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Implicit models, latent compression, intrinsic biases, and cheap lunches in community detection

Tiago P. Peixoto *

Department of Network and Data Science, Central European University, 1100 Vienna, Austria

Alec Kirkley †

Institute of Data Science, University of Hong Kong, Hong Kong;
Department of Urban Planning and Design, University of Hong Kong, Hong Kong;

and Urban Systems Institute, University of Hong Kong, Hong Kong

(Received 24 October 2022; revised 1 March 2023; accepted 2 August 2023; published 23 August 2023)

The task of community detection, which aims to partition a network into clusters of nodes to summarize its
large-scale structure, has spawned the development of many competing algorithms with varying objectives. Some
community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic
generative model, while other methods are descriptive, dividing a network according to an objective motivated
by a particular application, making it challenging to compare these methods on the same scale. Here we present
a solution to this problem that associates any community detection objective, inferential or descriptive, with
its corresponding implicit network generative model. This allows us to compute the description length of a
network and its partition under arbitrary objectives, providing a principled measure to compare the performance
of different algorithms without the need for “ground-truth” labels. Our approach also gives access to instances
of the community detection problem that are optimal to any given algorithm and in this way reveals intrinsic
biases in popular descriptive methods, explaining their tendency to overfit. Using our framework, we compare a
number of community detection methods on artificial networks and on a corpus of over 500 structurally diverse
empirical networks. We find that more expressive community detection methods exhibit consistently superior
compression performance on structured data instances, without having degraded performance on a minority of
situations where more specialized algorithms perform optimally. Our results undermine the implications of the
“no free lunch” theorem for community detection, both conceptually and in practice, since it is confined to
unstructured data instances, unlike relevant community detection problems which are structured by requirement.
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I. INTRODUCTION

Community detection methods [1] are a cornerstone of net-
work data analysis. They fulfill the need to digest an otherwise
intractable large-scale structure of a complex system into a
simpler coarse-grained description, where groups of items are
clustered together according to shared patterns of interactions.
This methodological ansatz has proved useful in countless ap-
plications in biology, physics, engineering, computer science,
the social sciences, and other fields.

The research on community detection has evolved sub-
stantially in the past 20 years [2], spawning a large variety
of different approaches. Substantial effort in this area has
been devoted to the development of methods that behave well
in practice—both in the quality of results and algorithmic
efficiency—as well as to our theoretical understanding of their
behavior [3]. Despite these advances, what perhaps continues
to be one of the biggest difficulties when employing com-
munity detection methods in practice is that the task itself is
not uniquely defined: what constitutes a good coarse-graining
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of a network is intrinsically tied to an ultimate objective, of
which there can be many [4], resulting in algorithms that yield
different answers for the same network [5,6].

Most methods agree qualitatively on what constitutes com-
munity structure—groups of nodes that are more connected
with themselves than with the rest of the network, or more
generally, groups of nodes that have the same tendency of
connecting to other groups of nodes—but the context in which
this concept is evoked and the resulting mathematical defini-
tions can vary substantially, to the point where two algorithms
can yield radically different partitions of the same network
despite sharing an overall conceptual agreement [7].

To better understand the discrepancies and similarities be-
tween community detection methods, it is useful to divide
them into two classes, according to their stated objectives:
inferential and descriptive [8]. Inferential methods evoke ex-
plicitly the notion of probabilistic generative models, i.e.,
network formation mechanisms that define how a division of
the network into groups affect the probability with which the
nodes are connected. In this setting, the community detection
task consists of assuming that an observed network is an
instance of this generative procedure, and attempting to fit it
to data to infer the hidden partition—or more generally, a set
of partitions ranked according to their posterior plausibility
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[9]. In this scenario, it is possible to assess the statistical
significance and uncertainties of our inferences, and to quan-
tify precisely how parsimonious the obtained coarse-grained
representation is, allowing us to detect overfitting and under-
fitting, as well as to perform model selection. Furthermore,
from the fitted model it is possible to make statements about
edge placement probabilities and to make generalizations
about unobserved data [10,11].

Descriptive methods, conversely, do not involve an explicit
definition of a generative model, and divide the network into
groups according to other, application-specific criteria. What
are perhaps the oldest instances of this class of methods are
the various algorithms for graph partitioning in computer sci-
ence [12], motivated in large part by circuit design and task
scheduling problems, instead of data analysis. In this setting,
the desired network division is the one that optimizes a task
conditioned on a given network—such as the spatial place-
ment of transistors or division of tasks among processors.
Prominent descriptive methods also use network clustering
to characterize the behavior of dynamical processes that run
on the network, typically random walks. For example, the In-
fomap method [13] clusters nodes in a manner that minimizes
the information required to encode a random walk taking
place on a network, according to how often it leaves and enters
individual groups. In this case, the network is a parameter of a
dynamical process, and therefore its generation is not modeled
directly [14]. Arguably the most popular community detection
method, modularity maximization [15], can also be classified
as descriptive. Although it was originally motivated according
to an explicit inferential criterion—namely, the deviation from
a null model—it is inconsistent with this stated goal, since
it notoriously finds spurious deviations on networks sampled
from its own null model [16]. Despite an approximate equiv-
alence with the parametric inference of a restricted version
of the stochastic block model (SBM) [17], valid only when
the true number of groups is known and the data obeys cer-
tain symmetries [18], this method lacks an explicit inferential
interpretation in the nonparametric manner it is actually em-
ployed in practice. For these and other descriptive methods in
general, the notions of uncertainty and statistical significance
are not inherent or explicitly evoked.

Despite these clear differences in stated objectives, descrip-
tive methods are often used in practice with inferential aims.
For example, communities found with descriptive methods
are frequently interpreted as being the result of a homophilic
edge formation mechanism in social networks [19–22] and
functional modules in biological networks [23–25], to name
only a few analyses in which a concern for statistical sig-
nificance is expressed. Furthermore, attempts to benchmark
community detection methods against each other typically
involve comparing their performance in terms of their ability
at recovering known partitions in artificial random networks
sampled from generative models—thus being clearly an infer-
ential criterion—as is the case of the popular LFR benchmark
[26,27]. More recently, the tendency of algorithms to under-
or overfit in a link prediction task was considered in Ref. [6],
which relies on a manifestly inferential criterion. One also
finds prominent claims in the literature [1,3,15] that it would
be undesirable for an arbitrary community detection method
to cluster a maximally random network sampled either from

the Erdős-Rényi or configuration model into more than one
group, since this division would unveil purely random fluctu-
ations in the placement of the edges, and thus would amount
to overfitting. Because of this, very often results of descrip-
tive community detection methods are compared to what is
obtained with randomized versions of the data, in an attempt
to quantify statistical significance [28]. Such a comparison
with a “null model” is evidently an inferential concern, since
it amounts to assessing the generative process underlying the
network formation.

We explore in this work the fact there is no formal
mathematical distinction between inferential and descriptive
methods, since, as we show, the definition of any commu-
nity detection model necessarily implies the existence of an
implicit generative model which yields an inference proce-
dure identical to any descriptive approach (see Fig. 1 for an
illustration of our framework). The characterization of these
implicit generative models allows us to perform Bayesian
model comparisons and assess statistical significance, clos-
ing the gap between inferential and descriptive methods by
evaluating descriptive methods from a generative perspective.
The same implicit generative models also unveil the intrinsic
biases present in arbitrary community detection methods—in
other words, what kind of structure they expect to encounter a
priori, even when this is not explicitly articulated in the mo-
tivation of the method—which cause over- or underfitting of
the data. Furthermore, we show how we can use our method to
appropriately tune parameters of algorithms to mitigate these
biases, simultaneously removing existing resolution limits and
the identification of spurious communities in maximally ran-
dom networks from arbitrary community detection methods.

Here we show that a broad class of methods, which in-
cludes the widely used modularity maximization [15] and
Infomap [13], are equivalent to special cases of an assortative
SBM with groups having uniform size and density (a.k.a., the
planted partition model [29]), where the number of groups
and assortativity strength are determined directly by the ex-
pected value of the quality function. We show that the prior
distribution of the number of groups is typically bimodal,
concentrating simultaneously on a low and a large value,
where the latter is on the order of the number of nodes in
the network. This bimodality induces discontinuous transi-
tions in the statistical properties of typical problem instances,
preventing networks with moderate community structure and
a wide range of the number of groups from being generated.
This a priori bias toward particular kinds of uniform, but
strong, community structure gives new clarity to the observed
behavior of these methods in practice, and their tendency to
find communities of equal size and density and in maximally
random networks.

Our framework allows us to perform a comparison between
algorithms in their capacity of uncovering community struc-
ture sampled from instances that are optimal for a different
method. In particular, we consider optimal instances gener-
ated by modularity and the nested stochastic block model
(NSBM)—a more expressive, hierarchical parametrization of
the SBM which is a priori agnostic about the actual mixing
patterns between groups. We demonstrate that—according to
compressibility and accuracy in community recovery—there
are substantial asymmetries between methods, where the more
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FIG. 1. Diagrammatic illustration of the inverse problem we consider in this work. (a) A community detection algorithm provides a
mapping b̂(A) = b of a network A to a partition b of its nodes. (b) This mapping can always be inverted, such that for any given partition
b of the nodes we can consider the set of all networks A such that b̂(A) = b. This set of networks reveals the implicit generative model
compatible with the community detection algorithm under consideration (we show three independent samples drawn uniformly from this set).
The arrow from case 2 in panel (a) to panel (b) indicates that the same partition is considered in both examples. The networks generated by
the implicit model in panel (b) are markedly different from the network in case 2 in panel (a), which would be generated only with a very
low probability under this model. This happens because the mixing between groups tends to be homogeneous for networks sampled from
the model, whereas in the network in case 2 in panel (a) the groups connect preferentially to a central group (in blue) and they have more
heterogeneous densities. This mismatch indicates that the underlying model is in fact a poor representation of the network structure—which
would be impossible to determine from the results of panel (a) alone. Therefore, characterizing the implicit models hidden behind community
detection methods allows us to evaluate their ability to faithfully capture network structure in a systematic manner and reveal their intrinsic
biases toward particular kinds of structure. This framing also allows us to compare different community detection methods on equal grounds
according to their latent compression of the data—i.e., their description length for a given network A and partition b—which is a universal
model selection criterion that removes the need for ground-truth labels for method comparison.

general NSBM does just as well (but no better) for instances
that are optimal for the other algorithms, but where other
algorithms perform significantly worse on instances that are
optimal for the NSBM. We also perform a systematic com-
parison of methods on a corpus of over 500 diverse empirical
networks, finding that the NSBM provides a better compres-
sion for the vast majority of them. This provides evidence for
“cheap lunches” in community detection—more versatile, but
appropriately regularized approaches tend to yield systemat-
ically better results over structured problem instances. This
result reveals a practical and conceptual caveat to the “no free
lunch” (NFL) theorem for community detection [30], which
states that when averaged over all instances of “community
detection problems” (i.e., arbitrary pairings of a network and
a node partition) all conceivable algorithms must yield the
same performance. This is because the majority of possible
problems are unstructured instances where community labels
have no correlation with network structure.

This paper is divided as follows. We begin in Sec. II
with a discussion of implicit models for community detection
algorithms, describing how to compute their corresponding
description lengths and implicit priors analytically for a broad
class of methods. In Sec. III, we follow up on this discussion
by demonstrating the correspondence between this class of
community detection objectives and restricted instances of
stochastic block models, showing that these methods implic-
itly assume networks with very limited structure. Next, in
Sec. IV we discuss how our framework can provide insights
into the shortcomings of the NFL theorem for community
detection when applied to structured problem instances by re-
vealing asymmetries in algorithm compression performance.
Finally, in Sec. V we apply our method to compare the de-
scription lengths associated with fitting a range of community
detection algorithms to a wide variety of empirical networks,
finding that a small number of more expressive algorithms
have systematically better performance, and that in the small

024309-3



TIAGO P. PEIXOTO AND ALEC KIRKLEY PHYSICAL REVIEW E 108, 024309 (2023)

minority of cases where a more specialized algorithm yields
better performance, its result does not deviate substantially
from what is obtained with the more general approach. We
finalize in Sec. VI with a discussion.

II. GENERATIVE MODELS FROM COMMUNITY
DETECTION METHODS

Let us consider an arbitrary deterministic community de-
tection algorithm that for a given network finds a unique
partition of its nodes into nonoverlapping communities. More
formally, such an algorithm defines a specific mapping

b̂(A) = b (1)

of a network A to a partition b of its nodes, where A = {Ai j}
is the adjacency matrix of an undirected simple graph of N
nodes, with entries Ai j ∈ {0, 1}, and b = {bi} is a partition of
the nodes into B groups, with bi ∈ [1, . . . , B] being the group
membership of node i.

Our central observation (illustrated in Fig. 1) is that any
such mapping can be inverted, so that for some partition b,
we can consider the set of all possible networks A that obey
b̂(A) = b—i.e., all networks that yield a given partition b as
the result of the community detection algorithm being consid-
ered. Selecting between these networks uniformly at random
defines a precise generative model with probability

P(A|b) = δb̂(A),b

Z (b)
, (2)

where Z (b) = ∑
A δb̂(A),b counts all networks in this set.

According to this model, the original community detection
algorithm can be equivalently formulated as a maximum a
posteriori (MAP) estimate of the following posterior distri-
bution:

P(b|A) = P(A|b)P(b)

P(A)
= δb,b̂(A), (3)

with P(b) being any nonzero prior probability. Trivially, we
have that

b̂(A) = arg max
b

P(b|A). (4)

Therefore, there is no mathematical distinction between per-
forming a Bayesian inference of this implicit model and
whatever procedure motivates the original community detec-
tion algorithm in the first place.

Because of this general equivalence, if we interpret the
results of any community detection algorithm in an inferential
way (e.g., by assuming that communities capture homophily,
or any statistically significant structure), then we are unavoid-
ably incorporating in our analysis the generative assumptions
that are inherent to this implicit model.

Unfortunately, although such implicit models must always
exist for any conceivable community detection algorithm,
they may be challenging to characterize explicitly, requiring a
computationally expensive inversion procedure, which in the
worst case needs to be performed exhaustively. This poses an
outstanding problem, since otherwise it becomes impossible
to evaluate the hidden inferential assumptions associated with
a particular method.

In this work, we make substantial progress with this inverse
problem by considering a representative subset of community
detection algorithms that are based on the maximization of an
arbitrary quality function W (A, b) ∈ R,

b̂(A) = arg max
b

W (A, b). (5)

(Some community detection methods, including the popular
label propagation and its variants [31], are neither determin-
istic nor involve explicit quality functions, but nevertheless
can also be cast into our reverse inferential framework. See
Appendix E for a discussion.)

In this case, a direct connection with an inference pro-
cedure is obtained by noting that the above optimization is
equivalent to a MAP estimate of the following family of
posterior distributions:

P(b|A, g) = eg(W (A,b))

Z (A, g)
, (6)

with Z (A, g) = ∑
b eg(W (A,b)) being a normalization constant,

and where g(x) is any function that preserves the optimization,
i.e.,

arg max
b

g(W (A, b)) = arg max
b

W (A, b), (7)

for every A, which in general means that g(x) needs to be
invertible and strictly increasing. Going one step further, we
observe that the above posterior can be obtained from a gen-
eral joint distribution given by

P(A, b|g, f ) = eg(W (A,b))+ f (A)

Z (g, f )
, (8)

with Z (g, f ) = ∑
A,b eg(W (A,b))+ f (A), and f (A) being an arbi-

trary weight attributed to a given network, independent of how
its nodes are partitioned.

The above shows us that, although the quality function
W (A, b) imposes very particular constraints on the generative
models that are compatible with it—specifically how the par-
titions can affect the network structure—they are by no means
unique, since they are constrained only up to an invertible
function g(x) and an arbitrary partition-independent weight
f (A). Therefore, at least at first, it seems that both g(x) and
f (A) are “free” modeling choices that are not directly speci-
fied by the quality function W (A, b). This is analogous to how
descriptive statistics on numeric data such as the population
mean can serve as sufficient statistics for the estimation of
parameters of different generative models, e.g., the mean of
geometric and Poisson distributions in the case of nonnegative
integers.

However, there are two fundamental points that we can
make to resolve this degeneracy. First, as we demonstrate
in Appendix A, the distribution of Eq. (8) is asymptotically
invariant to any choice of the function g(x), since it becomes
equivalent to the microcanonical ensemble given by

P(A, b| f ) = δg(W ∗ ),g(W (A,b))e f (A)

Z ( f )
, (9)

for some value W ∗, which clearly does not depend on how
g(x) is chosen.
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Second, when considering a potential degeneracy of this
kind, a reasonable starting point is to consider all compat-
ible generative models on equal footing. We can formalize
this lack of additional information about the data generat-
ing process by employing the principle of maximum entropy
[32], subject to a minimal set of constraints. Considering
the expected value of the quality function itself as the only
parameter of the model, i.e.,∑

A,b

W (A, b)P(A, b|g, f ) = 〈W 〉, (10)

and maximizing the entropy −∑
A,b P(A, b) ln P(A, b) sub-

ject to the above constraint, we obtain

P(A, b|β ) = eβW (A,b)

Z (β )
, (11)

with Z (β ) = ∑
A,b eβW (A,b), and β being an “inverse tempera-

ture” Lagrange multiplier. Thus, the maximum entropy ansatz
amounts to a choice g(x) = βx and f (A) being an arbitrary
constant. We emphasize once more that the choice of g(x)
is not crucial for our analysis—in fact it has no significant
effect whatsoever in our calculations, as we demonstrate in
Appendix A. Because of this, it will be more convenient
henceforth to use g(x) = βx, but without any loss in gener-
ality. We will return to the choice of f (A) in Sec. II B—let us
momentarily abide by the maximum entropy choice.

The above joint distribution yields a posterior probability
for partitions,

P(b|A, β ) = eβW (A,b)∑
b′ eβW (A,b′ )

, (12)

which has been used before by Massen and Doye [33] and
Zhang and Moore [34], for the particular case of modularity,
to investigate the ensemble of all competing partitions, rather
than the single one that optimizes the quality function. Here
we are more directly interested in the joint distribution of
Eq. (11), for two reasons. The first one is that it generates
problem instances for which the original community detection
method is optimal. More specifically, if we consider an esti-
mator b̂(A) for the partition of a network A, and the average of
the error ε(b′, b) between the true and inferred partitions over
all problem instances,

� =
∑
A,b

ε(b, b̂(A))P(A, b|β ), (13)

then the estimator is optimal if it minimizes �, in which case
it must correspond to

b̂(A) = argmin
b

∑
b′

ε(b, b′)P(b′|A, β ), (14)

which is the estimate that minimizes the error over the pos-
terior distribution conditioned on A. In particular, for the
“zero-one” error, ε(b, b′) = 1 − ∏

i δbi,b′
i
, which simply iden-

tifies the correct answer and ignores all other ones, we recover
the original optimization,

b̂(A) = arg max
b

P(b|A, β ) (15)

= arg max
b

W (A, b). (16)

Therefore, according to this error criterion [35], for the prob-
lem instances sampled from Eq. (11) there exists no algorithm
that can perform on average better than one that corresponds
to the optimization of Eq. (5) (although it is still possible for
alternative algorithms to perform just as well on the same
instances). This gives us access to problem instances for
which, in a formal sense, the results obtained with an arbitrary
community detection algorithm are maximally correct. As
we will show, we can use this information to investigate the
implicit expected instances of arbitrary community detection
algorithms.

A. Model selection and the description length

In addition to the above, our second reason to focus on the
joint distribution of Eq. (11) is that it can be used to assess
the overall statistical evidence for a particular partition of the
network and to enable comparison with alternative models.
More precisely, from Eq. (11) we can compute the so-called
description length [36,37] of the data, defined as

�(A, b|β ) = − log2 P(A, b|β ) (17)

= − log2 P(A|b, β )︸ ︷︷ ︸
S

− log2 P(b|β )︸ ︷︷ ︸
L

. (18)

The description length measures the size of the shortest binary
message required to transmit both the partition b (with length
L) and network A (with length S) over a noiseless channel,
in such a manner that they can both be decoded from the
message without errors, and assuming that the value of β

is already known to the decoder. This connection exposes
a fundamental equivalence between inference and compres-
sion, where the most likely model [largest P(A, b|β )] is also
the most compressive [smallest �(A, b|β )]. The description
length measures the degree of parsimony of the obtained net-
work partition, allowing us to compare with alternative ones
in what amounts to a formalization of Occam’s razor. In the
context of the SBM, the description length has been used as a
criterion to perform order [38,39] and model [18,40,41] selec-
tion, and here we extend this concept to arbitrary community
detection algorithms.

From Eq. (11), we can obtain the description length for an
arbitrary W (A, b) as follows (for convenience of notation, we
will henceforth compute the description length using the nat-
ural base instead of base two, yielding values in nats instead
of bits):

�(A, b|β ) = −βW (A, b) + ln Z (β ) (19)

= −βW (A, b) + ln
∑
A′,b′

eβW (A′,b′ ). (20)

(Note that we will always have �(A, b|β ) > 0, regardless of
our choice of W (A, b) and β.) The parameter β is important
since it determines the expected value of the quality function,
so we will consider its optimal value with

�(A, b) = min
β

�(A, b|β ). (21)

(Strictly speaking, for the description length to be complete
we would need to include the amount of information re-
quired to transmit the value of β up to a desired precision as
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well—but since this is a single global parameter, this will
amount to an overall small constant that we can neglect.)

The difficulty in obtaining �(A, b) lies in computing Z (β ),
which is in general intractable analytically, since it involves
a sum over all networks and partitions. As we show in Ap-
pendix A, at first we can obtain an asymptotic approximation
of the description length given by

�(A, b) ≈ ln �(W (A, b)), (22)

where ln �(W ) is the entropic density of the quality function,
obtained via the density of states,

�(W ) =
∑
A,b

δW (A,b),W . (23)

This is a general result that allows us to compute the de-
scription length for any quality function W (A, b), provided
the density of states can be estimated. In general, this may be
done numerically with Monte Carlo, using algorithms such
as Wang-Landau [42], or other thermodynamic integration
methods. Importantly, however we choose to perform this
computation, it does not affect the time required to obtain
a result from the original community detection algorithm of
Eq. (5)—we need either to perform the computation only once
for the value of W (A, b) obtained as the output, or from a
precomputed table with enough resolution.

In this work, we will be able to obtain accurate analytical
approximations of the description length [which do not make
direct use of the approximation of Eq. (22)] for a fairly wide
class of quality functions W (A, b) that can be expressed as
a function of the edge counts between groups and the group
sizes, i.e.,

W (A, b) = W (e, n), (24)

with ers = ∑
i j Ai jδbi,rδb j ,s and nr = ∑

i δbi,r . In this case we
can perform the following change of variables,∑

A,b

eβW (A,b) =
∑
B,e,n

eβW (e,n)�(e, n, B), (25)

with �(e, n, B) being the microcanonical partition function of
the SBM [43]

�(e, n, B) =
∑
A,b

∏
r�s

δ∑
i j Ai jδbi ,rδb j ,s,ers

×
∏

r

δ∑
i δbi ,r ,nr

(26)

=
∏
r<s

(
nrns

ers

) ∏
r

( (nr

2

)
err/2

)
× N!∏

r nr!
. (27)

The above computation makes it clear that whenever Eq. (24)
holds, which happens to be true for many popular quality
functions, then the overall approach can be seen as equivalent
to the inference of a particular version of the SBM, with a spe-
cific weighting factor given by W (e, n). We will focus on the
class of methods where Eq. (24) holds for our further analyses,
as they permit simple analytical treatment. (In Appendix E we
consider in more detail situations not covered by our main
ansatz, including when the community detection algorithm is
not the result of an optimization.)

Based on this parametrization, we can now decompose
Z (β ) as

Z (β ) =
∑
B,e,n

eβW (e,n)�(e, n, B) (28)

=
∫

eβW �(W ) dW, (29)

with

�(W ) =
∑

B

�(W, B), (30)

being the β-independent density of states, where

�(W, B) =
∑
e,n

�(e, n, B)δ(W (e, n) − W ) (31)

is the contribution for a particular number of groups B.
With �(W ) at hand, the description length is then com-

puted as

�(A, b|β ) = −βW (A, b) + ln
∫

eβW �(W ) dW. (32)

The computation above allows us to ascribe a description
length to an arbitrary quality function W (A, b), and hence
compare it with any other generative model in its relative
ability to provide a plausible account for the data [44].

We note that if the quality function being used is already
the joint log-likelihood of a generative model, i.e.,

W (A, b) = ln P(A, b), (33)

then the above procedure will recover the original description
length �(A, b) = − ln P(A, b) for β = 1. The optimization of
the parameter β may yield a marginal compression, which will
vanish asymptotically if the data happens to be sampled from
the same model.

B. Partition-independent compression

Any given posterior distribution P(b|A) is not uniquely
associated with a description length, since the latter depends
also on modeling choices that are independent of the relation-
ship between network and partition. In fact, for any generative
model P(A, b), we can devise an entire family of model al-
ternatives determined up to an arbitrary exponential weight
f (A), i.e.,

P′(A, b) = P(A, b) e f (A)∑
A′,b′ P(A′, b′) e f (A′ )

, (34)

all of which will result in the same posterior distribution
for the partitions, P(b|A) = P′(A, b)/P′(A) = P(A, b)/P(A),
independent of f (A). Therefore, the choice of f (A) will af-
fect the description length (as well as predictive tasks such
as link prediction [6,10,11]), but not the posterior for the
node partitions, despite the corresponding model generating
different networks. It is important to emphasize that the choice
of f (A) cannot significantly alter the community structure of
the networks generated. We can see this by formulating the
sampling of an instance of the model of Eq. (34) with the
following rejection algorithm:

(1) A pair (A, b) is sampled from the original P(A, b).
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(2) With probability e f (A)− f ∗
, where f ∗ = maxA f (A), the

sample is accepted, otherwise it is rejected and we go to
step 1.

Therefore, the reweighting of Eq. (34) will only suppress
networks from the original ensemble in a manner that cannot
take into account the node partition b.

Although all models in the above family generate networks
with the same kind of community structure, they can deviate
with respect to other attributes that are uncoupled from this
property. If these attributes happen to match more closely an
observed network, this can be used to compress it further.

In the calculation of the previous section we used the prin-
ciple of maximum entropy to fill this modeling gap, which
yielded a constant value for f (A). However, it is possible
to deviate from this principle, and improve the description
length by including properties we know to be ubiquitous. For
example, we can introduce the exact number of edges E as an
additional hard constraint,∑

A,b

P(A, b|g, f )δ∑
i< j Ai j ,M = δM,E , (35)

which if added to the entropy maximization yields

P(A, b|β, E ) =
eβW (A,b)δ∑

i< j Ai j ,E

Z (β, E )
, (36)

with Z (β, E ) = ∑
A,b eβW (A,b)δ∑

i< j Ai j ,E . To remove the pa-
rameter E we must introduce a uniform prior,

P(E ) = 1(N
2

) + 1
, (37)

obtaining thus an alternative joint likelihood via marginaliza-
tion,

P(A, b|β ) =
∑

E

P(A, b|β, E )P(E ) (38)

= eβW (A,b)

Z
(
β,

∑
i< j Ai j

)[(N
2

) + 1
] . (39)

The description length obtained with the joint distribution
above will almost always be significantly shorter than what is
obtained with Eq. (11), since the latter will sample networks
which will tend to be dense—as long as the values of W (A, b)
are not affected directly by the network density. We will use
Eq. (38) in our ensuing analysis, instead of Eq. (11), since
we will be considering only sparse networks. The density of
states in this case is computed in the same manner as before,
but keeping the total number of edges fixed,

�(W, B, E ) =
∑
e,n

�(e, n, B)δ(W (e, n) − W )δ∑
rs ers,2E .

(40)
We can follow this route further and seek additional con-

straints that condition f (A) to favor network patterns that
are more likely to be encountered. For example, instead of
constraining only the total number of edges, we can fix the
entire degree sequence k = {ki}, where ki = ∑

j Ai j is degree
of node i, i.e.,∑

A,b

P(A, b|g, f )δ∑
j Ai j ,mi

= δmi,ki , (41)

which will lead to

P(A, b|β, k) =
eβW (A,b) ∏

i δ
∑

j Ai j ,ki

Z (β, k)
, (42)

with Z (β, k) = ∑
A,b eβW (A,b) ∏

i δ
∑

j Ai j ,ki
. Note that, now, in-

stead of a single parameter, we have N + 1. To retain the same
number of parameters as before, we need a prior for the degree
sequence k. One choice is a uniform model with

P(k|E ) =
((

N

E

))−1

, (43)

where (( n
m )) = (n+m−1

m

)
is the number of n-tuples of nonneg-

ative integers whose sum is m. Another choice is a deeper
Bayesian hierarchy with

P(k|E ) = P(k|η)P(η|E ), (44)

where η = {ηk} are the degree counts, i.e., ηk = ∑
i δki,k , such

that

P(k|η) =
∏

k ηk!

N!
, P(η|E ) = q(2E , N )−1, (45)

where q(m, n) is the number of possible partitions of integer
m into at most n parts, which can be calculated exactly via
a recursion, or approximated accurately for large arguments,
as described in Ref. [45]. The latter choice tends to provide
a more parsimonious model for most empirical degree se-
quences, as long as they deviate sufficiently from a geometric
degree distribution, which is (marginally) better described by
Eq. (43) (see Ref. [45] for a discussion). With this prior in
place, the final joint distribution becomes

P(A, b|β ) =
∑
k,E

P(A, b|β, k)P(k|E )P(E ), (46)

= eβW (A,b) ∏
k η̂k!

Z (β, k̂)q
( ∑

i j Ai j, N
)[(N

2

) + 1
]
N!

, (47)

where k̂i = ∑
j Ai j and η̂k = ∑

i δk̂i,k
. In this case the SBM

partition function is given by

�(e, n, k, B) =
∑
A,b

∏
r�s

δ∑
i j Ai jδbi ,rδb j ,s,ers

×
∏

r

δ∑
i δbi ,r ,nr

×
∏

i

δ∑
j Ai j ,ki

, (48)

which is unfortunately intractable [46]. However, it can be
approximated by counting configurations [43,45],

�(e, n, k, B) ≈
∏

r er!∏
r<s ers!

∏
r err!!

∏
i ki!

× N!∏
r nr!

, (49)

which will yield an asymptotically exact enumeration as long
as ki � √

N/B, and a still useful approximation otherwise.
The above alternative yields “degree-corrected” variants

for the description length, which we will use in our analysis as
well. Note that the above modification is different from the de-
gree correction of the SBM [47], which correlates the degrees
with the group memberships, and hence alters the posterior
distribution [45]. The correction above changes the descrip-
tion length, but not the posterior distribution of partitions—all
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of the variations above remain fully equivalent to the original
community detection ansatz of Eq. (5).

One could in principle proceed indefinitely with adding
partition-independent constraints that influence f (A), to-
gether with prior distributions that keep the final distribution
nonparametric—however, these quickly become very difficult
to compute as soon as higher-order structures are consid-
ered. But more importantly, as Eq. (34) shows, these kinds
of modeling refinements can be imposed on any generative
model. The above choices that impose sparsity and degree-
correction already attempt to extract the largest amount of
compression, on par with what is done with state-of-the-art
inferential methods based on the SBM [9]. Therefore, if fur-
ther partition-independent improvements are possible, then
these can be employed systematically and on equal grounds
for every model considered in this work.

C. Implicit priors and the role of the inverse temperature

From the joint distribution of Eq. (11) we can recover
implicit priors via marginalization. For example, the marginal
distribution for the value of the quality function is

P(W |β ) =
∑
A,b

δ(W (A, b) − W )P(A, b|β ) (50)

= eβW �(W )

Z (β )
. (51)

Likewise, the prior for the number of groups can be obtained
via

P(B|β ) =
∑
A,b

δB(b),BP(A, b|β ) (52)

=
∫

eβW �(W, B) dW

Z (β )
. (53)

From the above equations we see that the inverse temperature
β will influence both the expected number of groups, as well
as the values of the quality function. Notably, the conditional
prior

P(B|W ) = P(W, B|β )

P(W |β )
= �(W, B)

�(W )
(54)

is β-independent.
For inferential methods based on the SBM [9] the priors

above are set explicitly, usually in a noninformative manner
to avoid biases during inference. Instead, for a given W (A, b)
these need to be reverse-engineered via the above computa-
tions.

We proceed now to the application of the above method for
the generalized modularity quality function [48], which we
will use as our example to illustrate the insights we can obtain
by casting community detection objectives into our inferential
framework. We perform an analogous analysis of Infomap
in Appendix C, and discuss further objective functions in
Appendix D.

D. Modularity maximization

The generalized modularity quality function is given by

Q(A, b, γ ) = 1

2E

∑
r

err − γ
e2

r

2E
, (55)

where γ is the so-called resolution parameter. The method of
modularity maximization [15] consists of finding the partition
that maximizes this quantity, typically with γ = 1.

As is required for our computation, modularity can be
written solely as a function of the microcanonical SBM pa-
rameters, i.e., Q(A, b, γ ) = Q(e, n, γ ), and we are interested
in obtaining the density of states,

�(Q, E ) =
∑
e,n

�(e, n)δ(Q(e, n, γ ) − Q)δ
2E ,

∑
rs ers

. (56)

As we show in Appendix B, the dominating terms of the above
sum will correspond to a uniform planted partition model with
er = 2E/B and nr = N/B for which we can write

Q(A, b, γ ) = Ein

E
− γ

B
, (57)

with Ein = ∑
r err/2 being the edges internal to communities.

Based on this, we can write

�(Q, E ) �
∑

B

�(E , Ein(Q, E , B, γ ), B), (58)

with

Ein(Q, E , B, γ ) = E (Q + γ /B), (59)

where Eq. (58) accounts for the number of partitioned net-
works with exactly Ein edges between nodes of the same
group, which can be computed as

�(E , Ein, B)

=
∑
e,n

�(e, n, B)δ∑
r err/2,Ein

δ∑
rs ers,2E

∏
r

δnr ,N/B (60)

=
∑

e

[∏
r<s

(
N2/B2

ers

) ∏
r

((N/B
2

)
err/2

)
× N!

[(N/B)!]B

×δ∑
r err/2,Ein

δ∑
r<s ers,E−Ein

]
(61)

=
(

B
(N/B

2

)
Ein

)( N2

B2

(B
2

)
E − Ein

)
N!

[(N/B)!]B
. (62)

To obtain Eq. (62) from Eq. (61) we simply used the general-
ized Vandermonde’s identity,

∑
k1+···+kp=m

(
n1

k1

)
· · ·

(
np

kp

)
=

(
n1 + · · · + np

m

)
. (63)

It is important to reiterate that Eq. (60) allows us to obtain
a strict lower bound on the density of states �(Q, E ), since it
accounts only for partitions with equal size. However, it will
asymptotically dominate the exact sum for large networks as
we show in Appendix B. Nevertheless, in the preasymptotic
regime, the above calculations will therefore yield a strict
lower bound on the resulting description length, since the
exact final values of Z (β, E ) can only be larger than what is
obtained via the above computation.
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Analogously, for the degree-corrected version of modular-
ity we have instead

�(E , Ein, k, B)

=
∑
e,n

�(e, n, k, B)δ∑
r err/2,Ein

δ∑
rs ers,2E

∏
r

δnr ,N/B (64)

=
∑

e

[
[(2E/B)!]B∏

r<s ers!
∏

r err!!
∏

i ki!
× N!

[(N/B)!]B

×δ∑
r err/2,Ein

δ∑
r<s ers,E−Ein

]
(65)

= [(2E/B)!]BBEin
(B

2

)E−Ein N!

(2Ein)!!(E − Ein )![(N/B)!]B
∏

i ki!
, (66)

where in the last step we have used the multinomial theorem,

∑
k1+···+kp=m

m!∏p
i=1 ki!

p∏
i=1

xki
i =

(
p∑

i=1

xi

)m

. (67)

With the density of states at hand, we can obtain the
description length according to Eq. (32), which involves a
sum over B in Eq. (58) and an integral over W = Q, both of
which can be done efficiently numerically, up to an arbitrary
precision.

In Fig. 11 in the Appendix we see the result of applying the
above computation for various network sizes and densities.
[We focus for the moment on the non-degree-corrected ver-
sion, although the degree-corrected variants are qualitatively
very similar (not shown).] It shows the density of states and
description length values relative to the ER baseline

�ER = ln

((N
2

)
E

)
. (68)

Therefore, a value smaller than this would amount to a
compression relative to a fully random model, pointing thus
to statistically significant structure. The values shown on
the bottom row of Fig. 11 offer us an important mapping
from Q values—which by themselves cannot be interpreted
statistically—to description length values. The latter quan-
tities allow for an information-theoretical evaluation of the
statistical significance and degree parsimony for Q val-
ues obtained with modularity maximization algorithms. As
can be seen in Fig. 11, we often obtain inflation for in-
termediary values of Q—which therefore would indicate
overfitting—and compression only for relatively high values.
The compression region becomes larger for denser networks
(for 〈k〉 = 2 compression is impossible for most Q values),
which is also anticipated by higher values of the resolution
parameter γ .

An important aspect of our analysis is that it allow us to
understand the implicit prior assumptions that are intrinsic to
modularity maximization, as we show in Fig. 2. As seen in
Figs. 2(a) and 2(b), both the prior for the modularity value,
P(Q|β ), and the number of groups, P(B|β ), are extremely
informative and bimodal, concentrating very strongly on par-
ticular high and low values. The value of β determines which
mode dominates, inducing a discontinuous transition at a par-
ticular value β∗ for the mean values 〈Q〉 and 〈B〉, as we can

see in Figs. 2(c) and 2(d). This kind of transition is reminiscent
of the degeneracy encountered in exponential random graphs
models [49,50], where the ensemble mean of an enforced
constraint results in bimodal distributions, where no typical
sample from the ensemble obeys the enforced constraint.
Importantly, this kind of prior assumption is hardly justified
in most applications in the absence of substantial additional
evidence supporting it. The case of strict modularity maxi-
mization, where we are interested only in the partition that
maximizes the posterior of Eq. (12), amounts to the situation
β → ∞, where prior modularity values concentrate on Q = 1
and B ∝ N , explaining the tendency of the method to overfit,
which is avoided only if the evidence in the data is sufficiently
strong to contradict the prior assumptions.

We can further understand the behavior of modularity
maximization via the conditional prior P(B|Q), which is β-
independent, seen in Fig. 2(e). The range of large Q values
shows an intuitive behavior: As Q increases, so does the
expected number of groups. However, the same happens for
low Q values approaching zero. This contradicts the intu-
ition that low Q values, especially Q = 0, would amount to
small or negligible community structure. What is occurring
here is that for low Q the density of states is dominated by
the contribution of the node partitions, which is largest for
B = O(N ), since there are many networks that admit a low Q
with an arbitrary partition. As soon as Q increases, the con-
tribution of the actual network structure dominates instead,
since relatively fewer networks allow for a high Q partition,
and forces the number of groups to decrease, before increasing
again. This tension between the partition and network entropic
contributions also explains the transitions between the low Q
and divergent B, and high Q and finite B regimes observed as
a function of β.

The behavior above also explains the tendency of the mod-
ularity method to simultaneously overfit (i.e., when it finds
spurious communities) and underfit, i.e., when the number
of groups exceeds the

√
γ 2E resolution limit [51] it merges

groups together. In fact, we can use the value of description
length to correct for both these effects via the parameter γ

by choosing the value that most compresses the network, as
shown in Fig. 3. While using a value of γ = 1 finds spurious
groups whenever the true number of planted groups is small,
and too few groups whenever the true number lies above

√
2E ,

the most compressive γ values reveals the correct number
throughout the entire range, thus removing a long-standing
limitation of this method.

Although the above approach serves as principled, unified,
and nonparametric solution to the overfitting and resolution
limit problems of modularity maximization, we emphasize
that are other problems intrinsic to the method that remains. In
particular, optimizing γ yields an effective number of groups,
computed as

Be = exp

(
−

∑
r

nr

N
ln

nr

N

)
, (69)

which lies very close to the true value, but the actual number
of inferred groups is often larger, as shown in the inset of
Fig. 3(a). This is because the value of Q, and as a consequence
its description length encoding, are insensitive to the existence
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FIG. 2. Implicit priors for the method of modularity maximization. Top row: (a) Implicit prior distribution for the value of modularity Q,
and (b) number of groups B, for different values of β, γ = 1, N = 107, and 〈k〉 = 10. Middle row: Average values of (c) Q and (d) B, as a
function of β, and different values of γ . Bottom row: (e) Average value of B as a function of Q for different values of N and γ = 1, and (f) the
same as (e) but with N = 107 only and different values of γ .

of very small groups, therefore some marginal amount of
overfitting cannot be fully removed. More importantly, the
method will still enforce a characteristic scale for the com-
munity sizes, and will not behave well when communities of
unequal sizes exist [52]. The computation and minimization

of the description length can be seen as a “post-processing”
of the results obtained with modularity maximization, and it
can only influence the intrinsic biases of the method via a free
parameter like γ . A more direct strategy to tackle the vices
of the method involves a more appropriate formulation the
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FIG. 3. Computing the description length can alleviate the
overfitting and underfitting (resolution limit) of the modularity max-
imization method. Panel (a) shows the inferred effective number of
groups Be = exp(−∑

r
nr
N ln nr

N ), as a function of the true number of
groups B, for networks sampled from a PP model with uniform group
sizes, Ein = E − (B − 1)〈k〉, for N = 104 and 〈k〉 = 5, obtained us-
ing modularity maximization with γ = 1 and the value of γ that
minimizes the description length, as shown in the legend. It also
shows the results obtained with the NSBM. The horizontal dashed
line marks the value

√
2E . The inset shows the inferred number of

nonempty groups, instead of the effective number. (b) Description
length versus γ for B = 1, for the same networks as in panel (a).
The dashed vertical line marks the value of γ corresponding to the
minimum description length and the horizontal line the description
length of the ER model. (c) Effective number of groups for the same
networks as in panel (b). The horizontal line marks the planted value.
Panels (d) and (e) are analogous to panels (b) and (c), but with
B = 587.

prior assumptions, precisely as is done with the SBM-based
approaches [9,18]. In Fig. 3 we show the result obtained with
the nested stochastic block model (NSBM) [45,53], discussed
in more detail in Sec. IV A, which has no difficulty in finding

not only the effective number of groups, but also its nominal
value.

III. OPTIMAL PROBLEM INSTANCES

As discussed previously, problem instances (A, b) sampled
from the distribution

P(A, b|β ) = eβW (A,b)

Z
(
β,

∑
i< j Ai j

)[(N
2

) + 1
] (70)

are optimal for a community detection algorithm that maxi-
mizes the quality function W (A, b), since no other algorithm
can achieve better average performance on those instances.
If a quality function can be written in terms of the micro-
canonical SBM parameters W (A, b) = W (e, n), then it can
be interpreted as being proportional to the log-likelihood of
a particular constrained version of the SBM. We can see this
by approximating

Z (β, E ) =
∫

eβW �(W, E ) dW ≈ eβW ∗
�(W ∗, E ), (71)

with W ∗ = arg maxW eβW �(W, E ), such that

P(A, b|β ) ≈ eβ[W (e,n)−W ∗]

�
(
W ∗,

∑
i< j Ai j

) . (72)

Approximating further,

�(W ∗, E ) =
∑

B

�(W ∗, B, E ) ≈ �(W ∗, B∗, E ), (73)

with B∗ = arg maxB�(W ∗, B, E ), and neglecting finite-size
fluctuations around the most typical samples with W (e, n) =
W ∗, we can write the likelihood as

P(A, b|β ) ≈
δW (

∑
r err/2,

∑
i< j Ai j ,B∗ ),W ∗

�
(
W ∗, B∗,

∑
i< j Ai j

)[(N
2

) + 1
] . (74)

where W (Ein, E , B) is the value of the quality function for
exactly Ein edges internal to equal-sized communities. Rear-
ranging, we have

P(A, b|β ) ≈ P(A|E∗
in, E , b)P(b|B∗)P(E ), (75)

where E∗
in is the solution of

W (Ein, E , B∗) = W ∗, (76)

and

P(A|Ein, E , b) =
δ∑

i< j Ai jδbi ,b j ,Ein
δ∑

i< j Ai j ,E(∑
r (nr

2 )
Ein

)(∑
r<s nr ns

E−Ein

) (77)

is the likelihood of a microcanonical planted partition SBM
with exactly Ein edges internal to communities, and

P(b|B) =
∏

r δnr ,N/B

N!/[(N/B)!]B
(78)

is the likelihood of a random partition into B groups of the
same size, and finally P(E ) = [

(N
2

) + 1]−1. The values of W ∗
and B∗ are uniquely determined by β with

W ∗ = arg max
W

eβW �(W, E ), (79)

B∗ = arg max
B

�(W ∗, B, E ). (80)
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Therefore, the model of Eq. (70) is asymptotically equivalent
to sampling a network from a planted partition SBM with the
number of groups and assortativity strength determined by the
same β parameter.

The above equivalence is a more general, but compati-
ble nonparametric version of the approximate one shown for
modularity in Ref. [17]. That work showed that if both the
number of groups and the planted partition mixing parameter
are known and fixed, and if the partitions have equal size
and density [18], then the maximum likelihood of the degree-
corrected planted partition model is approximately the same
as the maximum modularity one with a particular value of
γ . In contrast, the model we derive above is nonparametric,
i.e., generates in addition to the network also the number of
groups, partition, and mixing strength, and does not rely on
any assumptions on the data. Crucially, unlike the model of
Ref. [17], from ours we can compute the description length of
the data.

In Fig. 4(a) we show some example networks sampled
from the optimal model for modularity maximization, for
various values of β. As discussed previously, for a small value
of β the model concentrates on low Q values with diverging
B ∝ N , and undergoes a discontinuous transition at value β =
β∗, after which it concentrates on high Q values with a finite B.
An example of this transition is shown in Fig. 4(b) via the joint
probability P(Ein, B|β ) = eβQ(Ein,E ,γ ,B)�(W, B, E )/Z (β ).

Note that for a single value of β there is no way to in-
dependently control the number of groups and strength of
community structure. However, we might imagine that setting
the value of the resolution parameter γ would allow for a
precise tuning of the strength of assortativity Ein together
with any arbitrary number of groups B—in other words, we
could expect a bijection between (β, γ ) and (Ein, B), up to
discretization. In reality, however, a wide range of (Ein, B)
values is not achievable for any combination of (β, γ ), as we
show in Fig. 5. Indeed, the model is only capable of generating
networks with quite strong community structure, far away
from the detectability threshold of the plated partition model,
which lies at

E �
in

E
= 1

B
+ B − 1

B
√〈k〉 . (81)

For any network sampled from the PP model with Ein < E �
in, it

is not possible with any algorithm to recover any information
about the true partition [54]. As we see in Fig. 5, the opti-
mal model for modularity only generates networks with Ein

much larger than E �
in—except for a small fraction of (β, γ )

combinations that lead to very large B values. However, the
undetectable regime (and hence also the detectability transi-
tion) only exists in the limit B/N → 0, and the values of B for
which we obtain Ein < E �

in scale proportionally with N as it
increases (not shown). Therefore, it is not possible to generate
an undetectable community structure with this model, other
than by setting β < β∗, in which case the networks generated
are maximally random and uncorrelated with the node parti-
tions.

The result above is not entirely surprising, since it is known
that modularity maximization is not an optimal algorithm for
networks sampled close to the detectability transition of the
PP model, since it already fails for easier problem instances

[55]. If it were possible to generate such hard realizations with
the above optimal model for modularity, it would lead to a
contradiction.

Overall, we see that the optimal instances for modularity
maximization are quite contrived, and composed of unrealis-
tically strong and uniform community structure, resulting in
relatively easy labeling tasks, as we will see in the follow-
ing section. (We demonstrate similar results for the Infomap
objective in Appendix C.) These problem instances are also
unrealistic in their regularity, with a maximally homogeneous
community structure composed of equal-sized groups that
also have the same density. Although modularity maximiza-
tion is optimal for these instances, it is very likely that other
algorithms will work just as well for them too. In the fol-
lowing, we demonstrate that more general algorithms indeed
perform just as well in these instances, but the opposite is
not true: modularity maximization does not perform well with
instances that are optimal to a more general algorithm.

IV. “CHEAP LUNCHES”

Recently, the notion of universal algorithms for community
detection has been challenged by a “no free lunch” (NFL) the-
orem [30], which states that when averaged over all instances
of community detection problems, all conceivable algorithms
must yield the same performance. This would mean, therefore,
that no algorithm can be truly universal, and that for one
algorithm to behave better than another on a subset of the
problem instances, then it must do worse on the remaining
instances in a complementary fashion. However, digging only
slightly below the surface of the statement of the NFL theorem
of Ref. [30] reveals that it in fact tells us very little about
the kind of problems that virtually any community detection
method attempts to solve. As stated previously, despite their
different mathematical definitions, most methods attempt to
divide networks into groups of nodes with more internal than
external connections, or more generally, according to arbitrary
preferences of connection between groups. In spite of this, the
class of problems considered in Ref. [30] completely violates
this qualitative constraint, and considers instead as equally
valid instances of a community detection problem any arbi-
trary pairing of a network and a true node partition that an
algorithm needs to find to be maximally accurate—regardless
of how the nodes are actually divided in this partition and how
this division relates to the structure of the network. In fact,
most such problem instances are unstructured, in a formal
sense, since they correspond to maximally random networks
with nodes divided in equally maximally random partitions, in
violent disagreement with almost every notion of community
structure in the entire literature on the topic [8].

In more detail, the NFL theorem states that, given an ar-
bitrary deterministic community detection algorithm indexed
by f which ascribes a partition b̂ f (A) to a network A, and
an appropriately chosen error function ε(b, b′), then we must
have ∑

A,b

ε(b̂ f (A), b) = �ε, (82)

where �ε is a constant that does not depend on the chosen al-
gorithm f , only on the error function ε(b, b′). In other words,
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FIG. 4. (a) Samples from the implicit generative model behind modularity maximization with γ = 1, for different inverse temperature
values β, N = 104, and 〈k〉 = 10. The colors indicate the sampled network partitions. For these problem instances, the method of modularity
maximization is Bayes-optimal. (b) Joint probability P(Ein, B|β ) for the modularity model, with N = 107, 〈k〉 = 10, γ = 1, and different
values of β. The global maxima of the distribution are marked with star symbols. As the value of β increases, the global maximum changes
abruptly from a value close to (Ein, B) = (0, N ) to a value with large Ein and finite B.

when summed over all possible pairs (A, b), all algorithms
must have the same performance. Crucially, the sum above
does not necessarily involve pairs (A, b) which correspond to
a partitioned network with any actual community structure—
regardless of how one defines it—they are entirely arbitrary.
In fact, we can re-write the statement of the theorem using a

probabilistic language, thus

∑
A,b

P(A, b)ε(b̂ f (A), b) ∝ �ε, (83)
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FIG. 5. Feasible realizations of the modularity model. Each
curve corresponds to the (Ein, B) values achieved with β in the range
[0, ∞] for a specific value of γ , as indicated in the legend, N = 107,
and 〈k〉 = 10. The dotted line delineates the feasible region for any
parameter value. The dashed line marks the detectability transition
of Eq. (81).

where the joint probability is trivially uniform and hence
uncorrelated, i.e.,

P(A, b) = P(A)P(b), (84)

P(A) ∝ 1, (85)

P(b) ∝ 1. (86)

Indeed, in this situation a uniformity between algorithms is
entirely unsurprising, since the posterior distribution is max-
imally uniform P(b|A) = P(b) ∝ 1, and the Bayes-optimal
algorithm amounts to simply selecting a partition uniformly
at random, ignoring the network altogether. The best possible
algorithm will achieve a minimal accuracy corresponding to a
blind random guess, and hence �ε will correspond to the max-
imal possible value for every algorithm. Since all algorithms
perform maximally poorly, there is no actual tradeoff between
them in this scenario [8]—in contrast to how the NFL theorem
is sometimes interpreted [6,56].

The vast majority of problem instances sampled from
the uniform distribution are incompressible, i.e., cannot be
described using fewer bits than what is prescribed by the
uniform distribution, and hence correspond to unstructured
problem instances. Crucially, the subset of structured problem
instances, i.e., a network with actual community structure—
again, regardless of how one precisely defines it—has an
asymptotic measure of zero with respect to the set of all
instances, i.e., the probability of encountering them when
sampling from the uniform distribution will vanish rapidly as
the size of the data increases [57]. Therefore, the statement of
Eq. (82) tells us very little about actual community detection
problems, which to be structured, need to be compressible.
(The same can be said about other kinds of NFL theorems,
outside of community detection [58–63].)

Importantly, the NFL theorem does not imply that there
is a performance equivalence between algorithms when they
are faced with structured problem instances. Using our un-
derstanding of the connection between descriptive community
detection objectives and implicit network generative models,
here we address this issue and demonstrate that for structured
problem instances, there are asymmetries where more general
approaches can outperform more specialized ones, without
degrading the performance in more specific instances.

Let us consider two alternative distributions of problem
instances, P(A, b) and Q(A, b). We can quantify the ability of
model Q(A, b) to capture the structure of instances sampled
from a model P(A, b) via the Kullback-Leibler (KL) diver-
gence from Q to P,

DKL(P||Q) =
∑
A,b

P(A, b) ln
P(A, b)

Q(A, b)
(87)

=
∑
A,b

P(A, b)[�Q(A, b) − �P(A, b)], (88)

which in this context measures the average description length
difference according to models Q and P, for problem instances
sampled from P. Note that the KL divergence is strictly pos-
itive, DKL(P||Q) � 0, with the equality attainable only for
P = Q. Therefore, it is not possible on average to obtain
improved compression with a code optimized for Q if the
instances come from P 
= Q. Crucially, the KL divergence is
in general asymmetric, i.e., DKL(P||Q) 
= DKL(Q||P). There-
fore, the amount of information “wasted” by encoding data
from P with model Q is not the same as encoding from Q with
P. Indeed, this indicates the possibility of more general mod-
els which not only compress their own instances optimally (as
every model does), but also do very well for instances of other
models, while the converse not being true. A concrete example
of this is a general mixture given by

Q(A, b) =
M∑

m=1

Pm(A, b)P(m), (89)

where the individual components Pm(A, b) are entirely arbi-
trary. In this case, we have �Q(A, b) � �m(A, b) − ln P(m)
for every m, and hence

DKL(Pm||Q) � − ln P(m), (90)

where − ln P(m) = O(ln M ) if the mixtures have similar prob-
ability, while the reverse DKL(Q||Pm) can be arbitrarily large.
In our context, we can speak of a good alternative code Q
for P if DKL(P||Q) = O(ln N ), since in this case the encoding
“penalty” of using Q instead of P will be much smaller than
the optimal �P, which tends to scale as O(N ln N ). Therefore,
in the uniform case P(m) = 1/M, the general mixture will
provide a good description for any of its components even if
their number M grows as any polynomial in N .

Since the intrinsic model behind modularity maximization
amounts to a particular parametrization of the SBM, we can
therefore posit that a more general mixture will have a supe-
rior performance in most cases, while still performing very
well for instances that are optimal for modularity maximiza-
tion. Here we review one such mixture, the nested stochastic

024309-14



IMPLICIT MODELS, LATENT COMPRESSION, … PHYSICAL REVIEW E 108, 024309 (2023)

block model (NSBM) [45,53], and demonstrate that it indeed
possesses this property.

A. The nested stochastic block model (NSBM)

The NSBM is based on a parametric formulation of the
microcanonical SBM, which is defined by a likelihood

P(A|e, b), (91)

where e = {ers} is again the matrix of edge counts between
groups. The matrix e determines the mixing patterns between
groups, which is a free parameter. Clearly, we can realize
optimal instances of modularity by choosing e and b accord-
ingly. The NSBM consists of introducing a parametric prior
for e which depends on a partition b2 of the groups of b, and
another matrix of edge counts e2 = {e(2)

tu }, with elements e(2)
tu

determining the number of edges between groups of groups.
As a result, we have a marginal likelihood

P(A|e2, b, b2) =
∑

e

P(A|e, b)P(e|e2, b2), (92)

with the sum having trivially only one nonzero summand, due
to the hard constraints imposed. Naturally, we can proceed
indefinitely up to L hierarchical levels, where we enforce that
on the last level L + 1 there is a trivial partition into one group,
leading to a marginal likelihood

P(A|b, b2, . . . , bL ). (93)

Choosing priors P(bl ) for the partitions leads to a nonpara-
metric joint distribution P(A, b, b2, . . . , bL ) and a description
length for the hierarchical partition given by

�(A, b, b2, . . . , bL ) = − ln P(A, b, b2, . . . , bL ). (94)

For further details on the derivation of the likelihoods, includ-
ing the degree-corrected variation (DC-NSBM), we refer to
Refs. [45,53]. The description length for the first-level parti-
tion is obtained by marginalization,

�NSBM(A, b) = − ln
∑

b2,b3,...,bL

P(A, b, b2, b3, . . . , bL ) (95)

� − ln P(A, b, b∗
2, b∗

3, . . . , b∗
L ). (96)

Although the sum over the higher-level partitions is in-
tractable, the marginal description length is upper bounded
by any particular choice {b∗

l }, as shown in the last line
of the above equation. This gives us an upper bound for
DKL(PQ||PNSBM) and a lower bound for DKL(PNSBM||PQ),
which are sufficient for our analysis.

In Figs. 6(a) and 6(b) we compare samples from modular-
ity’s implicit model and the NSBM. Contrary to the former,
the NSBM is completely nonparametric and yields more real-
istic problem instances that combine structure with disorder
at several scales. Although they have an extremely varied
number and composition of groups, and mixing patterns be-
tween them, the sampled instances almost always deviate
from a maximally random graph—they are almost always
compressible. Indeed, the structural regularity of a lower level
of the hierarchy is generated with some amount of randomness

FIG. 6. Asymmetric tradeoff between the NSBM and the implicit
model behind modularity maximization. In panel (a) we show sam-
ples from modularity’s model for different values of β, and in (b) we
show samples from the NSBM (which is nonparametric)—in both
cases visualized as chord diagrams. In panel (b) the corresponding
hierarchical partitions are overlaid. In panels (c) and (d) we show the
KL divergences, DKL(PQ||PNSBM) and DKL(PNSBM||PQ ), respectively,
in both cases divided by ln N , as a function of the number of nodes
N . The solid line shows the linear slope. In panel (c) the networks
are sampled from modularity’s model with 〈k〉 = 10, and various
values of β as indicated in the legend. In panel (d) the networks are
sampled from the NSBM, for various 〈k〉 as indicated in the legend.
In panels (e) and (f) are shown the overlaps between the inferred and
true partitions, for the same problem instances in panels (c) and (d),
respectively, when inferred with modularity maximization and with
the NSBM, as indicated in the legend.

and regularity from the level above, and so on recursively,
attributing the samples with a mixture or randomness and reg-
ularity at multiple scales. This larger diversity of samples from
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the NSBM comes precisely from its more agnostic character
when it is used for inference, since in this case we make fewer
commitments about the structure of the data—with respect to
the number of groups, how uniformly distributed they are and
the preference of connections between them—before the data
are actually seen. Importantly, as we will shortly demonstrate,
once these patterns are actually identified, the resulting de-
scription length tends to be very close to the optimal one [45].

Due to its more general character, the NSBM generates the
kind of regular community structure expected by modularity
only with a relatively low probability, and hence provides a
strictly sub-optimal encoding for networks that are sampled
from this model. However, as Fig. 6(c) shows, the KL di-
vergence DKL(PQ||PNSBM) grows only logarithmically with N ,
meaning that it can nevertheless efficiently describe networks
sampled from this model. The opposite situation, however, is
quite different: As Fig. 6(d) shows, the reversed KL diver-
gence DKL(PNSBM||PQ) grows log-linearly with N , meaning
that modularity’s model is very inefficient at encoding sam-
ples from the NSBM.

It is important to remember that, instead of compression
directly, typically the primary objective in community de-
tection is simply to uncover latent community assignments.
Although these objectives are intimately related—as we al-
ready discussed, the optimal accuracy is always obtained with
the true generative model, which is also the only one that
can achieve maximal compression—a method might still be
maximally successful at uncovering the correct community
labels while providing strictly inferior compression. We show
this in Fig. 6(e), with the maximum overlap ω(b̂, b) between
the inferred and true partitions, b̂ and b respectively, defined as

ω(b̂, b) = max
μ

1

N

∑
i

δb̂i,μ(bi ), (97)

where μ(r) is a bijection between the labels of b̂ and b,
for problem instances sampled from modularity’s model,
and inferred both with modularity maximization and the
NSBM. In all cases (which consist only of β > β∗, otherwise
the overlap is always zero) the overlap is maximal with
ω(b̂, b) = 1, showing that both methods uncover the exact
same partition for these easy instances. Again, the opposite
situation is quite different: with problem instances sampled
from the NSBM, the accuracy of modularity maximization
tends to zero, while the NSBM performs significantly better;
although not perfectly—there is no guarantee of perfect
recovery in these harder instances, only optimality.

It is not surprising that modularity maximization can nei-
ther compress nor correctly uncover the true assignments of
samples from the NSBM, since those will not necessarily
correspond to assortative communities. Our central point here
is there is a lack of tradeoff: the NSBM performs just as
well for obvious assortative instances, while still being able
to accommodate more general structures that are harder to
detect.

Note that in the discussion above we did not have to make
any reference to particular domains of application. The lack
of tradeoff is a general principle that must hold for mixtures
of any kind, and can be articulated simply using fundamental
concepts of mixing patterns between groups. Although one

could expect networks belonging to different domains having
different kinds of mixing patterns, the above arguments tell us
that the superiority of hierarchical mixtures should transcend
various domains. We evaluate this hypothesis in the following.

V. EMPIRICAL NETWORKS

The arguments above mean that we should expect that
methods that are optimal for general mixtures of models
should perform just as well as those that are specialized for
any of the mixture components. However, when encountering
networks in the real world, we can confidently assume that
they are not in fact sampled from any model we can articulate
exactly—even though it is often easy to determine that they
are structured (e.g., either via statistical tests designed to reject
the uniform null model, or simply by compressing it with
any model). In these structured “out-of-distribution” cases, we
are, strictly speaking, simultaneously out of scope of the NFL
theorem and of the situation considered previously, where the
sample comes from one of the models being considered.

Despite this, we should expect to be much closer to the
scenario considered in the previous section than that of the
NFL theorem, as soon as our models under considerations
can serve as reasonable approximations of the data [66]. Here
we test this hypothesis on a corpus of 509 structurally di-
verse empirical networks, from many domains of science, and
across several orders of magnitude in size, as summarized in
Fig. 7(a).

For each of these networks, we find the partition accord-
ing to maximum modularity, Infomap (see Appendix C),
and well as various versions of the SBM: the NSBM, its
degree-corrected version (DC-SBM), the nonuniform degree-
corrected planted partition model (DC-PP), and its uniform
version [18]. For modularity and Infomap we then compute
their implicit description lengths, using also the degree-
corrected alternatives. We also compute the description length
for the configuration and Erdős-Rényi models as baselines.

In Fig. 8 we show for each model and network the dif-
ference in description length according to the best model for
each network—a value of zero thus means that the specific
model is the best one for that network. We can see clear
performance gains for the SBM variants, with the DC-NSBM
and the NSBM having the best compression in the majority
of cases, and the DC-PP also performing well, primarily on
small networks. As shown in Fig. 7(b), this is also true when
each domain is considered separately—with the exception of
transportation networks, where the DC-PP provides an im-
proved compression than the DC-NSBM for a larger fraction
of cases. Most cases where other algorithms achieve the best
compression are smaller networks, which may be due to the
fact that we have used lower bounds to estimate the partition
function for these alternative models, giving them a slight
advantage. Alternatively, the communication cost for more
complex models in these cases may outweigh the correspond-
ing improvements in fit to the data if these happen to be better
described by the more specific constraints of the implicit
generative models of either modularity or Infomap.

We compare the relative compression of the models
in a different manner in Fig. 9, plotting the fraction of
cases where a given model M1 achieves equal or better
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(a)

(b)

FIG. 7. (a) Number of nodes and edges, as well as distribution
of domains (inset), for the 509 empirical networks considered in this
work, avaliable from the Netzschleuder repository [64]. The symbol
colors correspond to the network domain, as shown in the inset.
(b) Number of networks for which each model provides the smallest
description length, as indicated in the legend, across the different
domains.

compression than the alternative model M2, as well as their
average compression ratio for all networks. Based on these
pairwise comparisons we ranked each model according to the
SpringRank [65] algorithm, which is reflected in the ordering
of Fig. 9. We can also see here that the SBM variants are much
more compressive than the other algorithms, even for the mod-
els that do not achieve the lowest overall compression. The
row of the heatmap labeled “Best SBM” takes the best com-
pression among all SBM variants for each network, which is
almost completely unmatched in its compression when com-
pared to all other algorithms, performing the worst relative to
the degree-corrected modularity, where superior compression
is achieved for 96% of the empirical networks. We can also
see that the configuration and Erdős-Rényi models provide
superior compression to modularity and Infomap in a large
fraction of instances. This inflated description in comparison

to a maximally random baseline indicates a massive amount of
overfitting in the results produced by these algorithms—i.e.,
the structures found are better justified by being the outcome
of purely random fluctuations.

Although the SBM variations, and in particular the NSBM,
provide a description superior to the alternatives for the large
majority of networks considered, there are in fact a few excep-
tions where either modularity or Infomap do provide a better
description. As we discussed in the previous section, this is
expected when the networks are closer to the typical ones
generated by the implicit generative models of these methods,
which have a specific relationship between the number of
groups and the strength of the community structure. Note
that we should not be tempted to attribute the existence of
these minority cases as a necessary outcome of a supposed
tradeoff that comes as an unavoidable consequence of the NFL
theorem, as suggested in Refs. [6,56]. As discussed previ-
ously, the NFL theorem is only valid when problem instances
are sampled uniformly at random, resulting almost exclu-
sively in incompressible networks—a hypothesis that we can
confidently reject for all networks considered in our corpus.
Furthermore, even when considering the maximally uniform
case, the NFL theorem does not imply any actual tradeoff,
only that all algorithms must perform equally poorly in the
asymptotic totality of instances. Besides, the negation that
all algorithms perform equally well when averaged over all
cases does not necessarily imply that a single algorithm must
perform strictly better in all of them—it would be sufficient
that some algorithms perform better than others on average,
precisely as our results and those of Refs. [6,56] show.

Indeed, we can see evidence of a systematic hierarchy
between community detection algorithms when we compare
the description lengths with the actual partitions found. In
Fig. 10(a) we show for every network in our corpus the differ-
ence between the best description length per node found with
any version of the SBM and the one found with either modu-
larity or Infomap (the best from the degree-corrected and non-
degree-corrected versions) together with the adjusted mutual
information (AMI) [67] between their respective partitions. In
both cases, we see that for networks where either modularity
or Infomap provide a better description (which are often rel-
atively small or very sparse networks), they yield partitions
that are very similar to the SBM inference. Examples of such
instances can be seen in Fig. 10(b), where we can see that both
methods tend to agree substantially on the network divisions.

The fact that modularity and Infomap tend to agree with
the SBM whenever they yield compressive answers is also
a statement about the partial similarities between these al-
gorithms. Indeed, as we argued previously, both modularity
and Infomap are approximately equivalent to the inference of
versions of the SBM with very particular constraints imposed
on its parameters. Therefore, neither algorithm can exploit
features in the network that deviate from the same underlying
SBM assumption. When we compare them a posteriori, we
can only tell which SBM parametrization is relatively better
justified according to the evidence in the data.

Clearly, the fact that modularity and Infomap amount to
particular SBM parametrizations should not be used as a
justification for their use as reliable inference methods. The
implicit priors are so strongly committed to particular patterns
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FIG. 8. (a) Number of nodes and edges, as well as distribution of domains (inset), for the 509 empirical networks considered in this work,
avaliable from the Netzschleuder repository [64]. The symbol colors correspond to the network domain, as shown in the inset. (b) Difference in
description length values according to the best model, obtained with several models for 509 empirical networks, ordered according to number
of edges. A value of zero indicates that the respective model is the most compressive for the particular network. Symbols highlighted in red
(green) correspond to description length values that are larger than the Erdős-Rényi model (configuration model).

that they will be dredged out of pure randomness, resulting in
description lengths that are not only most of the time signifi-
cantly larger than the properly agnostic SBMs, but very often
even larger than maximally random networks.

We can investigate further the tendency of modularity and
Infomap to overfit by comparing how many groups are ob-
tained with each method, as shown in Fig. 15 in the Appendix.
For modularity maximization, we can observe its tendency
of both overfit and underfit depending on the circumstance,
since most networks have a number of groups smaller than the
resolution limit, i.e., B <

√
2E—except those with more than

one component, where this limit does not apply. Despite this

limitation, a large fraction of the results are less compressive
than the maximally random baselines, indicating substantial
overfitting. For Infomap the overfitting is more extreme, with
the number of groups found scaling linearly with the number
of nodes. This corresponds exactly to the implicit prior for
the number of groups in Infomap which strongly prefers a
characteristic group size that is independent of the number of
nodes, as shown in Figs. 13 and 14.

It is important to emphasize that even when the description
lengths of modularity and Infomap are smaller than one of the
maximally random baselines, this does not necessarily mean
that method is not overfitting, since the partition found can
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FIG. 9. (a) Fraction of networks in our corpus where a given model M1 (vertical axis) achieves equal or better compression than the
alternative model M2 (horizontal axis). (b) Average compression ratio between models 〈�M2/�M1 〉 across all networks. In both panels
(a) and (b) the order of models corresponds to the SpringRank [65], computed using the respective pairwise comparisons.

still amount to a substantial amount of randomness. We can
assess this by comparing the number of groups obtained with
the model version that yields the smallest description length,
as shown in the bottom row of Fig. 15. Indeed, we can see that
modularity tends to both under- and overfit for a comparable
fraction of the networks, although the larger tendency is to
underfit, while with Infomap the overwhelming tendency is to
overfit, and return a much larger number of groups than the
most compressive partition.

We observe also that all SBM flavors manage to find a
number of groups in a range that does not necessarily conform
to a

√
E or

√
N scaling—a lack of constraint that is theo-

retically prescribed [18,53]. This dispels the notion that this
scaling is a fundamental limitation of community detection
methods in general, as suggested in Ref. [6]. Importantly, this
lack of resolution limit of the NSBM and PP models comes
together with a regularization against overfitting, unlike what
we observe for Infomap.

VI. DISCUSSION

In this paper we have presented a framework for iden-
tifying the implicit generative model associated with an
arbitrary community detection algorithm, allowing us to com-
pare descriptive and inferential methods on the same scale by
computing their associated description lengths for a network
and corresponding partition. This method also allows us to
compute the implicit priors on the objective value and number
of groups associated with a community detection objective,
giving insights into the intrinsic biases in existing algorithms.
We demonstrate the use of our method for the widely used
modularity and Infomap objectives, showing that they are
biased toward overfitting due to strong priors favoring high
objective values and a large number of groups. We also find
that the implicit models for a wide range of methods, includ-

ing modularity and Infomap, correspond asymptotically to
restricted instances of the stochastic block model (SBM). By
exploiting the latent compression associated with community
detection algorithms, we were able to compare these methods
on real and synthetic data, demonstrating that in these struc-
tured problem instances certain algorithms (more expressive
variants of the SBM) are systematically favored over others
(variants of modularity and Infomap).

Since it provides a universal scale on which we can
assess the capacity of a model to capture structural regu-
larities in network data, the description length provides a
principled measure to compare the performance of commu-
nity detection algorithms without the need for “ground-truth”
labels—unknowable information for empirical networks [30].
The empirical experiments here show that by evaluating al-
gorithms using this measure we can reveal a clear breakdown
of the implications of the NFL theorem for real, structured
problem instances. This weakens the practical and conceptual
pertinence of the NFL theorem, which equates all possible
community detection algorithms in terms of performance, but
applies only to unstructured problem instances.

Part of the results in this work confirm what has been
found by Ghasemian et al. [6] with respect to modularity
maximization and Infomap overfitting in a link prediction task
for a diverse set of smaller networks, and the regularized SBM
performing better on average (although Ref. [6] omitted the
NSBM, which can be shown to perform strictly better, and
substantially so for larger networks [45]). This is not unex-
pected, since it is known that algorithmic learning procedures
where the objective is to obtain a succinct representation of
data (called broadly “Occam learning” in the machine learn-
ing theory literature) are in general equivalent to learning
procedures where the objective is to choose a predictive model
with low generalization error [known as “probably approx-
imately correct” (PAC) learning] [68]. Because of this, we
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(a) (b)

FIG. 10. (a) Adjusted mutual information (AMI) between the partitions inferred with the best fitting SBM and either modularity (top) or
Infomap (bottom) as a function of the description length difference between models, ��

SBM, and �Q or �I , divided by the number of nodes
in the network. The symbol colors indicate the domain, and the size the number of nodes in the network, as shown in the legends. The text
annotations refer to the networks shown in panel (b). (b) Examples of exceptional networks where either modularity maximization or Infomap
yield description length values, �Q and �I , respectively, that are smaller than what is obtained with any of the SBM variants. In all cases the
partitions obtained are shown as node colors, and the adjusted mutual information (AMI) between them is given in the panel title, which also
shows the corresponding Netzschleuder [64] codename used in panel (a).

can in principle expect a MDL approach to yield compatible
results with link prediction in suitable limits. However, there
is an important caveat that prevents this equivalence from
being exact; namely, the nominal task would correspond to
predicting an entire new network from past observations of a
complete network. Instead, in a more realistic link prediction
scenario one attempts to predict a subset of the possible edges
by observing the remaining network, which is commonly
sparse. In this situation we cannot guarantee that a sufficient
data limit exists, regardless of how large the network is—the
removal of a fraction of the edges always destroys important
information which could be used to improve the detection of
the community labels. Because of this, discrepancies between
both approaches can exist, with link prediction having a ten-
dency to overfit when used as a model selection criterion [69].

Therefore, the results we present in this work have a more
definitive character than those of Ref. [6], since ours make
use of the whole data.

We have applied our method for analytically computing
the description length of modularity and Infomap by exploit-
ing the fact that their objective functions can be written in
terms of the microcanonical SBM parameters. Our analytical
calculations are possible for a much wider set of objective
functions that can also be described in the same manner. We
speculate that a significant fraction of community detection
algorithms proposed in the literature are, like Infomap and
modularity, also equivalent to the inference of constrained
versions of the SBM, as has been suggested by others [70].
Objective functions that cannot be written in terms of the
microcanonical SBM require different analytical approaches
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than those we considered in this work, or at the very least can
be treated numerically. However, it is conceivable that even
these kinds of objectives amount to generative models that
are well approximated by particular SBM parametrizations.
This would have wider implications for the general nature
of SBM-based approaches, and the systematic superiority of
their nonparametric formulations. In case particular objectives
yield implicit models that deviate significantly from the SBM
class, this could be used to formulate a broader unified family
of community detection methods. We view the task of a broad
unification of community detection methods within an infer-
ential framework as a promising avenue of future research.
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APPENDIX A: ROBUSTNESS OF DESCRIPTION LENGTH
TO QUALITY FUNCTION TRANSFORMATIONS

As described in the main text, for any quality function
W (A, b), we can attribute a generative model given by

P(A, b|g, f ) = eg(W (A,b))+ f (A)

Z (g, f )
, (A1)

where Z (g, f ) = ∑
A,b eg(W (A,b))+ f (A), g(x) is any strictly in-

creasing function, and f (A) is an arbitrary weight attributed
to a given network, independent of how its nodes are
partitioned. For any choice of g(x) and f (A), the maximum a
posteriori (MAP) estimate of a partition b is equivalent to the
maximization of the quality function W (A, b). In the main text
we used the maximum entropy ansatz to justify the choices
g(x) = βx, and f (A) = 0. This ansatz is well justified, since it
corresponds to a maximum ignorance about modeling aspects
that are not directly specified by the quality function. This is
especially true for the choice of f (A), which amounts to an
arbitrary suppression of networks independently of how they
are partitioned, as discussed in the main text. However, we
may wonder if other choices of g(x) could in principle have
a strong effect in the obtained description lengths, resulting
in compatible generative models that are more favorable to
compression—and hence more plausible—than the one based
on the maximum entropy assumption. Here we show that our
results are in fact invariant to any other choice of g(x), and
that meaningful compression can only be achieved by actually
changing the quality function W (A, b) in nontrivial ways.

In the case f (A) = 0, without loss of generality g(x) →
βg(x) we can write

P(A, b|β, g) = eβg(W (A,b))

Z (β )
, (A2)

with Z (β ) = ∑
A′,b′ eβg(W (A′,b′ )). In this case, the description

length is given by

�(A, b) = min
β

−βg(W (A, b)) + ln Z (β ). (A3)

We can decompose

Z (β ) =
∫

eβg(W )�(g(W )) dg(W ), (A4)

with �(g(W )) being the density of states,

�(g(W )) =
∑
A,b

δ(g(W (A, b)) − g(W )), (A5)

which counts how many configurations have a particular value
of g(W (A, b)). Since the function g(x) is strictly increasing
and hence invertible, it cannot affect the density of states other
than via a scaling, i.e.,

�(g(W )) = �̄(W )

g′(W )
, (A6)

where we must have g′(W ) > 0, and �̄(W ) is the density of
states for W (A, b), with

�̄(W ) =
∑
A,b

δ(W (A, b) − W ). (A7)

(The term g′(W ) comes from the scaling of Dirac’s delta, i.e.,
δ(h(x)) = δ(x − x0)/|h′(x0)|, where x0 is the root of h(x).)
Based on this, we can write

Z (β ) =
∫

eβg(W ) �̄(W )

g′(W )
dg(W ), (A8)

=
∫

eβg(W )�̄(W ) dW. (A9)

In general, we have that the entropic density ln �̄(W ) is ex-
tensive, i.e., ln �̄(W ) = O(N ln N ), which means we can use
the Laplace approximation for N � 1,

Z (β ) ≈
√

2π

|�∗|eβg(W ∗ )+ln �̄(W ∗ ), (A10)

with �∗ = ∂2

∂W 2 [βg(W ) + ln �̄(W )]|W =W ∗ , and

W ∗ = arg max
W

βg(W ) + ln �̄(W ). (A11)

From this we have

ln Z (β ) = max
W

βg(W ) + ln �̄(W ) + O(ln N ), (A12)

which we use to obtain the following asymptotic value for the
description length,

�(A, b) ≈ min
β

max
W

−βg(W (A, b)) + βg(W ) + ln �̄(W ).

(A13)
Setting derivatives with respect to β and W to zero, we find
that the saddle point is obtained for

g(W ) = g(W (A, b)), (A14)

β = �̄′(W )

g′(W )�̄(W )
. (A15)

Using the fact that g(x) is invertible, the first equation above
corresponds to W = W (A, b). Substituting this in the above
we have

�(A, b) ≈ ln �̄(W (A, b)). (A16)

The important conclusion from Eq. (A16) is that the actual
value of the description length is completely independent of
the function g(x) as long as it is strictly increasing. For any
valid choice of g(x), the description length will approach the
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entropy density of the quality function at the value given by A
and b. Therefore, compression cannot be achieved by arbitrary
transformations of the quality function which preserve the
same optimization problem.

Furthermore, Eq. (A16) corresponds to an asymptotic
equivalence to the microcanonical ensemble where only in-
stances with a particular value of the quality function are
allowed, i.e.,

P(A, b|W ) = δW (A,b),W

Z (W )
, (A17)

where Z (W ) = ∑
A,b δW (A,b),W → �(W ) for N → ∞.

Clearly, the microcanonical ensemble is completely
invariant to transformations W (A, b) → g(W (A, b)) with
g(x) strictly increasing, since we must always have
δW (A,b),W = δg(W (A,b)),g(W ) in this case.

APPENDIX B: MAXIMUM ENTROPY FAVORS THE
PLANTED PARTITION MODEL

Here we demonstrate that for a certain class of objec-
tive functions that include both modularity and Infomap, the
maximum entropy ensemble for a fixed value of the quality
function corresponds to the planted partition model with uni-
form group sizes.

We begin by writing the SBM entropy [43] for nr � 1 and
ers � nrns,

ln �(e, n, B) ≈ − 1

2

∑
rs

ers ln
ers

nrns
+ 1

2

∑
rs

ers

+ N ln N −
∑

r

nr ln nr . (B1)

We wish to maximize the entropy while enforcing the con-
straints ∑

r

nr = N, (B2)∑
rs

ers = 2E , (B3)

W (e, n) = W ∗, (B4)

with Lagrange multipliers λ, μ, and γ , respectively, i.e.,

� = ln �(e, n, B) − λ
∑

r

nr − μ
∑

rs

ers − γW (e, n). (B5)

Taking ∂�/∂nr = ∂�/∂ers = 0, we have

nr = exp

[
er

nr
− γ

∂W (e, n)

∂nr
− 1 − λ

]
, (B6)

ers = nrns exp

[
−γ (1 + δrs)

∂W (e, n)

∂ers
− 2μ

]
. (B7)

Now let us consider the special case where the quality function
can be written as

W (e, n) = f

( ∑
r

err

)
+

∑
r

g(er, err ), (B8)

for some f (x) and g(x, y)—this is precisely the case for both
modularity and Infomap (see Appendix C). In this situation

we have ∂W (e, n)/∂nr = 0 and

∂W (e, n)

∂ers

=
{

f ′( ∑
r err

) + g′
x(er, err ) + g′

y(er, err ) if r = s,
g′

x(er, err ) + g′
x(es, ess) if r 
= s,

(B9)

where we used the shorthand notation g′
x(x, y) =

∂g(x′, y′)/∂x′|x′=x,y′=y, and which substituting in Eqs. (B6)
and (B7) allows us to find the planted partition solution

nr = N

B
, (B10)

ers = 2Ein

B
δrs + 2(E − Ein)

B(B − 1)
(1 − δrs), (B11)

where Ein is the solution of

Ein = E − Ein

B − 1
exp{−2γ [ f ′(2Ein) + g′

y(2E/B, 2Ein/B)]},
(B12)

with γ chosen so that W (e, n) = W ∗. The above calculations
can be repeated using the degree-corrected ensemble, for
which the same result is obtained. Therefore, for any quality
function that can be written as Eq. (B8), the corresponding
maximum entropy ensemble amounts to a particular SBM
given by Eqs. (B10) and (B11).

APPENDIX C: THE INFOMAP OBJECTIVE

The Infomap quality function [13] is given by

L(A, b) = −
(

1 −
∑

r

err

2E

)
ln

(
1 −

∑
r

err

2E

)

+ 2
∑

r

er − err

2E
ln

(
er − err

2E

)
− H (k)

−
∑

r

(
2er − err

2E

)
ln

(
2er − err

2E

)
, (C1)

where H (k) is the entropy of the normalized degree distribu-
tion. [We have flipped the sign so that the optimal partition
is obtained through maximizing the objective, consistent with
Eq. (5).] Since it only depends on A but not b, we can ignore
this degree entropy term, since it will disappear when doing
the normalization, to obtain an objective that only depends on
the SBM parameters.

The computation of the density of states is analogous to
modularity, since in this case the density of states will also
favor uniform group sizes and density (see Appendix B),
with the only difference that for the planted partition we
have

L(E , Ein, B) = − E − Ein

E
ln

E − Ein

E

+ 2
E − Ein

E
ln

E − Ein

EB

− 2E − Ein

E
ln

2E − Ein

EB
. (C2)
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FIG. 11. (a) Density of states �(Q, E , γ ) and (b) description length �(Q, E , γ ), as a function of the value of modularity Q, for different
number of nodes N and average degree values, 〈k〉 = 2, 5, 10, from left to right. The values are shown relative to the ER baseline. The
description length in particular tells us what should be considered a statistically significant modularity value.

FIG. 12. Density of states �(L, E ) (top row) and description length �(L, E ) (bottom row) as a function of value of Infomap score L, for
different number of nodes N and average degree values, 〈k〉 = 2, 5, 10, from left to right. The values are shown relative to the ER baseline.
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FIG. 13. Top row: Implicit prior distribution for the value of
Infomap quality function L (a), and number of groups B (b), for
different values of β, N = 107 and 〈k〉 = 30. Second row: Average
values of L (c) and B (d) as a function of β, and different average
degrees 〈k〉. Bottom rows (e) to (h): Average value of B as a function
of L for different values of N and 〈k〉.

Following the same procedure as before, we can now invert
Eq. (C2) for Ein to give Ein(E , L, B), which can be inserted
into either Eqs. (62) or (66) to obtain the description length
according to Eq. (32). Unlike the modularity function, the
inversion of Eq. (C2) cannot be done in closed form, so it
needs to be performed numerically.

Figure 12 shows the density of states and description length
values as a function of L. Unlike modularity, the relationship
between these two quantities is almost linear. In Fig. 13 we
see the implicit priors for L and the number of groups B—we
also observe a transition from low to high values with β,
which although abrupt is continuous, unlike what is obtained
for modularity. In the case of Infomap, what is noteworthy
is a qualitative dependence on the network density—only if
the average degree is sufficiently large does the prior for B

allows for finite values, as seen in Fig. 13(d), otherwise the
mean is always at 〈B〉 = O(N ) (the precise value of 〈k〉 at
which this transition happens is size-dependent). This tran-
sition is reflected in the expected value of B as a function
of L, which displays a minimum at L = 0 only for suf-
ficiently dense networks, besides a discontinuity at L = 0,
since for this value only a partition in B = 1 groups is al-
lowed. This overall picture is entirely consistent with the
observed tendency of the method to find spurious groups
in fully random networks whenever they are sufficiently
sparse [27,72].

In terms of the optimal problem instances, for Infomap
the situation is comparable to modularity (see Sec. III). As
we show in Fig. 14, the lack of an additional parameter
analogous to the resolution γ of modularity means that the
value of β can only select values on a line in the (Ein, B)
plane. We can observe two regimes: (1) For sufficiently sparse
networks, although a wide range of Ein can be reached, we
cannot meaningfully talk about an undetectable regime be-
cause B is proportional to N—all instances are easy; (2)
for denser networks, a discontinuous transition is observed
between a (Ein, B) = (E , 1) value and another range of val-
ues far away from the detectability transition. The transition
between these regimes is size dependent, such that as the
number of nodes increases, then even denser networks are re-
quired for the transition between the above two regimes to be
seen.

APPENDIX D: OBJECTIVES DEPENDENT
ON SBM PARAMETERS

In this Appendix we discuss the application of our calcu-
lations to other community detection objectives and replicate
the analysis of Secs. II and III for the Infomap objective.

The inferential framework presented in this paper is ap-
plicable to any community detection method, whether or not
it depends on an explicit objective function W (e, n) that can
be written as a function of the parameters {e, n} of the mi-
crocanonical SBM (or e, n, k for the degree-corrected case),
but the calculations involved for these methods may be more
demanding (see Sec. II and Appendix E for a discussion).
However, the analytical method employed in this paper to
estimate the description length of modularity is directly appli-
cable to any community detection method with an objective
function of the form W (e, n), of which there are many:
Besides generalized modularity [48] and Infomap [13], this
covers also surprise [75], coverage significance [76], the q-
state Potts model [77], significance [78], conductance [79],
and OSLOM [80]. Degree corrected variants of any such
method can also be directly cast into our framework, using
the density of states for the microcanonical degree-corrected
SBM [Eq. (49)]. Additionally, objectives without a model
selection mechanism for the number of clusters (which consti-
tute a large portion of existing objectives) can be cast into our
framework by simply restricting the set of allowed partitions
b in the partition function Z (β ) to be of a particular size B, or
by using the approximation in Eq. (22).

We also emphasize that the majority of community detec-
tion algorithms used in practice aim to maximize modularity
or its generalized form [1], which is easily accommodated
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FIG. 14. Feasible realizations of the Infomap model. Each curve corresponds to the (Ein, B) values achieved with β in the range [0, ∞]
for a specific value of N , as indicated in the legend, and various values of the average degree 〈k〉 = 2E/N . The isolated points correspond to
discontinuous transitions both for high and low values of β.

within our framework as discussed in the main manuscript.
These include methods based on greedy algorithms,
hierarchical clustering, simulated annealing, extremal op-
timization, spectral optimization, genetic algorithms, and
quadratic programming [1]. These algorithms may differ in
their final obtained value for W , the first term in the descrip-
tion length of Eq. (19), but the partition function of the second
term in Eq. (19) will remain the same as it only depends on
the modularity objective W . One can then see that optimal
compression among modularity maximizing algorithms is ob-
tained by whichever method returns the highest value of the
modularity for a given network.

APPENDIX E: OTHER TYPES OF COMMUNITY
DETECTION METHODS

Some community detection methods available in the lit-
erature are neither deterministic nor rely on the optimization
of any quality function. A good example of this is the label
propagation algorithm [31], defined as a the result of a dy-
namical process: Given an initial labelling of the nodes into
groups (usually each node in its own group), one proceeds by
updating the labels of each node in random sequence by the
value corresponding to the majority of its neighbors (with ties

resolved uniformly at random). Once a fixed point is reached,
the algorithm stops.

This type of algorithm can also be cast into our inferential
framework without any problems, since it directly defines a
posterior distribution of partitions,

P(b|A) = wb,A, (E1)

where wb,A is the frequency with which partition b is the
output of the algorithm for network A. This posterior distribu-
tion is equivalent to the one obtained with a generative model
given by

P(A, b) = wb,A∑
A′,b′ wb′,A′

, (E2)

which has a description length given by

�(A, b) = − ln wA,b + ln
∑
A′,b′

wb′,A′ . (E3)

Therefore, it is possible to extend our analysis to this class of
problems as well, as long as wA,b can be reliably estimated.

The analytical tools and numerical methods required to
estimate these description lengths are different from the ones
considered in this work, and are arguably more technically
demanding. Nevertheless, a possible avenue of future work is
to find efficient ways to estimate these quantities in practical
settings.

024309-25



TIAGO P. PEIXOTO AND ALEC KIRKLEY PHYSICAL REVIEW E 108, 024309 (2023)

FIG. 15. Number of groups B as function of number of edges E (left panel) and number of nodes N (right panel) according to each method
as indicated by the legend, for every network in our corpus. The symbols in red indicate partitions for which the description length value is
larger than the Erdős-Rényi model, and likewise for those in green for the configuration model. The solid lines correspond to moving averages,
and the black solid and dashed lines are slopes as indicated in the legend.
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