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Abstract

Network science provides tools that can be used to understand the structure and function of the hu-

man brain in novel ways using simple concepts and mathematical representations. Network neuroscience

is a rapidly growing field with implications for systems neuroscience, cognitive neuroscience, and clinical

medicine. In this chapter, we describe the methodology of network science as applied to neuroimaging

data. We cover topics in constructing networks, probing network structure, generating network ‘diagnos-

tics’, and experimental design. We discuss several current frontiers and the associated methodological

challenges and considerations. We aim to provide a practical introduction to the field: we supplement

the explanations and examples with pointers to resources for students or researchers interested in using

these methods to address their own questions in empirical and theoretical neuroscience.
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Why Network Neuroscience?

Each area of the human brain plays a unique role in processing information gleaned from the external world

and in driving our responses to that external world via behavior. Mapping these roles has led to enormous

insights into the complex and varied contributions of different brain regions to our mental function. However,

the brain is far from a set of disconnected building blocks. Instead, at each moment throughout the day,

parts of the brain communicate with one another in complex spatiotemporal patterns, like evolving dance

partners in a multifarious choreography, which enable the formation of creative thoughts, the acquisition of

new skills, and the adaptation of human behavior. Understanding this spatio-temporal complexity requires

a paradigmatic shift in our conceptual approaches, empirical goals, and quantitative methods: in short, in

the way that we design and interpret our models and experiments.

Systems neuroscience addresses this complexity by seeking to understand the structure and function of

large-scale neural circuits and systems. How do individual brain areas interact with one another to enable

cognitive function? How is cognition constrained by white matter pathways? How does the brain transition

between functions like memory, attention, and movement? How do we control the interactions between

different neural circuits in our brains?

To answer these questions, we can use tools from systems neuroscience to perform (i) data analysis to

extract characteristic or predictive patterns in the data and (ii) forward modeling to build mathematical

models of the system from first principles. The distinction here is important: data analytical approaches

lead to descriptions of an observed process, e.g. “brain areas A and B tend to be alternately activated

during a visual task”. In contrast, modeling involves the creation of a set of mathematical descriptions (i.e.

equations) which describe how components of the system behave, given certain inputs or conditions. For

example, the activity in brain area A could be described by an equation that captures its behavior, including

its dependency on the activity of brain area B, and vice versa. Crucially, the mathematical descriptions in a

model can then be used to predict the behavior of the system given a different set of inputs, or in a different

context. Naturally, models are much more difficult to create than descriptions.

In this chapter, we focus on newly developed tools for data analysis, which we refer to under the broad

term network neuroscience, that we envision will dramatically inform the efforts in forward modeling in the

coming years. Network neuroscience provides a simple and elegant systems approach to understanding how

neural circuits function, how they constrain one another, and how they differ across individuals. A network

representation of a biological system (e.g., a genome, proteome, or connectome) treats individual components

(e.g., genes, proteins, brain regions) as network nodes and treats interactions between these components as

network edges. Network science, an inter-disciplinary approach which spans biology, economics, sociology,
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linguistics and computer science, provides a battery of quantitative diagnostics that enable us to describe

the architecture of this network in a statistically principled manner. One can then study these properties

of the network to gain insight into organizational principles and evolutionary drivers of complex cognitive

phenomena.

As a basis for discussion throughout the chapter, we use data from a previously published experiment

[1, 2] to illustrate how neuroimaging data can be transformed into a network, how these networks can be

studied, and how they can be compared statistically with one another to address a neuroscientific question.

It is important to keep in mind during this exposition that there is no generic ’correct’ way to do a network

analysis: to showcase some of the tools available, at each stage of our example analysis, we outline various

alternative methodological choices available to the researcher.

A Few Foundational Concepts

In Figure 1, we illustrate the path from data to diagnostics commonly traversed in a network study. In a

first step, data is collected from human subjects using one of the many neuroimaging modality currently in

use: structural MRI, functional MRI, EEG, MEG, or diffusion imaging. Next, the data acquired from each

subject is converted to network form. The construction of the network depends upon the researcher’s choice

in defining network nodes and network edges. Finally, the constructed networks are analyzed statistically to

test hypotheses regarding the organization of the networks. Statistical diagnostics come in two forms: (i)

previously defined network diagnostics that have proved useful in previous studies, or (ii) diagnostics created

in an individual study to capture a pattern observed in the data.

In this section, we will describe this path in greater detail, illustrating choices that can be made at each

stage of the analysis and the impact that these choices can have on the conclusions that can be drawn from

the study.

Network Construction

Having decided to undertake a network analysis, you most likely have a neuroimaging data set in hand and

are faced with the question of how to extract a network from it. To do that, we must define what a network

actually is. A network can be defined in mathematical terms as a graph G composed of N nodes which

represent brain regions and E edges between those nodes that represent region-to-region relationships. The

use of the term graph here differs from the common usage depicting a visual representation of data on axes.

Instead, in network science the term graph often refers to the join-the-dots pattern of connections (edges)

between nodes.
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Figure 1: From Data to Diagnostics: The Stages of a Network Study. (A) Data Acquisition.
Neuroimaging data can capture structural connectivity (e.g., diffusion spectrum imaging, DSI; diffusion
tensor imaging, DTI) or functional connectivity (e.g., functional magnetic resonance imaging, fMRI; elec-
troencephalography, EEG, or magnetoencephalography, MEG). (B) Representations of a Network. (Top) A
connectivity matrix in which matrix elements (or pixel in the grid) represents one connection between two
brain regions, and the color indicates the strength of that connection. (Center) A topographical network
visualization in which brain regions that are strongly (weakly) connected to one another lie close to (far
from) each other in the plane. (Bottom) An embedded network visualization in which nodes are placed in
anatomically accurate locations. (C) Network Diagnostics. (C.1) The clustering coefficient is a diagnostic
of local network structure. The left panel contains a network with zero connected triangles and therefore no
clustering, while the right panel contains a network in which additional edges have been added to close the
connected triples (i.e., 3 nodes connected by 2 edges; green) to form triangles (i.e., 3 nodes connected by 3
edges; brown), thereby leading to higher clustering. (C.2) The average shortest path length is a diagnostic of
global network structure. The left panel contains a network with a relatively long average path length. For
example, to move from the purple node (top left) to the orange node (bottom right) requires one to traverse
at least 4 edges. The right panel contains a network in which addition edges have been added (green) to form
triangles or to link distant nodes (peach), thereby leading to a shorter average path length by comparison.
(C.3) Mesoscale network structure can take many forms. The left panel contains a network with a core of
densely connected nodes (red circles; green edges) and a periphery of sparsely connected nodes (blue circles;
gray edges). The right panel contains a network with 4 densely connected modules (red circles; green edges)
and a connector hub (blue circle; gray edges) that links these modules to one another.
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To construct a brain graph, we must choose how to subdivide the brain into network nodes (or brain

regions) and how to define the edges (or interactions) between those nodes. The choice of nodes and edges in

the extraction of brain networks from neuroimaging data varies widely and the question of whether a single

most appropriate choice exists remains under debate [3, 4, 5, 6].

Types of Brain Networks In some cases, the choice of node and edge definition depends upon the type

of network under study. In general, there are two types of brain networks. Functional brain networks are

constructed from functional neuroimaging data (e.g., fMRI, EEG, or MEG) and network edges represent the

functional or effective connectivity patterns between brain areas. Structural brain networks are constructed

from diffusion-based neuroimaging data (e.g., diffusion tensor imaging or diffusion spectrum imaging) and

network edges represent the ‘hard-wired’ white matter connectivity patterns between brain areas. Functional

and structural brain networks each provide different types of information about brain organization and

cognitive function. There is no simple relationship between a person’s structural and functional networks:

for example, areas that have no detectable white-matter connections can be functionally connected. The

question of how these two types of networks relate to one another is a source of considerable scientific

endeavor (e.g., [7, 8]).

Node Choice: Parcellation To create a network, we subdivide the system that we are studying into

components and we represent these components as network nodes. The components of the brain are often

thought of as regions of interest: primary visual cortex, dorsolateral prefrontal cortex, or fusiform gyrus.

Each region can then be represented as a node in the brain network.

A map that segregates the many voxels of a neuroimaging data set into regions of interest or network nodes

is referred to as a parcellation. There are two basic types of parcellations: (i) those based on neuroanatomy

and cytoarchitectonics and (ii) those based on data-driven clustering methods. In applying a parcellation

to neuroimaging data, our goal to choose areas of the brain that can be treated as separate units in the

brain system [9], where “separate” can be defined in many different ways: functionally, structurally, or

anatomically.

Neuroanatomical parcellations define brain regions based on the underlying neuroanatomy. The set of

Brodmann areas is an example of a neuroanatomical parcellation, in which each brain region is comprised

of tissue with a particular cytoarchitecture — that is, a particular arrangement and appearance of stained

neuronal cell bodies, when slices of brain tissue are viewed under a microscope [10]. A network that uses

Brodmann areas as network nodes can be used to probe the relationship between relatively large brain areas

such as dorsolateral prefrontal cortex (Area 46), primary motor cortex (Area 4), and the fusiform gyrus (Area
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37). Other parcellations that are similar in spirit include the Automated Anatomical Labeling atlas, the

Harvard-Oxford atlas, and the LONI Probabilistic Brain Atlas. A key advantage of using neuroanatomical

parcellations to define network nodes is that they enable neurobiological interpretation and simplify group-

based interpretations and comparisons.

Connectivity-based parcellations define brain regions based on data-driven clustering methods that isolate

sets of voxels with similar functional or structural properties. The functional parcellation of Power et al.

[11] is an example of a connectivity-based parcellation in which each brain region is composed of voxels that

show similar neurophysiological activity as measured by fMRI. The resultant network can be used to probe

the interactions between functionally distinct areas in a given task, and these areas may or may not adhere

to cytoarchitectonic boundaries. Connectivity-based parcellations have also been derived from diffusion

imaging scans by clustering white matter tractography data (e.g., [12, 13, 14, 15]). In comparison to the

neuroanatomical parcellations, the connectivity-based parcellations provide a unique window into individual

differences in brain structure and function, which can empower the search for biological underpinnings of

connectivity while somewhat complicating group comparisons.

After choosing a parcellation, we must choose how to apply that parcellation to the neuroimaging data

set at hand. In the context of a functional imaging scan, we detect a time-varying signal (or ‘time course’)

from each voxel (or 3 dimensional pixel) in the brain. The activity of all voxels within the region can be

averaged together to create representative regional time courses [16]. However, it is possible that by averaging

time series together, we lose important information about signal variability within a region. Alternative

approaches include calculating the median regional activity or the first principal component of the activity

— that is, a single representative signal that accounts for as much of the variability in the signals from all the

included voxels as possible. In the context of a structural imaging scan, the white matter tracts terminating

in a single region are treated identically, and so the ‘strength’ of a structural connection is simply proportional

to the number of detected tracts which connect the two brain regions [17]. An alternative method, which

avoids the difficulty and arbitrariness of making either-or decisions about whether tracts near boundaries

end in one particular area or another, is to weight tracts according to their spatial placement. To quantify

the connections to a given regions, tracts located close to the center of mass of tract termination points

within that region could be more heavily weighted than tracts located farther away.

What is the effect of node choice on network studies? First, the definition of any particular node affects

how one can interpret changes in that node’s network properties. If we have defined a node to be the entire

primary motor cortex, we must interpret changes in that node differently than if we had defined the node to be

only hand motor cortex. Second, the choice of a parcellation scheme can alter the observed network structure.

As a simple example, consider region size. When we use a parcellation scheme with relatively small nodes, we
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will be probing the network structure of the brain at a higher resolution than if we used a parcellation scheme

with relatively large nodes [18, 19, 20, 21]. While several studies have demonstrated that qualitative features

of network organization are relatively immune to changes in parcellation scheme [19, 22, 23], quantitative

properties of networks (to be discussed in the next section) and biological interpretations are necessarily

altered.

Edge Choice: Structural and Functional Connectivity To characterize the relationships or edges

between network nodes, we must define a type of interaction between brain areas. Two basic types of edges

are commonly used: (i) those that estimate the ‘hard-wired’ anatomical connectivity between brain regions

and (ii) those that estimate the functional coherence or real-time interactions between brain regions. The

goal of these approaches is to define a single consistent type of interaction between brain regions from which

to construct a single type of network [9]. Networks with multiple types of links are referred to as multiplex

networks (e.g., [24, 25]), but these are rarely used in neuroimaging studies.

An anatomical edge can be defined by the existence of a white matter tract connecting brain region i

to brain region j. This edge could either be given a binary value (e.g., 1 if a tract exists between region

i and region j and 0 if a tract does not exit) or a continuous value (e.g., the number of tracts that exist

between region i and region j). Alternatively, anatomical edges can be represented by the mean fractional

anisotropy or magnetization transfer ratio (a proxy for myelination) along a tract or set of tracts between

regions [17, 26]. Anatomical edges are used to represent the information transmission capabilities between

large-scale brain regions [27].

A functional edge can be defined by coherent oscillatory activity in region i and region j, which can

represent putative communication [28]. This edge could either be given a binary value (e.g., 1 if the coherence

between region i and region j is statistically significant and 0 if it is not) or a continuous value (e.g., the

magnitude of the coherence between region i and region j). Alternatively, functional edges can be defined

based on any statistical relationship between regional time series [29, 30, 31, 32, 33]; examples include mutual

information, synchronization likelihood, and partial correlation. A common choice in fMRI networks is the

Pearson correlation [34]. If two brain areas have similar activity — however that is defined — network

approaches assume that they are in some way functionally linked. These edges are taken to reflect functional

interactions such as information transfer, coordination, or shared processing [3, 4, 6].

Probing Network Structure

After defining the nodes and edges of a network, we can begin to probe the organization of that network

to better understand its structure and to some extent its function [35, 9]. Two key issues inform our next
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steps: statistical noise in the data and the presence of multiple scales of interest in the network. In the

recent literature, several methods have been proposed to address each of these factors and here we briefly

review these approaches.

Statistical Noise. In empirical measurements of brain activity and anatomy, noise affects our confidence

in the estimated strength of edges in both anatomical and functional brain networks. In a functional network,

should we treat two regions as connected if their activity profiles are correlated with a Pearson’s r of 0.01?

Or in an anatomical network, should we treat two regions as being connected if they are linked by a single

streamline as estimated by white matter tractography algorithms? Answers to these questions depend on

our understanding of the noise present in the data. Noise in these data sets can stem from biological,

measurement, or data-processing sources or a complicated combination of all three.

To maximize the power to detect neurophysiologically relevant connectivity patterns, two main solutions

have been proposed. In one approach, we can test the statistical significance of each edge in the network,

then remove statistically non-significant edges from the network by setting their value to 0. We then study

the organization of the remaining (statistically significant) edges. This approach is often utilized in the

context of functional networks. If edges are defined by statistical similarities in regional brain time series,

the significance of the elements of the resulting connectivity matrix are affected by the large number of

tests that have been performed, which significantly increases the chances of Type I (false positive) errors.

Several multiple comparisons correction methods for these errors, such as Bonferroni and False Discovery

Rate [36], have been proffered (e.g., [16, 1]), although some argue that these approaches are too stringent

for network-based analyses [37]. A false positive correction in which edges are retained if their p-values are

less than 1/N where N is the number of nodes in the network may be a suitable compromise (e.g., [38, 39]).

In a second approach, we do not perform any statistical thresholding on the edge weights. Instead, we

study the entire network (inclusive of the noise), and then compare that network structure to null models

that have been constructed to account for one or more sources of noise [2]. For example, we can construct a

null model for functional brain networks by creating surrogate time series that maintain the mean, variance,

and autocorrelation of the original signal. By comparing the real brain network to this null model, we can

identify features of the network that cannot simply be accounted for linear properties of the time series. A

critical area of ongoing research is the development of more sophisticated null models that seek to account

for more complicated structure in biological networks such as growth and development, temporal dynamics,

and physical embedding of the network inside of the skull [40, 41, 2].
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Multiscale Structure. In studying many complex systems, we often try to isolate a single level of the

system and study it intently in the hopes of gaining an intuition for how the system works. However, for most

systems this is a simplification that often costs us understanding. Complex system often display multiscale

structure, or non-trivial organization across different scales. The brain is no exception, having intricate

architectures that exist and processes that occur across a range of spatial, temporal, and topological network

scales [42].

The presence of multiscale structure in the brain constrains the types of methods that we can use to

study brain networks. An important example of multiscale architecture lies in the spatial distribution of

edges, which shows different organizational features depending on whether the edges are strong versus weak

or short versus long, and on whether they connect regions that are within versus between hemispheres (e.g.,

[8, 43]). Simple binary networks (where edges are treated as either present or absent), and non-embedded

networks (where edge locations in the brain are ignored) necessarily neglect this multiscale structure and in

doing so dismiss potentially important biological signatures present in the data.

For simplicity, we will use the remainder of this subsection to discuss the role of edge strength in multi-

scale brain structure. To study the network topology (the arrangement of the elements in a network) and

putative biological utility of edge strength, we can probe weighted networks (where edges maintain estimated

strengths) using a variety of thresholding techniques. Cumulative thresholding is the procedure whereby a

family of graphs is created from a single connectivity matrix; each graph in the family contains edges above

a certain weight value or threshold (see Figure 2, top). The threshold for each graph in the family is unique,

and specifies the density of edges in the graph: small values of the threshold produce dense graphs and large

values of the threshold produce sparse graphs. Windowed thresholding is the procedure whereby a different

family of graphs is created; each graph in the family contains edges whose weight values lie within a given

weight range or window (see Figure 2, bottom; [44, 43]). The width of the weight range specifies the density

of each graph in the family: small weight ranges produce sparse graphs and large weight ranges produce

dense graphs.

Cumulative and windowed thresholding techniques can provide insight into the multiscale nature of a

network’s connectivity patterns, embedded in edge weights. The windowed thresholding approach has the

advantage of isolating the network structure of strong versus weak edge weights. Strong edges can provide

insight into the organization of energetically costly links in anatomical brain networks and of heavily utilized

coordination links in functional brain networks. Weak edges — while technically less significant according to

some statistical tests [16] — can imply strongly correlated network states [45] and can distinguish diseased

network structures in schizophrenia [43]. Observed weak correlations between regional activity could be

driven at least in part by the variability of neuronal activity signals, which plays an important role in
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Figure 2: Probing Multiscale Architecture in Network Edge Weights. Multiscale structure in a
weighted network (left) can be probed using thresholding techniques. (A) Cumulative thresholding is the
procedure whereby a connectivity matrix is separated into a set of graphs that contain edges above a certain
weight value or threshold. (B) Windowed thresholding is the procedure whereby a a connectivity matrix
is separated into a set of graphs that contain edges whose weight values lie within a given weight range or
window [44, 43].

cognitive function [46], development [47], and recovery from injury [48].

Generating Network Diagnostics

A network ‘diagnostic’ is simply a named measurement used to describe a network’s properties. These

properties can then be compared across different networks. For example, a patient’s network diagnostics can

be compared with those of a healthy participant; or a human brain network can be compared to a worm

neuronal network to see whether the properties captured by that diagnostic are shared by neural systems in

different species [20].

Network diagnostics are not quantities like mass, entropy, or replication rate that a priori have a clear

physical meaning. Instead, they are mathematical definitions that formalize architectural concepts specific

to network science [49]. As an outsider, this jargon can at times make the field seem impenetrable. However,

upon closer inspection, many diagnostics captures an intuitive property of interconnected systems that can

often be easily interpreted in the context of the brain [27, 50].

Local, Global, and Mesoscale Properties We can use network diagnostics to study the organization

of anatomical and functional brain networks across spatial scales, from the neighborhood of the network
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surrounding a single brain area (captured using local statistics) to the architecture of the entire network

(captured using global statistics). A typical local diagnostic is the clustering coefficient C, which relates

to the likelihood that a node’s neighbors are connected to one another, forming triangles or loops (see

Figure 1C1). The clustering coefficient can be calculated for each node separately, and then the values

can be averaged across nodes to determine a mean clustering coefficient for the network. A brain-centric

interpretation of the clustering coefficient is that it might quantify the amount of local information integration

[27, 4].

A typical global diagnostic is the average shortest path length L. The shortest path between node i and

node j is the smallest number of edges that must be traversed to get from node i to node j. The average

shortest path is the mean shortest path over all possible pairs of nodes in the graph (see Figure 1C2). A

brain-centric interpretation of the average shortest path length is that it might quantify the amount of global

information segregation [27, 4]. A related concept — the network efficiency [51, 52] — is also calculated based

on shortest paths through a graph. Networks with high efficiency have short path lengths and networks with

low efficiency have long path lengths. Network efficiency has been interpreted in relation to the efficiency of

information processing in the brain [53, 27].

Mesoscale diagnostics (“meso-” means “middle”) capture intermediate-level properties of network organi-

zation. Rather than focusing on either the local neighborhood of a node or the global structure of the entire

graph, mesoscale diagnostics characterize the organization of groups of nodes. For example, core-periphery

diagnostics enable us to uncover a core of densely and mutually interconnected nodes and a periphery of

sparsely connected nodes (see Figure 1C3, left ; [54, 55]). Core-periphery organization might confer robustness

to the brain’s structural core [56] and enable a balance between stability and adaptivity in brain dynamics

[57]. Modularity is another type of mesoscale property in which sets of nodes form densely connected sub-

groups (see Figure 1C3, right ; [58, 59]). Modular organization provides a natural substrate for the combined

integration and segregation of information processing arguably required for healthy brain function [4].

Despite the changing fashions for particular diagnostics (for example, small-worldness: a buzzword of

the early 2000s which is now falling somewhat out of favor), no single diagnostic can capture all of the

important organizational properties of networks [49]. The library of network diagnostics is continually

growing as applied mathematicians, physicists, computer scientists, and others define new mathematical

entities to capture previously unexplored patterns in network structure. While each diagnostic has a unique

mathematical definition, it is possible for several diagnostics to produce values that are highly correlated

with one another across network samples (e.g., across different brains). A current challenge is to determine

the families of network diagnostics that provide complementary but not necessarily independent information

about functional and anatomical brain organization [38].
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Interpretational Caveats Network diagnostics can be intuitively interpreted in terms of information pro-

cessing: high clustering can suggest that information is processed in local domains, while short path-length

can suggest that information is being transmitted over longer distances within the network. However, the bi-

ological meaning of these interpretations requires a conceptual leap from topological to biological terms which

are semantically equivalent, but not necessarily conceptually inter-changeable [60]. Biological efficiency, for

example, has evolutionary implications which may not apply to network efficiency. More generally, such

interpretations of network diagnostics require empirical validation demonstrating the relationship between

quantifiable estimates of information processing or biological efficiency and network characteristics. Until

then, a cautious interpretation of network diagnostics need not hamper the utility of these approaches in

prediction, classification, diagnosis, and monitoring and in the study of system level dynamics underlying

cognitive function.

Using Diagnostics to Probe Brain Network Structure We have shown how a variety of different

networks could be produced from a single brain scan. The network diagnostics generated will vary consider-

ably, depending on whether a weighted or binary network is used, whether we take a cumulative or windowed

thresholding approach, and what range of connection densities we choose to consider. For example, we can

see in Figure 3A that the value of the clustering coefficient tends to be small for sparse graphs and large for

dense graphs, where neighbors of a node are more likely to also be connected to one another (see Figure 3A).

The value of network efficiency shows the opposite effect: large values characterize sparse graphs and small

values characterize dense graphs, where any pair of nodes is likely to be connected.

Given this variation, how do we choose which actual numbers should be used to represent a sample,

when it is compared to another? The characteristic curves of diagnostic values as a function of graph

density or mean edge weight provide useful signatures of brain networks in different states (e.g., health

and disease, or various task states). We can collapse a curve extracted from a single participant into one

number by calculating the area under the curve (AUC) [61]. The advantage of this procedure is that we

can then determine group differences in this value by performing a simple t-test or permutation test. The

disadvantage of this procedure is that we have necessarily lost information about the shape of the curve.

Two groups might have identical AUC values but quite different curve shapes. An alternative approach is to

use functional data analysis, a statistical technique developed for the principled study of curves, to determine

whether the area between the curves is significantly different from zero [43, 62] (see Figure 3B).

While network diagnostic values and curves provide insight into the organization of the network, it is the

mapping of these values back to brain regions that enables us to make fine-grained biological interpretations

of our data. Different network diagnostics can display very different spatial distributions across the surface of
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Figure 3: Using Diagnostics to Probe Brain Network Structure. (A) Clustering coefficient (left
y-axis, black) and network efficiency (right y-axis, light gray) as a function of network density as estimated
using cumulative thresholding techniques. (B) Schematic of mean clustering coefficient versus density curves
for two sets of participants: Group 1 (thin, light gray dashed line) and Group 2 (thick, dark gray dashed
line). Functional data analysis is a statistical framework that can be used to determine whether the area
between the two curves is significant in comparison to a null model. (C) Area under the clustering coefficient
versus density curve (top) and the network efficiency versus density curve (bottom) for 112 regions of the
brain, defined according to the Harvard-Oxford atlas (see [1, 2] for additional details on this data set).

the brain (see Figure 3C). For example, in an early motor skill learning task [1, 2], the clustering coefficient is

strong in the primary motor cortex and weak in visual association areas while the network efficiency displays

the opposite trend. Such maps can be constructed for individual participants or for groups of participants

and enable us to link our results to the large body of neuroimaging literature isolating functions of individual

brain regions.

Experimental Design

Since its inception, network neuroscience has predominantly been exploratory in nature. In network-based

studies of the brain, researchers are constantly fine-tuning methodological approaches and isolating empirical

questions that are amenable to these approaches. Often these studies have included a re-analysis of previously

published data, which had initially been examined from a more traditional perspective. The use of previously

acquired data is unquestionably justified for many reasons, including but not limited to the use of taxpayer

money for research studies, the time spent by subject participants in volunteering for the study, the difficulty

in obtaining patient data, and the richness of data acquired by current neuroimaging techniques that cannot

be mined completely using a single analytic approach. These studies have provided extensive early validation

of network methods and their use in understanding the human brain.

However, the re-analysis of previously acquired data has its disadvantages. The most critical disadvantage

is that these studies were often not conceived with network-based hypotheses in mind. New data acquired
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using experimental paradigms specifically designed to test network hypotheses will open up entirely new

fields of inquiry. The development of such paradigms and hypotheses is an important frontier in network

neuroscience.

What Can Network Approaches Tell Us?

Is network neuroscience an enlightening new approach to cognitive science or is it simply an interesting

intellectual exercise for the mathematically inclined? The empirical evidence to date strongly supports the

former conclusion.

The first type of evidence comes from the fact that network neuroscience has provided diagnostics that

display close relationships with more traditional measurements or known quantities. For example, people

with a variety of psychiatric and neurological diseases have differently connected brains than people who

are healthy [6]. When people perform different tasks, their brain regions interact differently, leading to

alterations in network diagnostics (e.g., [63]). Over both long and short time scales (from years [64] to days

and minutes [1]), your brain changes in how different regions interact with each other. As your behavior

changes, so do your brain networks [65].

Together, these results provide important validation of the network approach to neuroscience. But not

all of these results are surprising or ground-breaking. The results often grab the attention of the media

instead because they directly address the perennial problem of cartesian dualism that pervades both lay and

medical thinking: linking the mind to the brain. Indeed, studies demonstrating brain correlates of behaviors

or psychiatric disease continually inform, and provoke new developments in, the philosophy of mind. In

addition to their philosophical appeal, network methods can also display these results in a quantitative and

visually appealing way. But do these results fundamentally advance our understanding of how the human

brain works?

Network Neuroscience as Explanation

The growing consensus in the community is a resounding “Yes”. Network science provides a fundamen-

tally new level of explanation for cognitive function. And what do we mean by an “explanation”? Among

other things, an explanation can (i) describe phenomena in terms of more fundamental and general princi-

ples, or (ii) provide a causal history of the phenomena [66]. Reductionist models of biological phenomena

have traditionally provided explanations of the second form (providing causal histories) but in general have

difficulty providing explanations of the first form (linking to fundamental principles). Network science, how-

ever, provides inherently new information about how the brain works in relation to general mathematical
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and physical principles, and it is this new information that informs novel hypotheses, interpretations, and

empirical studies.

Shifting Conceptual Paradigms Network science has supported a fundamental paradigm shift in the

conceptual framework that we use for neuroscientific inquiry. By placing significant weight on the importance

of interactions, network methods stand in contrast to other approaches focused primarily on the localization

of cognitive functions to specific brain areas through the study of local brain activity. Instead, the princi-

pled investigation of time-dependent communication between brain regions, facilitated by network methods,

has enabled the discovery and description of both intrinsic (the default mode network [67]) and extrinsic

connectivity phenomena.

Revealing Organizational Principles Network science can be used to uncover organizational principles

of complex systems. As an example, consider the use of network science in the identification of evolutionary

and metabolic constraints on brain structure [20, 68]. By studying network architecture present in natural

organisms, from human to worm, we can infer fundamental principles of brain organization, such as cost-

efficiency in network organization [68], and posit their alteration in disease states [69]. Extracting these

guiding principles is of critical importance in building an expanded theoretical neuroscience, and is a necessary

complement to the accrual of increasingly detailed accounts of specific brain areas, pathways, and molecules.

Distilling Mechanisms of Disease In addition to uncovering organizational principles in the healthy

brain, network neuroscience has provided new insights into the mechanisms of disease. In Alzheimer’s dis-

ease, for example, regions of dense functional connectivity (also known as network hubs) correspond to

areas of greatest plaque deposition [70]. In contrast to descriptions of plaque density from non-systems

approaches, these results from network science suggest a disease mechanism: high metabolic function, in-

formation processing, and structural connectivity in brain network hubs might augment the pathological

cascade in Alzheimer’s disease. Network neuroscience methods have also played a primary role in our grow-

ing understanding of schizophrenia as a brain-wide pathology, characterized by extensive dysconnectivity

rather than localized abnormal activity [71]. Even in the context of stroke, network methods have been used

to show that communication pathways are altered far from the lesioned site [72], illustrating the wide-ranging

possible uses of network methods in the study of both localized injury and distributed disease.
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Network Neuroscience as a Young Field

Despite these exciting recent advances, network neuroscience is still a very young field and many challenges

remain. Particularly salient frontiers evident in the recent literature include the following:

• Network Dynamics. The human brain is a dynamic system [73] underpinning the complexities of

cognitive function. The extension of network methods to characterize the temporal changes in putative

communication patterns in the brain is necessary to understand the constantly evolving nature of

cognition [74, 1, 75, 76].

• Neurophysiological & Genetic Drivers of Network Organization. The brain networks that we observe

are driven by lower level physiological processes (e.g., [43, 77]) and genetic phenomena (e.g., [78,

79]). Determining the role of molecular and cellular dynamics in large-scale network and systems

neuroscience is critical for a mechanistic understanding of brain development and function.

• Network-Based Prediction. Network approaches provide novel possibilities for classification and pre-

diction. Machine learning, mathematical modeling, and statistical analyses have shown promise in

predicting brain state (e.g., [80]), disease progression (e.g., [81]), and potential receptivity to neurore-

habilitation efforts [1, 57].

• Network Approaches to Behavior, Perception, and Evolution. Applications of network methods outside

of neuroimaging could provide important insights into cognitive function. For example, the network

concept of community structure has been used to capture the organization of human movements (e.g.,

[82]), the temporal relationships between concepts (e.g., [83]), and the genetic interactions underlying

cellular machines impacting on neural function (e.g., [84]).

Together, these frontiers promise to provide important progress in our understanding of cognitive function,

its neurophysiological and genetic underpinnings, and its relationship to behavior.

As with any young field, the scientific excitement of network neuroscience is paired with its growing

pains. First, it is not always clear how to translate the findings of network neuroscience to the clinic, be

that in the development of antipsychotic drugs or in the rehabilitation of injured patients. Progress in this

area requires greater progress in clinical systems neuroscience. Second, sources of noise in specific subject

populations (e.g., movement in adolescents or in people with schizophrenia) can produce network signatures,

which if not adequately corrected for, can lead to the inaccurate identification of group differences in network

structure. Indeed, the identification and understanding of individual differences in brain connectivity will be

an important area of growth in the coming years. Third, some network diagnostics and concepts can appear

to be fads: small-worldness and power-law degree distributions were of great interest until it was shown
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that most real world networks are small-world and power-law degree distributions do not necessarily imply

a specific underlying mechanism (e.g., criticality) [85]. Finally, simple network representations of complex

systems like the brain necessarily abstract away many potentially important biological details: nodes are not

all identical, but instead have different structural and functional properties (e.g., [8]). A critical effort in the

coming years will be to extend network representations to take into account these inter-regional differences to

create more biologically realistic models of this complex data. Despite these growing pains, network science

is a vibrant, rapidly growing field that brings with it exceptional promise for both empirical and theoretical

neuroscience.

Concluding Remarks

In this chapter, we have discussed why network methods provide an interesting approach to the study of

neuroscientific problems in general. The promise, challenges, and controversies of network neuroscience make

it an exciting area, ripe for rapid progress, and crying out for new minds. To encourage you to dive in, we

have provided a list of reviews and resources to explore in Box 1 and a list of helpful toolboxes in Box 2. We

hope that these tools will be of use to you as you walk the paths of methodological innovation and scientific

discovery.

Box 1: Reviews and Resources

• Several reviews address the general techniques used in applying network science to neuroscience data

[86, 87, 4, 88, 3, 89, 90, 91, 68, 92, 93, 92].

• A smaller number of reviews focus on network applications in disease [6, 94, 95, 71].

• “Networks: An Introduction” is an excellent network science textbook [49].

• “Networks of the Brain” is a wonderful book about the application of network science to neuroscience

[27].

18



Box 2: Toolboxes & Helpful Code

• The Brain Connectivity Toolbox is a MATLAB toolbox for network characterization [50].

• The UCLA Multimodal Connectivity Package is a set of Python programs used to calculate connectivity

metrics from a variety of neuroimaging modalities [96].

• Netwiki contains shared data and code for network analysis including methods for dynamic community

detection [97].

• Statnet is a suite of packages for statistical network analysis, focusing especially on Exponential Ran-

dom Graph Models (ERGMs), which test hypotheses about the processes which might have led to the

generation of a particular network you have identified [98].

• NetworkX is a Python package with a large user-base focused on the creation, manipulation, and study

of complex networks [99].

• Pajek is a Windows package which supports the decomposition, analysis and visualization of large

networks [100].

• There are multiple options for visualizing static, dynamic (changing over time) and even interactive

brain networks. These include Graphviz (or RGraphviz in R) [101], igraph [102], gephi [103], d3 [104],

and helpful user contributions on matlab file-exchange [105].

• Sometimes there is no substitute for writing your own code.
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