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mechanism by which Gwl controls mitotic 

entry and progression. Activation of Gwl by 

Cdk1 leads to direct phosphorylation of Ensa 

or Arpp19, either of which then blocks PP2A-

B55δ. The consequence of this decrease in 

dephosphorylation is an increase in the net 

phosphorylation of mitotic substrates, result-

ing in entry into mitosis (see the fi gure).

These results raise new questions. Are 

Ensa and Arpp19 the only relevant sub-

strates of Gwl? Depletion of these proteins 

in Xenopus and human cells supports this 

notion, and there is precedent for cell cycle–

regulatory kinases (such as Wee1) phos-

phorylating a limited number of substrates. 

Gharbi-Ayachi et al. and Mochida et al. dis-

agree about the relative importance of Ensa 

versus Arpp19 in Xenopus mitotic entry, and 

this will require further study.

How is the phosphorylation of Ensa and 

Arpp19 regulated? Although Gharbi-Ayachi 

et al. and Mochida et al. suggest a simple 

mechanism—phosphorylation of a single 

serine residue by Gwl—other potential phos-

phorylation sites in Ensa and Arpp19 have 

been identifi ed by phosphoproteomic screens 

( 12), including two tyrosine phosphorylation 

sites immediately adjacent to the Gwl site. 

Perhaps these additional phosphorylation 

events, catalyzed by other kinases, alter the 

affi nity of Ensa and Arpp19 for PP2A-B55δ 

or other PP2A B subunits, or the activity of 

Gwl on Ensa and Arpp19.

If phosphorylation of Ensa and Arpp19 

is important for mitotic entry, are both 

proteins inactivated at mitotic exit so that 

mitotic substrates can be dephosphory-

lated? PP2A-B55δ may not be required for 

dephosphorylating mitotic proteins at exit 

from mitosis; indeed, a screen of phospha-

tases by RNA interference identifi ed a dif-

ferent PP2A heterotrimer, PP2A-B55α, as 

a regulator of mitotic exit ( 13). There may 

be additional PP2A inhibitors to be discov-

ered, which are inactivated through as yet 

unknown mechanisms. 
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        T
he statistical mechanics that describes 

collective phenomena in disordered 

systems and solutions to large search 

problems have important mathematical con-

nections. One of the models that describes dis-

ordered materials, the diluted p-spin model, 

is strongly related to the random XORSAT 

problem, a problem of fi nding variables that 

simultaneously satisfy a large number of logi-

cal constraints ( 1). This relation has provided 

insight into how small changes in a model can 

modify its computational diffi culty.

Cooling a physical liquid creates an 

ordered crystal or a largely disordered con-

fi guration called a glass. Similarly, cooling 

a solid containing atoms with unpaired elec-

tron spins may lead to a spin-aligned state (for 

example, a ferromagnet) or to a disordered 

spin glass. Simple models of interacting par-

ticles or spins normally create the ordered 

state at low temperatures. Glass models, when 

cooled, form small regions of local order that 

mismatch at the boundaries, so that no ordered 

structure is evident on larger length scales.

A natural dynamics exists for these mod-

els: Particles or spins are allowed to move or 

fl ip according to the change in energy this 

would produce. In a glass model, a large 

amount of energy is needed to rearrange the 

local structures all along the boundaries; 

relaxation times become huge and diverge 

at the glass critical temperature T
g
. Below 

Tg, the system will likely get trapped in one 

of many false local energy minima above 

the true equilibrium energy. In most models, 

when this situation occurs, the computation 

of the ground states can be unfeasibly long. 

However, there are glass models in which 

the relaxation dynamics indeed get stuck at 

a threshold energy value, yet a different algo-

rithm can fi nd all of the ground states in a very 

effi cient way. Although such models (consid-

ered ideal glasses) are prototypes for complex 

systems, the problem of fi nding their ground 

state is easy to solve.

An example of these ideal glass models is 

the diluted p-spin model, which is defi ned in 

terms of N spins s that either point up or down 

(1 or –1). Their interactions are described by 

the Hamiltonian 

        H J s s s
ijk i j k

ijk

N

= −∑
α

(1)

The sum runs over a set of αN randomly 

chosen triplets (i, j, k) of neighboring sites (so 

in this case, p = 3, only triplet interactions are 

included), and the couplings J
ijk

 are quenched 

random variables (e.g., they are randomly set 

to +1 or –1). The specifi cs will not matter in 

the limit of large N. Typically, the ratio α of 

interactions per variable is chosen so that not 

all sites interact, and some are more connected 

than others.

This model displays the desired dramatic 

increase of the relaxation times near Tg that 

reproduces glass phenomenology ( 2,  3). 

Even when a spin confi guration exists that 

satisfi es all the interactions—which would 

favor ordering—a perfect glass still forms 

( 4). This model has a mean-fi eld nature—it 

reduces a diffi cult many-body problem to a 

simpler one-body problem—and could be 

solved analytically ( 5).

The fi gure summarizes the properties of 

the diluted p-spin model that are relevant 

for discussing possible relations between 

glassiness and computational hardness. In 

this sketch, potential energy E is shown as a 

function of α. The green region corresponds 

to energy values that can be reached by a sto-

chastic algorithm—one with randomly cho-
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sen moves, such as a Monte Carlo Markov 

chain. These algorithms would get “stuck” 

at the threshold energy Eg separating the 

green from the red region. The red region is 

full of local minima (the glassy states) and 

large energy barriers (it looks like an “egg 

carton”) and is hard to sample with stochas-

tic local moves algorithms (and probably 

with any polynomial time algorithm). The 

blue line corresponds to unfrustrated ground 

states, that is, confi gurations with all inter-

actions satisfi ed.

The search for the unfrustrated ground 

states of the Hamiltonian ( Eq. 1) can be eas-

ily recast as solving a set of αN linear equa-

tions in N Boolean (true or false) variables 

of the type

            x
i
 XOR x

j
 XOR x

k
 = c

ijk
     (2) 

where XOR is the exclusive OR opera-

tion—the XOR statement is true if one but 

not both arguments are true. As before, 

the triplets are randomly chosen, and the 

known constants c
ijk

 are randomly fi xed to 

true or false with probability 1/2.  Equation 

2 is a constraint satisfaction (SAT) problem 

(CSP)—each equation imposes a constraint 

on the Boolean variables—and is called a 

random XORSAT problem ( 6).

For small values of the ratio α of con-

straints per variable, true and false values 

can be found so that all αN linear equa-

tions are satisfi ed. However, as the ratio α 

increases, the random XORSAT problem 

becomes more and more diffi cult to solve 

and finally cannot be satisfied (UNSAT). 

The largest α value for which solutions exist 

is called SAT-UNSAT threshold. As long as 

α is smaller than this threshold, the problem 

is linear and all solutions can be found effi -

ciently, for example, by the Gaussian elimi-

nation method, which takes a time of order 

N3 in the worst case.

In a sense, the random XORSAT prob-

lem in computer science can be viewed as a 

limiting case (for temperature going to zero) 

of the diluted p-spin model in phys-

ics, and it is curious that its solution 

has been reached by the two com-

munities independently and at the 

same time ( 7,  8).

Returning to the f igure, an 

important connection can be made 

about computational hardness. 

The blue line is computationally 

easy and can be sampled in poly-

nomial time. However, it extends 

below the red hard region that can-

not be accessed by the stochastic 

searches. The naïve connection 

between glassiness and hardness 

fails. Thus, it is not possible to say 

a priori that a complex physical 

problem does always correspond to 

a computationally hard problem. It 

is entirely possible to fi nd an easy 

problem that looks “glassy” and 

difficult to solve if approached 

with a suboptimal algorithm.

Despite the existence of specifi c 

cases like the diluted p-spin model, 

scientists believe in a strong con-

nection between the physical com-

plexity of a model (i.e., the prop-

erties of its potential energy, which deter-

mine phase transitions) and the compu-

tational complexity of the corresponding 

CSP ( 9– 11). Indeed, the peculiarity of the 

diluted p-spin model arises from an intrin-

sic symmetry in the model ( 6) that allows 

easy computation of confi gurations satisfy-

ing all interactions. As soon as this symme-

try is broken, the computation of ground-

state confi gurations becomes very diffi cult, 

even if these confi gurations satisfy all inter-

actions ( 12).

In general, the connection between phys-

ical complexity and computational com-

plexity may apply and may help in solving 

the following very important open problem. 

Computational problems fall into one of two 

complexity classes ( 13). The class P con-

tains all of the problems for which a solv-

ing algorithm running in polynomial time is 

known, whereas the class NP contains all of 

the problems for which such an algorithm is 

not available, although a candidate solution 

can be checked in polynomial time. If the 

classes P and NP turn out to coincide—that 

is, if the “P = NP” conjecture is true—our 

world would change dramatically. For exam-

ple, current cryptographic codes, based on 

the NP hardness of factoring large numbers, 

would be useless.

Scientists strongly believe P and NP 

classes to be different. In August 2010, some 

Internet blogs reported a claim of a proof 

that P ≠ NP by Vinay Deolalikar. A wiki 

site aggregates most of the information on 

the proof and the discussion about it ( 14). 

The proof tries to connect the complexity of 

the solution space of random CSPs (i.e., the 

structure of ground states of the correspond-

ing physical model) and the complexity of 

algorithms for finding solutions to these 

problems.

In essence, Deolalikar tries to prove that 

those random CSPs in which solutions form 

clusters with frozen variables (that is, vari-

ables taking the same value for all solutions 

in the cluster) cannot be solved in polyno-

mial time by any algorithm. However, the 

diluted p-spin model is a classical example 

that a simple connection cannot work. The 

solution space of random XORSAT prob-

lems shows clustering with frozen variables 

( 7), but the problem is solvable in polyno-

mial time. Certainly, we need to understand 

better this connection, and hopefully Deola-

likar’s work will help in this regard. 
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The line between easy and hard. A schematic picture for the 
potential energy E of a glass model (the diluted p-spin model) as 
a function of the ratio α of interactions or constraints per vari-
able. The green region corresponds to confi gurations that can 
be easily sampled by a standard stochastic algorithm with local 
moves (e.g., Monte Carlo methods). In the red region, deep local 
minima separated by high energy barriers make the sampling 
of confi gurations a computationally hard problem. The zero-
energy ground-state confi gurations along the blue line (at the 
horizontal axis) can be sampled effi ciently, because this prob-
lem is not computationally hard before the satisfi ability (SAT-
UNSAT) threshold. However, confi gurations on the blue line 
cannot be accessed by cooling the glass model: In this case, 
a straightforward connection between physical glassiness and 
computational complexity cannot be made.
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