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Many systems of socioeconomic interests find a convenient representation in the form of temporal networks,
i.e., sets of nodes and interactions occurring at specified times. In the corresponding data sets, however, crucial
elements coexist with nonessential ones and noise. Several methods have thus been proposed to extract a
“network backbone,” i.e., the set of most important links in a network data set. The outcome of such methods can
be seen as compressed versions of the original data. However, the question of how to practically use such reduced
views of the data has not been tackled: for instance, using them directly in numerical simulations of processes
on networks might lead to important biases. Overall, such reduced views of the data might not be actionable
without an adequate decompression method. Here, we address this issue by putting forward and exploring several
systematic procedures to build surrogate data from various kinds of temporal network backbones. In particular,
we explore how much information about the original data needs to be retained alongside the backbone so that
the surrogate data can be used in data-driven numerical simulations of spreading processes on a wide range
of spreading parameters. We illustrate our results using empirical temporal networks with a broad variety of
structures and properties. Our results give hints on how to best summarize complex data sets so that they remain
actionable. Moreover, they show how ensembles of surrogate data with similar properties can be obtained from

an original single data set, without any modeling assumptions.
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I. INTRODUCTION

Many data sets coming from the world around us—
transportation systems, human proximity, interactions on
social media, etc.—take the form of networks [1,2]. By
network, we mean any system that could be modeled mean-
ingfully as a graph G = (V, E) of nodes V and edges E (pairs
of nodes). Often one also knows when nodes are in contact,
which calls for a temporal network approach [3-5] where the
set of edges is replaced by a set of contacts—triples giving
pairs of nodes and the time of interaction. One of the main
objectives in the study of networks is to describe a graph G
succinctly, and from this description be able to regenerate
other graphs with statistical properties as close as possible
to those of G. There are many approaches to this endeavor,
depending on how brief we want the description to be. Indeed,
there is a continuum, from few-parameter models where the
reconstructed networks necessarily will be different from the
observed system to link prediction where the objective is to
add just one link to an otherwise completely specified graph.
This paper concerns the intermediate regime of this spectrum
that Ref. [6] calls graph summarization techniques.

In graph summarization, one allows a description to be
long enough to contain a non-negligible part of the original
network. Thus, one could describe the network by its most
important links and edges and complement this description
with a simple model for how to regenerate an entire network
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[7,8] (see Fig. 1). There are many ultimate uses of such a
method [6]: It could save space when storing large data. It
could be statistically more relevant to generate uncertain links
by a model. It could speed up algorithms.

Graph summarization is intimately linked to identifying
the most important subgraph of G, often called backbone
extraction [9-13]. In the present work, we seek to extend
backbone extraction methods for temporal networks to a full
graph summarization technique. We will refer to this exten-
sion as the creation of surrogate temporal networks. We will
primarily try to construct surrogate networks that predict the
same epidemic outbreaks as the original data. Indeed, net-
works are the substrate of many dynamical processes, among
which epidemic processes are a prominent example [2], and
an important use of network data sets is indeed to provide sup-
port for data-driven simulations of these processes. Surrogate
networks should thus in particular provide data that can be
used in lieu of the original data in such simulations.

Several methods have been put forward to extract network
backbones. For static weighted networks, the simplest way
of filtering edges is to remove all the edges with weight
below a given threshold value. More principled procedures
use statistical tests based on null models to compare the
weights of the edges with the ones that would be generated
at random by a certain null model [9-13]. One then fixes a
desired significance level and selects only those edges whose
weight cannot be explained by the null model at the chosen
significance level. These significant edges form the backbone
of the network. In the case of temporal networks, a simple
approach for the extraction of backbones is to aggregate the
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FIG. 1. Illustration of backbones and surrogates. The backbone
construction identifies the most important links, and thereby com-
presses the original data. The surrogate generation model adds
auxiliary links, extracted at random using specific procedures, to
create a network of the same size as the original. The more links
(information) retained in the backbone construction, the more similar
is the surrogate data to the original.

data into a weighted static network. The weight of a link in this
network is the number, or total duration, of the interactions
between the involved nodes. To avoid neglecting potentially
critical temporal features, it is, however, necessary to define
an adequate temporal null model. Such a procedure makes
it possible to extract a backbone of significant ties, i.e., of
meaningful sequences of temporal contacts between nodes,
possibly taking into account the temporal evolution of the
nodes’ properties [14—16].

Typical backbone-method studies validate the procedures
to extract backbones from static and temporal networks on
synthetic benchmark tests and various empirical data sets. One
explores the main properties of the resulting backbones, and
compares these to known properties to understand by which
network features they are influenced. However, there is most
often no explicit interpretation of the “importance” of the links
(except for the simple weight-thresholding procedure). Most
importantly, it is unknown whether the information contained
in the extracted backbone is enough to correctly summarize
the original data and to be actionable, i.e., whether a user with
access to the backbone but not to the original data can use it
in data-driven applications such as simulations of dynamical
processes.

In this paper, we explore this issue for backbone methods
in temporal networks. Given a backbone representing only a
fraction of the original data, we put forward and explore sev-
eral systematic procedures to reconstruct surrogate actionable
data by adding auxiliary links to the backbone (see Fig. 1)
[7,8]. These auxiliary links are extracted at random with a
procedure depending on how the backbone was created. We
compare several such procedures applied to backbones ob-
tained through a simple thresholding procedure (serving as
baseline) and the significant tie (ST) filter for temporal net-
works [14]. We also propose a new version of this filter that
considers the data’s potential group structure. In each case,
we explore how much information about the original data
needs to be kept alongside the backbone (e.g., some statistical
properties concerning the links that have been filtered out). To
show our results’ generality, we study temporal-network data
with a broad range of topological and temporal structures.

II. DATA AND GENERAL METHODOLOGY

We consider data sets describing contacts between individ-
uals with temporal resolution, collected by the SocioPatterns
collaboration [17] in different settings: a workplace (office
building, InVS15) [18], a high school (Thiers13) [19], a pri-
mary school (LyonSchool) [20], and a scientific conference
(SFHH) [21]. These data describe close face-to-face prox-
imity of individuals equipped with wearable sensors, with a
temporal resolution of 20 s. To limit the effect of noise, the
data are, moreover, often aggregated over a coarser resolution
of A minutes (e.g., in Ref. [14] backbones are considered for
A ranging from 3 to 15 min). Here we will use A = 3 min,
but we have obtained similar results for other temporal reso-
lutions. Such data are conveniently represented as temporal
networks in which nodes represent individuals. These net-
works are in discrete time, i.e., composed by T successive
snapshots at times ty, fo + A, ..., where ? is the initial time
of the data set. A temporal edge between two nodes i and j
at time t = fy + nA represents the fact that the corresponding
nodes have been in contact during the time interval [z, t + A].
We also define a “contact” between i and j as an uninterrupted
series of time stamps in which there is a temporal edge be-
tween them. The duration of the contact is the length of this
series. In each case, we also define the aggregated network
as the static weighted network in which a link between two
nodes denotes that these two nodes have been in contact at
least once, and the weight of the link is given by the number
of temporal edges between these nodes. Table I gives the main
characteristics of each data set.

These data sets were collected in very different contexts,
so that the resulting structural and temporal properties of
the contact network differ strongly. School and high school
populations are divided into classes of similar sizes, with a
strong community structure and interactions between classes
only during the breaks (occurring with similar patterns in
different days) [19,20]. In the office building, individuals are
divided into departments of unequal sizes, and interactions
are not limited by strict schedules [21]. In the conference, a
homogeneous aggregated contact network is observed [22].

For each data set, we first extract their backbones according
either to a simple thresholding procedure or using the signifi-
cant tie filter [14] (see below and Methods). Each backbone
contains only a tunable fraction f of the original ties (we
will use f = 40%, 10%, and 5%). In addition to the list of
backbone ties (and possibly the corresponding lists of tem-
poral edges), we assume that some additional statistics of the
original data sets are conserved, such as the total number of
temporal edges, and the distributions of contact and intercon-
tact durations (or simply the parameters of their fit to simple
functional forms such as power laws [7,23,24]). Whenever the
data present a group structure, the corresponding metadata can
also be conserved alongside the backbones.

We then consider several methods to reconstruct surrogate
data from the backbones. Each method consists in adding
temporal edges to the backbone in a way tailored to reproduce
several statistical features of the original data (see below and
Methods). For the resulting surrogate data, we investigate
whether they are suitable to feed numerical simulations of
dynamical processes, i.e., whether the outcome of dynamical
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TABLEI. The basic properties of the different data sets. N is the number of participants, “Duration” the total duration of the data collection,
N, the number of groups in the population, E the number of ties (i.e., links in the aggregated network), 7 the number of time stamps (once
nights and weekends, with no activity, have been removed), and E7 the number of temporal edges. Here the temporal resolution is A = 3 min.

Data set Location Year N Duration N, E T Er Ref.
InVS15 Office building 2015 217 2 weeks 12 4274 2307 28 950 [21]
LyonSchool Primary school 2009 242 2 days 10 8317 345 64 419 [20]
SFHH Conference 2009 403 2 days None 9565 421 73 620 [21]
Thiers13 High school 2013 326 1 week 9 5818 811 59 372 [19]

processes simulated on top of the surrogate data is close to the
one obtained when using the original data. Specifically, we
focus on the paradigmatic susceptible-infectious-recovered
(SIR) model of epidemic propagation. In this model, a sus-
ceptible (S) node becomes infectious (I) at rate 8 when in
contact with an infectious node. Infectious nodes recover
spontaneously at rate v and enter an immune recovered (R)
state. We quantify the outcome of these processes, i.e., the
epidemic risk, by two quantities: (i) the basic reproductive
number Ry (the average number of secondary infections by
the source) and (ii) the average final size 2 of the spread,
i.e., the fraction of nodes that have been in the infectious
state at any time, and we explore a wide range of parameter
values (see Methods for details on numerical simulations and
measures).

In the following, we will show in the main text the results
for the Thiers13 data set. As we indeed observe a robust
phenomenology across data sets, the results for the other data
sets are shown in the Supplemental Material [25].

III. BACKBONES

To extract a backbone of a given size from a temporal net-
work data set, we consider the ST filter [14]. In this method,
the actual number of temporal edges between two nodes is
compared to the one of a temporal null model. The significant
ties at significance level « are the ones such that their number
of temporal edges cannot be explained by the null model at
significance level «. Specifically, the null model is defined
as follows: an “activity level” a; is associated to each node
i, and two nodes i and j have a temporal edge at each time
with probability a;a;. The activity levels of the nodes are
obtained from the data by maximum likelihood estimation
(see Methods and Ref. [14]). Tuning o makes it possible to
select backbones representing a specific fraction f of the ties
of the original data.

Moreover, we extend the ST filter to take into account the
group structure of several data sets. The resulting GST filter
is obtained by modifying the temporal null model as follows:
the probability of a temporal edge between i and j is equal
to a;a; if i and j belong to the same group, and to pa;a;
if they belong to different groups. The node activities and
parameter p are obtained by maximum likelihood estimation
as for the ST filter (see Methods). Note that p < 1 corresponds
to cohesive group structures, while p > 1 would be obtained
for disassortative structures. It would also be possible to use
several values of p depending on the respective groups of i
and j, but we consider here for simplicity only one parameter.

In addition, we consider as baseline the simplest method to
extract ties that can be interpreted as the most important in a
network: We order the ties according to their weight in the ag-
gregated network, as given by their number of temporal edges
(in the context of contact networks, this corresponds to the
total duration of the contacts between the two nodes forming
the tie). The “threshold” backbone (TB) of the original data is
then given by the fraction f of ties with the largest weights.

We report in Table II, for backbones formed of a frac-
tion f =40%, 10%, and 5% of the original network, the
corresponding number of temporal edges for each backbone
extraction method. See the Supplemental Material [25] for
more information about how backbones compare to the orig-
inal data. As already discussed in Ref. [14], the ST backbone
ties tend to have large weights, with distributions clearly
shifted to large values with respect to the original data.
However, while this happens by definition in the threshold
backbone, the distribution of weights in the ST backbone is
smooth and does not have a sharp cutoff at a minimal value.
Moreover, when the group structure is included (GST back-
bone), the distribution of weights becomes notably broader.
This is due to intergroup ties that tend to have lower weights
[7]: these ties appear as significant only when we take into
account, through the adequate null model (i.e., through the use
of the parameter p), that pairs of individuals belonging to dif-
ferent groups have an a priori tendency to form less temporal
edges than individuals of the same group. In fact, the ST filter
tends to filter out most ties joining nodes of different groups
[14]; the GST filter instead keeps ties both within and between
groups. We also note that both the clustering coefficient and
the modularity of the partition in groups, when measured in
the backbones, can strongly deviate from the values in the
original data (see tables in the Supplemental Material [25]).
On the other hand, the distributions of contact and intercontact
durations are close to the ones observed in the original data
(see the Supplemental Material [25]).

IV. CONSTRUCTING SURROGATE DATA

Backbones are by definition composed of a much smaller
number of temporal edges and ties than the original data.
As discussed above, their statistical properties are not iden-
tical to the ones of the data. It is therefore expected that
numerical simulations of spreading processes on top of a
backbone largely underestimate their outcome. We illustrate
this in Fig. 2 and in the Supplemental Material [25]. Note that
the underestimation is not as strong as the one that would be
obtained by a random sampling of the events, as the backbone
ties tend to have large weights.
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TABLE II. Number of temporal edges E,; of the various backbones, for various values of the fraction f of ties forming the backbone.

Data set Threshold ST GST

f 40% 10% 5% 40% 10% 5% 40% 10% 5%
InVS15 25417 16 541 12014 24 738 16 166 9 084 20 890 13 581 9522
LyonSchool 56 807 33205 22912 55773 32 346 18 746 41 032 24 732 16 431
SFHH 18 802 12 650 10253 17 257 11 950 9763

Thiers13 53992 39171 30239 52975 30981 12 678 43 834 34613 22 572

We therefore put forward several methods to construct
surrogate data that are statistically more similar to the original
data and, most importantly, yield more accurate estimations of
processes’ outcomes. Starting from a backbone composed of
E}, ties and Epr temporal edges, we want to recreate a temporal
network with approximately E ties and E7 temporal edges.
To this aim, we need to use complementary information, in
addition to the list of temporal edges composing the backbone.
For instance, it is quite clear that we cannot guess from the
backbone itself the correct numbers of ties and temporal edges
to be added. Thus, this additional information should be kept
alongside the backbone to make it a usable summary of the
data. Here we consider several procedures, highlighting in
each case the necessary type and amount of information. Note
that the resulting list of procedures does not pretend to be
exhaustive but addresses a wide range of possibilities in terms
of available information. Each procedure can be separated into
two steps: (i) choosing ties (not included in the backbone)
that interact in the surrogate data, and (ii) building timelines
of interactions on the chosen ties. Procedure (ii) might also
need to be performed on the backbone ties if the temporal
information of the backbone ties is not available.

For step (i), we consider three distinct methods for back-
bones extracted using the ST or GST method.

recovery rate

0.1
transmission probability

0.1
transmission probability

(G)ST-OA. Here “OA” stands for “original activity.” We
assume that the parameters of the null model used to extract
the backbones are available, namely, the original node activ-
ities {a;,i =1,..., N} (and the parameter p for the GST).
Moreover, we assume that E7 is known and, for the GST,
that the number of temporal edges between groups and within
groups, E7iner and E7 jnga, are also known, as well as the
group to which each node belongs.

In this procedure, for each pair of nodes (i, j) not in the
backbone, we add a temporal edge between i and j at each
time stamp with probability aa;a;, calibrating « so that the
obtained total number of temporal edges is close to Er (see
Methods).

For the GST, we use at each time the probabilities otinraia;
if i and j are in the same group and diner pa;a; if they are not,
calibrating dineer and oinga to get approximately the correct
number of temporal edges both at the intergroup and intra-
group levels.

(G)ST-RA. Here “RA” stands for “recomputed activity.” If
the parameters of the null model (i.e., the activities {a;} of the
nodes) are not known, we use the fact that applying the MLE
equations to the backbone itself yields activity parameters cor-
related to the original ones (see Table III). We thus compute
the activity a; of each node i (and the parameter p if the group

100
4
% 10 3
> -
g 2
g 1
]
0
300
2
(0]
{/ 200 &
X
©
)
/ s
/ 100 2

A
transmission probability

FIG. 2. Ry (top row) and €2 (bottom row) values obtained from the simulations on the original data and on the backbones, as a function of
the SIR parameters, for the Thiers13 data set. Left: original data. Middle: GST backbone with f = 10%. Right: GST backbone with f = 5%.
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TABLE III. Correlation between original activities and activities
recomputed using the backbone ties.

Data set ST GST

f 40% 10% 5% 40% 10% 5%
InVS15 0.99 0.92 0.62 0.97 0.87 0.75
LyonSchool 0.99 0.90 0.60 0.96 0.80 0.64
SFHH 0.97 0.93 0.90

Thiers13 0.99 0.73 0.25 0.97 0.92 0.68

structure is known) in the backbone; we then add at each time
a temporal edge between i and j with probability «a;a;, cali-
brating « to get approximately the correct number of temporal
edges (we assume as previously that E7 is known). For the
GST case, we use probabilities tingad;@; and Qiner Pé;d; and
calibrate @inter/intra a8 in the previous method, assuming E7 jnger
and E7 jnya are known.

(G)ST-RT. Here “RT” stands for “random tie.” We, more-
over, consider a baseline in which we add to the backbone the
correct number of ties at random (i.e., E — E}), with weights
drawn from the list of weights of the nonbackbone ties. Note
that here we do not consider simply adding the correct number
of temporal edges at random between nodes, because that
would result in a very large number of ties with only one or
few temporal edges, a structure very different from the origi-
nal data. We thus assume that the number of ties in the original
data E is known (Ejyer and Ejn, if there are groups), in addi-
tion to the original number of temporal edges. Moreover, as
the distribution of the backbone weights is very different from
the original data (see figures in the Supplemental Material [25]
and Ref. [14]), we do not have a simple functional form for the
weights of the nonbackbone ties. We thus assume that the list
of weights of the nonsignificant ties has been kept.

Finally, for the backbones consisting of the ties with the
largest weights (TB), as there is no underlying null model,
we only consider the baseline reconstruction method which
we denote by (G)TB-RT: we proceed here exactly as for the
(G)ST-RT procedure.

Once the ties and the number of temporal edges on each
tie have been chosen by one of these procedures, we can cre-
ate surrogate timelines [step (ii) of the procedure] in various
ways. In each case, for each tie (7, j) with number of temporal
edges n;;, the aim is to choose n;; time stamps out of the T
possible ones.

Poisson. If no temporal information on the original data is
available, the simplest procedure consists in choosing the time
stamps of the temporal edges for each tie totally at random.

BTL-Poisson. If the actual timelines of the backbone ties
are known, one can keep these actual timelines and choose
at random the time stamps of temporal edges only for the
surrogate ties.

Stats. Rather than the above approaches, we can instead
assume that some information on the statistics of contact and
intercontact durations are known, as these properties have
been shown to be extremely robust [21,23] (see also the
Supplemental Material [25]). They can, moreover, be approxi-
mately fitted to (truncated) power-law forms, meaning that the
whole list of values is not needed, but only the parameters of
the fit. We can then build a timeline of temporal edges for
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FIG. 3. Distributions of (aggregated) degrees (left columns) and
weights (right column) in the surrogate data obtained by various
methods. From top to bottom: (G)ST-OA, (G)ST-RA, (G)ST-RT, and
(G)TB-RT. In each case, the blue line shows the distribution for the
original data, and the red and green lines denote the surrogate built
respectively without and with group information. Using group infor-
mation yields distributions closer to the original ones. The surrogates
were built from backbones with f = 10% of the ties of the original
data.

each tie using contact and intercontact durations generated
randomly from these fitted distributions.

BTL-Stats. If the actual timelines of the backbone ties are
known, we keep these actual timelines, and proceed as in the
Stats case for the surrogate ties only.

We note here that each step of the procedure is stochastic,
with random choices of ties and temporal edges. Thus, re-
peating the same procedure multiple times yields an ensemble
of surrogate temporal networks. In the Methods section, we
provide a summary table of these procedures and the corre-
sponding data used.

V. STRUCTURAL AND TEMPORAL STATISTICAL
PROPERTIES OF THE SURROGATE DATA

Figure 3 shows distributions of degrees and weights for
the aggregate networks resulting from surrogate data created
by several methods for the Thiers13 data set and f = 10%.
Similar figures are shown in the Supplemental Material [25]
for the other data sets as well as a table with the relative
values of the clustering coefficient and of the modularity of
the aggregated surrogate networks.

The surrogates based on adding ties according to the ST
null model tend to overestimate the node degrees, with the
whole distribution shifting to larger values than in the original
data and becoming broader. This effect is very strong for the
ST-OA and ST-RA, but taking into account groups (GST-OA
and GST-RA) leads to much weaker deviations from the data.
Using group data also leads to distributions of weights close to
the original ones. At the same time, ST-OA and ST-RA have a
substantial depletion of the distribution at intermediate weight
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FIG. 4. Effect of taking group structure into account when building the surrogate data, for the Thiers13 data set. Each panel shows the
relative difference in R, obtained from the simulations on surrogate data with respect to simulations on the original data. Top: ST-RA. Bottom:
GST-RA. Left, f = 40%; middle, f = 10%; right, f = 5%. In each case the backbone timelines are kept, and timelines respecting the statistics
of contact and intercontact durations are built for the surrogate ties (BTL-Stats method).

values (the tail of the distribution being correctly represented
as most ties with large weights belong to the ST backbone).
Note that these distributions emerge from the surrogate’s con-
struction, as the initial distribution is not assumed to be known
here.

For surrogates created using random ties, (G)ST-RT and
(G)TB-RT, the average degree is well reproduced by design,
as the information about the original data number of ties is
assumed to be known. On the other hand, the distribution of
degrees is much narrower than the original one. The distribu-
tion of weights is almost identical to the original data since the
list of the actual weights of the nonsignificant ties is assumed
to be known.

In terms of clustering and modularity, the procedures in
which group information is known and used all lead to values
that are close to the original ones, while ignoring group in-
formation can yield large discrepancies (see the Supplemental
Material [25]).

Finally, the distributions of contact and intercontact dura-
tions depend only on the way in which the timelines of ties are
built in the surrogate data: they are exponential for the Poisson
procedure, and very close to the original data distributions for
the Stats procedures (not shown).

VI. SIR PROCESSES ON SURROGATE DATA

We present our main results in Figs. 4 and 5. Each panel
of the figures shows, as a function of the parameters 8 and v,
a color plot of the relative differences in the outcomes of SIR
processes simulated either on surrogate data or on the original
data. The outcome is measured by the basic reproductive num-
ber Ry, and we show similar results for the epidemic size €2 in

the Supplemental Material [25]. The reason we do not reduce
this objective measure to one number per data set is simply
that any specific disease would correspond to one coordinate
pair in the parameter space. Considering a summary statistics
would hide the individual variability of different diseases even
though it would simplify the analysis.

Let us first note a general pattern: R tends to be under-
estimated, when using surrogate data, at large 8 and small v,
i.e., at very large Ry and epidemic size. At large B and v, on
the other hand, the tendency is to overestimate the epidemic
outcome. Finally, smaller deviations with respect to the simu-
lations on the original data are observed in parameter regions
where Ry is close to 1, i.e., close to the epidemic threshold.

Let us now consider in more detail the results obtained with
various types of surrogate data and the effect of the choices
made in the reconstruction procedure.

Figures 4 (and further figures in the Supplemental Material
[25]) highlight the impact of using information on the group
structure of data. The surrogate data get more ties between
groups when group information is not taken into account
(see also the degree distribution in Fig. 3), leading to larger
values of Ry and Q. As a result, the range of parameters in
which R is underestimated is slightly smaller. Still, on the
other hand, both Ry and 2 can be strongly overestimated in
some parameter regions and in particular close to the epidemic
threshold.

In the Supplemental Material [25], we furthermore exam-
ine the effect of different timeline reconstruction methods, at
a fixed procedure for choosing the surrogate ties. As could
be expected, better results are obtained when more statistical
information about the actual data timelines is used. In particu-
lar, using Poisson timelines leads to stronger overestimations.
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FIG. 5. Outcome of SIR processes on surrogate data obtained by various reconstruction methods, for the Thiers13 data set. Relative
difference in the values of Ry, measured in simulations on the surrogate and on the original data. First row: GST-RA. Second row: GST-OA.
Third row: GST-RT. Fourth row: GTB-RT. Left column, f = 40%; middle, f = 10%; right, f = 5%. In each case the backbone timelines are
kept, and timelines respecting the statistics of contact and intercontact durations are built for the surrogate ties (BTL-Stats method).

On the other hand, using timelines with random contact and
intercontact durations reflecting the original data statistics
leads to smaller deviations, and using these statistics to create
surrogate timelines even on the backbone ties does not have a
strong impact.

We thus consider all the surrogate reconstruction methods
that take into account the group structure of the data and
use the BTL-Stats method for the timelines. Figure 5 shows
the results for Ry, while the results for 2 are shown in the

Supplemental Material [25]. The main result underlined by
the panels is that all methods give rather good results. The
deviations with respect to the original data naturally tend to
increase as f decreases, but wide ranges of parameters with
small variations are still observed even at f = 5%. We also
see that recomputing the activities leads to worse underesti-
mations than if the original activities are known. Despite being
based on the simple procedure of adding random ties and not
using data on the nodes’ activities, the RT methods produce
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results of comparable quality. However, their costs in terms
of conserved information is much higher (as we use the list
of weights of nonbackbone links in the surrogate construction
method).

VII. SUMMARY AND DISCUSSION

In this paper, we have considered how to bridge the gap
between the backbone of a network and its actual use, par-
ticularly in data-driven numerical simulations of dynamic
processes, i.e., how to turn network backbone extraction into
the production of surrogate network data. Several backbone
extraction procedures have indeed been put forward in the
literature to extract a network’s most important ties, which
are supposed to summarize the most important information
in the network. The issue of whether this summary suffices
for actual data-driven uses has not been explored.

Here, we have tackled this issue for several types of back-
bones of a temporal network, by proposing systematic ways to
construct surrogate data from the backbone information. We
have then used these surrogate data in numerical simulations
of epidemic processes and investigated how well the outcomes
of simulations and the measure of epidemic risk match the
simulations on the original data.

We have considered a wide variety of procedures, with dif-
ferent amounts and types of information on the original data
kept in the summary of the original data formed by the back-
bone and completed by additional statistical information. The
threshold backbone arbitrarily selects the links with the largest
weights, while the significant tie filters are more principled
and retain ties that cannot be explained by a null model. In all
cases, the data summaries need to be informed by the number
of temporal edges in the original data set. Still, the amount
of other additional data they contain can vary significantly.
In particular, these summaries might include information on
the network structure and retain, or not, the values of the
node activities computed on the whole data set. If these values
are unknown, we have shown that it is possible to recompute
approximate values by applying the ST filter null model to
the backbone itself. Alternatively, it is possible to add ties at
random between nodes to reach the original number of ties
contained in the data, at the cost of also keeping the list of link
weights of the nonbackbone links. The same procedure can be
used to build surrogate data from the threshold backbone.

Most procedures yield surrogate data that allow us to obtain
a reasonable approximation of the original outcome when
used to simulate epidemic spreading processes. The quality
of the approximation, however, depends on the surrogate’s
method. In particular, the information on the data’s group
structure turns out to play an important role, in line with
other results showing its importance in diffusion processes
[7,26]. Using realistic activity timelines of temporal edges
also yields better results [7]. Once group information and
realistic timelines are included in the construction of surrogate
data, all methods give good results. The largest discrepancies
between the original and surrogate data outcomes are obtained
at large spreading and recovery parameters. This is not sur-
prising as these parameters correspond to fast processes. In
this case, the outcome can depend on the data’s details [27]
and temporal structures at short timescales that are not present

in the surrogate data. For instance, in school data, temporal
edges between classes occur in a synchronized way during
the breaks [28], creating activity patterns that would need to
be put by hand in the surrogate data and thus be contained in
some way in the data summary.

Our results give hints on how to summarize complex data
sets best so that they remain actionable. Moreover, as the
construction of surrogate data is a stochastic process, each of
the procedures discussed here yields an ensemble of surro-
gate data with similar statistical properties. This highlights an
interesting potential application of our results. Indeed, collect-
ing data sets is an expensive task, and several data properties
depend on context, making modeling of realistic temporal
networks a problematic task. Simultaneously, the availability
of data with real properties is crucial to inform data-driven
models of diffusion processes such as epidemics of infectious
diseases. Moreover, collected data typically have a limited
duration, and merely repeating the data might create unde-
sired biases [22]. The various procedures we have described
here make it possible to create synthetic surrogate data with
properties very similar to empirical data without modeling
assumptions. By tuning the backbone size, and hence the
amount of surrogate data needed to be added to it, one can,
moreover, tune the similarity between the original data and
the surrogate replicas.

Our work has some limitations that also indicate the
way for future work. First, we have limited our study to
data describing contact between individuals. However, these
data cover a broad range of contexts, have widely different
temporal properties [21], and are particularly relevant for
simulations of epidemic spread. Nevertheless, it would be
interesting to more systematically study the dependence of our
results on temporal structures. Second, we have considered
only a limited number of backbone and surrogate construc-
tion methods. We sought to keep the methods parsimonious,
so one could consider other backbone extraction methods,
taking, e.g., temporal variations of the activities into account
[15]. Finally, networks could support other types of pro-
cesses, such as synchronization or complex contagion, which
might also involve higher-order structures going beyond ties
[29,30]. Correctly reproducing the outcome of such processes
from a network summary might require the development of
backbones of significant structures and corresponding new
surrogate data construction methods.
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APPENDIX: DATA AND METHODS
1. Data

We use state-of-the-art publicly available data sets describ-
ing contacts between individuals in different settings, with
high spatial and temporal resolution. All data were collected
by the SocioPatterns collaboration, using an infrastructure
based on wearable sensors that exchange radio packets,
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detecting close proximity (<1.5 m) of individuals wearing the
devices [23], with temporal resolution of 20 s. The data can be
downloaded from the SocioPatterns website [17].

(1) The InVS15 data set contains the temporal network of
contacts between individuals recorded in office buildings in
France in 2015. The population is divided into 12 departments
of varying sizes, but individuals of different departments can
mix during the day with no time constraints [21].

(i) The LyonSchool data set contains the contact events
between 242 individuals (232 children and 10 teachers) in
a primary school in Lyon, France, during 2 days in October
2009 [20]. The children are divided into ten classes of similar
sizes (two classes per grade) and follow strict schedules, with
mixing between classes limited to the breaks [20].

(iii)) The Thiers13 data set gives the interactions between
327 students of nine classes of similar sizes within a high
school in Marseille, during 5 days in December 2013 [19].

(iv) The SFHH conference data set describes the face-
to-face interactions of 405 participants to the 2009 SFHH
conference in Nice, France (4-5 June 2009) [21,22]. No
metadata on the participants were collected and the resulting
contact network does not show any group structure [22].

2. Significant ties backbones

For completeness, we recall here the procedure to extract
the significant ties at a given significance level o from a
temporal network [14].

We first define a temporal fitness model in which each node
i has an activity level a;, and the probability u that nodes i
and j interact during any given time interval is given by the
product of their activity levels, u(a;, a;) = a;a;.

Given a data set of N nodes and temporal length T, we
estimate the node activity levels a = (aj, ..., ay) within the
temporal fitness model from the N maximum likelihood equa-
tions

Z m?l — Ta;"a;f _
kK

A 1A

that can be solved by standard numerical algorithms. We then

compute for each pair of nodes i and j the probability distribu-

tion of their total number of interactions m;; in the null model,

which is simply given by the binomial distribution

0,vVi=1,...,N, (Al)

* % T N T * % —m;
g(mijlai s aj) = <mij)u(ai , aj) Il = u(a,' s aj)]T i, (A2)

Let m{; denote the cth percentile (0 < c < 100) of
g(mjjla;, a}). If the actual empirical number of interactions
mj; between i and j is larger than mj;, it means that this
empirical number cannot be explained by the null model at
significance level o = 1 — ¢/100: in other words, i and j are
connected by a significant tie at significant level «.

For a given value of «, the set of significant ties and
the corresponding temporal edges form the ST backbone of
the network. As « decreases, the number of significant ties
obviously decreases, and one can tune « in order to obtain a
backbone formed by a given fraction f of ties. Note that, as
the significant ties tend to have a large number of interactions,
the relative sizes of backbones in terms of number of temporal
edges are higher than in terms of number of ties (see Table II).

When the nodes are divided into groups, we, moreover,
consider a modified null model in which the probability of
interaction at each time between i and j is

up(a;, a;) = a,-aj[ﬁg,.,gj + p(1 — Sgl.,gj)], (A3)

where g; indicates the group of node i and § is the Kronecker
symbol.

For a given data set, we can write the maximum likeli-
hood equations (MLEs) to estimate the node activity levels
a = (aj,...,ay) and the parameter p*, similarly to the pro-
cedure of Ref. [14]: Given the null model, the number of times
temporal edges are formed between nodes i and j over T
time intervals is a random variable m;; that follows a binomial
distribution with parameters T and u,(a;, a;). Therefore, the
joint probability function leads to

p{mij}la. p)= 1_[ (,Z;)L’p(ai’ a;)"i[l — uy(a;, aj)]Tfmij,

i,jiit]
(A4)
so the N 4+ 1 MLEs are
m?; — Tara®[8g, o + p*(1 — 8g.4.)]
Z T j0sig; TP ig; =0,vi=1,...,N,
= 1= B, + P (1= 8, )lafa
(ASa)
and
m?, — T p*atat
Z Y et e N Y (A5b)

kR gk
i,]:8i#8j 1 P4 aj
The (G)ST filter can be applied to the original data set but
also to the backbone itself. In Table III we give the correlation
coefficients between the activities obtained by solving the
MLE equations for a data set and for its extracted backbone
representing a fraction f of ties.

3. Surrogate data

As described in the main text, we have put forward several
methods to build surrogate data starting from a backbone.
These methods consist of two steps, first choosing the sur-
rogate ties and then creating timelines of temporal edges on
each tie.

In Table IV, we summarize each method’s main points for
each type of backbone, the data needed in addition to the
backbone information, and the size of these additional data.
Note that the random links methods need several inputs of
the order of the number of ties in the original data, while the
methods based on the null model instead use an input scaling
with the number of nodes. The method needing the fewest
extra data is the one recomputing the activities applying the
ST filter methodology on the backbone data itself.

In the methods based on the (G)ST null models, we need
to calibrate the parameter « (or the two parameters oy, and
Uinter)- 10 this aim, we first try at each time stamp to add
a temporal edge with probability a;a; for each (i, j) not in
the backbone. This creates a total number of temporal edges
E}. The actual number of surrogate temporal edges needed
is actually E7 — Epr, i.e., the difference between the number
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TABLE IV. Summary of the various methods to choose the surrogate ties.

Backbone type Surrogate type Method summary

Extra data needed Size of extra data needed

ST ST-OA For each (i, j) not in backbone, List of original node N+1
at each time stamp add a activities; Number of
temporal edge with probability temporal edges
aa;aj, with o scaled to adjust the
total number of temporal edges
ST-RA Compute the activity d; of each ~ Number of temporal edges 1
node with the ST backbone
method applied on the backbone
itself; add surrogate ties as for
the ST-OA method, using the
recomputed activities
ST-RT Add ties at random in order to Number of ties; list of E—E +1
reach the number of ties of the weights of ties not in
original data, with weights backbone
extracted at random from the list
of weights of the nonbackbone
ties
TB TB-RT Same as for ST-RL Number of ties; list of E—E +1
weights of ties not in
backbone
GST GST-OA For each (i, j) not in backbone, List of original node 2N +3
at each time stamp add a activities and parameter p;
temporal edge with probability group membership;
Oinraia; if i and j are in the number of temporal edges
same group, Qiner Pa;a; €lse, with within groups and
Qinira/inter SCaled to adjust the total between groups
number of temporal edges within
and between groups
GST-RA Compute the activity d; of each Group membership; N+2
node and the parameter p with number of temporal edges
the GST backbone method within groups and
applied on the backbone itself; between groups
add surrogate ties as for the
GST-OA method, using the
recomputed activities
GST-RT Add ties at random in order to Group membership; N+E—-—E,+2
reach the same number of ties number of ties between
within and between groups as in and within groups; list of
the original data, with weights weights of nonbackbone
extracted at random from the list ties, between and within
of weights of the nonbackbone groups
ties
TB GTB-RT Same as for GST-RT Group N+E—-E,+2

membership;number of
ties between and within
groups; list of weights of
nonbackbone ties,
between and within
groups

of temporal edges in the data and in the backbone. Therefore,
we set = (Er — Epr)/E} and we use as probabilities of cre-
ation of temporal edges aa;a;. When the data group structure
is taken into account, the procedure is performed separately
for intra- and intergroup ties. We note that the final number of
temporal edges in the surrogate data is not strictly fixed by this
procedure but remains a stochastic outcome. The number of

ties is not fixed either but is also an outcome of the procedure,
contrary to the procedures based on adding random links.
Finally, to construct surrogate timelines respecting the data
statistics of event and interevent durations, we proceed as
follows, for each tie (i, j) with number of temporal edges n;;:
(1) We extract a random initial time #y in [0, T']; all the
times are then considered modulo T'; we set n = n;;.
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(2) We iterate the following procedure until n = 0, i.e.,
until n;; temporal edges have been created:

(a) Extract a random duration 7 from the fitted distri-
bution of event durations.

(b) Check that T < n, else replace t by n.

(c) Add t temporal edges between i and j, namely, on
the interval [#g, o + T — 1].

(d) Extract a random interevent time A¢ from the fitted
distribution of interevent durations.

(e) Replacetybyty+ 7+ Atandnbyn —t.

4. Simulations of the epidemic spread

For the simulation of the SIR model on temporal networks
we use the approach and code presented in Ref. [31]. We start
the simulation with all nodes susceptible and introduce the
disease at a random node at a random time (uniformly chosen

between the beginning and end of the temporal network).
Then if there is an event between a susceptible and an infec-
tious, a contagion occurs with a probability 8. The infected
person recovers with a rate v; i.e., the time to recovery is a
random variable § extracted from the distribution v exp(—v§)
[31]. Finally, we assume that an individual that gets infected
at time ¢’ cannot infect anyone else until # > ¢'. For every pair
of parameter values (B, v), we run this algorithm 107 times
for averages.

We calculate the basic reproductive number R, directly
from the simulations as the average numbers of individuals in-
fected directly by the source. Calculating the average outbreak
size Q2 is a similarly straightforward average over the number
of nodes in the recovered state when the outbreak is extinct.
If the outbreak is not extinct when the simulation reaches the
end of the data set, the outbreak size is the number of nodes
in either the infectious or the recovered state at the last time
stamp of the data.
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