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Abstract

16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide
snapshots of microbial communities, revealing phylogeny and the abundances of microbial
populations across diverse ecosystems. While changes in microbial community structure
are demonstrably associated with certain environmental conditions (from metabolic and im-
munological health in mammals to ecological stability in soils and oceans), identification of
underlying mechanisms requires new statistical tools, as these datasets present several
technical challenges. First, the abundances of microbial operational taxonomic units
(OTUs) from amplicon-based datasets are compositional. Counts are normalized to the
total number of counts in the sample. Thus, microbial abundances are not independent, and
traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships
can lead to spurious results. Secondly, microbial sequencing-based studies typically mea-
sure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU
association networks is severely under-powered, and additional information (or assump-
tions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE
Covariance Estimation for Ecological Association Inference), a statistical method for the in-
ference of microbial ecological networks from amplicon sequencing datasets that ad-
dresses both of these issues. SPIEC-EASI combines data transformations developed for
compositional data analysis with a graphical model inference framework that assumes the
underlying ecological association network is sparse. To reconstruct the network, SPIEC-
EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To
provide a synthetic benchmark in the absence of an experimentally validated gold-standard
network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU
count data from a set of diverse underlying network topologies. SPIEC-EASI outperforms
state-of-the-art methods to recover edges and network properties on synthetic data under a
variety of scenarios. SPIEC-EASI also reproducibly predicts previously unknown microbial
associations using data from the American Gut project.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004226 May 7, 2015

1/25


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004226&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://bonneaulab.bio.nyu.edu/

®PLOS

COMPUTATIONAL

BIOLOGY

Compositionally-Robust Inference of Microbial Networks

Author Summary

Genomic survey of microbes by 16S rRNA gene sequencing and metagenomics has in-
spired appreciation for the role of complex communities in diverse ecosystems. However,
due to the unique properties of community composition data, standard data analysis tools
are likely to produce statistical artifacts. For a typical experiment studying microbial eco-
systems these artifacts can lead to erroneous conclusions about patterns of associations be-
tween microbial taxa. We developed a new procedure that seeks to infer ecological
associations between microbial populations, by 1) taking advantage of the proportionality
invariance of relative abundance data and 2) making assumptions about the underlying
network structure when the number of taxa in the dataset is larger than the number of
sampled communities. Additionally, we employed a novel tool to generate biologically
plausible synthetic data and objectively benchmark current association inference tools. Fi-
nally, we tested our procedures on a large-scale 16S rRNA gene sequencing dataset sam-
pled from the human gut.

Introduction

Low-cost metagenomic and amplicon-based sequencing promises to make the resolution of
complex interactions between microbial populations and their surrounding environment a
routine component of observational ecology and experimental biology. Indeed, large-scale data
collection efforts (such as Earth Microbiome Project [1], the Human Microbiome Project [2],
and the American Gut Project [3]) bring an ever-increasing number of samples from soil, ma-
rine and animal-associated microbiota to the public domain. Recent research efforts in ecology,
statistics, and computational biology have been aimed at reliably inferring novel biological in-
sights and testable hypotheses from population abundances and phylogenies. Classic objectives
in community ecology include, (i) the accurate estimation of the number of taxa (observed and
unobserved) from microbial studies [4] and, related to that, (ii) the estimation of community
diversity within and across different habitats from the modeled population counts [5]. More-
over, some microbial compositions appear to form distinct clusters, leading to the concept of
enterotypes, or ecological steady states in the gut [6], but their existence has not been estab-
lished with certainty [7]. Another aim of recent studies is the elucidation of connections be-
tween microbes and environmental or host covariates. Examples include a novel statistical
regression framework for relating microbiome compositions and covariates in the context of
nutrient intake [8], observations that microbiome compositions strongly correlate with disease
status in new-onset Crohn’s disease [9], and the connections between helminth infection and
the microbiome diversity [10].

One goal of microbiome studies is the accurate inference of microbial ecological interactions
from population-level data [11]. ‘Interactions’ are inferred by detecting significant (typically
non-directional) associations between sampled populations, e.g., by measuring frequency of
co-occurrence [12, 13]. Microbiota are measured by profiling variable regions of bacterial 16S
rRNA gene sequences. These regions are amplified, sequenced, and the resulting reads are then
grouped into common Operational Taxonomic Units (OTUs) and quantified, with OTU
counts serving as a proxy to the underlying microbial populations’ abundances. Knowledge of
interaction networks (here, a measure of microbial association) provides a foundation to pre-
dictively model the interplay between environment and microbial populations. A recent exam-
ple is the successful construction of a dynamic differential equation model to describe the
primary succession of intestinal microbiota in mice [14]. A commonly used tool to infer a
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network is correlation analysis; that is computing Pearson’s correlation coefficient among all
pairs of OTU samples, and an interaction between microbes is assumed when the absolute
value of the correlation coefficient is sufficiently high [15, 16].

However, applying traditional correlation analysis to amplicon surveys of microbial popula-
tion data is likely to yield spurious results [9, 17]. To limit experimental biases due to sampling
depth, OTU count data is typically transformed by normalizing each OTU count to the total
sum of counts in the sample. Thus, communities of microbial relative abundances, termed
compositions, are not independent, and classical correlation analysis may fail [18]. Recent
methods such as Sparse Correlations for Compositional data (SparCC) [17] and Composition-
ally Corrected by REnormalization and PErmutation (CCREPE) [9, 11, 19] are designed to ac-
count for these compositional biases and represent the state of the art in the field. Yet, it is not
clear that correlation is the proper measure of association. For example, correlations can arise
between OTUs that are indirectly connected in an ecological network (we expand on this point
below).

Dimensionality poses another challenge to statistical analysis of microbiome studies, as the
number of measured OTUs p is on the order of hundreds to thousands whereas the number of
samples n generally ranges from tens to hundreds. This implies that any meaningful interaction
inference scheme must operate in the underdetermined data regime (p > n), which is viable
only if additional assumptions about the interaction network can be made. As technological de-
velopments lead to greater sequencing depths, new computational methods that address the
(p > n) challenge will become increasingly important.

In the present work, we present a novel strategy to infer networks from (potentially high-di-
mensional) community composition data. We introduce SPIEC-EASI (SParse InversE Covari-
ance Estimation for Ecological ASsociation Inference, pronounced speakeasy), a new statistical
method for the inference of microbial ecological networks and generation of realistic synthetic
data. SPIEC-EASI inference comprises two steps: First, a transformation from the field of com-
positional data analysis is applied to the OTU data. Second, SPIEC-EASI estimates the interac-
tion graph from the transformed data using one of two methods: (i) neighborhood selection
[20, 21] and (ii) sparse inverse covariance selection [22, 23]. Unlike empirical correlation or co-
variance estimation, used in SparCC and CCREPE, our pipeline seeks to infer an underlying
graphical model using the concept of conditional independence.

Informally, two nodes (e.g. OTUs) are conditionally independent if, given the state (e.g.
abundance) of all other nodes in the network, neither node provides additional information
about the state of the other. A link between any two nodes in the graphical model implies that
the OTU abundances are not conditionally independent and that there is a (linear) relationship
between them that cannot be better explained by an alternate network wiring. In this way, our
method avoids detection of correlated but indirectly connected OTUs, thus ensuring parsimo-
ny of the resulting network model (for more detail, see Materials and Methods and Fig 1). This
model is an undirected graph where links between nodes represent signed associations between
OTUs. The use of graphical models has gained considerable popularity in network biology
[24-26] and, more recently, in structural biology [27], particularly to correct for transitive cor-
relations in protein structure prediction [28].

To properly benchmark our inference scheme and compare its performance with other
state-of-the-art schemes [9, 17], SPIEC-EASI is accompanied by a synthetic data generation
routine, which generates realistic synthetic OTU data from networks with diverse topologies.
This is significant because, to date, (i) no experimentally verified set of “gold-standard” micro-
bial interactions exists, (ii) previous synthetic benchmark data do not accurately reflect the ac-
tual properties of microbiome data [17], and (iii) theoretical and empirical work from high-
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Fig 1. Conditional independence vs correlation analysis for a toy dataset. In an ecosystem, the abundance of any OTU is potentially dependent on the
abundances of other OTUs in the ecological network. Here, we simulate abundances from a network where OTU 3 directly influences (via some set of
biological mechanisms) the abundances of OTUs 1, 2 and 4 (a). The inference goal here is to recover the underlying network from the simulated data. b)
Absolute abundances of these four OTUs were drawn from a negative-binomial distribution across 500 samples according to the true network (as described
in the Methods section). ¢) Computing all pairwise Pearson correlation yields a symmetric matrix showing patterns of association (positive correlations are
green and negative are red). We thresholded entries of the correlation matrix to generate relevance networks. d) A threshold at p > |0.35]| (represented by
dashed and solid edges) results in a network in which OTU 3 is connected to all other OTUs with an additional connection between OTU 2 and OTU 4. A
more stringent threshold at p > |0.5|, results in a sparser relevance network (notably missing the edge between OTU 3 and OTU 1), and is represented in d
by solid edges only. Importantly, no single threshold recovers the true underlying hub topology. ) The inverse sample covariance matrix yields a symmetric
matrix where entries are approximately zero if the corresponding OTU pairs are conditionally independent. The network (f) inferred from the non-zero entries
(colored in blue in e) identifies the correct hub network. Thus, it is possible to choose a threshold for the sample inverse covariance that faithfully recovers the
true network. Such a threshold is not guaranteed to exist for correlation or covariance (the metric used by SparCC and CCREPE). Intuitively, this is because
simultaneous direct connections can induce strong correlations between nodes that do not have direct relationships (e.g. OTU 2-4). Conversely, weak
correlations can arise between directly connected nodes (e.g. OTU 1-3). Although correlation is a useful measure of association in many contexts, itis a
pairwise metric and therefore limited in a multivariate setting. On the other hand, SPIEC-EASI’s estimate of entries in the inverse covariance matrix depend
on the conditional states of all available nodes. This feature helps SPIEC-EASI avoid detection of indirect network interactions.

doi:10.1371/journal.pcbi.1004226.9001

dimensional statistics [29-31] suggests that network topology can strongly impact network re-
covery and performance and thus must be considered in the design of synthetic datasets.

We show that SPIEC-EASI is a scalable inference engine that (i) yields superior performance
with respect to state-of-the-art methods in terms of interaction recovery and network features
in a diverse set of realistic synthetic benchmark scenarios, (ii) provides the most stable and re-
producible network when applied to real data, and (iii) reliably estimates an invertible covari-
ance matrix which can be used for additional downstream statistical analysis. In agreement with
statistical theory [29], inference on the synthetic datasets demonstrates that the degree distribu-
tion of the underlying network has the largest effect on performance, and this effect is observed
across all methods tested. SPIEC-EASI network inference applied to actual data from the Ameri-
can Gut Project (AGP) shows (i) that clusters of strongly connected components are likely to
contain OTUs with common family membership and (ii) that actual gut microbial networks are
likely composites of archetypical network topologies. In the Materials and Methods section, we
present statistical and computational aspects of SPIEC-EASI. We then benchmark SPIEC-EASI,
comparing it to current inference schemes using synthetic data. We then apply SPIEC-EASI to
measurements available from the AGP database. The SPIEC-EASI pipeline is implemented in
the R package [SpiecEasi] freely available at https://github.com/zdk123/SpiecEasi. All presented
numerical data is available at http://bonneaulab.bio.nyu.edu/.
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Materials and Methods

SPIEC-EASI comprises both an inference and a synthetic data generation module. Fig 2 sum-
marizes the key components of the pipeline. In this section, we introduce all statistical and
computational aspects of the inference scheme and then describe our approach for generating
realistic synthetic datasets.

Data processing and transformation of standard OTU count data

For this discussion, a table of OTU count data, typical output of 16S rRNA gene sequencing

data curation pipelines (e.g., mothur [32], QIIME [33]) are given. The OTU data are stored in

G) 0

amatrix W € Ni*” where w? = [w{”, wi’, ..., wl)] denotes the p-dimensional row vector of

_ r
OTU counts from the jt h sample, j =1, . . ., n, with total cumulative count mt) = > w,@; Ny de-
i=1

notes the set of natural numbers {0, 1,2, . . .}. As described above, to account for sampling bi-
ases, microbiome data is typically transformed by normalizing the raw count data w% with
respect to the total count m% of the sample [10]. We thus arrive at vectors of relative abun-
dances or compositions x¥ = [:% ,Z% ey Z%] for sample j. Due to this normalization OTU
abundances are no longer independent, and the sample space of this p-part composition x* is
not the unconstrained Euclidean space but the p-dimensional unit simplex

SP={x | x, > 0,57 x, = 1}. Thus, OTU compositions from n samples are constrained to lie
in the unit simplex, X € S™?. This restriction of the data to the simplex prohibits the applica-
tion of standard statistical analysis techniques, such as linear regression or empirical covariance
estimation. Covariance matrices of compositional data exhibit, for instance, a negative bias due
to closure effects.

Major advances in the statistical analysis of compositional data were achieved by Aitchison
in the 1980’s [18, 34]. Rather than considering compositions in the simplex, Aitchison pro-
posed log-ratios, log[%], as a basis for studying compositional data. The simple equivalence

wi/m

log[)%’:] = log[wj ol = log[%}”] implies that statistical inferences drawn from analysis of log-ratios

of compositions are equivalent to those that could be drawn from the log-ratios of the unob-
served absolute measurements, also termed the basis.

Aitchison also proposed several statistically equivalent log-ratio transformations to remove
the unit-sum constraint of compositional data [18]. Here we apply the centered log-ratio (clr)
transform:

z = clr(x) = [log(x,/g(x)), - . ., log(x,/g(x)] = [log(w,/g(w)), ..., log(w,/g(w))] (1)

/p

»

where g(x) = [ 11 x,} is the geometric mean of the composition vector. The clr transform is
i=1

symmetric and isometric with respect to the component parts. The resulting vector z is con-
strained to a zero sum. The clr transform maps the data from the unit simplex to a p — 1-dimen-
sional Euclidean space, and the corresponding population covariance matrix I" = Cov/[clr(X)] €
RP*F is also singular [18]. The covariance matrix I" is related to the population covariance of
the log-transformed absolute abundances Q = Cov[logW] via the relationship [34]:

I = GQG 2)

where G = Ip — z%‘]’ I,is the p-dimensional identity matrix, and J = [jy, jo, - . > ji» - - AR

[1,1,..., 1] the p-dimensional all-ones vector. For high-dimensional data, p > > 0, the matrix
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Fig 2. Workflow of the SPIEC-EASI pipeline. The SPIEC-EASI pipeline consists of two independent parts for a) synthetic data generation and b) network
inference. a) Synthetic data generation requires an OTU count table and a user-selected network topology. Internally, the parameters of a statistical
distribution (the zero-inflated Negative binomial model is suggested) are fit to the OTU marginals of the real data, and are combined with the randomly-
generated network in the Normal to Anything (NORTA) approach to generate correlated count data. b) Network inference proceeds in three stages on
synthetic or real OTU count data: First, data is pre-procssed and centered log-ratio (CLR) transformed to ensure compositional robustness. Next, the user
selects one of two graphical model inference procedures: 1) Neighborhood selection (the MB method) or 2) inverse covariance selection (the glasso
method). SPIEC-EASI network inference assumes that the underlying network is sparse. We infer the correct model sparseness by the Stability Approach to
Regularization Selection (StARS), which involves random subsampling of the dataset to find a network with low variability in the selected set of edges.
SPIEC-EASI outputs include an ecological network (from the non-zero entries of the inverse covariance network) and an invertible covariance matrix. If the
network was inferred from synthetic data, it can be compared with the input network to assess inference quality.

doi:10.1371/journal.pcbi.1004226.9002

G is close to the identity matrix, and thus we can assume that a finite sample estimator I" of I"

serves as a good approximation of Q. This approximation serves as the basis of our network in-
ference scheme. Finally, because real-world OTU data often contain samples with a zero count
for low-abundance OTUs, we add a unit pseudo count to the original count data to avoid nu-
merical problems with the clr transform.

Inference of microbial associations from microbial abundance datasets

Our key objective is to learn a network of pairwise taxon-taxon associations (putative interac-
tions) from clr-transformed microbiome compositions Z € R™¥. We represent the network as
an undirected, weighted graph G = (V, E), where the vertex set V= {v;, .. ., v,} represents the p
taxa (e.g., OTUs) and the edge set E C V x V the possible associations among them. Our formal
approach is to learn a probabilistic graphical model [35] (i) that is consistent with the observed
data and (ii) for which the (unknown) graph G encodes the conditional dependence structure
between the random variables (in our case, the observed taxa). Graphical models over undirect-
ed graphs (also known as Markov networks or Markov Random Fields) have a straightforward
distributional interpretation when the data are drawn from a probability distribution 7(x) that

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004226 May 7, 2015 6/25
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belongs to an exponential family [36, 37]. For example, when the data are drawn from a multi-
variate normal distribution 7(x) = M(x|u, £) with mean y and covariance X, the non-zero ele-
ments of the off-diagonal entries of the inverse covariance matrix © = >7! also termed the
precision matrix, defines the adjacency matrix of the graph G and thus describes the factoriza-
tion of the normal distribution into conditionally dependent components [35]. Conversely, if
and only if an entry in ©: ©; ; = 0, then the two variables are conditionally independent, and
there is no edge between v; and v; in G. We seek to estimate the inverse covariance matrix from
the data, thereby inferring associations based on conditional independence. This is fundamen-
tally distinct from SparCC and CCREPE (see S1 Table), which essentially estimate pairwise
correlations (though other pairwise metrics could be considered for CCREPE). We highlight
this key difference in Fig 1. For an intuitive introduction to graphical models in the context of
biological networks see Bithlmann et. al, 2014 [38].

Inferring the exact underlying graph structure in the presence of a finite amount of samples
is, in general, intractable. However, two types of statistical inference procedures have been use-
ful in high-dimensional statistics due to their provable performance guarantees under assump-
tions about the sample size #n, dimensionality p, underlying graph properties, and the
generating distribution [29, 39]. The first approach, neighborhood selection [20, 39], aims at
reconstructing the graph on a node-by-node basis where, for each node, a penalized regression
problem is solved. The second approach is the penalized maximum likelihood method [22, 23],
where the entire graph is reconstructed by solving a global optimization problem, the so-called
covariance selection problem [40]. The key advantages of these approaches are that (i) their un-
derlying inference procedures can be formulated as convex (and hence tractable) optimization
problems, and (ii) they are applicable even in the underdetermined regime (p > n), provided
that certain structural assumptions about the underlying graph hold. One assumption is that
the true underlying graph is reasonably sparse, e.g., that the number of taxon-taxon associa-
tions scales linearly with the number of measured taxa.

Graphical model inference. The SPIEC-EASI pipeline comprises two types of inference
schemes, neighborhood and covariance selection. The neighborhood selection framework, in-
troduced by Meinshausen and Bithlmann [20] and thus often referred as the MB method, tack-
les graph inference by solving p regularized linear regression problems, leading to local
conditional independence structure predictions for each node. Let us denote the i column of
the data matrix Z by Z' € R" and the remaining columns by Z" € R”*"". For each node v;, we
solve the following convex problem:

. (1
e —angin (11 2 =29 A B ) ®)
ﬂERp—l n
where [|a|, = 327" | a, | denotes the L1 norm, and A > 0 is a scalar tuning parameter. This so-

called LASSO problem [41] aims at balancing the least-square fit and the number of necessary
predictors (the non-zero components f; of §) by tuning the A parameter. We define the local
neighborhood of anode v;as N/ = {j C {1,... p}\i: BJ” # 0}. The final edge set E of G can
be defined via the intersection or the union operation of the local neighborhoods. An edge e; ;
between node v; and v exists if j € N/ Ni € N/ orj € N/ Ui € N7. For edges in the set

j € N/ Ni € N/, the edge weights, ¢; jand ¢; ;, are estimated using the average of the two corre-
sponding S entries. From a theoretical point of view, both edge selection choices are asymptoti-
cally consistent under certain technical assumptions [20]. The choice of the A parameter
controls the sparsity of the local neighborhood, which requires tuning [42]. We present our pa-
rameter selection strategy at the end of this section.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004226 May 7, 2015 7/25



®PLOS

COMPUTATIONAL

BIOLOGY

Compositionally-Robust Inference of Microbial Networks

The second inference approach, (inverse) covariance selection, relies on the following penal-
ized maximum likelihood approach. In the standard Gaussian setting, the related convex opti-
mization problem reads:

~

® =argmin (—logdet (®) + tr(@i) +21 O, (4)

OePD

where PD denotes the set of symmetric positive definite matrices {A: xT Ax > 0,Vx € R}, >
the empirical covariance estimate, |||, the element-wise L1 norm, and A > 0 a scalar tuning
parameter. For A = 0, the expression is identical to the maximum likelihood estimate of a nor-
mal distribution A(x|0, ). For non-zero A, the objective function (also referred as the graphi-
cal Lasso [22]) encourages sparsity of the underlying precision matrix ©. The non-zero, off-
diagonal entries in © define the adjacency matrix of the interaction graph G which, similar to
MB, depends on the proper choice of the penalty parameter A. Originally, this estimator was
shown to have theoretical guarantees on consistency and recovery only under normality as-
sumptions [43]. However, recent theoretical [29, 44] work shows that distributional assump-
tions can be considerably relaxed, and the estimator is applicable to a larger class of problems,
including inference on discrete (count) data. In addition, nonparametric approaches, such as
sparse additive models, can be used to “gaussianize” the data prior to network inference [45].
We thus propose the following estimator for inferring microbial ecological associations. Given
clr-transformed OTU data Z € R™?, we propose the modified optimization problem:

Q' —argmin (—logdet (") + tr(Q 'T) + 2| Q'||,), (5)

Q- lepD

where I is the empirical covariance estimate of Z, and Q" is the inverse covariance (or preci-
sion matrix) of the underlying (unknown) basis. As stated above, I" will be a good approxima-

tion for the basis covariance matrix Q because p > > 0. The resulting solution is constrained to
the set of PD matrices, ensuring that the penalized estimator has full rank p. The non-zero oft-
diagonal entries of the estimated matrix Q' define the inferred network G, and their values are
the signed edge weights of the graph. To reduce the variance of the estimate, the covariance

matrix I" can also be replaced by the empirical correlation matrix R = DI"D, where D is a diag-
onal matrix that contains the inverse of the estimated element-wise standard deviations.

The covariance selection approach has two advantages over the neighborhood selection
framework. First, we obtain unique weights associated with each edge in the network. No aver-
aging or subsequent edge selection is necessary. Second, the covariance selection framework
provides invertible precision and covariance matrix estimates that can be used in further down-
stream microbiome analysis tasks, such as regression and discriminant analysis [10].

Model selection. For both neighborhood and covariance selection, the tuning parameter
A € [0, Amax] controls the sparsity of the final model. Rather than inferring a single graphical
model, both methods produce a A-dependent solution path with the complete and the empty
graph as extreme networks. A number of model selection criteria, such as Bayesian Informa-
tion Criteria [46] and resampling schemes [47], have been used. Here we use a popular model
selection scheme known as the Stability Approach to Regularization Selection (StARS) [48].
This method repeatedly takes random subsamples (80% in the standard setting) of the data
and estimates the entire graph solution path based on this subsample. For each subsample, the
A-dependent incidence frequencies of individual edges are retained, and a measure of overall
edge stability is calculated. StARS selects the A value at which subsampled non-empty graphs
are the least variable (most stable) in terms of edge incidences. For the selected graph, the
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observed edge frequencies indicate the reproducibility, and likely the predictive power, and are
used to rank edges according to confidence.

Theoretical and computational aspects. Learning microbial graphical models with neigh-
borhood or inverse covariance selection schemes has important theoretical and practical ad-
vantages over current methods. A wealth of theoretical results are available that characterize
conditions for asymptotic and finite sample guarantees for the estimated networks [20, 29, 39,
43, 46]. Under certain model assumptions, the number of samples n necessary to infer the true
topology of the graph in the neighborhood selection framework is known to scale as n = O(d”
log(p)), where d is the maximum vertex (or node) degree of the underlying graph (i.e. the maxi-
mum size of any local neighborhood). Additional assumptions on the sample covariance matri-
ces reduce the scaling to n = O(d” log(p)) [39]. This implies that graph recovery and precision
matrix estimation is indeed possible even in the p > > n regime, and that the underlying graph
topology strongly impacts edge recovery. The latter observation means that, even if the number
of interactions e is constant, graphs with large hub nodes, perhaps representing keystone spe-
cies in microbial networks, or, more generally, scale-free graphs with, a few highly connected
nodes, will be more difficult to recover than networks with evenly distributed neighborhoods.
In addition to these theoretical results, a second advantage is that well-established, efficient,
and scalable implementations are available to infer microbial ecological networks from OTU
data in practice. Thus, SPIEC-EASI methods will efficiently scale as microbiome dataset di-
mensions grow (e.g., due to technological advances that increase the number of OTUs detected
per sample). The SPIEC-EASI inference engine relies on the R package huge [49], which in-
cludes algorithms to solve neighborhood and covariance selection problems [20, 22], as well as
the StARS model selection.

Generation of synthetic microbial abundance datasets

Estimating the absolute and comparative performance of network inference schemes from bio-
logical data remains a fundamental challenge in biology. In the context of gene regulatory net-
work inference, recent community-wide efforts, such as the DREAM (Dialogue for Reverse
Engineering Assessments and Methods) Challenges (http://www.the-dream-project.org/), have
considerably advanced our understanding about feasibility, accuracy, and applicability of a
large number of developed methods. In the DREAM challenges, both real data from “gold stan-
dard” regulatory networks (e.g., networks where the true topology is known from independent
experimental evidence) and realistic in-silico data (using, e.g., the GeneNetWeaver pipeline
[50]) are included. In the context of microbiome data and microbial ecological networks, nei-
ther a gold standard nor a realistic synthetic data generator exist. SPIEC-EASI is accompanied
by a set of computational tools that allow the generation of realistic synthetic OTU data. As
outlined in Fig 2, real taxa count data serve as input to SPIEC-EAST’s synthetic data generation
pipeline. The pipeline enables one to: (i) fit the marginal distributions of the count data to a
parametric statistical model and (ii) specify the underlying graphical model architecture (e.g.,
scale-free).

The NorTA approach. The parametric statistical model and network topology are then
combined in the ‘Normal To Anything’ (NorTA) [51] approach to generate synthetic OTU
data that resemble real measurements from microbial communities but with user-specified net-
work topologies. NorTA [51] is an approximate technique to generate arbitrary continuous
and discrete multivariate distributions, given (1) a target correlation structure R with entries
pi, jand (2) a target univariate marginal distribution U;. To achieve this task, NorTA relies on
normal-copula functions [51-53]. A n x p matrix of data U is sampled from a normal
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distribution with zero mean and a p x p correlation matrix Ry. For each marginal U;, the Nor-
mal cumulative distribution function (CDF) is transformed to the target distribution via its in-
verse CDF. For any target distribution P with CDF &, we can thus generate multivariate
correlated data via

U, = Eil(q)(UN)) ) (6)

i i

V252
we illustrate this process for bivariate Poisson and negative binomial data (n = 1000 and corre-
lation p;; = 0.7).
In the original NorTA approach, an element-wise monotone transformation cy(-) with

Ry = cy(R) is applied to account for slight differences in correlation structure between normal
and target distribution samples [51]. Here we neglect this transformation step because we ob-
serve that the log-transformed data from exponential count distributions, such as the Poisson
and Negative binomial, are already close to R, provided that the mean is greater than one, par-

U
where Uy ~ MO0, Ry) and ®(U) = f ‘ L e#du, the CDF of a univariate normal. In Fig 3a,

ticularly when the counts data are log-transformed (S1 Fig). In practice, SPIEC-EASI relies on
routines from base R and VGAM packages [54, 55] to estimate the uniform quantiles of the
normal data and to fit the desired CDF with estimated parameters.

Fitting marginal distribution to real OTU data. Prior to fitting marginal distributions to
real data, several commonly used pre-proccesing steps are applied. For any given OTU abun-
dance table of size n x K, we first select p non-zero columns. To account for experimental

a‘ Normal ‘ ‘ Normal Quantile ‘ l Poisson ‘ Nezgif?vi"g?ﬁgﬁu

“ugt
. &
odyetel

. !I 5 [
1004 "
| ' |"c,°
L)
. =u
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Fig 3. a)Bivariate illustration of the NorTA approach. First normal data, incorporating the target correlation
structure, is generated. Uniform data are then generated for each margin via the normal density function.
These is then converted to an arbitrary marginal distribution (Poisson and Zero-inflated Negative Binomial
shown as examples) via its quantile function. To generate realistic synthetic data, parameters for these
margins are fit to real data. b) Examples of band-like, cluster, and scale-free network topologies

doi:10.1371/journal.pcbi.1004226.9003
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differences in sample sequencing, we then normalize samples to a median sequencing depth by
multiplying all counts by the ratio of minimum desirable sampling depth to the total sum of
counts in that sample and rounding to the nearest whole number, which is preferable to rare-
faction [56]. These filtered and sequencing-depth-normalized data serve as the marginal
counts, which are fit to a parametric distribution U; and used as input to the NorTA approach.
The concrete target marginal distribution depends on the actual microbiome dataset. For gut
microbiome data (e.g. from HMP or APG), the zero-inflated Negative Binomial (ziNB) distri-
bution is a good choice, as it accounts for both overdispersion [56, 57] and the preponderance
of zero-count data points in microbial count datasets. The fitting procedure is done within a
maximum likelihood framework. The corresponding optimization problem is solved with the
Quasi-Newton methods with box-constraints, as implemented in the optim function in R [54].
In S1 Text, we use quantile-quantile plots to compare ziNB to several other candidate distribu-
tions (e.g., lognormal, Poisson, NB) and show that ziNB has superior fit.

Generation of network topologies and correlation matrices. Under normality assump-
tion, the non-zero pattern of the precision matrix corresponds to the adjacency matrix of the
underlying undirected graph. We use this property to generate target covariance (correlation)
matrices originating from different graph topologies. The pipeline to generate a network struc-
ture for simulated data proceeds in three steps: (i) Generate an undirected graph, in the form of
an adjacency matrix, with a desired topology and sparsity, (ii) convert the adjacency matrix to
a positive-definite precision matrix by assigning positive and negative edge weights and appro-
priate diagonal entries, and (iii) invert © and convert the resulting covariance matrix X to a
correlation matrix (R = DXD, where, D is a diagonal matrix with diagonal entries 1/, /7).

Among many potential graph structures, we focus on three representative network struc-
tures: band-like, cluster, and scale-free graphs (see Fig 3b for graphical examples). Maximum
network degree strongly impacts network recovery, and thus our choice of network topologies
spans a range of maximum degrees (band < cluster < scale-free). In addition, cluster and
scale-free lend themselves to hypothetical ecological scenarios. Cluster graphs may be seen as
archetypal models for microbial communities that populate different disjoint niches (clusters)
and have only few associations across niches. Scale-free graphs, ubiquitous in many other facets
of network biology (such as gene regulatory, protein-protein and social networks), serve as a
baseline model for a microbial community that comprises (1) a few “keystone” species (hub
nodes with many partners) that are essential for coordinating/stabilizing the community and
(2) many dependent species that are sparsely connected to each other. The sparsity of the net-
works is controlled by the number of edges, e < p(p — 1)/2, in the graph. The topologies are
generated according to the following algorithms, starting with an empty p x p adjacency
matrix:

1. Band: A band-type network consists of a chain of nodes that connect only their nearest
neighbors. Let e = e,54 + €4yailanie> the number of edges already used and available, respec-
tively. Fill the next available off-diagonal vector with edges if and only if e,,4i1ap. > number
of elements in the off-diagonal.

2. Cluster: A cluster network comprises / independent groups of randomly connected nodes.
For given p and e we divide the set of nodes into 4 components of (approximately) identical
size and set the number of edges in each component to e.omp = e/h. For each component, we
generate a random (Erdds-Renyi) graph for which we randomly assign an edge between two

€comp

nodes in the cluster with probability p = C=eh

3. Scale-free: The distribution of degrees, the number of edges per node, in a scale-free net-
work is described by a power law, implying that the central node or nodes (potentially

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004226 May 7, 2015 11/25



®PLOS

COMPUTATIONAL

BIOLOGY

Compositionally-Robust Inference of Microbial Networks

keystone species in an ecological network) have proportionally more connections. We use
the standard preferential attachment scheme [58] until p — 1 edges are exhausted.

After generation of these standard adjacency matrices, we randomly remove or add edges until
the adjacency matrix has exactly e edges. All schemes generate symmetric adjacency matrices
that describes a graph, with entries of 1 if an edge exists and 0 otherwise.

From the adjacency matrices, we generate precision matrices by uniformly sampling non-
zero entries ©; ; € [~Omax> ~Omin]U[Omin, Omax), where Opin, O oy > 0 are model parameters
and describe the strength of the conditional dependence among the nodes. To ensure that the
precision matrix is positive definite with tunable condition number x = cond(®), we scale the
diagonal entries ©; ; by a constant ¢ using binary search. The precision matrix © is then con-
verted to a correlation matrix R to be used as input to the NorTA approach.

Results
Network inference on synthetic microbiome data

Given that no large-scale experimentally validated microbial ecological network exists, we use
SPIEC-EAST’s data generator capabilities to synthesize data whose OTU count distributions
faithfully resemble microbiome count data. By varying parameters known to influence network
recovery (network topology, association strength, sample number) and quantifying perfor-
mance on resulting networks, we rigorously assess SPIEC-EASI inference relative to state-of-
the-art inference methods, SparCC [17] and CCREPE [9], as well as standard

Pearson correlation.

Benchmark setup. We modeled the synthetic datasets on American Gut Project data
using SPIEC-EAST’s data generation module. The count data, accessed February, 2014 at www.
microbio.me/qiime and available at https://github.com/zdk123/SpiecEasi/tree/master/inst/
extdata, come from two sampling rounds and comprise several thousand OTUs. Round 1 data
contains #; = 304, and Round 2 data contains n, = 254 samples. As filtering steps, OTUs were
removed from the input data if present in fewer than 37% of the samples, while samples were
removed if total sequencing depth fell below the 1st quartile (10,800 sequence reads). Thus, we
arrived at a total of p = 205 distinct OTUs. We also generated smaller-dimensional datasets
(p = 68) with fewer zero counts by requiring that OTUs be present in > 60% of the samples.
We used Round 1 data and fit the #; count histograms to a ziNB distribution (for justification
of this, see S1 Text). The empirical effective number n.gis 13.5 for p = 205 and 7.5 for p = 68
data. The resulting parametrized marginal distributions served as input to NorTA.

As described above, network topology is expected to influence network recovery; thus, we
consider the three previously described topologies (band-like, cluster, and scale-free) as repre-
sentative microbial networks. We hypothesize that any method that successfully infers the sets
of associations underlying these archetypal networks from synthetic datasets is likely to also
perform well in the context of true microbiomes, whose underlying network architecture is un-
known but expected to be a mixture of these network types. For all networks, we fix the total
number of edges e to the respective number of OTUs p, and we analyze a medium (p = 68) and
a high-dimensional scenario (p = 205). Microbial association strength is controlled by the
range of values in off-diagonal entries in the precision matrices ® and the condition number
k = cond(®). We use ©,;, = 2 and O, = 3 with either condition number x = 10 or 100. In
this setting, k controls the spread of the absolute correlation values (and thus the strength of in-
direct associations) present in the synthetic data. The relationship between condition number
and distribution of correlation is illustrated in S3 Fig. For each network type and size, we gener-
ate 20 distinct instances. For each instance, we then use the NorTA approach to generate a
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maximum of n = 1360 synthetic microbial count data samples. In S2 Fig, we highlight the fidel-
ity between the target microbiome dataset and the synthetic datasets, especially in terms of
dataset dimensions and OTU count distributions. To assess the effect of sample size on net-
work recovery, we test methods on a range of sample sizes: n = 34, 68, 102, 1360.

We compare SPIEC-EAST’s covariance selection method (referred to as S-E(glasso)) and
neighborhood selection method (referred to as S-E(MB)) to SparCC and CCREPE, methods
which were also designed to be robust to compositional artifacts. As a baseline reference, we
also compared all methods to Pearson correlation, which is neither compositionally robust nor
appropriate for estimating correlation in the under-determined regime. Both of these methods,
however, infer interactions from correlations and do not consider the concept of conditional
independence. We improved the runtime of the original SparCC implementation (available at
https://bitbucket.org/yonatanf/sparcc) and include the updated code in our SPIEC-EASI pack-
age. The original SparCC package also includes a small benchmark test case available at https://
bitbucket.org/yonatanf/sparcc/src/9al142c179f7/example). The recovery performance results
for S-E(MB), SparCC, and CCREPE for this test case can be found in S9 Fig. The CCREPE im-
plementation is downloaded from http://www.bioconductor.org/packages/release/bioc/html/
ccrepe.html.

Recovery of microbial networks. To quantify each method’s ability to recover the true
underlying association network, we evaluated performance in terms of precision-recall (P-R)
curves and area under P-R curves (AUPR). For each method, we ranked edge predictions ac-
cording to confidence. For SparCC, CCREPE and Pearson correlation, edge predictions were
ranked according to p-value. SPIEC-EASI edge predictions were ranked according to edge sta-
bility, inferred by StARS model selection step at the most stable tuning parameter Agiags. Fig 4
summarizes methods’” performance on 960 independent synthetic datasets for a total of 48 con-
ditions (4 samples sizes x 2 conditions numbers x 3 network topologies x 2 dimensions).

We observe the following key trends. First, the performance of all methods improves with
increasing sample size. Under certain scenarios, even near-perfect recovery (AUPR = 1) is pos-
sible in the large sample limit (n = 1360). Second, all methods show a clear dependence on the
network topology. Best performance is achieved for band graphs, followed by cluster and scale-
free graphs. These results are consistent with theoretical results [29], which show that the maxi-
mum node degree d reduces the probability of correctly inferring network edges for fixed sam-
ple size (scale-free networks have highest maximum degree, followed by cluster and then
band.) Third, for most scenarios, the SPIEC-EASI methods, particularly S-E(MB), perform as
well or significantly better than all control methods. Standard Pearson correlation is outper-
formed by all methods that take the compositional nature of the data into account. Forth, in
the large sample limit (n = 1360), S-E(MB) is the only method that recovers a significant por-
tion of edges under all tested scenarios (particularly scale-free networks). Additionally, we ob-
serve (S10 Fig) that SPIEC-EASI performs well on synthetic data generated by the SparCC
benchmark [17, 59].

The present results suggest that complete network recovery is likely an unrealistic goal for
microbiome studies, given that most studies have at most hundreds of samples. In addition, the
P-R curves are based on ranking predicted edges. To generate a final network, confidence-
based criteria must be applied to select a final set of edges for network inclusion, and, to date,
no optimal selection process exists. Nonetheless, if we focus on the set of high-confidence inter-
actions (i.e. the top-ranked entries in the edge list), we see that S-E methods, particularly S-E
(MB), can achieve very high precision for all network types (see Fig 4 for a representative P-R
curve).
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Fig 4. Precision-recall performance on synthetic datasets. a) Red = S-E(glasso), orange = S-E(MB), purple = SparCC, blue = CCREPE,

green = Pearson correlation, black = random. Area under precision-recall (AUPR) vs. number of samples n for different k values are depicted. Bars represent
average over 20 synthetic datasets, and error bars represent standard error. Asterisks denote conditions under which SPIEC-EASI methods had significantly
higher AUPR relative to all other control methods (P<0.05 for all one-sided T tests). b) Representative precision-recall curves for p = 68, n = 102, k = 100;
solid and dashed lines denote SPIEC-EASI and control methods, respectively.

doi:10.1371/journal.pcbi.1004226.9004
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Opverall, these results suggest that S-E methods outperform current state-of-the-art methods
in terms of network recovery under most tested scenarios, with S-E(MB) showing superior per-
formance over S-E(glasso).

Recovery of global network properties. Accurate recovery of global network properties
(e.g., degree distribution, number of connected components, shortest path lengths) from taxa
abundance data would help define the underlying topology of the ecological network (e.g., clus-
ter versus scale-free) [15, 58]. At this point, little is known about the underlying topology of mi-
crobial ecological networks, but, as elaborated in the Discussion, such information could be
incorporated as a constraint into SPIEC-EAST’s inference methods, thereby further improving
prediction. Thus, we tested how well SPIEC-EASI and other methods recover global network
properties from the synthetic datasets and evaluate whether these methods might be able to
provide insight into global network architecture, perhaps even in the underdetermined regime,
where the prediction of individual edges is less accurate. To control for the disparate means by
which individual methods ranked edge confidences (e.g., stability for the SPIEC-EASI methods,
estimation of p-values for SparCC, Pearson and CCREPE), for each synthetic dataset and
method, final networks were generated by selecting the top 205 predicted edges and comparing
to the true synthetic network topologies for p = 205 OTUs.

We first consider (node) degree distributions, where node degree is defined as the number
of edges each node has. In Fig 5, we show the empirical degree distribution and the underlying
ground truth for all methods and networks types, n = 1360 and x = 100. Scale-free networks
are characterized by exponential degree distributions, in which few nodes (e.g., hubs and, in
our context, potential keystone taxa) have very high degree (e.g., interact with other taxa),
while most nodes/taxa have few interactions. In contrast, nodes in cluster networks have rela-
tively even degree, which depends on cluster size. In the ecological context, cluster networks
would be consistent with niche communities that share few interactions with microbiota out-
side of one’s niche community; this structure is also reflected in degree distributions. Using
Kullback-Leibler (KL) divergence to measure the dissimilarity between methods’ predicted de-
gree distributions and the true degree distribution we see that S-E(MB) outperforms all other
methods in recovering degree distributions (Fig 5). This performance improvement also holds
for smaller samples sizes.

Another common topological feature is betweenness centrality, which, similar to degree, be-
tweenness centrality can be used to gauge the relative importance of a node (e.g., taxon) to the
(ecological) network. Betweenness centrality, as the fraction of shortest paths between all other
nodes in the network that contain the given node, highlights central nodes. The distribution of
nodes’ betweenness centrality provides information about the network architecture (54 Fig).
Specifically, scale-free networks are expected to have a few nodes with very high betweenness
centrality that connect most other nodes to each other; in scale-free networks, betweenness
centrality can approach unity. For cluster networks, the maximum betweenness centrality is
limited by the total number of independent clusters. In band networks, similar to scale-free, all
nodes are connected; however, the degree is fixed and so the betweenness centrality distribu-
tion is roughly uniform from zero to one. For smaller sample sizes n < 1360, no method domi-
nates. However, for the largest sample size, n = 1360, S-E(MB) is again significantly better than
all other methods for five out of six conditions with the exception of scale-free networks x =
10, where SparCC recovery is best (S5 Fig).

We next consider distributions over graph geodesic distances. The geodesic distance is the
length of the shortest path between two nodes. Given the existence of highly connected hubs in
scale-free networks, geodesic distances for scale-free networks tend to be short, a feature that is
described as the “small-world” property. Thus, the geodesic distributions in the scale-free net-
work are a lot smaller than for the band and cluster networks (S6 Fig). In recovery of geodesic
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Fig 5. a) Predicted degree distributions (colored) are overlaid with the true degree distribution (white) for n = 1360 samples, p = 205 OTUs, k = 100.
Lighter shades correspond to regions of overlap between predicted and true distributions. Dissimilarity between the distributions is measured by KL
divergence, Dk, . b) Bars represent the average Dk over three independent sets of synthetic datasets (7 datasets per set); error bars represent standard
error. Divergences were compared between S-E and control methods using one-sided T-tests; ***, ** * correspond to P<0.001, 0.01, and 0.05.

doi:10.1371/journal.pcbi.1004226.9005
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distance distributions, S-E(MB) performs equivalently or significantly better than all other
methods for scale-free networks as well as band graphs across all conditions. For cluster net-
works, the other methods generally outperform SPIEC-EASI methods for smaller sample sizes
(n < 1360). In the large sample limit n = 1360, S-E(MB) has significantly better recovery of
geodesic distance distributions relative to all control methods, even for cluster graphs (S7 Fig).

Finally, we analyzed the number and size of connected components in the inferred graphs.
While all synthetic band and scale-free synthetic networks form a single connected component
containing all nodes, cluster networks have a variable number of connected components. In
terms of cluster number recovery, all methods predicted too many connected components.
Overall, S-E methods had lower error rates for band and scale-free networks over all sample
sizes. For high sample number (n = 1360), S-E(MB) had significantly better recover of cluster
size across all network types (S8 Fig), with nearly perfect recovery for cluster graphs (Dg; =0,
S9 Fig).

Inference of the American Gut network

Thus far we have used the n; = 304 first-round AGP samples as a means to construct realistic
synthetic microbiome data sets with SPIEC-EASI’s data generation module. In this section, we
apply SPIEC-EASI inference methods to construct ecological association networks from the
AGP data directly. To do this, we first filter out rare OT'Us by selecting only the top 205 OTUs
(to match the dimensionality of the synthetic data) in the combined AGP dataset (by frequency
of presence) before adding a pseudo-count and total-sum normalization. Although there is no
independent means to assess the accuracy of these hypothetical networks, we can assess their
reproducibility and consistency. For each method, we first infer a single representative network
of taxon-taxon interactions from Round 1 AGP abundance data. For SPIEC-EASI, the StARS
model selection approach is used to select the final model network. For SparCC, we use a
threshold p; = 0.35 to construct a relevance network from the SparCC-inferred correlation ma-
trix; i.e. an edge between nodes v;, v; is present in the SparCC network if |p; ;| > p, [17]. Similar-
ly, we use a q-value cut-off of 107%* to create an interaction network from CCREPE-corrected
significance scores of Pearson’s correlation coefficient [9]. For each method, we thus arrive at a
reference network that can be considered the hypothetical gold standard. We then use the n, =
254 Round 2 AGP samples as an independent test set and learn a new model network from
these data alone. We measure consistency between the two network models by computing the
Hamming distance between the reference and new network models, i.e., the difference between
the upper triangular part of the two adjacency matrices. For the present data, the Hamming
distance can vary between p(p — 1)/2 = 20910 (no edges in common) and a minimum of 0 for
identical networks. Confidence intervals for Hamming distances can be obtained by combining
Round 1 and 2 samples into a unified dataset, repeatedly subsampling these data into two dis-
joint groups of size n; and n,, and repeating the entire inference procedure.

Fig 6a shows network reproducibility for SPIEC-EASI methods, SparCC, and CCREPE. The
S-E(MB) has smallest the Hamming distance, followed by S-E(glasso), SparCC, and CCREPE.
In S-E(MB), the edge disagreement is roughly 50 with very small error bars. At the other ex-
treme, CCREPE edge disagreement is 250 edges and highly variable.

These numerical experiments clearly demonstrate that SPIEC-EASI networks are more re-
producible than other current methods.

Finally, we use each inference method to construct a candidate American Gut microbiome
association network from the unified dataset of size n, + n, = 558 (Fig 6¢). We analyze the dif-
ferences between the reconstructed networks by quantifying the number of unique and shared
predicted edges (Fig 6b). All four methods agree on a core network that consists of 127 edges.
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These edges are mostly found within OTUs of the same taxonomic group. This phenomenon,
termed assortativity, has also been observed in other microbial network studies [11]. Assorta-
tivity is one of the most salient features of the AGP-derived networks, and, for all networks, the
assortativity coefficients for each network are close to unity (e.g., maximum assortativity, S11
Fig). The SparCC network comprises about twice as many edges as the SPIEC-EASI networks.
SparCC infers 147 distinct edges; these additional edges correspond to negative associations be-
tween OTUs of Ruminococcaceae (genus Faecalibacterium) and Enterobacteriacae families
(various genera) and a dense web of correlations within Enterobacteriacae OTUs. Similarly,
CCREPE identified 152 edges uniquely, with many negative edges between Enterobacteriaceae
and Lachnospiraceae (genera: Blautia, Roseburia and unknown); additionally, CCREPE
uniquely predicted positive edges between the Lachnospiraceae and Ruminococcaceae (genus:
Faecalibacterium). Both SPIEC-EASI methods produce relatively sparse networks by compari-
son. S-E(glasso) infers a total of 271 total edges (with one unique edge), and S-E(MB) infers
206 edges with 25 unique edges. In scale with edge predictions, both CCREPE and SparCC
infer networks with large maximum degree (33 and 30, respectively), while the S-E(MB) and
S-E(glasso) networks have a maximum degree of sixteen and eight, respectively (S11 Fig).
However, even though CCREPE and SparCC predict a similar number of total edges, the global
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network properties are distinct. CCREPE predicts a higher maximum betweenness centrality
and a larger number of nodes in the largest connected component (100).

In summary, analysis of the AGP networks suggests that the SPIEC-EASI inference schemes
construct more reproducible taxon-taxon interactions than SparCC and CCREPE and infer
considerably sparser model networks than the other two methods. These observations may be
explained as follows: SparCC and CCREPE aim to recover correlation networks, which contain
both direct edges as well as indirect (e.g., spurious) edges (due to correlation alone). SparCC
and CCREPE may recover indirect edges less robustly than direct edges, an explanation that
would be consistent with the Hamming distance reproducibility analysis. In addition, all meth-
ods’ resulting networks suggest that the topology of the American Gut association network
cannot be attributed to a specific network class. Instead, these networks are a mixture of band,
scale-free, and cluster network type, and they exhibit high phylogenetic assortativity within
highly connected components.

Discussion

Inferring interactions among different microbial species within a community and understand-
ing their influence on the environment is of central importance in ecology and medicine [19,
60]. An ever increasing number of recent amplicon-based sequencing studies have uncovered
strong correlations between microbial community composition and environment in diverse
and highly relevant domains of life [1, 9, 10, 61-63]. These studies alone underscore the need
to understand how the microbial communities adapt, develop, and interact with the environ-
ment [5]. Elucidation of species interactions in microbial communities across different envi-
ronments remains, however, a formidable challenge. Foremost, available high-throughput
experimental data are compositional in nature, overdispersed, and usually underdetermined
with respect to statistical inference. In addition, for most microbes few to no ecological interac-
tions are known, thus the ecological interaction network must be constructed de novo, in the
absence of guiding assumptions and a set of “gold standard” interactions for validation.

To overcome both challenges, we present SPIEC-EASI (Sparse InversE Covariance Estima-
tion for Ecological Association Inference), a computational framework that includes statistical
methods for the inference of microbial ecological interactions from 16S rRNA gene sequencing
datasets and a sophisticated synthetic microbiome data generator with controllable underlying
species interaction topology. SPIEC-EAST’s inference engine includes two well-known graphi-
cal model estimators, neighborhood selection [20] and sparse inverse covariance selection [22,
23, 46] that are extended by compositionally robust data transformations for application to the
specific context of microbial abundance data.

The synthetic data pipeline was used to generate realistic-looking gut microbiome datasets
for a controlled benchmark of SPIEC-EAST’s inference performance relative to two state-of-
the-art methods, SparCC [17] and CCREPE [9]. We showed that neighborhood selection (S-E
(MB)) outperforms SparCC and CCREPE in terms of recovery of taxon-taxon interactions and
global network topology features under almost all tested benchmark scenarios, while covari-
ance selection (S-E(glasso)) performs competitively with and sometimes better than SparCC
and CCREPE.

Through our simulation study, we demonstrate that several other factors, in addition to
total number of samples, affect network recovery. Foremost and in agreement with theoretical
results from high-dimensional statistics [29, 30, 39], network topology has a significant impact,
as network recovery performance is nearly doubled from scale-free to cluster to band (Fig 4)
for fixed sample size, number of taxa, and condition number. We also demonstrated depen-
dence to strength of direct interactions (and thus strength of correlations) within a given
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network. Our simulation study provides the community with rough guidelines for requisite
sample sizes, given state-of-the-art network inference and basic assumptions about the under-
lying network. This is of obvious importance to experimental design and the estimation of sta-
tistical power. Here, we used the synthetic data pipeline to generate datasets characteristic of
the gut microbiome. However, the SPIEC-EASI data generator is generic and therefore enables
researchers to generate synthetic datasets that resemble microbiome samples in terms of taxa
dispersion and marginal distributions from their field of research, such as soil or sea water eco-
systems [1].

Our application study on real American Gut Project (AGP) data revealed that inference
with SPIEC-EASI produced more consistent and sparser interaction networks than SparCC
and CCREPE. In addition, our AGP network analysis revealed several biologically relevant ob-
servations. Specifically, we observed that OTUs were more likely to interact with phylogeneti-
cally related OTUs (Fig 6¢ and S11 Fig). In addition, our gut microbial interaction networks
appear to be a composite of network types, as we find evidence for scale-free, band-like, and
cluster subnetworks.

An important advantage of neighborhood and covariance selection as underlying inference
frameworks is their ability to include prior knowledge about the underlying data or network
structure from independent scientific studies in a principled manner. For example, in the
neighborhood selection scheme, the standard LASSO approach can be augmented by a group
penalty [64] that takes into account a priori known group structure. The assortativity observed
in our gut microbial interaction networks suggests that such a grouping of OTUs based on phy-
logenetic relationship might improve inference. Moreover, if verified species interactions are
available for a certain microbial contexts, this knowledge can be included in covariance and
neighborhood selection by relaxing the penalty term on these interactions. This strategy has al-
ready been fruitfully applied to inference of similarly high-dimensional transcriptional regula-
tory networks [65]. Finally, in agreement with theoretical and empirical work in high-
dimensional statistics, our synthetic benchmark results confirmed that networks with scale-
free structures elude accurate inference even if the underlying network is globally sparse. Re-
cent modified neighborhood [30] and covariance selection [31] schemes improve recovery of
scale-free networks and can be conveniently included into SPIEC-EASI.

Finally, although the main focus of this work is inference of microbial interaction networks,
estimation of the regularized inverse covariance matrix with S-E(glasso) will be key to address-
ing several other important questions arising from microbiome studies. For example, statistical
methods to infer which taxa are responsive to design factors in 16S gene amplicon studies is an
active area of research. Most methods test each taxon independently one-at-a-time (see [56]
and references therein) even though taxa are actually highly correlated and thought to ecolog-
ically interact. Inference of taxa responses from 16S rRNA gene sequencing datasets could be
improved by modeling this correlation structure through incorporation of the inverse covari-
ance matrix into the statistical model [66].

Other, more complex questions are motivated by a desire to understand why and how eco-
systems evolve with time. In the dynamic modeling setting, association networks have already
been successfully used as an underlying structure to fit a differential-equation-based model of
gut microbiome development in mice [14]. Thus, association networks provide the underlying
topology for dynamic models, which can be used to develop hypotheses about how the ecosys-
tems might respond to specific perturbations [5].

In conclusion, SPIEC-EASI is an improvement over state-of-the-art methods for inference
of microbial ecological networks from microbiome composition datasets. We demonstrate this
through rigorous benchmarking with synthetic networks and also through application to a true
biological dataset. In addition, the LASSO underpinnings of the SPIEC-EASI inference
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methods provide a flexible and principled mathematical framework to incorporate additional
information about microbial ecological association networks as it becomes available, thereby
improving prediction. We anticipate that SPIEC-EASI network inference will serve as a back-
bone for more sophisticated modeling endeavors, engendering new hypotheses and predictions
of relevance to environmental ecology and medicine.
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