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We examine phase transitions between the “easy,” “hard,” and “unsolvable” phases when attempting to identify
structure in large complex networks (“community detection”) in the presence of disorder induced by network
“noise” (spurious links that obscure structure), heat bath temperature T , and system size N . The partition of a
graph into q optimally disjoint subgraphs or “communities” inherently requires Potts-type variables. In earlier
work [Philos. Mag. 92, 406 (2012)], when examining power law and other networks (and general associated Potts
models), we illustrated that transitions in the computational complexity of the community detection problem
typically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) at
both high and low temperatures and/or noise. The computationally “hard” phase exhibits spin-glass type behavior
including memory effects. The region over which the hard phase extends in the noise and temperature phase
diagram decreases as N increases while holding the average number of nodes per community fixed. This suggests
that in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases.
When present, transitions at low temperature or low noise correspond to entropy driven (or “order by disorder”)
annealing effects, wherein stability may initially increase as temperature or noise is increased before becoming
unsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutions
(such as those at different natural scales) are also possible. Identifying community structure via a dynamical
approach where “chaotic-type” transitions were found earlier. The correspondence between the spin-glass-type
complexity transitions and transitions into chaos in dynamical analogs might extend to other hard computational
problems. In this work, we examine large networks (with a power law distribution in cluster size) that have a
large number of communities (q � 1). We infer that large systems at a constant ratio of q to the number of
nodes N asymptotically tend towards insolvability in the limit of large N for any positive T . The asymptotic
behavior of temperatures below which structure identification might be possible, T× = O[1/ ln q], decreases
slowly, so for practical system sizes, there remains an accessible, and generally easy, global solvable phase at low
temperature. We further employ multivariate Tutte polynomials to show that increasing q emulates increasing T

for a general Potts model, leading to a similar stability region at low T . Given the relation between Tutte and
Jones polynomials, our results further suggest a link between the above complexity transitions and transitions
associated with random knots.
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I. INTRODUCTION

Applications of physics to networks [1] has opened fasci-
nating doors for enhancing our understanding of these complex
systems, in particular, community detection [2–5] endeavors to
identify pertinent structures within such systems. Applications
of the problem are exceptionally broad, and numerous methods
have been proposed to attack the problem [6–14], some
of which have been compared for efficiency and accuracy
[15–18].

Computational “phase transitions” have been studied in
many challenging problems [19–26]. Practical implications
of such studies abound (e.g., Refs. [19,23,27–29]), and
understanding the behavior of algorithmic solutions to these
problems is of interest because the knowledge can be leveraged
to understand when a particular solution is computationally
challenging, trustworthy, or perhaps not obtainable either via
an inherent difficulty or required computational effort. Such
knowledge may be used in certain cases to predict the hard or
unsolvable regimes of the problem a priori (e.g., k-SAT [20])
or perhaps, more practically in general, to dynamically adapt
the solver during the onset of a phase transition [30].
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Earlier work related to computational phase transitions
with connections to clustering include [31,32], and Ref. [33]
reviewed some critical phenomena in complex networks. The
complexity of the energy landscape in community detection
was studied for a “fixed” Potts model (model parameters are
not set by the network under study) [34,35], modularity [36],
and belief propagation on block models [37]. The former and
latter studies explicitly identified phase transitions in the re-
spective systems. We extend a previous analysis [35] of a Potts
model where we studied the thermodynamic and complexity
character resulting in two distinct transitions: an entropic
stabilization transition where added complexity can result in
“order by disorder” annealing and a high temperature disor-
dered unsolvable phase. For extreme complexity (high noise)
at low T , the system is again unsolvable. Additional transitions
can appear between unsolvable and difficult solutions or
contending partitions of natural network scales. Here, we
seek to move beyond characterizing the solvable-unsolvable
transition to study the transitions in terms of changes in the
energy landscape and thermodynamic functions as functions
of temperature and “noise” (intercommunity edges).

We utilize overlap parameters in the form of information
theory measures (see Appendix B) and a “computational
susceptibility” χ (see Appendix C). Using these measures,
we monitor increases in the number of local minima
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corresponding to (often sharply) increased computational
complexity. We apply our Potts model to solve a random
graph with an embedded ground state, and we identify phase
transitions between “easy” and “hard” solvable phases which
transition into unsolvable regions. Specifically, the normalized
mutual information (NMI) IN , Shannon entropy H , the energy
E, and χ exhibit progressively sharper changes as the system
size N increases, suggesting the existence of genuine thermo-
dynamic transitions. Similar analysis can be done for other
community detection approaches. Many community detection
methods will agree on the best solution within the easy phase,
but the hard region presents a substantially more difficult
challenge.

The identified transitions may be connected to jam-
ming [28,29] and avalanche (cascade) transitions [38–40]
in networks. Dynamic jamming transitions occur in traffic,
computer networks, and particulate matter (e.g., sand piles),
and the glassy state in amorphous solids may be caused
by similar behavior. References [41–43] showed relations
between clustering and cascades in certain networks, and
Ref. [44] relates agent dynamics to the Kuramoto oscillators
model, which has been used for community detection [45].
The threshold emergence of giant connected components
(GCCs) is related to epidemic thresholds [46,47], and by
nature of the emerging global connectivity, the GCC is
directly detectable via clustering at large-scale resolutions
[i.e., small γ in Eq. (1)]. Jones polynomials in knot the-
ory are related to Tutte polynomials for the Potts model,
so our results suggest similar transitions in random knots
(see Appendix G).

We analytically investigate partition functions and free
energies of several graphs in the high temperature T and large
number of communities q approximations. We illustrate that
increasing T emulates increasing q for a general system, and
the analytical results are consistent with the computational
phase diagrams.

The paper is organized as follows. We introduce the
community detection model in Sec. II and then the embedded
graph and noise test in Sec. III. Section IV demonstrates
the spin-glass-type transitions that occur in our community
detection problem via numerical simulation using several
instability measures. In Sec. V, we derive crossover thresholds
for a simple case and discuss their connections to the numerical
simulations, and Sec. VI demonstrates the effect of the
different solution regions with a specific example. Section VII
carries out analytic free energy calculations on arbitrary un-
weighted graphs using a ferromagnetic Potts model. Appendix
A examines the notation of “trials” and “replicas,” which
are of paramount importance in our work to directly probe
the phase diagram sans the use of mean-field-type or other
approximation concerning complexity. Appendix A defines
some terminology used in the paper. Appendixes B and C
describe our information and stability measures, respectively,
and Appendix D elaborates on our heat bath community
detection algorithm. We introduce the Tutte polynomial
method for calculating the partition function of a Potts model
for unweighted and weighted graphs in Appendix E, and we
show an exact calculation for a simple connected graph in
Appendix F. Finally, Appendix G conjectures the existence of
a similar transition for knots.

II. POTTS HAMILTONIAN

We employ a spin-glass-type Potts model Hamiltonian for
solving the community detection problem

H ({σ }) = −1

2

∑
i �=j

[Aij − γ (1 − Aij )]δ(σi,σj ), (1)

which we refer to as an “absolute Potts model” (APM). Given
N nodes, Aij denotes the adjacency matrix, where Aij = 1 if
nodes i and j are connected and is 0 otherwise. In general,
Aij may be trivially extended to a weighted adjacency matrix
wij (perhaps including “adversarial” relations) [34], but we
utilize unweighted graphs in most of the current work (see
Sec. VI). Each spin σi may assume integer values in the range
1 � σi � q, where q is the (dynamic) number of communities
where node i is a member of community k when σi = k. In the
current work, we set the resolution parameter [11] to γ = 1
which is near an optimal value for communities with high
internal edge densities (see Sec. III).

Previous work [11,34] elaborated on a “zero-temperature”
(T = 0) community detection algorithm which we used to
minimize Eq. (1). A depiction of community structure is shown
in Fig. 1, where different communities are represented by
different node shapes and colors. Here, we investigate the
Hamiltonian at nonzero temperatures (T > 0) by applying
a heat bath algorithm (HBA; see Appendix D). Briefly, we
iteratively select each node and test for possible moves where
probabilities are calculated via a Boltzmann weight e−β�E

(β = 1/T ) at a temperature T using the energy change (�E)
as if the node were moved into a connected (or new) cluster.
Similarly, as elaborated in Appendix D, following each step,
we further allow the possibility of community merges based
on a Boltzmann weight.

We further invoke s independent solutions (“trials,” see
Appendix A) by solving copies of the system which differ by
a permutation of the order of the spin indices. This process
leads to states that (perhaps locally) minimize Eq. (1), so we
select the lowest energy trial as the best solution. We vary

FIG. 1. (Color online) The figure illustrates a partition where
nodes are separated into distinct communities as indicated by distinct
shapes and colors, thus identifying relevant structure in the graph. The
current work elaborates on computational transitions and disorder in
terms of noise (extraneous intercommunity edges) or thermal effects
(high temperature T or large system size N ) for solving such systems
using a stochastic heat bath solver (see Appendix D).
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FIG. 2. (Color online) The schematic illustrates different min-
imizers attempting to solve a system. Colored spheres represent
distinct minimizers (“replicas”) that seek a (perhaps local) minimum
of a cost function. In an easy system, multiple solution attempts
will generally reach a good solution (such as the bottom left region
of the landscape), but hard systems require more effort to solve
accurately (that is, to achieve strong agreement between the replicas).
Unsolvable regions restrict accurate solutions without extreme levels
optimization (such as exhaustive search).

s in the range 4 � s � 20, where we employ s = 4 trials in
general and use s > 4 trials for calculating the computational
susceptibility in Eq. (C1). In brief, a “computational suscepti-
bility” monitoring the onset of high complexity, can be defined
as χn = IN (s = n) − IN (s = 4). χ is the increase in the NMI
IN as the number of trials s = n is increased. Physically, we
ask how many different initial starting points in the energy
landscape are required to achieve a certain desired threshold
accuracy as measured by information theory measures.

In our multiscale (“multiresolution”) analysis, we solve r =
100 independent “replicas” (see Appendix A) and examine
information theory correlations between the replicas and the
planted ground state solutions. We schematically show such a
set of independent solvers in Fig. 2, where stronger agreement
among the replicas indicates a more robust solution. We
compute the average inter-replica information correlations
among the ensemble of replicas allowing us to infer a more
detailed picture of the system beyond that of a single optimized
solution. Specifically, information theory extrema as a function
of T and γ (or other scale parameters in general) correspond
to most relevant scale(s) of the system.

III. CONSTRUCTION OF EMBEDDED GRAPHS
AND THE NOISE TEST

Similar to Ref. [48], we construct a “noise test” benchmark
as a medium in which to study phase transitions in random
graphs with embedded solutions [34,35]. We define the system
noise as intercommunity edges that connect a given node
to communities other than its original or “best” community
assignment. In general [34], it is not possible at the beginning
of an attempted solution to ascertain which edges contribute
to noise and which constitute edges within communities of the
best partition(s).

For each benchmark graph, we divide N nodes into q

communities with a power law distribution of community
sizes {ni} given by nβ , where β = −1. We then connect
“intracommunity” edges at a high average edge density pin =

0.95. Initially, the external edge density is zero, pout = 0, so
that we have perfectly decoupled clusters. To this system,
we add random intercommunity edges at a density of pout <

0.5. We define pin (pout) as the ratio of the number of
intracommunity (intercommunity) edges over the maximum
possible intracommunity (intercommunity) edges.

We define the average external degree of each node Zout as
the average number of links that a given node has with nodes in
communities other than its own. Similarly, the average internal
degree Zin is defined as the average number of links to nodes
in the same community, and Zin + Zout = Z, where Z is the
average coordination number. Then we can explicitly write the
internal and external edge densities

pin = NZin∑q

a=1 na(na − 1)
(2)

and

pout = NZout∑q

a=1

∑q

b �=a nanb

, (3)

where na denotes the size of community a.
The communities in this construction are well defined, on

average, at reasonable levels of noise (pout � 0.3 depending on
the typical community size n). As external links are progres-
sively added to the system (pout increases), the communities
become increasingly difficult to detect. At some stage, enough
noise is added and pout is sufficiently high that the planted
partition cannot be detected despite the fact that the optimal
ground state is still well defined. This transition often occurs
sharply, particularly for large networks. We investigate the
phase transition from the solvable to unsolvable phases at both
low and high temperatures by means of the HBA described in
Appendix D.

IV. SPIN-GLASS-TYPE TRANSITIONS

We previously reported [35] on the existence of two spin-
glass-type transitions in the constructed graphs mentioned in
Sec. III. Evidence for the transitions are observed in several
measures such the accuracy of the solution obtained by means
of the APM in Eq. (1) (and other models [9,34] in general),
the computational effort required to converge to a solution
[11,34], entropy effects, and others. Compared to another
Potts-type qualtity function [9] utilizing a “null model” (a
random graph used to evaluate the quality of a candidate
partition), the APM exhibits a somewhat sharper transition
as N is increased [34]. As alluded to above, two transitions are
generally encountered as the noise value (or temperature) is
increased. At fixed temperature T , as pout is steadily increased
from zero, the first onset of spin-glass behavior first appears
for values p1 � pout � p2.

Figure 3(a) illustrates a one-dimension characterization
of the easy and hard phases in terms of the level of noise
(extraneous intercommunity edges) encountered by a greedy
solver. It is in this context that greedy algorithms are, in
general, more easily trapped in local energy minima above
a certain noise threshold. Stochastic solvers such as a HBA
discussed in Appendix D or simulated annealing (SA) enable
one to circumvent noise to some extent, but excessive levels
will even thwart these more robust solvers because meaningful

066106-3



DANDAN HU, PETER RONHOVDE, AND ZOHAR NUSSINOV PHYSICAL REVIEW E 86, 066106 (2012)

FIG. 3. (Color online) Panel (a) schematically illustrates the
easy and hard phases induced by the level of noise (extraneous
intercommunity edges) encountered by a solver. Greedy algorithms
are easily trapped in local energy minima above a certain noise
threshold. We previously showed that the model of Eq. (1) is robust
to noise [34] even with a greedy algorithm. Stochastic solvers such
as a HBA (see Appendix D) or simulated annealing enable one
to circumvent the effects of some noise, but excessive levels will
still thwart these solvers because meaningful partition information
is obscured by the complexity of the energy landscape. Panels (b)
and (c) schematically depict the easy and hard phases in terms of
the temperature for the stochastic heat bath solver (see Appendix D).
Above a graph-dependent threshold, the solver is less sensitive to
local energy landscape features.

information is eventually obscured by the complexity of the
energy landscape. Figures 3(b) and 3(c) depict the easy and
hard phases at low and high temperatures T , respectively,
for our HBA (see Appendix D). Above a graph-dependent
threshold, the solver is insensitive to local features, and it is
unable to find an accurate solution.

We showed that Eq. (1) is robust to noise [34], leading
to exceptional accuracy even with a greedy algorithm. Some
other methods and cost functions [7,49] have also proven to
be very accurate [18] with a greedy-oriented algorithm. While
maximizing modularity [50] and a closely related cost function
in Ref. [9] have proven to be accurate and productive, Refs. [36,
51,52] have discussed problems associated with maximizing
modularity in community detection. We briefly illustrated [34]
a correspondence between the major transition experienced by
Eq. (1) and a Potts model in Ref. [9]. We conjecture the exis-
tence of a related transition for random knots in Appendix G.

In Secs. IV A and IV B, we elaborate on the transi-
tions using a “computational susceptibility” χ as defined in
Appendix C (see also [11,35]). In analogy with other physical
susceptibility parameters, χ measures the response of the
system to additional optimization effort. In the presence of
multiple local minima [e.g., Fig. 4(b)], more trials may increase

FIG. 4. (Color online) The figure schematically illustrates the
convergence time of a solver in panel (a) and the effect of additional
optimization trials in panel (b). Additional optimization trials are
utilized in a “computational susceptibility” χ in order to numerically
estimate the complexity of the energy landscape (see Appendix C).

the accuracy. A higher χ indicates a more disordered, but nav-
igable, energy landscape, whereas a low χ indicates that addi-
tional optimization has less effect whether due to extreme dis-
order or due to a trivially solvable system. Finally, in Sec. IV C,
we illustrate the transitions using additional stability measures.

A. χ (T, pout) at fixed α = q/N

We show the phase transitions in terms of three-dimensional
(3D) plots with the computational susceptibility χ (T ,pout) for
a range of system sizes N and numbers of communities q.
First, we fix the ratio α = q/N and study the phase transitions
as N increases. Then we test a range of systems with fixed q

as N increases.

1. χ (T, pout) at α = 0.016

In Fig. 5 panels (a) through (d), we begin the analysis at
a small α = q/N = 0.016 ratio. The results for four system
sizes are shown, N = 256, N = 512, N = 1024, and N =
2048, which maintain a fixed ratio of α across the respective
rows. Each plot shows the “easy,” “hard,” and “unsolvable”
phases.

The two “ridges” in each of the plots correspond to the
computationally hard phases. Generally, we may have two
sets of spin-glass-type transitions into the hard phase as pout

or T is increased. For a given temperature T , hard phases
generally appear for p1 � pout � p2 [as marked in panels (a),
(d), and (h) of Fig. 5]. As we reiterate and allude to later, in
some cases, these transitions correspond to an annealing effect,
wherein increasing the noise and/or temperature improves
the accuracy of the solutions. Generally, higher temperature
transitions may also appear [see, e.g., the V shaped ridge in
panel (h) of Fig. 5, wherein p1 and p2 are nonmonotonic in
T ]. As is similarly vividly seen in panel (d), the hard phase
boundaries may become multivalued and “bow” as a function
of pout; such a situation corresponds to a re-entrant transition
whence the system goes from the unsolvable disordered phase
via a hard phase extending from p1(T ) < pout < p2(T ) to
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(a) N = 256, q = 4, α = 0.016
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(b) N = 512, q = 8, α = 0.016
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(c) N = 1024, q = 16,
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(d) N = 2048, q = 32,
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(e) N = 256, q = 18, α = 0.07
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(f) N = 512, q = 35, α = 0.07
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(g) N = 1024, q = 70, α = 0.07 (h) N = 2048, q = 140,
α = 0.07
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(i) N = 128, q = 20, α = 0.15
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(j) N = 256, q = 40, α = 0.15
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(k) N = 512, q = 80, α = 0.15
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(l) N = 1024, q = 160,
α = 0.15
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FIG. 5. (Color online) Each panel shows a 3D plot χ (T ,pout) as a function of temperature T and noise level pout for systems with the
indicated number of nodes N , number of communities q, and a ratio α = q/N . In panels (a)–(h) for α = 0.016 and 0.07, all plots show three
clear phases, and the “ridges” at low and high temperatures mark the hard phase. The hard phase separates the easy phase (the flat region
in the lower left corner with low temperature and low noise) from the unsolvable phase (the flat region in the upper right corner with high
temperature and high noise). In panels (a)–(h), the ridges in χ (T ,pout) become narrower as N increases. The area of the easy (hard) regions
decreases (increases) from panel (a) to panel (d) and from panel (e) to panel (h), respectively. When α = 0.016, the complexity of the low
temperature hard phase becomes less prominent as N is increased from panel (a) to (d). Conversely, the high temperature hard phase becomes
more prominent as N is increased while keeping a constant average number (1/α = 64) of nodes per community. For α = 0.07, the hard phase
at low temperature becomes more prominent as N is increased from panel (e) to (h) yet remains roughly uniform at high temperature. In panels
(i)–(l) for α = 0.15, only the larger systems with N � 512 show clear phases. The smaller systems with N = 128 in panel (i) and N = 256 in
panel (j) show very noisy phases where only the easy phase can be readily determined, and the boundaries for the hard and unsolvable phases
are difficult to pinpoint.

the ordered easy phase and then, via a second higher noise
hard phase [p3(T ) < pout < p4(T )] back to the unsolvable
disordered phase as pout is increased at a fixed temperature T .
Later on, we corroborate the location of these phase boundaries
by the use of other metrics including disparate information
theoretic measures and thermodynamic quantities such as the
entropy and energy. For a fixed value of the ratio of q/N , the
height of the first ridge at low temperature decreases as the

system size N increases while the height of the second ridge
at high temperature increases in the same process. This finite
size scaling behavior for the hard phase at high temperature
indicates that the phase transition at high temperature exists
in the thermodynamic limit. However, the phase transition
at low temperature will disappear in the same limit. In the
meantime, the ridge in the high temperature will gradually
expand into the low temperature region as the system size
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(a) “hard” phase boundary for
α = 0.016

(b) “hard” phase boundary for
α = 0.07

(c) “hard” phase boundary for
α = 0.15

FIG. 6. (Color online) Corresponding to Fig. 5 and Sec. IV A, each plot depicts the boundaries of the hard phase for the system series with
a fixed α = q/N ratio. Panels (a), (b), and (c) show the results for α = 0.016, α = 0.07, and α = 0.15, respectively. System sizes range from
N = 256 to 2048, and q varies from 4 to 160, as indicated in each plot. For each α, the area within hard phase boundary becomes progressively
narrower, indicating that the transitions from the easy to unsolvable phases are more clear in the thermodynamic limit.

increases. Thus, for the systems with the small ratio of α,
the phase transition will exist in almost the entire temperature
range in the thermodynamic limit (see Sec. V).

The easy phase shrinks and the unsolvable phase expands as
q increases for fixed α = q

N
. The approximate area of the easy

phase on the left corner in panel (a) is in the range of T ∈ (0,20)
and pout ∈ (0,0.4). The area of the unsolvable phase on the
right upper corner is in the range of T ∈ (20,+∞) and pout ∈
(0,0.4). As the system size increases from q = 4 in panel (a) to
q = 16 in panel (c) for a fixed α = q

N
, the area of the easy phase

shrinks to the range of T ∈ (0,5) and pout ∈ (0,0.4) while the
unsolvable phase expands to T ∈ (5,+∞) and pout ∈ (0,0.4).
As the number of communities further increases to N = 32 in
panel (d), the easy phase further shrinks to the range of T ∈
(0,4) and pout ∈ (0,0.4) while the unsolvable phase expands
to T ∈ (4,+∞) and pout ∈ (0,0.4). We note that the range of
pout for the easy phase does not decrease as the number of
communities increases.

Low temperature transitions correspond to an “order by
disorder” type effect where fluctuations render the system

ordered or solvable. As the temperature T increases, the system
may veer towards its global minimum by annealing. In such
cases, by virtue of entropic fluctuations, quenching is thwarted
and the system may probe low lying states and achieve an
ordered configuration.

In order to track the range of the hard phases, we further
display a set of “boundary” plots in Fig. 6 as well as the first
transition point p1 as the function of temperature in Fig. 7.
For the system series with the fixed α = 0.016 discussed
above, the 2D “hard phase” boundaries and the values of the
first transition points are in panel (a) of Fig. 6 and Fig. 7,
respectively.

In Fig. 6(a), the area of the hard phase shrinks, and its
area at high temperature becomes narrower as the system size
increases. Specifically, the width of the hard phase for N =
256 is about �T = 6, while it only extends to �T = 1 for
the N = 2048. Together with the 3D plots in panels (a)–(d) of
Fig. 5, we conclude that the hard phase at the high temperature
becomes sharper in the thermodynamic limit. That is, similar
to our earlier work [35] as the system size N increases while

(a) p1 (T ) with α = 0.016 (b) p1 (T ) with α = 0.07 (c) p1 (T ) with α = 0.15

FIG. 7. (Color online) Corresponding to Fig. 5 and Sec. IV A, each plot depicts the first phase transition point p1 as a function of the
temperature T for systems with a fixed ratio of α = q/N . Panels (a)–(c) show the results for α = 0.016, α = 0.07, and α = 0.15, respectively.
System sizes range from N = 256 to 2048, and q varies from 4 to 160, as indicated in each plot. All panels show that when α is fixed, the value
of the first transition point p1 decreases as the system size increases. This behavior further indicates that the system becomes more complex to
solve in the thermodynamic limit.
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(a) τ with α = 0.016 (b) τ with α = 0.07 (c) τ with α = 0.15

FIG. 8. (Color online) Corresponding to Fig. 5 and Sec. IV A, the convergence time τ [see Fig. 4(a)] as a function of noise pout at zero
temperature for the systems with a fixed ratio of α = q/N . Panels (a)–(c) show the results for α = 0.016, α = 0.07, and α = 0.15, respectively.
System sizes range from N = 256 to N = 2048, and q varies from 4 to 160, as indicated in each plot. The noise level pout at the first peak of
the convergence time corresponds to the first transition point p1 in Fig. 7 at zero temperature. As the system size increases, the first peak in the
convergence time moves to the left. They share the same trend as in Figs. 6 and 7.

holding the average number of nodes per community fixed,
the domain in the noise and temperature plane in which the
hard computational phase is found progressively decreases.
This suggests that in the thermodynamic limit a direct sharp
transition may occur between the easy and unsolvable phases.

The boundaries of the hard phase at low temperature are
more easily seen in Fig. 7(a), where we plot the first transition
point p1 as the function of temperature T for a range of
systems. The plots confirm the observations in Figs. 5(a) and
5(d) regarding the constant pout range. That is, the range of
pout for the easy phase does not decrease as the system size
increases [in Fig. 7(a), p1 collapses before T � 5 for all the
systems]. This behavior hints that the first transition point
p1 at low temperature and small α remains constant in the
thermodynamic limit.

As depicted in Fig. 4(a), the convergence time τ provides
another view of the phase transition. We plot τ as a function
of noise level pout in Fig. 8(a) for systems with a fixed ratio
of α = q/N = 0.016. The value pout at the first peak of the
convergence time in each system is consistent with the first
transition point p1 observed in Fig. 7(a). As the number of
communities q increases, the peak convergence time shifts to
the left, which corresponds to the lower value of p1.

For a given noise level pout, the highest temperature at
which the system is still solvable tends to zero as the number
of communities q increases. As we demonstrate in this work
for myriad examples (see also [53]), the critical temperature
beyond which the system is unsolvable is T ∗ ≈ 1/ ln q. As the
number of communities q → ∞, the entire system becomes
unsolvable.

2. χ (T, pout) at α = 0.07

For α = 0.07, the phase transitions are presented in Fig. 5
panels (e) through (h). The phases in panel (e) are noisy
compared to panels (f) through (h), and all of the systems
are more complicated than the plots with α = 0.016. As N

increases, the phase transitions become more clear. However,
contrary to panels (a) through (d), the phase transition at
low temperature becomes more prominent as N increases,
and the transition at high temperature stays roughly constant.
Specifically, the height of the susceptibility peak at low

temperature increases from χ = 0.01 at N = 256 in panel (e),
χ = 0.05 at N = 512 in panel (f), χ = 0.1 for N = 1024
in panel (g), and finally reaches χ = 0.2 in panel (h) with
N = 2048. The phase transitions in this series appear to be
persistent.

The easy phase (lower left of each panel) decreases in area
as the system size increases. This is the same trend that was
observed in the previous α = 0.016 series, implying that the
easy phase will tend to decrease in the thermodynamic limit up
to a threshold (see Sec. V). Specifically, the easy phase in the
smallest system in panel (e) covers the range of T ∈ (0,3) and
pout ∈ (0,0.3), while in the large system in panel (h) covers
T ∈ (0,1.5) and pout ∈ (0,0.2). The range for pout in the easy
phase decreases as the N increases which differs from the α =
0.016 data where the noise pout stayed at a roughly constant
range of pout ∈ (0,0.4). In both series for α = 0.016 and 0.07,
the value of the initial transition point p1 decreases in the
thermodynamic limit.

The corresponding 2D plots of the hard phase boundaries
and the first transition points p1 are displayed in Fig. 6(b)
and Fig. 7(b), respectively. For the series with α = 0.07 in
Fig. 6(b), the area of the hard phase becomes narrower at
both low and high temperatures as the system size increases.
In detail, the width of the hard phase for N = 256 is about
�T = 1.3, while the width shrinks to about �T = 0.3 at N =
2048. Together with the 3D phase diagrams in Figs. 5(e)–5(h),
the phase transitions become sharper in the thermodynamic
limit.

As shown in Fig. 7(b), the first transition point p1 decreases
as the system size increases, even in the low temperature limit.
This is consistent with the first peak of the convergence time τ

at zero temperature in Fig. 8(b). This indicates that the system
becomes progressively harder to solve in the thermodynamic
limit over the whole temperature range.

3. χ (T, pout) at α = 0.15

In panels (i) through (l) of Fig. 5, α = 0.15 and the clusters
are smaller on average resulting in systems that are more
difficult to solve. In panels (i) and (j), almost the entire region
is covered by small peaks, which indicates mixing of the hard
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(d) N = 2048, q = 16,
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(f) N = 512, q = 40, α = 0.078
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(g) N = 1024, q = 40,
α = 0.039
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(h) N = 2048, q = 40, α = 0.02

(i) N = 512, q = 70, α = 0.14
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(j) N = 800, q = 70, α = 0.088

Χ1024

1

2

3

T

0.0

0.2

0.4

pout

0.00
0.05
0.10
0.15
0.

(k) N = 1024, q = 70,
α = 0.068
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(l) N = 2048, q = 70,
α = 0.034
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FIG. 9. (Color online) Similar to Fig. 5, we plot of χ (T ,pout) as a function of temperature T and noise level pout for systems with the
indicated number of nodes N , communities q, and α = q/N ratio. Here, q is fixed for each row series, and we vary α (rows) to examine the
behavior as N increases (columns). The heights of the susceptibility peaks at higher T increase across each series as N increases, whereas
the heights at low T are relatively constant. The N = 256 node systems do not show clear hard or unsolvable phases, but the transitions are
strong at high temperature for most panels in the second and third columns of plots.

and unsolvable phases, thus making the phase boundaries hard
to detect.

The flat easy regions are recognizable in all panels, but the
area is small relative to the previous cases and becomes even
smaller as N increases into panel (l). In panel (i), the flat easy
region is roughly triangular with legs along T ∈ (0,1.5) and
pout ∈ (0,0.2). The easy region shrinks to a smaller triangle
along T ∈ (0,0.2) and pout ∈ (0,0.2) in panels (j) and (k). In
panel (l), it further shrinks to T ∈ (0,1) and pout ∈ (0,0.1). The
easy phase shrinks for both pout and T as N increases, which
further indicates that the initial transition point p1 decreases
substantially in the thermodynamic limit.

The corresponding plots of the hard phase boundaries and
the first transition points p1 are displayed in Figs. 6(c) and
7(c), respectively. From Fig. 6(c), the area of the hard phase
shrinks in the thermodynamic limit. The hard phase is more
identifiable relative to the unsolvable region as N increases.
The initial transition point p1 drops as N increases as shown
in Fig. 7(c). The convergence time τ for the systems with the
fixed ratio of α = q/N = 0.15 at zero temperature is shown
in Fig. 8(c), where the first peak of τ shifts to the left as
the system size increases. This is consistent with the trend
observed in Fig. 7(c). We further show in Figs. 14 and 15
that the first transition points in “computational susceptibility,”
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(a) hard phase boundary for q = 16 (b) hard phase boundary for q = 40 (c) hard phase boundary for q = 70

FIG. 10. (Color online) Corresponding to Fig. 9 and Sec. IV B, each plot depicts the boundaries of the hard phase for the system series
with a fixed number of communities q where panels (a)–(c) correspond to q = 16, 40, and 70, respectively. System sizes range from N = 256
to 2048 as indicated. For each q, the area of the hard phase becomes progressively narrower, which indicates clearer transitions from the easy
to unsolvable phases in the thermodynamic limit.

energy, entropy, convergence time and NMI are consistent with
each other.

In Fig. 16, we provide plots of scaled waiting correlation
function data which clearly indicate spin-glass-type collapse.
The collapse is best at the center of the computational
susceptibility ridge Fig. 16(b). The collapse persists up to the
ends of the susceptibility ridge [e.g., pout = p1 in Fig. 16(b)]
and is no longer valid outside the susceptibility ridge [e.g.,
pout = 0.26 > p2 = 0.24 in Fig. 16(c)].

B. χ (T, pout) at fixed q

We fix the number of communities at q = 16, 40, or
70 and increase the system size N from 256 to 2048. The
plots of computational susceptibility χ (T ,pout) for q = 16
series of systems are shown in panels (a) through (d) of
Fig. 9. As in Sec. IV A, the ridges indicate hard phases
which become more prominent as N increases, while the
ridges at low temperature remain at relatively low constant
values.

The areas of the easy phases on the lower left corner
expand as the system size increases from panel (a) to panel

(d). This trend of increasing area is the reverse of the behavior
in the fixed α systems systems in Sec. IV A. This is easy to
understand since q increases with N here, and the high internal
edge density pin causes the larger clusters to be more strongly
defined.

We increase the number of communities to q = 40 for the
systems in panels (e) through (h). N varies from 256 to 2048,
and α = q/N decreases as N increases so that the systems
again become less complicated because the communities
become more strongly defined. The hard and unsolvable phases
in the small N = 256 system in panel (e) are difficult to
distinguish. Only the easy phase can be easily identified by
noting the flat region on the lower left of each panel. The
“computational susceptibility” χ (T ,pout) peaks at increasing
heights at both the low and the high temperatures from panels
(f) to (h), indicating that the phase transitions become more
prominent as the system size increases.

We further increase the number of communities to q = 70
and study the phase transitions for the same range of system
sizes. The hard phase at high temperature in panel (i) is difficult
to detect. χ (T ,pout) clearly shows the three phases in panels
(j) and (k). The easy phases again become larger as the system

(a) p1 (T ) with q = 16 (b) p1 (T ) with q = 40 (c) p1 (T ) with q = 70

FIG. 11. (Color online) Corresponding to Fig. 9 and Sec. IV B, each plot depicts the first phase transition point p1 as a function of
temperature T for systems with a fixed q. Panels (a)–(c) show the results for q = 16, 40, and 70, respectively. System sizes range from
N = 256 to 2048, as indicated in each plot. All panels show that the first transition point increases as the system size increases, which is
consistent with the complexity trend of the system series.
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(a) τ with q = 16 (b) τ with q = 40 (c) τ with q = 70

FIG. 12. (Color online) Corresponding to Fig. 9 and Sec. IV B, the convergence time τ [Fig. 4(a)] as a function of noise pout for systems
with fixed q. Panels (a)–(c) show the results for q = 16, 40, and 70, respectively. System sizes vary from N = 256 to 2048, as indicated in each
plot. The noise level pout at the first peak of the convergence time corresponds to the initial transition point p1 in Fig. 11 at zero temperature.
As the system size increases, the first peak in the convergence time moves to the right. They share the same trend as in Figs. 10 and 11.

size increases. χ (T ,pout) in the hard phase increases as N

increases, indicating that the phase transitions at both low
and high temperatures are more obvious from panel (i) to
panel (k).

In Figs. 10 and 11, we also show corresponding 2D plots for
the boundaries of the hard phase and the first transition point
p1 as the function of temperature T . In Fig. 10, the area of the
hard phase becomes narrower as the system size increases. At
q = 40, for example, the width of the hard phase for the small-
est system at N = 256 is about �T = 1.5. As N increases,
the hard phase width shrinks to �T = 1 at N = 512 and down
to �T = 0.5 for N = 2048, which further indicates that the
phase transition becomes sharper in the thermodynamic limit.
In Fig. 11, the first transition point p1 increases over the entire
temperature range as N increases. This behavior is consistent
with the system complexity trend as previously mentioned.

In Fig. 12, we further plot the convergence time τ as the
function of noise pout for a fixed number of communities q

at zero temperature. pout for the first peak of the convergence
time matches the first transition point p1 in Fig. 11. As the
system size increases, the peak moves to the right. This is
also consistent with Fig. 11, where the system becomes less
complicated as N increases.

C. Other information theoretic and thermodynamic quantities

We further fortify and provide our results of the phase
diagram of our systems as ascertained via other information
theoretic and thermodynamics quantities. These measures
include the average NMI IN between replica pairs, Shannon
entropy H , and energy E, as shown in Fig. 13. We additionally
show the corresponding computational susceptibility χ from
Figs. 5 or 9 for comparison. All panels are for a system of
size N = 2048. In panels (a) through (d), q = 16, which
corresponds to Fig. 5(d). Panels (e) through (h) plot results
for q = 32 with α = 0.015, which corresponds to Fig. 9(d).
Panels (i) through (l) display the results for q = 70, which
corresponds to Fig. 5(l). Finally, panels (m) through (p) display
results for q = 140 and α = 0.07, corresponding to Fig. 9(h).

All panels consistently display the three different com-
plexity phases: the easy (flat region, lower left), hard (varied
central regions), and unsolvable phases (far right or top). The
existence of the hard phase is reflected by the ridges at both

low and high temperatures in the susceptibility χ plot, which
often corresponds to rapids shifts (up or down) in the other
measures. In each plot, the red line serves as a guide to the eye
to emphasize the boundaries between different phases. The
phase boundaries adduced from the different measures agree
with each other.

In Ref. [35], we also demonstrated the spin-glass character
of the phase transition by observing the exceptional collapse
of time autocorrelation curves (over four orders of magnitude
of time at high and low temperatures) in the vicinity of
the hard phase. We further elucidated on evidence regarding
phase transitions [35] in identifying community structure via a
dynamical approach (some other dynamical methods include
[13,45]), where “chaotic-type” transitions that we speculated
upon may extend into the node dynamics for large systems.

V. NONINTERACTING CLIQUES

As depicted in Fig. 17, we analytically estimate a minimum
transition temperature by examining a system with q nonin-
teracting cliques. In panel (a), each of the q communities
consists of l nodes which are maximally connected, but no
noise exists between these cliques. The presence of noise will,
in general, lower the temperature T× of the transition point
which manifests as departure from the easy phase in certain
regions of Figs. 5 and 9.

Within our algorithm and model, communities do not
interact in an explicit sense. In addition, with this model
problem the situation is greatly simplified because no edges
are assigned between cliques, so we use Eq. (1) to calculate
the partition function of the system by counting the energy
contribution of all edges within each cluster over the number
of combinations for partitioning the clusters. As a further
simplification, we also set the energy contribution for a single
edge to be −2 so that the Hamiltonian gives an energy of −1
for each edge.

A. Partition function

First, we investigate the smallest nontrivial clique size
with l = 3 nodes. The partition function for the decoupled
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(a) χ(T, pou t ) for q = 16,
α = 0.0078

(b) IN (T, pou t ) for q = 16,
α = 0.0078

(c) H (T, pou t ) for q = 16,
α = 0.0078

(d) E(T, pou t ) for q = 16,
α = 0.0078

(e) χ(T, pou t ) q = 32,
α = 0.016

(f) IN (T, pou t ) for q = 32,
α = 0.016

(g) H (T, pou t ) for q = 32,
α = 0.016

(h) E(T, pou t ) for q = 32,
α = 0.016

(i) χ(T, pou t ) for q = 70,
α = 0.034

(j) IN (T, pou t ) for q = 70,
α = 0.034

(k) H (T, pou t ) for q = 70,
α = 0.034

(l) E(T, pou t ) for q = 70,
α = 0.034

(m) χ(T, pou t ) for q = 140,
α = 0.068

(n) IN (T, pou t ) for q = 140,
α = 0.068

(o) H (T, pou t ) for q = 140,
α = 0.068

(p) E(T, pou t ) for q = 140,
α = 0.068

FIG. 13. (Color online) Plots of the computational susceptibility χ (column one), NMI IN (column two), Shannon entropy H (column
three), and energy E (column four) as functions of temperature T and intercommunity noise pout. System sizes all use N = 2048, and q

varies from 16 to 140 in different rows. All plots show the easy, hard, and unsolvable phases often by rapid shifts in the respective measures.
The marked (red, color online) line highlights the onset of the hard phase at pout = p1(T ) in each measured quantity, where we note that the
boundaries match well across each row.
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FIG. 14. (Color online) The plots of susceptibility χ , convergence
time τ , energy E, accuracy IN , and the Shannon entropy H in
terms of noise pout for the system N = 2048 and q = 140 at a zero
temperature. All the plots show three phases as noise varies. (1) Below
p1 = 0.2, the system can be solved in this “easy” region (e.g., the
accuracy is IN = 1). (2) When 0.2 < pout < 0.24, where the benefit
of extra trials is the largest, it is “hard” to solve the system without
misplacing nodes (e.g., χ , E and H achieve the peak). (3) Above
p2 = 0.24, the system is “impossible” to be perfectly solved. [p1,p2]
are generous bounds in transition crossover regions. Note that the two
transitions are demonstrated to be of spin-glass type by observing the
scaling of the correlation function between [p1,p2] in Fig. 16.

cliques is

Z = (Zl)
q =

∑
σi ,σj

e−βHi,j , (4)

where Zl is the partition function for a single clique and β =
1/T is the inverse temperature. Considering the l = 3 cluster
combinations depicted in Fig. 17(b), Z3 is

Z3 = qe6β + 3q(q − 1)e2β + q(q − 1)(q − 2). (5)

The first term represents the optimal local cluster solution, and
the sum of the remaining terms accounts for the remaining
suboptimal local partitions. We define ωl as the ratio of
Boltzmann weights of the suboptimal partitions to the optimal
solution. For Z3, the ratio ω3 is

ω3 = q(q − 1)[3e2β + (q − 2)]

qe6β
. (6)

ωl < 1 indicates that the optimal solution is dominant, while
ωl → ∞ means the system is disordered. We can define ωl = 1
as the transition point from the ordered phase to the disordered
phase, and the corresponding “crossover” temperature T× is
found by solving the transcendental equation

3(q − 1)e−4/T× + (q − 1)(q − 2)e−6/T× = 1. (7)

In the limit of large q, this equation simplifies to

q2e−6/T× 	 1, (8)

which yields our estimate for the crossover temperature,

T× 	 3

ln q
, (9)

for the l = 3 clique system. This is in agreement with the
general trend on accuracy in Ref. [53].

If we generalize to arbitrary clique size l, the corresponding
partition function for a single clique becomes

Zl = qe2β( l

2 ) + lq(q − 1)e2β( l−1
2 )

+ l(l − 1)

2
q(q − 1)(q − 2)e2β( l−2

2 )

+ · · · + q(q − 1)(q − 2) · · · (q − l). (10)

Again, the first term in Eq. (10) is the Boltzmann weight of the
optimal clique partition, and the other terms sum the weights

(a) χ, τ , E , H , IN for the system of size N = 1024 (b) IN for the system of N = 1024 with different q

FIG. 15. (Color online) (a) The plots of susceptibility χ , convergence time τ , energy E, accuracy IN , and Shannon entropy H in terms of
noise pout for the system N = 1024 and q = 70 at a zero temperature. (b) The NMI IN in terms of noise pout for a series of systems with the
size of N = 1024 but different number of communities q. From both plots, we are able to detect the first and second transition point p1 and
p2. p1 is the point where the IN drops from 1, χ increases from 0, τ achieves the peak, E, and H increases from some constant value. p2 is
the position where the IN curves with different number of communities collapse shown in (b). p2 also corresponds to the peak of energy and
entropy as shown in (a).
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(a) pou t = 0.2 is within the zero
temperature “hard” phase, where the

collapse is perfect.

(b) pou t = 0.22 is within the zero
temperature “hard” phase, where the

collapse is perfect.

(c) pou t = 0.26 is within the zero
temperature “unsolvable” phase,

where the collapse is poor.

FIG. 16. (Color online) We show a collapse of the correlation curves for different waiting times tw for a system with N = 2048 nodes,
q = 140 communities. pout varies from 0.2 in panel (a) to 0.26 in panel (c). The first and second transition points for this system are p1 = 0.2
and p2 = 0.24. The temperature is T = 0. The vertical axis is g(t)C(tw,t), where g(t) = 8 − ln(t), and C(tw,t) = 1

N

∑N

i=1 δσi (tw ),σi (tw+t) is the
correlation function. The horizontal axis is u(tw,t) = 1

1−μ
[(t + tw)1−μ − t1−μ

w ], where μ = 0.1. The noise pout = 0.2 (a) and pout = 0.22 (b) lie
within the “hard” region where the collapse of correlation function is perfect. The noise pout = 0.26 (c) is above the second transition point
p2 in the “unsolvable” region, where the collapse becomes poor. That the collapse of the correlation function starts to degrade right after the
second transition point p2 at zero temperature indicates that this transition is of the spin-glass type.

of the incorrect partitions. ωl is

ωl =
∑l

k=1

(
l

k

)(
q

k+1

)
(k + 1)!e2β( l−k

2 )

qe2β( l

2 )
, (11)

and ωl = 1 returns the crossover temperature T× for arbitrary
cliques of size l. We summarize the crossover temperature
relations in column one of Table I, where we express e2/T×

in terms of powers of q for several values of l. The general
relation is

T× 	 l

ln q
. (12)

B. Symmetry breaking

We can inquire about the crossover temperature T× from
another perspective. Take two nodes i and j in the same clique.
If the probability that a solution assigns them to the same
community is high, then the system is in the “ordered” state. If
this probability is 1/q, the system is in its “disordered” phase.
We can define a crossover temperature T

(1/q)
× at which the

probability of node i and j being in the same cluster exceeds
1/q and thus symmetry between Potts spins is broken. This
probability P (σi = σj ) = 〈δσi ,σj

〉 is

P (σi = σj ) = Trσi
δσi ,σj

e−βH

Trσ e−βH
, (13)

where σi and σj denote the cluster memberships for nodes i

and j , respectively. Expressing the numerator and, in terms of
l and q, Eq. (13) becomes

P (σi = σj ) = {
qe2β( l

2 ) + (l − 2)q(q − 1)e2β( l−1
2 )

+ · · · + q(q − 1) · · · (q − l − 2)
}

/{
qe2β( l

2 ) + lq(q − 1)e2β( l−1
2 )

+ · · · + q(q − 1)(q − 2) · · · (q − l)
}
. (14)

In the limit of large q, Eq. (14) simplifies to

P (σi = σj ) 	 qe2β( l

2 ) + ∑l−2
k=1

(
l−2
k

)
qk+1e2β( l−k

2 )

qe2β( l

2 ) + ∑l
k=1

(
l

k

)
qk+1e2β( l−k

2 )
. (15)

Choosing P (σi,σj ) = 1/q yields in a crossover temperature
T

(1/q)
× at which the system goes from being unbroken q-state

symmetry to ordered. When l = 3, Eq. (15) becomes,

q2e6β + q3e2β 	 qe6β + 3q2e2β + 3q3 + q4. (16)

In the large q limit, e2β 	 q2/3, and the crossover tem-
perature is T

(1/q)
× = 3/ ln q. The asymptotic expressions for

several values of q and l are summarized in column two of
Table I. For general q and l, the relation is

T
(1/q)
× 	 l

ln q
. (17)

Equation (17) is consistent with Eq. (12) and also [53].

(a) (b)

FIG. 17. (Color online) Panel (a) depicts q independent cliques
(maximally connected clusters). Panel (b) indicates the different
combinations of l = 3 nodes which must be summed (including three
copies of the 2-1 configuration) in order to determine the partition
function for a single clique.
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TABLE I. In column one, the crossover temperature T× from
an “ordered” to a “disordered” state is determined by defining the
ratio ωl = 1 of the sum of Boltzmann weights of suboptimal node
assignments to the weight of the optimal assignment into clique
communities as a function of the cluster size l and the number of
communities q in the large q limit. In column two, we estimate
T

(1/q)
× 	 T× through different means by calculating the probability

p = 1/q that two nodes (in the same clique ideally) are determined
to be in the same cluster. In the last column, we generalize column
two for an arbitrary probability p.

l e2/T× e2/T
(1/q)
× e2/T

(p)
×

2 q q pq2

3 q2/3 q2/3 p1/3q

4 q1/2 q1/2 p1/6q2/3

5 q2/5 q2/5 p1/10q1/2

6 q1/3 q1/3 p1/15q2/5

...
...

...
...

l q2/l q2/l p2/(l2−l)q2/(l−1)

For a general crossover probability P (σi,σj ) = p with l =
3, the crossover temperature T

(p)
× is determined by solving

e6β + qe2β 	 pe6β + 3qpe2β + 3q2p + q3p. (18)

In the large q limit, Eq. (18) is e2β 	 p1/3q, where T
(p)
× 	

2/(ln q + 1/3 ln p). Results for T
(p)
× for several values of q

and l are shown column three of Table I. For general q and l,
the relation is

T
(p)
× 	 1

p1/lq
. (19)

3/(lnN-ln3)

FIG. 18. (Color online) The crossover temperature at which the
system cannot be perfectly solved as the function of the system
size N . The data here use cliques of size l = 3. The dashed line
is the analytical result and the solid line is determined by the heat
bath community detection algorithm optimizing the Hamiltonian of
Eq. (1).

C. Simulated crossover temperature

We can also simulate the crossover temperature T× or T
(p)
×

as a function of system size N by solving the noninteracting
clique problem using our heat bath community detection
algorithm (see Appendix D). As seen in Fig. 18, the simulated
and analytic asymptotic behaviors agree well in the large N

limit, so the crossover temperature for this trivial system is
T× = 0.

The crossover temperature derived in this section deals with
a heat-induced disorder. That is, it marks the onset of a “liquid”
phase that transitions at a lower heat bath temperature as the
system size grows. In practice, one uses a SA algorithm that
applies a cooling scheme (as opposed to a constant temperature
HBA) to improve the attempt at locating the ground state of the
system. That is, it applies a high temperature exploration of the
general landscape finished by low temperature “fine tuning”
of the solution. For the noninteracting cliques in this section,
SA would obviously still identify the ground state because the
energetic fluctuations would trivially diminish as the system
is cooled toward T = 0.

With increasing pout at low T , disorder imposed by the
glass-type transition is induced by the complexity of the energy
landscape, but the transition is qualitatively comparable in the
sense of the induced disorder in the solutions found by the
HBA. The glass phase also experiences a transition to a liquid-
like disordered state at a temperature that increases slowly with
the level of noise, but here, a SA solver will not necessarily
transition readily to the ideal solution as the system is cooled
because of the inherent complexity of the energy landscape.
The greedy algorithm used in Ref. [34] (equivalent to the HBA
at T = 0) applied to the Potts model of Eq. (1) is already very
accurate [11,18,34], so we expect that the greatest benefit of
SA over a greedy-oriented solver using Eq. (1) will manifest
in the hard region near the onset of the “glassy” transition.

D. A discussion of the crossover temperature

For a spin system with fixed size N , a larger number of spin
states q corresponds to a more disordered system. If we expand
the partition function of the Potts model in terms of 1/q,
it is explicitly represented as a sum over configurations with
progressively larger clusters of identical spins [54]. That is, two
spins with the same index σi = σj are connected. Then three
spins σi = σj = σk are connected, etc. The resulting terms
illustrate that increasing q emulates increasing temperature T .

Our analysis in this section applies to general graphs with
ferromagnetic interactions (equivalent to the “label propaga-
tion” community detection algorithm [55]) on regular, fixed-
coordinate lattices [56–58]. Increasing the number of system
states q causes the system to be increasingly disordered. Thus,
in the community detection problem, when increasing number
of communities q linearly with the system size N (such that
the average community size remains constant), the solvable
(easy) phase shrinks to a “small” region as N → ∞.

Figures 13(m)–13(p) illustrate the distinction in the dif-
ferent regions or types of disorder: entropic (high complexity)
and energetic (high T ). Interestingly, in some cases, additional
noise emulates a higher temperature solution process in the
sense that it provides additional avenues to explore different
configurations. Such an effect may occur in Figs. 13(a)–13(d),
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where the accuracy [IN in panel (b)] increases for a short time
with increasing noise pout.

Figure 13(n) further shows a crossover region 0.24 �
pout � 0.32 where midrange temperatures improve the solu-
tion accuracy (higher IN ). Although this data uses a constant
temperature heat bath (no cooling schedule), this is the effect
of a stochastic solver (see Appendix D), allowing it to navigate
the difficult energy landscape more accurately than a greedy
solver. On the left (lower T ), the more greedy nature of the
solver prevents an accurate solution in the presence of high
noise. On the right, the higher temperature of the heat bath itself
hinders an accurate solution. In effect, the HBA “wanders” at
energies above the meaningful, but locally complex, features
of the energy landscape, resulting in more random solutions.

The results here incorporate a “global” model parameter γ

in Eq. (1). That is, the model asserts globally optimal γ (s) for
the entire graph. For large graphs, this condition is less likely
to be true across the full scope of the network, but one can
explore methods to obtain locally optimal γ� (in time or space)
for each region or cluster � [59]. Utilizing locally optimal γ�’s
will likely work to circumvent the temperature transition at
low levels of noise. The successful selection of a local γ� in
the glassy (high noise) region is more difficult because of the
complex nature of the local energy landscape.

In the following section, we study the free energy of several
systems for ferromagnetic Potts models and then generalize to
arbitrary weighted Potts models, including antiferromagnetic
interactions, on arbitrary graphs [53].

VI. AN EXAMPLE OF A PHASE TRANSITION
IN AN IMAGE SEGMENTATION PROBLEM

We illustrate the phase transition effect with an realistic
image segmentation example [60]. In Fig. 19, we apply our
community detection algorithm to detect a bird and tree against
a sky background. We display the results in Fig. 20, where we
plot NMI (IN ) versus ln(γ ) in Eq. (1) and ln(T ), where T is
the temperature for our stochastic community detection solver
(see Appendix D). For this problem, we apply edge weights
by replacing the Aij elements in Eq. (1) with “attractive”
and “repulsive” weights wij , which are defined by regional
intensity differences within the image [60].

We label the easy (b), hard (c), and unsolvable (d) regions in
the phase plot for the bird image in panel (a). Panel (b) shows
that our algorithm clearly detects the bird and tree against
the background, meaning that the NMI information measure
identifies the physically relevant clusters in the problem. In
panel (c), the background is segmented separately, but the bird
and tree are composed of many small clusters. Panel (d) shows
that the bird is undetectable in the unsolvable region.

VII. FREE ENERGY: SIMPLE RESULTS

In the following analysis, we explicitly show the large
q and large T expansions for the free energy per site in
three example systems (a noninteracting clique system, a
simple interacting clique system, and a random graph) before
generalizing the analysis to arbitrary unweighted and weighted
graphs. Previous works examined disorder transitions for
random-bond Potts models [61,62] and Ref. [63] studied zeros

(a) Original (b) Easy

(c) Hard (d) Unsolvable

FIG. 19. (Color online) (Reproduced from Ref. [60]) We show an
image where we apply our community detection algorithm to detect
the relevant structures. This case seeks to identify a bird and tree
against a sky background. The original images is in panel (a), and
the segmentation results are shown in panels (b)–(d), corresponding
to the easy, hard, and unsolvable regions of the community detection
problem, respectively. Figure 20 shows the phase diagram identifying
these respective regions.

of the partition function in the large q limit. Large q behavior
was shown to approach mean-field theoretical results on fixed
lattices [64,65]. For the unweighted systems, we use a binary
distribution for the interaction strength J = 1 or 0 (i.e., the
energy contribution of an edge is either “on” or “off”).

FIG. 20. (Color online) (Reproduced from Ref. [60]) We show a
3D phase diagram of NMI (IN ) versus ln(γ ) and ln(T ) for the image
segmentation of the bird in Fig. 19. T is heat bath temperature for
a stochastic community detection solver (see Appendix D), and γ is
the model weight in Eq. (1). We note that the optimal values in the
easy and hard regions correspond to the “physical” segmentations of
the bird and tree against the background, but the bird is undetectable
in the unsolvable region.
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A. Free energy of a noninteracting clique system under
a large q expansion

If we generalize the noninteracting clique system in Fig. 17
to cliques of size l, the partition function is

Z =
[
qeβJ ( l

2 ) + lq(q − 1)eβJ ( l−1
2 )

+ l(l − 1)

2
q(q − 1)(q − 2)eβJ ( l−2

2 )

+ · · · + q(q − 1)(q − 2) · · · (q − l)

]q

. (20)

When q → ∞,

Z ≈
[
qeβJ ( l

2 ) + lq2eβJ ( l−1
2 ) + l(l − 1)

2
q3eβJ ( l−2

2 )

+ · · · + ql+1

]q

. (21)

The free energy per site, f = − kBT
N

ln Z (with the Boltzmann
constant set to kB = 1), is

f ≈ −T ln q − T

l−2∑
k=0

[(
l − 1

k

)
1

k + 1
eβJ ( l−1

k−1 )

]
q−(k+1).

(22)

From Eq. (22), we further simply the free energy per site,

f ≈ −T ln q − T

l−2∑
k=0

a(k)eβJ ( l−1
k−1 )q−(k+1),

(23)

f ≈ −T ln q − T a(0)
eβJ

q
,

where a(k) = ( l − 1
k ) 1

k+1 . We will compare Eq. (23) with the
high T expansion in the next section. Despite the functional
dependence of exp(βJ ), the large q limit dominates the
expansion, forcing the system to be approximately equivalent
to a large temperature limit.

B. Free energy of a noninteracting clique system as ascertained
from a high temperature expansion

Note that the most ordered Potts graph is a system of
noninteracting cliques (maximally connected subgraphs). That
is, the presence of noise (extraneous intercommunity edges)
will only serve to increase the overall disorder in the system.
One exception is that increased disorder can emulate increased
temperature T for both greedy and stochastic community
detection solvers (see also Sec. V D).

We can construct the high T expansion easily by means of
Tutte polynomials [66] (see Appendix E 1), where we again
solve a system of q cliques of size l. Equation (1) and a
ferromagnetic Potts model have the same ground state energy
for this clique system (see also Secs. VII E, VII G, and VII H
for more general derivations), so the partition function in terms
of the Tutte polynomial t(G; x,y) for a graph G is

Z = qk(G)v|V |−k(G)t(G; x,y), (24)

where q is the number of clusters or states, v = exp(βJ ) −
1, G denotes the graph, k(G) is the number of connected

components in G, |V | = N is the number of vertices, x = (q +
v)/v, and y = v + 1. For the noninteracting clique system,
k(G) = q and N = lq. We denote the Tutte polynomial of a
single clique of size l as Kl(G; x,y).

K2(G; x,y) = x, so the partition function is

Z = qqvqxq, Z = qqvq

(
q

v
+ 1

)q

, (25)

where we used N = 2q. In a high T approximation, x ≈
q/v � 1, so the partition function becomes Z ≈ q2q , and the
free energy is

f ≈ −T ln q, (26)

which simply states that the system is completely random in
the large T limit.

For triangle cliques, K3(G; x,y) = x2 + x + y. The graph
G is composed of disjoint triangles, so the Tutte polynomial
is t(G; x,y) = (x2 + x + y)q , and the partition function be-
comes

Z ≈ qqv2q(x2 + x + y)q . (27)

In the high temperature limit, y ≈ 1 and x ≈ y/v � 1.
As x � y,1, to leading order in x, the Tutte polynomial
t(G; x,y) ≈ x2q . The partition function simplifies to Z ≈ q3q ,
so the free energy per site for l = 3 is again

f ≈ −T ln q, (28)

which is identical to the l = 2 result because we consistently
applied the approximation q/v � 1 to x = (q/v + 1) ≈ q/v

and (x + 1) = (q/v + 2) ≈ q/v.
Generalizing to an arbitrary clique size l in the high T

approximation, the Tutte polynomial Kl(G; x,y = 0) is

Kl(G; x,y = 0) = � (x + l − 1)

� (x)
. (29)

The partition function is

Z ≈ qlq

(
v

q

)(l−1)q �
(

q

v
+ l − 1

)
�

(
q

v

) , (30)

and v = eβJ − 1 ≈ βJ . So the free energy per site yields

f ≈ −T ln q − l − 1

l
T ln

(
βJ

q

)

− T

lq
ln

[
�

(
q

βJ
+ l − 1

)
�

(
q

βJ

)
]

. (31)

The leading ln q term represents the infinite T limit, which is
approximately constant in large systems for any clique size l.
That is, the partition function ZT →∞ ≈ qN for every system.
The l = 2 and 3 results above illustrate that when l � q, the
ratio of γ functions in Eq. (31) simplifies to xlq , and the free
energy for the noninteracting clique system is approximately
f ≈ ln q in the large T limit.

The second term in Eq. (31) gives the leading order
correction for high T . It is absent in the explicit l = 2
and 3 results above because we applied the approximation
q/v � 1. Together, the last two terms imply that increasing the
temperature T (decreasing β) emulates increasing the number
of communities q for a ferromagnetic Potts model.
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FIG. 21. (Color online) A depiction of a circle of cliques
(maximally connected clusters) of size l connected by single edges.
In contrast to Fig. 17, this system adds a simple interaction between
cliques. We analyze the configuration in Sec. VII C and show that a
ferromagnetic Potts model behaves the same in the large q and large
T limits.

C. Free energy for the “circle of cliques” in the high q
or the high T expansion

We now investigate the slightly more complicated system
depicted in Fig. 21: a “circle of cliques” where each complete
subgraph cluster is connected to its neighbors by a single
edge. We construct q cliques of size l = 3 and apply the Tutte
polynomial method [66] to solve the system. As in the previous
subsection, the ground state of Eq. (1) and a ferromagnetic
Potts model have the same energy, so we use a ferromagnetic
model. In terms of the Tutte polynomial t(G; x,y) for a graph
G, the partition function is given by Eq. (24).

Equation (F4) in Appendix E derives the exact Tutte
polynomial for Fig. 21 with l = 3, and Eq. (F6) gives the high
T expansion t(G; x,y = 0) = (1 + x)q+1 x2q−3. Substituting
N = 3q and the approximation x ≈ q/v (in either the large q

or large T limits), the partition function becomes

Z ≈ q2q−2vq+2 (1 + x)q+1 x2q−3. (32)

We factor out q3q and then apply the approximations: v =
exp(βJ ) − 1 ≈ βJ , x ≈ q/v ≈ q/(βJ ) � 1, and q � 1. The
free energy per site is then

f ≈ −T ln q − 2T

3
ln

(
q

βJ

)
. (33)

As in the previous section, the leading ln q term represents
the infinite T limit. Equation (33) affirms the implication
of Eq. (31) regarding the corresponding behavior of large
q or T . Specifically, increasing the temperature (decreasing
β) emulates increasing the number of communities q for a
ferromagnetic Potts model.

D. Free energy of a random graph in a large q
or a large T expansion

We apply the Tutte polynomial method of Appendix E 1
to determine the high T and high q partition function for
a random graph. For calculation purposes, we begin with
a complete graph of size N . Then we randomly remove
edges to construct a random graph such that any two
nodes are connected by an edge with a probability p (see

FIG. 22. (Color online) A sample depiction of a random graph
with N nodes. In Sec. VII D, we analyze such a system by randomly
removing edges from a clique configuration of N nodes under the
assumption that we maintain a connected graph. We show that a
ferromagnetic Potts model on a random graph behaves the same in
the large q and large T limits.

Fig. 22). The derivation repeatedly applies Lemma 1 stated in
Appendix E 1 .

We denote the Tutte polynomial of a complete graph
(clique) of size l as Kl . t(G) for a clique with d duplicated
edges (multiply defined edges between two nodes) or loops
(self-edges) is defined as K

(d)
l . For economy of notation, we

also define G
[m]
l as the Tutte polynomial of a graph with m

missing edges (i.e., not a clique). Note that K
(0)
l ≡ G

[0]
l ≡ Kl .

For the following derivation, we work under the assumption
that when we delete or contract any edge, the random graph
remains connected.

Within the high temperature or high q number of clusters
limits, y � x. To leading order in x, we may thus effectively
set y to zero. Equation (29) provides the exact expression of
the Tutte polynomial Kl(G; x,y = 0) for a clique at y = 0. If
we cut one edge from the complete graph KN , we obtain the
recursion formula

KN = G
[1]
N + K

(N−1)
N−1 , KN = G

[1]
N + KN−1, (34)

where we applied Lemma 1 to obtain Eq. (34). Henceforth, we
assume the application of Lemma 1. We are interested in the
graph with missing edges, so we solve Eq. (34) for G

[1]
N ,

G
[1]
N = KN − KN−1. (35)

Note that the reduced graph is represented as a summation
over complete graphs.

Now we apply the Tutte recursion formula to both sides of
Eq. (35):

G
[2]
N + G

[1]
N−1 = G

[1]
N + KN−1 − G

[1]
N − KN−1. (36)

We can choose the deleted and contracted edges in the
corresponding terms to be identical because the resulting Tutte
polynomial is, in general, independent of the operation order.
After collecting terms and substituting the previous G

[1]
N result,

we solve for G
[2]
N to obtain

G
[2]
N = KN − 2KN−1 + KN−2 (37)

066106-17



DANDAN HU, PETER RONHOVDE, AND ZOHAR NUSSINOV PHYSICAL REVIEW E 86, 066106 (2012)

for this particular random graph. Again, the right-hand side of
Eq. (37) is a summation over complete graphs. This recursive
relation for G

[k]
N continues until we obtain

G
[k]
N =

k∑
i=0

(−1)i
(

k

i

)
KN−i . (38)

We insert this into Eq. (29) with the prefactor qvN−1 to
generate the partition function at high T ,

Z = qN

(
v

q

)N−1
[

k∑
i=0

(−1)i
(

N

i

)
� (x + N − i − 1)

� (x)

]
.

(39)

Next, we substitute x = (q + v)/v ≈ q/v when v � q (high
T or high q approximations) and again utilize v = eβJ − 1 ≈
βJ in the high T approximation to obtain the free energy per
site

f = −T ln q − N − 1

N
T ln

(
βJ

q

)

− T

N
ln

[
k∑

i=0

(−1)i
(

N

i

)
�

(
q

βJ
+ N − i − 1

)
�

(
q

βJ

)
]

. (40)

Note that the first two terms become ln(q)/N ln(βJ ) as
N → ∞. From Eq. (40), we obtain the same conclusion
for this random graph as for the previously analyzed clique
systems. While Secs. VII A–VII C result in free energies with
different functional forms, in each case, q and T have the same
functional form in the arguments of the functions in the high
T limit.

E. Free energy of an arbitrary graph G in the large T expansion

We can construct the explicit high T expansion for an
arbitrary (unweighted) graph G by means of the Tutte
polynomial method [66]. Factoring out qN and substituting
|V | = N , x = q/v + 1, and y = v + 1 in Eq. (24), we write a
trivially modified form of the partition function

Z = qN

[(
v

q

)N−k(G)

t

(
G;

q

v
+ 1,v + 1

)]
. (41)

At this point, the equation is completely general, but the
corresponding behavior for temperature T and number of
clusters q is almost apparent in the reciprocal relationship
of q and v.

Again, x ≈ q/v in either the large q or large T limits. In a
high T approximation, v ≈ βJ = T/J and y ≈ 0 or 1 (y = 0
is a common approximation since x � y in the same limit):

Z ≈ qN

[(
J

qT

)N−k(G)

t

(
G;

qT

J
,y

T ′

)]
, (42)

where y
T ′ = 0 or 1. The free energy per site is then

f ≈ −T ln q − N − k(G)

N
T ln

(
J

qT

)

− T

N
ln

[
t

(
qT

J
,y

T ′

)]
. (43)

The leading ln q term appears in our previous calculations.
Again, it represents the infinite T limit for an arbitrary system
which is approximately constant in large systems.

From the perspective of increasing q, the similarity to the
large T behavior is more apparent if we fix the temperature
T = T ′ and define an effective interaction constant Jq ≡
eJ/T ′ − 1. We then rewrite Eq. (43) as

f ≈ −T ln q − N − k(G)

N
T ln

(
Jq

q

)

− T

N
ln

[
t

(
q

Jq

,yq

)]
, (44)

where yq ≡ eJ/T ′
is a constant. When N → ∞ and k(G) �

N , the first two terms become T ln(q)/N ln(βJ ). Comparing
Eqs. (43) and (44) shows the close correspondence between
increasing q (at fixed T ′) and increasing T . Jq grows
exponentially faster than q with decreasing T ′, so a finite
(perhaps small) stable or solvable region is likely except in the
presence of high noise.

F. Annealed versus quenched averages

The above proofs apply to quenched averages because the
binary distribution is constant with respect to the distribution
integration. That is, using Eq. (44), we assume a probability
distribution P ({Jij }) and integrate over it to obtain the
quenched average free energy per site,

f
[{Jij }

] =
∫

DJij

∏
i �=j

P
({Jij }

)

×
{

ln q + N − k(G)

N
ln

(
J

qT

)

+ 1

N
ln

[
t

(
qT

J
,y

T ′

)] }
, (45)

but the integrand (f0) is a constant because J is independent
of {Jij }, so the integral trivially simplifies to

f [{Jij }] = f0

∫
DJij

∏
i �=j

P ({Jij }), (46)

where the integral is unity. In a more general model with
a defined {Jij } probability distribution, the leading order
ln q contribution would remain unchanged, but we would
obtain correction terms from the integration over the quenched
interaction distribution {Jij }.

G. Free energy of noninteracting cliques for an arbitrary
weighted Potts model under a large T expansion

We can represent an arbitrary weighted Potts model with
ferromagnetic and antiferromagnetic interactions. That is, we
can generally write

H ({σ }) = −1

2

∑
i �=j

[aijAij − bij (1 − Aij )]δ(σi,σj ), (47)

where aij and bij are arbitrary “attractive” and “repulsive” edge
weights. This summarization includes modularity [50], a Potts
model incorporating a “configuration null model” (CMPM)
comparison [9] (the most common variation in [9] effectively
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generalizes modularity), CMPM allowing antiferromagnetic
relations [67], “label propagation” [14,55], an Erdős-Rényi
Potts model [9,68], a “constant Potts model” [49], the weighted
form of the APM [11,34], or a “variable topology Potts model”
suggested in Ref. [11].

Note that the repulsive weights bij are important in that
they provide a “penalty function” which enables a well-defined
ground state for the Hamiltonian for an arbitrary graph. That
is, the ground state of a purely ferromagnetic Potts model
in an arbitrary graph is trivially a fully collapsed system
(perhaps with disjoint subgraphs). Several of the above models
incorporate a weighting factor γ of some type on the penalty
term, which allows the model to span different scales of the
network in qualitatively similar ways.

We denote a partition function of a graph G∗ with l nodes
and weighted edges {e} by Z(G∗; q,v) ≡ Kl . We assume that
Je � T for all edges e, and all pairs of nodes in G∗ are
connected by a weighted edge Je (either ferromagnetic or
antiferromagnetic). From Appendix E 2, a recurrence relation
for the multivariate Tutte polynomial of a general weighted
clique is

Kl ≈
(

q +
l−2∑
k=0

v�max−k

)
Kl−1 + O(ye), (48)

where �max = l(l − 1)/2.
The partition function for Kl at high T is

Kl ≈ qN

l∏
j=2

(
1 +

j−1∑
k=1

vk+�j

q

)
. (49)

where �j = (j − 1)(j − 2)/2. Now, we generate a graph
consisting of a set of q noninteracting cliques of size li where
i = 1,2, . . . ,q,

Kl ≈ qN

q∏
i=1

li∏
j=2

(
1 +

j−1∑
k=1

βJk+�j

q

)
, (50)

where we used ve ≈ βJe at high T for general edge weights
Je (even if Je < 0 as long as Je � T ).

The free energy is

f ≈ −T ln q − T

N

q∑
i=1

li∑
j=2

j−1∑
k=1

βJk+�j

q

≈ −T ln q − 1

N

q∑
i=1

Ei

q

= −T ln q − E

qN
(51)

where we invoked ln(1 + x) ≈ x for x � 1 there. Ei is the
energy of cluster i according to the weighted Potts model of
Eq. (47), and E is the total energy of the graph. Equations (50)
and (51) both imply that large q emulates large T for an
arbitrary Potts model on a weighted graph G. That is, if a
community detection quality function can be expressed in
terms of the general Potts model in Eq. (47), then large q

and large T are essentially equivalent.

H. Free energy of noninteracting cliques for an arbitrary
weighted Potts model under a large q expansion

The multivariate Tutte polynomial [69] (see also
Appendix E 2 and Ref. [53]) appears in a subgraph expansion
over the subset of edges A ⊆ E in a graph G = (V,E) with a
set of V vertices and E edges,

Z(G; q,v) = qN

⎛
⎝1 +

|E |∑
e′=1

ve′

q
+ · · · + qk(G)−N

|E |∏
f ′=1

vf ′

⎞
⎠ .

(52)

k(A) is the number of connected components of GA = (V,A)
and ve = exp(βJe) − 1. For our purposes, Eq. (52) serves as
an alternate representation of ZG to facilitate the calculation
of the large q expansion.

For large q, when qN � |ve|L, we may neglect the last
term, and for a system of noninteracting cliques of sizes li
with i = 1,2, . . . ,q, the leading order terms in large q are

Z(G; q,v) ≈ qN

q∏
i=1

li∏
j=1

(
1 +

j−1∑
k=1

vk+�j

q

)
. (53)

where �j = (j − 1)(j − 2)/2.
The approximation is identical to Eq. (49) at high T .

Reference [53] calculates an explicit crossover temperature
including the last subgraph A = E that competes with the
large q terms as T → 0. The free energy corresponding to
Eq. (53) becomes

f ≈ −T ln q − T

N

q∑
i=1

li∑
j=2

j−1∑
k=1

vk+�j

q
(54)

where we applied the approximation ln(1 + x) ≈ x for
small x.

In order to illustrate the correspondence in large q and T ,
we fix T = T ′, define J

(q)
e ≡ exp(β ′Je) − 1, and rewrite the

free energy per site

f ≈ −T ′ ln q − T ′

N

q∑
i=1

li∑
j=2

j−1∑
k=1

J
(q)
k+�j

q
(55)

Large q in Eq. (52) emulates large T in Eq. (50). As with the
unweighted case in Eq. (44) in Sec. VII E, J (q)

e is exponentially
weighted in β ′ = 1/T ′, so a nonzero (perhaps small) region of
stability is essentially ensured except in the presence of high
noise [53]. We can additionally determine a rigorous bound
using methods in Refs. [53,70,71],

T UB
× = J̄0

ln
[

p(q−1)
(1−p)

] , (56)

where J̄0 = 1
2

∑
j Jj0[1 + sgn(Jj0)] is a generous upper bound

summing only positive energy contributions and p is the
probability for finding a given spin σ0 in a specific spin state
σ̄ . This result further agrees with our conclusions. Note that as
p → 1/q, the system is completely disordered, so T× → ∞.
As p → 1, the system is perfectly ordered, so T → 0.
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VIII. CONCLUSIONS

We systematically examined the phase transitions for the
community detection problem via a noise test across a range of
parameters. The noise test consists of a structured graph with
a strongly defined ground state. We add increasing numbers
of extraneous intercommunity edges (noise) and test the
performance of a stochastic community detection algorithm
in solving for the well-defined ground state. Specifically, we
studied two types (sequences) of systems. In the first such
sequence of systems in Fig. 5, we fixed the ratio α = q/N of
the number of communities q to the number of nodes N . We
fixed q at different values and varied N in the second sequence
of systems in Fig. 9. In Fig. 13, we explored the largest
tested systems with N = 2048 nodes in more detail where
we employed additional measures to illustrate the transitions.
All of these systems showed regions with distinct phase
transitions in the large N limit. Deviations occurred most
often in smaller systems, indicating a definite finite-size effect.

As the noise was steadily increased, a spin-glass-type phase
appeared between solvable and unsolvable regions of the com-
munity detection problem. This intervening region between the
easy and unsolvable phases corresponds to the “hard” pahse.
Within the hard phase, well defined partitions exist yet it is
exceedingly difficult, in general, to determine these solutions
(i.e., partitions into communities). Similar to our earlier work
[35], as N is progressively increased while holding the average
number of nodes per community fixed, the region over which
the hard phase exists in the noise/temperature phase diagram
decreases suggesting that in the thermodynamic limit a direct
transition between the hard and easy phase might be possible.
We analyzed a system of noninteracting cliques and illustrated
that in the large q limit, the system is disordered (or unsolvable)
at all positive temperatures. When in contact with a heat bath,
the asymptotic behavior of the temperatures beyond which the
system is permanently disordered varies slowly with the num-
ber of communities q, specifically, T× 	 O[1/ ln q]. This im-
plies that problems of practical size maintain a definite region
of solvability. Given the connection between Jones polynomi-
als of knot theory and Tutte polynomials for the Potts model,
our results imply similar transitions in large random knots
(see Appendix G).

We further studied the free energy of arbitrary graphs
arriving at the same conclusion. Increasing number of com-
munities q emulates increasing T in arbitrary graphs for a
general Potts model. The effective interaction strength for
increasing q scales such that this disorder is circumvented
by the often standard use of a simulated annealing algorithm,
but the “glassy” (high noise) region remains a challenge for
any community detection algorithm.
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APPENDIX A: DEFINITIONS—TRIALS AND REPLICAS

We review the notion of trials and replicas on which our
algorithms are based. Both pertain to the use of multiple
identical copies of the same system which differ from one
another by a permutation of the site indices. Thus, whenever
the time evolution may depend on sequentially ordered
searches for energy lowering moves (as it will in our greedy
algorithm), these copies may generally reach different final
candidate solutions. By the use of an ensemble of such identical
copies (see, e.g., Fig. 2), we can attain an accurate result as
well as determine information theory correlations between
candidate solutions and infer from these a detailed picture
of the system.

In the definitions of “trials” and “replicas” given below, we
build on the existence of a given algorithm (any algorithm)
that may minimize a given energy or cost function. In our
particular case, we minimize the Hamiltonian of Eq. (1).

T rials. We use trials alone in our bare community
detection algorithm. We run the algorithm on the same problem
t independent times. This may generally lead to different
contending states that minimize Eq. (1). Out of these t trials, we
pick the lowest energy state and use that state as the solution.

Replicas. We use both trials and replicas in our
multiscale community detection algorithm. Each sequence of
the above described t trials is termed a replica. When using
“replicas” in the current context, we run the aforementioned
t trials (and pick the lowest solution) r independent times.
By examining information theory correlations between the r

replicas we infer which features of the contending solutions are
well agreed on (and thus are likely to be correct) and on which
features there is a large variance between the disparate con-
tending solutions that may generally mark important physical
boundaries. We compute the information theory correlations
within the ensemble of r replicas. Specifically, information
theory extrema as a function of the scale parameters, generally
correspond to more pertinent solutions that are locally stable
to a continuous change of scale. It is in this way that we detect
the important physical scales in the system (see Fig. 2).

APPENDIX B: INFORMATION THEORY
AND COMPLEXITY MEASURES

We use information theory measures to calculate corre-
lations between community detection solutions and expected
partitions in the noise test problem. To begin, N nodes of parti-
tion A are partitioned into qA communities of size {na}, where
1 � a � qA. The ratio na/N is the probability that a randomly
selected node is found in community a. The Shannon entropy is

HA = −
qA∑

a=1

na

N
log2

na

N
. (B1)

The mutual information I (A,B) between partitions A and B is

I (A,B) =
qA∑

a=1

qB∑
b=1

nab

N
log2

nabN

nanb

, (B2)

where nab is the number of nodes of community a in partition
A that are also found in community b of partition B. The NMI
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IN (A,B) is then

IN (A,B) = 2I (A,B)

HA + HB

, (B3)

with the obvious range of 0 � IN (A,B) � 1. High IN values
indicate better agreement between compared partitions.

APPENDIX C: COMPUTATIONAL SUSCEPTIBILITY

The complexity (e) of the energy landscape is related to
the number of states N (E) ∼ exp[N(e)] [20] with energy E

and energy density e = E/N . In the current analysis, we detect
the onset of the high complexity with no prior assumptions or
approximations by computing a “computational susceptibil-
ity” [11] defined as

χn = IN (s = n) − IN (s = 4). (C1)

That is, χ measures the increase in the NMI IN as the number
of trials (number of independently solved starting points in the
energy landscape) s = n is increased. Physically, we evaluate
how many different optimization trials are necessary to achieve
a desired accuracy threshold.

χ evaluates the expected response of the system to
additional optimization effort. That is, a higher χ indicates
that additional optimization effort will likely result in a
better solution. A low value of χ indicates that there will
be less improvement from the additional effort whether due
to a trivially solvable system, a complex energy landscape
with numerous local minima that trap the solver (at low
to moderate temperatures), or thermal-oriented effects of
randomly wandering the energy landscape.

APPENDIX D: HEAT BATH ALGORITHM

We extend the greedy algorithm in Refs. [11,34] to nonzero
temperatures by applying a HBA. After, we connect the system
to a large thermal reservoir at a constant temperature T , the
probability for a particular node to move from community a

to b is set by a thermal distribution [9],

pa→b = exp(−�Ea→b/T )∑
d exp(−�Ea→d/T )

. (D1)

�Ea→b is the energy change that results if the node is moved to
the new community b, and the index d runs over all connected
clusters including its current community or a new empty
community. The steps of our HBA are as follows.

(1) Initialize the system. Initialize the network into a
“symmetric” state by assigning each node as the lone member
of its own community (i.e., q0 = N ).

(2) Find the best cluster for node i. Select a node and
determine to which clusters it is connected (including its
current community and an empty cluster). Calculate the energy
change �Ea→b required to move to each connected cluster b.
Calculate and sum all Boltzmann weights. Generate a random
number between 0 and 1 and determine into which cluster the
node is placed.

(3) Iterate over all nodes. Repeat step 2 in sequence for
each node.

(4) Merge clusters. Allow for the merger of community
pairs based on the same Boltzmann-weighted merge probabil-
ities.

(5) Repeat the above two steps. Repeat steps 2 through 4
until the maximum number of iterations is reached.

(6) Repeat all the above steps for s trials. Repeat steps 1–5
for s trials and select the lowest energy trial as the best solution.
Each trial randomly permutes the order of nodes in the initial
state.

This HBA is similar to our greedy algorithm except that we
use a random process to select the node moves in steps 2 and 4.
The results obtained at low temperature by our HBA are very
close to the results obtained by the zero temperature greedy
algorithms. Note that there is no cooling scheme as occurs
in SA, so step 5 ends at a maximum number of iterations
as opposed to a unchanged best partition that is achieved as
T → 0 in SA.

In the easy phase, different starting trajectories, each
beginning in the symmetric initial state, often lead to the same
solution. In the hard phase, changing the random seed may
significantly alter the final result of an individual trial because
the solver becomes trapped in different local minima. Thus,
we apply additional trials in order to sample different regions
of the energy landscape and arrive at better solutions. In the
unsolvable phase, increasing the number of trials s does not
substantially change the quality of the solutions unless one
happens to sample the energy landscape in the immediate
vicinity near the optimal partition, but the probability of doing
so is small with a finite number of trials s.

APPENDIX E: TUTTE POLYNOMIALS

We give a very brief introduction to Tutte polynomials
consisting of the essential facts necessary for the derivations
presented in this paper. The notation used here is mostly
standard, but the notation elsewhere in the text deviates from
standard notation in order to facilitate the partition function
derivation in Sec. VII D. For an undirected graph G, we denote
the deletion (removal) of an edge e by G′ and a contraction of
the edge by G′′, where a contraction consists of removing the
edge e and merging the corresponding vertices.

1. Unweighted graph G

If G has no edges, the Tutte polynomial is t(G; x,y) = 1. If
G is a disjoint graph of partitions, then A and B t(G; x,y) =
t(A; x,y)t(B; x,y). When an edge e in an unweighted graph
G is “cut,” the recurrence relations are as follows [66].

(i) For a general edge, t(G; x,y) = t(G′
e; x,y) +

t(G′′
e ; x,y), which is the sum of two graphs where e is

deleted and contracted.
(ii) If edge e is an isthmus between two otherwise discon-

nected regions of G, then t(G; x,y) = xt(G′′
e ; x,y), where the

edge e is contracted.
(iii) If edge e is a loop (a vertex self-edge), then t(G; x,y) =

yt(G′
e; x,y), where the edge e is deleted.

The resulting Tutte polynomial is a function of two variables
(x,y), and it is independent of the construction order. Different
graphs G and H may be described by the same function
t(G; x,y) = t(H ; x,y). A sample calculation is performed in
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(a) (b)

FIG. 23. (Color online) In panel (a), we depict a chain Bq of q cliques (complete subgraphs of maximally connected clusters) of size
l connected by single edges. The corresponding circle of q cliques Cq is depicted in Fig. 21. In panel (b), we show the derivation of the
Tutte polynomial in Eq. (F2) for size l = 3 cliques. We iteratively break edges and merge nodes according to the Tutte polynomial recurrence
relation [66] in Appendix E 1 until we arrive at configurations that are reduced clique circle components. For presentation purposes, gray edges
are cut in the next line of the derivation. The dashed gray line at the bottom of each subgraph represents the remainder of the clique circle
which is not touched or affected by the operations on the displayed subgraph.

Appendix F for a circle of complete subgraphs (cliques) as
shown in Fig. 23(b).

Tutte polynomials are related to the partition function of
a ferromagnetic (J > 0) or antiferromagnetic (J < 0) Potts
model given by

H ({σ }) = −
∑
i �=j

J δ(σi,σj ) (E1)

for any connected pair of nodes i and j with an interaction
strength J . The corresponding partition function is

Z = qk(G)v|V |−k(G)t(G; x,y), (E2)

where q is the number of clusters or states, v = exp(βJ ) −
1, G denotes the graph, k(G) is the number of connected
components in G, |V | is the number of vertices, x = (q +
v)/v, and y = v + 1.

In Sec. VII D, we use the following lemma to derive high
temperature T approximation for a constructed random graph.
We denote Kl as the Tutte polynomial for a complete graph,
and K

(d)
l denotes that the graph has d duplicated (possibly

redundant) edges.
Lemma 1. For a clique K

(d)
l of size l with d duplicate edges

between any pair of nodes, the Tutte polynomial at y = 0 is
Kl .

Proof. Let G be a complete graph with l vertices and d = 1
redundant edge. If we delete and contract the duplicate edge,

the Tutte polynomial t(G) ≡ K
(d=1)
l will be

K
(1)
l = Kl + K

(l−1)
l−1 .

The contracted vertex in the second term contains r = 1 loop.
We cut the loop and have

K
(1)
l = Kl + yK

(l−2)
l−1 |y=0 = Kl, (E3)

where we invoked the above y = 0 condition of the lemma in
the second equality.

Now, assume that we can reduce K
(d)
l = Kl . Let G be a

complete graph with l vertices and d + 1 duplicate edges.
If we cut one duplicate edge, the resulting Tutte polynomial
t(G) ≡ K

(d+1)
l will be

K
(d+1)
l = K

(d)
l + K

(d+l−1)
l−1 .

The contracted vertex in the second term contains r � 1
loops. We cut each loop in sequence and obtain

K
(d+1)
l = K

(d)
l + yrK

(d+l−r−1)
l−1

∣∣
y=0 = K

(d)
l . (E4)

If K
(d)
l = Kl then by Eq. (E4), we may equate K

(d+1)
l = Kl .

Equation (E3) demonstrates that this relation holds for d = 1.
Thus, putting all of the pieces together, by mathematical
induction K

(d)
l = Kl holds true for any integer d � 1.

2. Weighted graph G

An excellent summary of multivariate Tutte polynomials
(MVTPs) is found in Ref. [69]. The MVTP allows for arbitrary
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weights v = [ve] for the edges {e} of G. If G has no edges,
the MVTP is Z(G; q,v) = q. For an undirected graph G, the
weighted Potts Hamiltonian is

H ({σ }) = −
∑
i �=j

Jij δ(σi,σj ). (E5)

When an edge e in G is “cut,” the recurrence relation is

Z(G; q,v) = Z(G′; q,v) + veZ(G′′; q,v), (E6)

where Je corresponds to the edge weight between two nodes i

and j and ve = exp (βJe) − 1.
As with the unweighted case, if G is a disjoint graph of

partitions A and B, then Z(G; x,y) = Z(A; q,v)Z(B; q,v).
If partitions A and B are joined at a single vertex, then
Z(G; x,y) = Z(A; q,v)Z(B; q,v)/q. Unlike Eq. (E2) for un-
weighted graphs, Eq. (E6) holds for loops or bridges, but for
concreteness, cutting an isthmus e yields

Z(G; q,v) = (1 + ve/q) Z(G′
e; x,y), (E7)

Z(G; q,v) = (q + ve) Z(G′′
e ; x,y), (E8)

where e is deleted or contracted, respectively. If e is a loop,
then

Z(G; q,v) = (1 + ve)Z(G′
e; x,y). (E9)

Note that the MVTP is the partition function. That is, there are
no prefactors of q or ve. Finally, if two parallel edges connect
the same pair of nodes i and j with weights J1 and J2, then
ZG is unchanged if we replace the parallel edges by a single
edge with a weight J ′ = J1 + J2 (this negates the need for
Lemma 1 above).

APPENDIX F: DERIVATION OF THE TUTTE
POLYNOMIAL FOR A CIRCLE OF CLIQUES

As depicted in Fig. 21, we define Cq as a circle of q cliques
where we focus those of size l = 3 for the current derivation.
The Tutte polynomial for a triangle is � ≡ (x2 + x + y).
For convenience, we also define, �′ ≡ (� + x + 1) = [(x +
1)2 + y] and y ′ ≡ (x + y + 1).

We define Bq to be the Tutte polynomial for a clique chain
as depicted in Fig. 23(a). In this case, it is trivial to construct
Bq ,

Bq = xq−1(x2 + x + y)q . (F1)

With Eq. (F1), we construct a recurrence relation for the clique
circle configurations as shown in Fig. 23(b),

Cq = Bq + x (x + 1) Bq−1 + (x + y + 1) Cq−1. (F2)

From this relation, we can sum the series exactly.

Cq = Bq + �′Bq−1 + x (x + 1) (x + y + 1) Bq−2

+ (x + y + 1)2 Cq−2

...
...

Cq = Bq + �′
q−4∑
i=0

(x + y + 1)i Bq−i−1

+� (x + y + 1)q−3 B2 + (x + y + 1)q−2 C2. (F3)

(a) (b)

FIG. 24. (Color online) Panel (a) depicts the trefoil knot, and
panel (b) shows the corresponding graph G constructed from the
distinct knot regions and crossings [72]. That is, nodes correspond to
“checkerboard-shaded” regions (shade the outside lobes of the trefoil
knot leaving the interior region unshaded), and edges correspond
to knot crossings. Jones polynomials VJ (x) in knot theory are
related to Tutte polynomials, and Eq. (G1) represents the trefoil knot
corresponding to the triangle subgraph in panel (b).

Note that the last Bj term uses �, not �′. Also, it
can be shown that C2 = (x + 1)2(x3 + �) + y(x + 1)�.
Substituting these values into the equation, we arrive at

Cq = xq−1�q + �′
q−4∑
i=0

y ′ixq−i−2�q−i−1 + xy ′q−3
�3

+ xy ′q(x2 + x + 1) + yy ′q−1
�′. (F4)

In the high temperature T limit, y � x, so we approximate
y 	 0, and the equation simplifies to

C(T )
q 	 x (x + 1)q [x2q−2 + · · · + x2 + x + 1]

= x (x + 1)q
[

1 − x2q−1

1 − x

]
. (F5)

We make a final high T approximation,

C(T )
q 	 (x + 1)q+1 x2q−3, (F6)

using (x2q−1 − 1) 	 x2q−1 and (1 − x)−1 	 (1 + x) /x2.

APPENDIX G: RANDOM KNOT “TRANSITIONS”

A general 3D knot may be represented as a 4-valent
planar graph [72] [i.e., corresponding to a two-dimensional
(2D) square lattice connectivity allowing self-loops]. This
relation connects the Tutte polynomial to the Jones polynomial
in knot theory. Conversely, all connected, signed planar
graphs have a corresponding link diagram representation (2D
knot projection). Alternating over-under crossings result in
unsigned planar graphs [72] (e.g., the trefoil knot in Fig. 24).
Ref. [73] provides an introduction to the mathematics and
physics of knot theory. The Jones polynomial of a given knot
is intimately related to quantum field theories [74] via its
connection to [an SU(2) type] Wilson loop associated the same
knot.

As a concrete example, Fig. 24(a) depicts a simple
trefoil knot which is related to the triangle clique depicted
in Fig. 24(b) [72]. The Tutte polynomial of Fig. 24(b)
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is K3(G; x,y) = x2 + x + y. Then we generate the Jones
polynomial

VJ (x) = x2 + x + 1

x
, (G1)

where we used xy = 1 because the trefoil knot has alternating
crossings [75]. While the trefoil knot is clearly not random, we
conjecture that the transitions detected in random graphs with
embedded ground states in the current work can have similar
transition repercussions in random knots.
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E 69, 056112 (2004).
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