value.

(2) Iterate belief propagation equations (16) until they converge, i.e. the

values of the cavity fields do not change anymore, or until the number

of iterations exceeds tmax.

(3) EG = −1. If the number of steps is > tmax STOP. Else: compute the energy

EG and the free energy FG of matchings corresponding to β according

to (21) and (20), compute the entropy SG = β[EG − FG].

In order to compute the total number of matchings one needs to take the β → 0
limit. To compute the number of maximal matchings one takes β → ∞. In both cases
the algorithm can be rewritten and simplified.

Note also that the complexity of this algorithm is only linear in number of edges. The
convergence and correctness in the highest order ((logNG)/N) for large sparse graphs or
trees is expected for the same reasons as the correctness of results of cavity method for
the ensembles of r-regular and ER random graphs.
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On small or loopy graphs the cavity field update does not have to converge or its
fixed point may depend on the initial conditions. However, it would be interesting to
apply it to ‘real world’ graphs as in [40], or to compare the results with those of existing
methods [22]–[24].

4. Application to random graph ensembles

We compute and discuss the results for two random graph ensembles, the r-regular and
ER graphs.

4.1. Random regular graphs

For r-regular regular graphs (Q(k) = δkr) the results are particularly simple. All the
vertices are equivalent in the cavity method. This means that the solution of (23) is
Pβ(h) = δ(h − hr), where hr is the solution of

hr = − 1

β
log [e−β + (r − 1)eβhr ], (52)

given by

hr =
1

β
log

[√
4(r − 1) + e−2β − e−β

2(r − 1)

]

. (53)

The free energy density (24) simplifies to

f = − 1

β
log [e−β + reβhr ] +

r

2β
log [1 + e2βhr ]. (54)

The energy density (25) reads

ε =
e−β − rhre

βhr

[e−β + reβhr ]
+

rhre
2βhr

[1 + e2βhr ]
. (55)

The entropy, related to the number of matchings, is computed using (26). With a bit
of algebra one finds that the quenched entropy as a function of energy is equal to the
annealed result of equation (7), where ε = 1 − x. This result is compatible with, but
slightly stronger than, theorem 1 of Bollobás and McKay [25].

The matching problem is equivalent to the physical problem of dimers on a graph.
There it is natural to compute the density of dimers rp as a function of β (which is half
of the chemical potential in the context of dimers). For r-regular graphs we find that this
‘equation of state’ is

e2β =
p(1 − p)

(1 − rp)2
. (56)

This result has already been obtained in [19] for the dimer problem on the Bethe lattice.
For r ≥ 2 in the zero temperature limit one has hr = 0, which corresponds to

solution (b) of (35)–(37). The ground state energy density is then ε0 = 0; this means that
asymptotically almost all the vertices may be matched for almost every r-regular graph.
This agrees with the stronger mathematical result that for r ≥ 3 there exists a perfect
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matching almost surely in graphs with even number of vertices. From (45) one finds that
the ground state entropy density limβ→∞ s(β) is

s0 = [(r − 1) log (r − 1) − (r − 2) log r]/2, (57)

in agreement with the annealed result (3) of Bollobás and McKay.
The stability parameter λT (28) for r-regular graphs is

λT = (r − 1)

(
∂h1

∂h0

∣
∣∣
∣
h1=h0=hr

)2

= (r − 1)

[√
4(r − 1) + e−2β − e−β

2(r − 1)

]4

. (58)

We see that λT < 1 for all finite temperatures and r ≥ 2. In the zero temperature
limit λT→0 = 1/(r − 1). The zero temperature stability parameter (51) for r-regular
graphs is λ0 = 0 for r > 2, and λ0 = 1 for r = 2. This agrees qualitatively with the
behaviour of λT→0. It is worth noticing that the ferromagnetic stability parameter, defined
as (r−1) ((∂h1/∂h0)|h1=h0=hr), is also at finite temperature smaller than unity when r ≥ 2.
It should be possible to use this result in order to show that the matching properties on
the root of a large tree are completely independent of boundary conditions, which could
then allow for a rigorous proof of our results following the lines of Bandyopadhyay and
Gamarnik [16].

In order to exclude the possibility of a discontinuous transition towards a phase with
broken replica symmetry, which we cannot see by analysing the stability, we wrote the
1RSB [9] equations for the r-regular graph. We have seen clearly numerically that their
solution reduces to the replica symmetric one. So all the evidence suggests that the RS
cavity assumption should be valid for r-regular graphs and so we expect our result for the
quenched entropy to be exact.

4.2. ER graphs

For the ER random graphs, with degree distribution Q(k) = e−cck/k!, we have solved
numerically the equation (23) by the population dynamics method. Using (24)–(26)
we have then computed the energy density ε(β) (related to the size of the matching
as |M | = (1− ε)N/2) and the entropy density s(β) for values of β ∈ (−∞,∞). In figure 4
we show the entropy versus the size of matching for mean degrees c = 1, 2, 3 and 6.

The maxima of the curves in figure 4 give the entropy of all the possible matchings,
regardless of their sizes. The lower right ends of the curves give the ground state energy
(the size of the maximal matching) and the ground state entropy (number of maximal
matchings). They are computed using by the following direct zero temperature method.

The zero temperature equations (35)–(37) for the Poissonian distribution become

p1 = e−c(1−p2), p2 = 1 − e−cp1, p3 = 1 − p1 − p2. (59)

Analysing these equations we can see that for c ≤ e there exists only solution (a), with
p1 + p2 = 1 and p3 = 0. For c > e there exists a second solution (c) with p1 + p2 < 1
and 1 > p3 > 0. From the population dynamics solution of equation (23) at very small
temperatures for c > e we found that solution (c) with p1 + p2 < 1 is the proper zero
temperature limit for c > e.
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Figure 4. Entropy density s(m) = logN (m)/N as a function of relative size of
the matching m = |M |/N = (1−ε)/2N for ER random graphs with mean degrees
c = 1, 2, 3, 6. The lower curve is the ground state entropy density s0(ε0) for all
mean degrees. The curves are obtained by solving equations (23)–(26) with a
population dynamics, using a population of sizes N = 2× 104 to 2× 105 and the
number of iterations tm = 10000.

The ground state energy (38) then reads

ε0 = 1 − 2
|M∗|
N

= −p2 + p1 + cp1 − cp1p2. (60)

This is the exact result of Karp and Sipser [26], theorem 2.
The ground state entropy for ER graphs is computed using population dynamics

equations (42)–(44) with combinatorial factors

C1(k) =
e−cp2(cp2)

k

k!
, C2(k) =

e−cp1(cp1)
k

(1 − e−cp1)k!
, C3(k) =

e−cp3(cp3)
k

(1 − e−cp3)k!
. (61)

Factors Ci(k) are a properly normalized Poissonian distribution with mean equal to
the concentration of corresponding cavity fields. The ground state entropy (45) finally
simplifies to

s0 = −(1 + cp1)p3 log γ − cp2
3

2
log (1 + γ1γ2)

− p2log µ − p1(1 + cp1 + cp3)log ν − cp1p2log (1 + µν). (62)

We call the first two terms in equation (62) the core entropy sc, the averages (denoted
by overlines) are over the distribution (44). The rest (last three terms) we call the non-core
entropy snc; the averages are over the distributions (42) and (43). The reason for these
names is the following. Since we know the size and degree distribution on the core (6) we
can use equation (45) directly only for the core, and indeed we will obtain the first two
terms of equation (62), the core entropy. The rest is the entropy corresponding to the
choice of the matching in the non-core part of the graph.
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Figure 5. The ground state entropy density s0 (giving leading exponential
behaviour of the number of maximum matchings) and the full entropy sm (giving
leading exponential behaviour of the number of all possible matchings) as a
function of mean degree c in ER random graphs. The detail is in the inset.
The ground state entropy is the sum of sc, the contribution of the core, and snc,
the contribution of the parts of the graph removed in the leaf removal procedure.
We see that sc > 0 only for c > e, because the core covers a finite fraction of
vertices only when c > e.

Figure 5 shows the core and non-core entropies of the maximum matchings and their
sum as a function of the average degree c. The fourth (upper) line in figure 5 is the total
entropy of all matchings.

The finite temperature stability parameter λT (28) for ER random graphs is

λT = c
[
E(〈n0nd〉2c)

]1/d
. (63)

We have to compute it numerically as described in figure 3 and equations (28)–(29). As
for the r-regular graphs we find that λT grows as temperature decreases, see on the left
on figure 6. So we may analyse only the zero temperature limit, and if that is stable,
then also the finite temperature is stable. On the right in figure 6 we can also see the
dependence of λT on the distance d. Although we are not able to compute precisely its
d → ∞ limit, all the evidence speaks for the fact that even for d → ∞ the stability
parameter λT never exceeds unity.

To check this, we look directly at the zero temperature stability parameter λ0 (51),
which for the ER graph reads

λ0 = cp1

√
1 +

p3

p1
. (64)

Its value is also depicted in figure 6. We can see that λ0 < 1 (stable) for all mean degrees
except c = e where λ0 = 1 (marginally stable). Supported by the numerical data in
figure 6 we expect that in the d → ∞ limit the λT would behave in the qualitatively same
way.
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Figure 6. On the left the finite temperature stability parameter λT (63) for
distance d = 10 as a function of mean degree. The upper curve corresponds to
the smallest temperature (β = 50). Data were obtained for size of population
N = 40000 and time t = 40000. On the right the dependence of λT for
temperature β = 50 on the mean degree and distance d. We can see that λT

is growing slightly with d in the regime c < e. For larger d we would need very
big populations to obtain reliable data. The continuous line depicts the zero
temperature stability parameter λ0, equation (64).

From this analysis it is reasonable to conjecture that in ER random graphs the replica
symmetric cavity assumption is correct and all our results, in particular for the entropy,
are exact. Another strong argument in favour of the validity of replica symmetry at any
finite temperature will be given in section 5.

5. Ergodicity breaking at zero temperature

The size of the maximum matchings in ER graphs was studied recently by Zhou and
Ou-Yang (Z–O) [10], using the cavity method directly at zero temperature [35], with a
one step RSB solution. In this section we discuss the difference between their approach
and ours, in particular as far as RSB effects are concerned. We keep to ER random
graphs.

One should first emphasize that both approaches give the same result for the size of
the largest matching in ER graphs, and this result also agrees with the rigorous value of
Karp and Sipser. Our formalism is more general in two respects. (1) We can work at
finite temperature, which gives access to the full distribution of the number of matchings
versus their size. (2) We study the limit of zero temperature (β → ∞) keeping the leading
corrections of order 1/β in the fields (see (39)–(41)); this allows us to study the entropy
of maximal matchings.

The issue of RSB at zero temperature, which is present in the Z–O approach, and
absent in ours, is a somewhat subtle one. We shall just present a few arguments of
explanation.

First one should note that one does not expect ergodicity to be broken at any finite
temperature in this problem. We have not tried to write a formal proof of this statement,
but a first strong argument comes from the fact that the energy barriers are finite. Let
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us define as a step the fact of removing (adding) an edge from (to) a matching so that
the new configuration is still a matching. By adding an edge to a matching we lower the
energy by 2, whereas by removing an edge we increase the energy by 2. Using these steps
one may go from any matching M to any other matching M ′. Furthermore, if |M ′| ≥ |M |,
one can choose the steps in such a way that at every step the energy is not higher than
EM + 4. In other words, energy barriers in the matching are at most 4. This argument
suggests that there should not be ergodicity breaking at finite temperature, provided there
are no diverging entropic barriers. Another indication of ergodicity comes from the rapid
mixing results of the Monte Carlo procedure in the related problem of sampling perfect
matchings in bipartite graphs [41].

Let us now focus on the zero temperature approach. The finite energy barriers
between almost perfect matchings on the core become effectively infinite at zero
temperature so the breaking of ergodicity cannot be excluded. The RS cavity method
gives the equations (32) for the cavity fields, easily derived from (33). The more subtle
issue is the support of the distribution of cavity fields. Because a field hi→a is defined as
the difference (34) of the ground state energies conditioned to i being absent/present in the
matching, it is clear that hi→a ∈ {−1, 0, 1}, and in ER graphs with c > e one should thus
choose between solutions (a) and (c) of equations (35)–(37). If one considers equations (32)
on a graph which is a tree, one finds that actually on all edges hi→a ∈ {−1, 1}. Because
ER graphs are locally tree-like (seen from a randomly chosen point, the subgraph of its
environment up to a fixed distance d is a tree with probability one in the large N limit),
it is tempting to restrict the cavity fields to ±1 values. This is what is done in Z–O. Then
the RS solution, for any value of the average degree c, is necessarily solution (a). This
solution is unstable towards 1RSB at c > e, which forces one to study the 1RSB solution
in this regime, as was done in Z–O.

The 1RSB solution for the maximal matchings is able to nicely reconstruct the
information that is contained in the h = 0 fields of our RS solution with support on
{−1, 0, 1} as follows. Let us consider an edge i → a which should pass hi→a = 0 in our
formalism. In the 1RSB formalism it passes a message which is a probability distribution
on the space of cavity fields, with support {−1, 1}, of the form αδh,−1 + (1 − α)δh,1; the
distribution of α is related to our distribution A3 (44). Consequently, the complexity
computed by Z–O is equal to the complexity of the core. This means that different almost
perfect matchings on the core form the different states, each state containing only one of
them (similarly as in the XOR-SAT problem [42, 43], or in the multi-index matching [44]).
It is interesting to notice that, through the restriction of cavity fields to h ∈ {−1, 1}, the
Z–O method at the RS level completely neglects loops, the effect of which is recovered
only at the 1RSB level. Conversely, the inclusion of the value zero in our cavity fields
allows us to take into account loops directly, in which case RSB is not needed.

This physical interpretation of the Z–O 1RSB solution is confirmed by its stability
analysis. Using notations of [33] one should compute the type I instability (interpreted
as state aggregation) of the 1RSB solution. Type II instability (interpreted as division
of states) is irrelevant here, because each state corresponds to a single almost perfect
matching on the core and cannot divide further. We have found that the 1RSB solution
is stable, but only if one considers maximal matchings (y → ∞ in the Z–O notation):
any departure from this limit mixes the various configurations and restores ergodicity, as
expected.

doi:10.1088/1742-5468/2006/05/P05003 21

http://dx.doi.org/10.1088/1742-5468/2006/05/P05003


J.S
tat.M

ech.(2006)
P

05003

The number of matchings in random graphs

6. Conclusion and discussion

We have argued that the replica symmetric cavity solution is exact for counting matchings
on random graphs. We have computed the size and quenched (typical) entropy in two
random graph ensembles. For r-regular graphs we have shown that the quenched entropy
of matchings of a given size agrees with the annealed one. For the Erdös–Rényi random
graphs we have shown how our method reproduces the result of Karp and Sipser for the
size of maximum matching, and we computed the quenched entropy of matchings of a
given size (figure 4).

Our method provides an algorithm for counting and uniform sampling of matchings
on a given sparse graph, which should give the exact entropy for graphs with a girth that
diverges in the large size limit. It would be very interesting to apply it to ‘real world’
graphs, e.g. the internet, as in [40]. Also its systematic study on graphs with smaller
girth and comparison with existing approximative methods [22]–[24] could reveal some
interesting properties.

There are two obvious generalizations of the matching problem where we expect that
our method could be used straightforwardly. One is the matching with weights on edges
(preferences to be matched) which is a dimer model on random graphs with quenched
disorder. Another generalization is that instead of allowing a vertex to have no or one
(k = 1) matched edge around itself, we could allow no or k > 1 edges around a vertex to
be matched. Then k = 2 would mean we are interested in sets of loops, a model that has
been studied recently in [40, 45]. The case k > 2, corresponding to k-regular subgraphs,
is being studied by [46].

We hope that the replica symmetric nature of matching on random graphs should
allow us to turn all our results into rigorous theorems. In this respect there are
two directions which look particularly promising. One is to generalize the local weak
convergence approach of [16] in order to turn our results into rigorous theorems when β
is small enough and/or c is far enough from e (for ER graphs). The second one is to use
Guerra’s interpolation method [12, 47, 48] in order to turn our results into rigorous upper
bounds for the entropy. More ambitiously, one can hope that the study of this matching
problem will help to turn the cavity method into a rigorous tool.
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[23] Fürer M and Kasiviswanathan S P, Approximately counting perfect matchings in general graphs, 2005
SIAM Proc. ALENEX/ANALCO 2005

[24] Chien S, A determinant-based algorithm for counting matchings in a general graph, 2004 Proc. 15th Annual
ACM-SIAM Symp. on Discrete Algorithms pp 728–35

[25] Bollobás B and McKay B D, The number of matching in random regular graphs and bipartite graphs, 1986
J. Combin. Theory B 41 80

[26] Karp R M and Sipser M, Maximum matchings in sparse random graphs, 1981 Proc. 22nd Annual IEEE
Symp. on Foundations of Computer Science pp 364–75

[27] Bauer M and Golinelli O, Core percolation in random graphs: a critical phenomena analysis, 2001 Eur.
Phys. J. B 24 339

[28] Aronson J, Frieze A and Pittel B, Maximum matchings in sparse random graphs: Karp–Sipser revisited ,
1998 Random Struct. Algorithms 12 111

[29] Hartmann A K and Weigt M, 2005 Phase Transitions in Combinatorial Optimization Problems (New York:
Wiley–VCH)

[30] Kschischang F R, Frey B J and Loelinger H-A, Factor graphs and the sum–product algorithm, 2001 IEEE
Trans. Inf. Theory 47 498

[31] Pearl J, 1988 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 2nd edn (San
Francisco, CA: Morgan Kaufmann Publishers)

[32] Yedidia J S, Freeman W T and Weiss Y, Understanding belief propagation and its generalizations, 2003
Exploring Artificial Intelligence in the New Millennium chapter 8, pp 239–69

[33] Montanari A and Ricci-Tersenghi F, On the nature of the low-temperature phase in discontinuous
mean-field spin glasses, 2003 Eur. Phys. J. B 33 339
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