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ABSTRACT: The independence number of a sparse random graph G(n, m) of average degree d =
2m/n is well-known to be (2−εd)n ln(d)/d ≤ α(G(n, m)) ≤ (2+εd)n ln(d)/d with high probability,
with εd → 0 in the limit of large d. Moreover, a trivial greedy algorithm w.h.p. finds an independent
set of size n ln(d)/d, i.e., about half the maximum size. Yet in spite of 30 years of extensive research
no efficient algorithm has emerged to produce an independent set with size (1 + ε)n ln(d)/d for any
fixed ε > 0 (independent of both d and n). In this paper we prove that the combinatorial structure
of the independent set problem in random graphs undergoes a phase transition as the size k of the
independent sets passes the point k ∼ n ln(d)/d. Roughly speaking, we prove that independent sets
of size k > (1 + ε)n ln(d)/d form an intricately rugged landscape, in which local search algorithms
seem to get stuck. We illustrate this phenomenon by providing an exponential lower bound for the
Metropolis process, a Markov chain for sampling independent sets. © 2014 Wiley Periodicals, Inc.
Random Struct. Alg., 47, 436–486, 2015
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1. INTRODUCTION AND RESULTS

1.1. Probabilistic Analysis and the Independent Set Problem

In the early papers on the subject, the motivation behind the probabilistic analysis of algo-
rithms was to alleviate the glum of worst-case analyses by painting a brighter ‘average-case’
picture [12,30,40]. Indeed, simple, greedy-type algorithms turned out to perform rather well
on randomly generated input instances, at least for certain ranges of the parameters. Exam-
ples of such analyses include Grimmett and McDiarmid [23] (independent set problem),
Wilf [41], Achlioptas and Molloy [2] (graph coloring) and Frieze and Suen [18] (k-SAT).
By now, Wormald’s “method of differential equations” has become a unifying tool for the

Correspondence to: Amin Coja-Oghlan
*Supported by EPSRC grant (EP/G039070/2); DIMAP.
A preliminary version of this work appeares in the proceedings of ACM-SIAM SODA 2011.
© 2014 Wiley Periodicals, Inc.

436
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analysis of such greedy algorithms [42]. Yet, remarkably, in spite of 30 years of research,
for many problems no efficient algorithms, howsoever sophisticated, have been found to
outperform those early greedy algorithms markedly.

The independent set problem in random graphs G(n, m) is a case in point. Recall that
G(n, m) is a graph on n vertices obtained by choosing m edges uniformly at random (without
replacement). We say that G(n, m) has a property with high probability if the probability that
the property holds tends to 1 as n → ∞. One of the earliest results in the theory of random
graphs is a non-constructive argument showing that for m = 1

2

(n
2

)
the independence number

of G(n, m) is α(G(n, m)) ∼ 2 log2(n) w.h.p. [7, 14, 31]. Grimmett and McDiarmid [23]
analysed a simple algorithm that just constructs an inclusion-maximal independent set
greedily on G(n, m): it yields an independent set of size (1 + o(1)) log2 n w.h.p., about
half the maximum size. But no algorithm is known to produce an independent set of size
(1 + ε) log2 n for any fixed ε > 0 in polynomial time with a non-vanishing probability,
neither on the basis of a rigorous analysis, nor on the basis of experiments or other evidence.
In fact, devising such an algorithm is probably the most prominent open problem in the
algorithmic theory of random graphs [17,26]. (However, note that one can find a maximum
independent set w.h.p. by trying all nO(ln n) possible sets of size 2 log2 n.)

The situation is no better on sparse random graphs. If we let d = 2m/n denote the
average degree, then non-constructive arguments yield

α(G(n, m)) ∼ 2 ln(d)

d
· n

for 1 � d = o(n). In the case d � √
n, the proof of this is via a simple second moment

argument [7,31]. By contrast, for 1 � d � √
n, the second moment argument breaks down

and additional methods such as large deviations inequalities or a weighted second moment
are needed [9, 16]. Yet in either case, no algorithm is known to find an independent set
of size (1 + ε) ln d

d · n in polynomial time with a non-vanishing probability, while ‘greedy’
yields an independent set of size (1 + o(1)) ln d

d · n w.h.p. In the sparse case, the time needed
for exhaustive search scales as exp( 2n

d ln2(d)), i.e., the complexity grows as d decreases.
The aim of this paper is to explore the apparent difficulty of finding large independent sets

in random graphs. The focus is on the sparse case, both conceptually and computationally
the most challenging case. We exhibit a phase transition in the structure of the problem
that occurs as the size of the independent sets passes the point ln d

d · n up to which efficient
algorithms are known to succeed. Roughly speaking, we show that independent sets of sizes
bigger than (1 + ε) ln d

d · n form an intricately rugged landscape, which plausibly explains
why local-search algorithms get stuck. Thus, ironically, instead of exhibiting a brighter
‘average case’ scenario, we end up suggesting that random graphs provide an excellent
source of difficult examples. Taking into account the (substantially) different nature of the
independent set problem, our work complements the results obtained in [1] for random
constraint satisfaction problem such as k-SAT or graph coloring.

1.2. Results

Throughout the paper we will be dealing with sparse random graphs where the average
degree d = 2m/n is ‘large’ but remains bounded as n → ∞. To formalise this sometimes
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438 COJA-OGHLAN AND EFTHYMIOU

we work with functions εd that tend to zero as d gets large. 1 Unless otherwise specified, the
asymptotics are w.r.t. n and we use the standard O-notation. Thus α(G(n, m)) = (2−εd)

ln d
d ·n

and the greedy algorithm finds independent sets of size (1+ε′
d)

ln d
d ·n w.h.p., where εd , ε′

d →
0. However, no efficient algorithm is known to find independent sets of size (1 + ε′′) ln d

d · n
for any fixed ε′′ > 0.

For a graph G and an integer k we let Sk(G) denote the set of all independent sets in G
that have size exactly k. What we will show is that in G(n, m) the set Sk(G(n, m)) undergoes
a phase transition as k ∼ ln d

d n. For two sets S, T ⊂ V we let S�T denote the symmetric
difference of S, T . Moreover, dist(S, T) = |S�T | is the Hamming distance of S, T viewed
as vectors in {0, 1}V .

To state the result for k smaller than ln d
d n, we need the following concept. Let S be a set

of subsets of V , and let γ > 0 be an integer. We say that S is γ -connected if for any two
sets σ , τ ∈ S there exist σ1, . . . , σN ∈ S such that σ1 = σ , σN = τ , and dist(σt , σt+1) ≤ γ

for all 1 ≤ t < N . If Sk(G(n, m)) is γ -connected for some γ = O(1), one can easily define
various simple Markov chains on Sk(G) that are ergodic.

Theorem 1. There exist εd → 0 and Cd > 0 such that Sk(G(n, m)) is Cd-connected
w.h.p. for any

k ≤ (1 − εd)
ln d

d
· n.

The proof of Theorem 1 is ‘constructive’ in the following sense. Suppose given G =
G(n, m) we set up an auxiliary graph whose vertices are the independent sets Sk(G) with
k ≤ (1 − εd)

ln d
d · n. In the auxiliary graph two independent sets σ , τ ∈ Sk(G) are adjacent

if dist(σ , τ) ≤ Cd . Then the proof of Theorem 1 yields an algorithm for finding paths of
length O(n) between any two elements of Sk(G) w.h.p. Thus, intuitively Theorem 1 shows
that for k ≤ (1 − εd)

ln d
d · n the set Sk(G(n, m)) is easy to ‘navigate’ w.h.p.

By contrast, our next result shows that for k > (1 + εd)
ln d
d · n the set Sk(G(n, m)) is

not just disconnected w.h.p., but that it shatters into exponentially many, exponentially tiny
pieces.

Definition 2. Let k = k(n) be an integer sequence. We say that there occurs shattering
for d, k if there exist constants γ , ζ > 0 such that w.h.p. the set Sk(G(n, m)) admits a
partition into subsets such that

1. Each subset contains at most exp (−γ n) |Sk(G(n, m))| independent sets.
2. For any σ , τ that belong to different subsets we have dist(σ , τ) ≥ ζn.

We prefer “shattering” over the term “clustering” that is common in statistical physics
literature. This is because “clustering” does not necessarily provide that condition 1 holds.
(For instance, one might say that there is “clustering” in the so-called condensation phase

1The reason why we need to speak about d ‘large’ is that the sparse random graph G(n, m) is not connected. This
implies, for instance, that algorithms can find independent sets of size (1 + εd)n ln(d)/d for some εd → 0 by
optimizing carefully over the small tree components of G(n, m). Our results/proofs actually carry over to the case
that d = d(n) tends to infinity as n grows, but to keep matters as simple as possible, we will confine ourselves to
fixed d.
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hypothesized in the physics literature, where shattering does not occur.) We emphasize
that the definition of “shattering” does not require that the individual subsets into which
Sk(G(n, m)) decomposes are O(1)-connected.

Theorem 3. There is εd → 0 such that there occurs shattering for all d, k with

(1 + εd)
ln d

d
· n ≤ k ≤ (2 − εd)

ln d

d
· n.

Theorems 1 and 3 deal with the geometry of a single ‘layer’ Sk(G(n, m)) of independent
sets of a specific size. The following two results explore if/how a ‘typical’ independent set
in Sk(G(n, m)) can be extended to a larger one. To formalize the notion of ‘typical’, we let
�k(n, m) signify the set of all pairs (G, σ), where G is a graph on V = {1, . . . , n} with m
edges and σ ∈ Sk(G). Let Uk(n, m) be the probability distribution on �k(n, m) induced by
the following experiment.

Choose a graph G = G(n, m) at random.
If α(G) ≥ k, choose an independent set σ ∈ Sk(G) uniformly at random and output (G, σ).

We say a pair (G, σ) chosen from the distribution Uk(n, m) has a property P with high
probability if the probability of the event {(G, σ) ∈ P} tends to one as n → ∞.

Definition 4. Let γ , δ ≥ 0, let G be a graph, and let σ be an independent set of G. We say
that (G, σ) is (γ , δ)-expandable if G has an independent set τ such that |τ | ≥ (1 + γ )|σ |
and |τ ∩ σ | ≥ (1 − δ)|σ |.

In the statement of the following theorem and throughout, we omit floor and ceiling signs
to simplify the notation.

Theorem 5. There are εd , δd → 0 such that for any εd ≤ ε ≤ 1 − εd the following
is true. For k = (1 − ε) ln d

d · n a pair (G, σ) chosen from the distribution Uk(n, m) is
((2 − δd)ε/(1 − ε), 0)-expandable w.h.p.

Theorem 5 shows that w.h.p. in a random graph G(n, m) almost all independent sets of
size k = (1−ε) ln d

d ·n are contained in some bigger independent set of size (1+ε) ln d
d ·n. That

is, they can be expanded beyond the critical size ln d
d · n where shattering occurs. However,

as k approaches the critical size ln d
d · n, i.e., as ε → 0, the typical potential for expansion

diminishes.

Theorem 6. There is εd → 0 such that for any ε satisfying εd ≤ ε ≤ 1−εd and k = (1+
ε) ln d

d · n w.h.p. a pair (G, σ) chosen from the distribution Uk(n, m) is not (γ , δ)-expandable
for any γ > εd and

δ < γ + 2(ε − εd)

1 + ε
.

In other words, Theorem 6 shows that for k = (1 + ε) ln d
d · n, a typical σ ∈ Sk(G(n, m))

cannot be expanded to an independent set of size (1 + γ )k, γ > εd without first reducing
its size below

(1 − δ)k = (1 − ε − γ (1 + ε) + 2εd)
ln d

d
· n <

ln d

d
· n.
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440 COJA-OGHLAN AND EFTHYMIOU

However, a random independent set of size k ≤ (2−εd) ln(d)n/d is typically not inclusion-
maximal because, for instance, it is unlikely to contain all isolated vertices of the random
graph G(n, m). For this reason, in Theorem 6, we have γ > εd . (Yet in the situation of
Theorem 6 typical independent sets are “almost” inclusion maximal in the sense that the
number of vertices with no neighbor inside the independent set is tiny w.h.p.)

Metaphorically, the above results show that w.h.p. the independent sets of G(n, m) form
a rugged mountain range. Beyond the ‘plateau level’ k ∼ ln d

d · n there is an abundance of
smaller ‘peaks’, i.e., independent sets of sizes (1 + ε)k for any εd < ε < 1 − εd , almost all
of which are not expandable (by much).

The algorithmic equivalent of a mountaineer aiming to ascend to the highest summit is
a Markov chain called the Metropolis process, [28, 33]. For a given graph G its state space
is the set of all independent sets of G. Let It be the state at time t. In step t + 1, the chain
chooses a vertex v of G uniformly at random. If v ∈ It , then with probability 1/λ the next
state is It+1 = It \ {v}, and with probability 1 − 1/λ we let It+1 = It , where λ ≥ 1 is called
the fugacity. If v �∈ It ∪ N(It) (with N(It) the neighbourhood of It), then It+1 = It ∪ {v}.
Finally, if v ∈ N(It), then It+1 = It .

The above process satisfies a set of technical conditions known as ergodicity2. In turn
ergodicity implies that the process possesses a unique stationary distribution π : 
 →
[0, 1], where 
 = ⋃

k Sk(G(n, m)). By standard arguments, for the Metropolis process with
fugacity λ it holds that π(σ) = λ|σ |/Z(G, λ), where

Z(G, λ) =
n∑

k=0

λk · |Sk(G)|

is the partition function. Hence, the larger λ, the higher the mass of large independent sets.
Let

μ(G, λ) = ∂ ln Z(G, λ)

∂ ln λ
=

n∑
k=0

kλk · |Sk(G)| /Z(G, λ)

denote the average size of an independent set of G under the stationary distribution.
Here, we are interested in finding the rate at which the Metropolis process converges to

equilibrium. There are a number of ways of quantifying the closeness to stationarity. Let
Pt(σ , ·) : 
 → [0, 1] denote the distribution of the state at time t given that σ was the initial
state. The total variation distance at time t with respect to the initial state σ is

�σ(t) = max
S⊂


|Pt(σ , S) − π(S)| = 1

2

∑
τ∈


|Pt(σ , τ) − π(τ)|.

Starting from σ , the rate of convergence to stationarity may then be measured by the function

τσ = min
t

{�σ(t′) < e−1for all t′ > t}.

The mixing time of the Metropolis process is defined as

T = max
σ∈


τσ .

2For finite Markov chains, as the one we consider here, ergodicity is equivalent to the chain being irreducibile and
aperiodic.

Random Structures and Algorithms DOI 10.1002/rsa



ON INDEPENDENT SETS IN RANDOM GRAPHS 441

Our above results on the structure of the sets Sk(G(n, m)) imply that w.h.p. the mixing time
of the Metropolis process is exponential if the parameter λ is tuned so that the Metropolis
process tries to ascend to independent sets bigger than (1 + εd)

ln d
d · n.

Theorem 7. There is εd → 0 such that for λ > 1 with

(1 + εd)
ln d

d
· n ≤ E [μ(G(n, m), λ)] ≤ (2 − εd)

ln d

d
· n. (1)

the mixing time of the Metropolis process on G(n, m) is exp(
(n)) w.h.p.

In fact, the proof of Theorem 7 implies that under the assumption (1) even with a “warm
start” (i.e., with an initial state chosen from the stationary distribution) the mixing time of
the Metropolis process is exp(
(n)) w.h.p.

1.3. Related Work

To our knowledge, the connection between transitions in the geometry of the ‘solution
space’ (in our case, the set of all independent sets of a given size) and the apparent failure of
local algorithms in finding a solution has been pointed first out in the statistical mechanics
literature [19, 29, 32]. In that work, which mostly deals with CSPs such as k-SAT, the
shattering phenomenon goes by the name of ‘dynamic replica symmetry breaking.’ Our
present work is clearly inspired by the statistical mechanics ideas although we are unaware
of explicit contributions from that line of work addressing the independent set problem
in the case of random graphs with average degree d � 1 prior to this work. Generally,
the statistical mechanics work is based on deep, insightful, but, alas, mathematically non-
rigorous techniques.

In the case that the average degree d satisfies d � √
n, the independent set problem

in random graphs is conceptually somewhat simpler than in the case of d = o(
√

n). The
reason for this is that for d � √

n the second moment method can be used to show that the
number of independent sets is concentrated about its mean. As we will see in Corollary 19
below, this is actually untrue for sparse random graphs.

The results of the present paper extend the main results from Achlioptas and Coja-
Oghlan [1], which dealt with constraint satisfaction problems such as k-SAT or graph
coloring, to the independent set problem. This requires new ideas, because the natural ques-
tions are somewhat different (for instance, the concept of ‘expandability’ has no counterpart
in CSPs). Furthermore, in [1] we conjectured but did not manage to prove the counterpart
of Theorem 1 on the connectivity of Sk(G(n, m)). On a technical level, we owe to [1] the
idea of analysing the distribution Uk(n, m) via a different distribution Pk(n, m), the so-called
‘planted model’ (see Section 3 for details). However, the proof that this approximation is
indeed valid (Theorem 18 below) requires a rather different approach. In [1] we derived the
corresponding result from the second moment method in combination with sharp threshold
results. By contrast, here we use an indirect approach that reduces the problem of estimating
the number |Sk(G(n, m))| of independent sets of a given size to the problem of (very accu-
rately) estimating the independence number α(G(n, m)). Indeed, the argument used here
carries over to other problems, particularly random k-SAT, for which it yields a conceptually
simpler proof than given in [1] (details omitted).

Random Structures and Algorithms DOI 10.1002/rsa
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Subsequently to [1], it was shown in [35] that in many random CSPs the threshold for
the shattering of the solution space into exponentially small components coincides asymp-
totically with the reconstruction threshold. Roughly speaking, the reconstruction threshold
marks the onset of long-range correlations in the Gibbs measure. More precisely, it is shown
in [35] that for a class of ‘symmetric’ random CSPs the reconstruction threshold derives
from the corresponding threshold on random trees, and that it happens to coincide with the
shattering threshold. Our Theorem 3 determines the threshold for shattering in the indepen-
dent set problem in random graphs. Furthermore, Bhatnagar, Sly, and Tetali [5] recently
studied the reconstruction problem for the independent set problem on k-regular trees. It
would be most interesting to obtain a result similar to [35], namely that the reconstruction
threshold on the G(n, m) random graph is given by the reconstruction threshold on trees
and that it coincides with the shattering threshold from Theorem 3.

The work that is perhaps most closely related to ours is a remarkable paper of Jerrum [25],
who studied the Metropolis process on random graphs G(n, m) with average degree d =
2m/n > n2/3. The main result is that w.h.p. there exists an initial state from which the
expected time for the Metropolis process to find an independent set of size (1 + ε) ln d

d · n
is superpolynomial. This is quite a non-trivial achievement, as it is a result about the initial
steps of the process where the states might potentially follow a very different distribution
than the stationary distribution. The proof of this fact is via a concept called ‘gateways’,
which is somewhat reminiscent of the expandability property in the present work. However,
Jerrum’s proof hinges upon the fact that the number of independent sets of size k ∼ (1 +
ε) ln d

d · n is concentrated about its mean. The techniques from the present work (particularly
Theorem 18 below) can be used to extend Jerrum’s result to the sparse case quite easily,
showing that the expected time until a large independent set is found is fully exponential in
n w.h.p. Yet as also pointed out in [25], an unsatisfactory aspect of this type of result is that
it only shows that there exists a ‘bad’ initial state, while it seems natural to conjecture that
indeed most specific initial states (such as the empty set) are ‘bad’. Since we are currently
unable to establish such a stronger statement, we will confine ourselves to proving an
exponential lower bound on the mixing time (Theorem 7).

For extremely sparse random graphs, namely d < e ≈ 2.718, finding a maximum
independent set in G(n, m) is easy. More specifically, the greedy matching algorithm of
Karp and Sipser [27] can easily be adapted so that it yields a maximum independent set
w.h.p. But this approach does not generalize to average degrees d > e (see, however, [20]
for a particular type of weighted independent sets).

Recently Rossman [38] obtained a monotone circuit lower bound for the clique problem
on random graphs that is exponential in the size of the clique. The setup of [38] is somewhat
orthogonal to our contribution, as we are concerned with the case that the size of the
desired object (i.e., the independent set) is linear in the number of vertices, while [38]
deals with the case that the size of the clique is O(1) in terms of the order of the graph.
Nevertheless, the punchline of viewing random graphs as a potential source of hard problems
is similar.

In the course of the analysis in this paper we need a lower bound on α(G(n, m)) which
is bigger than [16]. For this reason, in [8], a previous version of this work, we slightly
improved the bounds on the likely value of α(G(n, m)) provided in [16]. The proof is similar
to [16] in that it combines a “vanilla” second moment with a large deviations inequality
(Talagrand’s inequality, to be specific). Independently Dani and Moore [9] obtained an even
better bound by means of a weighted second moment argument. Roughly speaking, they
show that a G(n, m) of expected degree

Random Structures and Algorithms DOI 10.1002/rsa
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d ≤ 2(n/k)(ln(n/k) + 1) − O(
√

n/k)

has an independent set of size k w.h.p. In comparison to [9], our bound on d in [8] is

d ≤ 2(n/k)(ln(n/k) + 1) − O(
√

ln(n/k) · (n/k)).

To absolve our work from the tedious second moment calculations we make direct use of
the result [9].

Subsequently to the present work there have been several of related results. Gamarnik
and Sudan [21] use arguments similar to the ones developed here to establish shattering
in order to disprove a conjecture by Hatami, Lovász, and Szegedy [24] as to the power of
certain “local algorithms” for the maximum independent set problem in random regular
graphs. In addition, a new Markov Chain for the clique problem on dense random graphs
has been suggested [22]. It would be interesting to see if the present techniques for lower-
bounding the mixing time extend to this chain. A further somewhat related problem is that
of finding a large “planted” independent set (or clique) in a random graph [3, 6, 15], for
which recently a new algorithm has been put forward [10].

Furthermore, the present paper has inspired a reconsideration of the (non-rigorous) sta-
tistical physics analysis of the independent set problem on random graphs [4]. In physics, the
independent set problem on random graphs is viewed as a simple model of a so-called “lat-
tice glass” [43]. According to [4], the prior physics work suggested that this model exhibits
a phenomenon called “full replica symmetry breaking” in statistical physics. By contrast,
[4] predicts that for sufficiently large average degrees there occurs a simpler type of phase
transition called “one-step replica symmetry breaking”. This last prediction is very much in
line with the rigorous results presented in the present paper. For more details on the physics
perspective on random CSP we refer to [34]. In addition, based on the “one-step replica
symmetry breaking” scenario, in [4] a conjecture as to the independence number of random
regular graphs is put forward; this conjecture has recently been proved rigorously [11].

1.4. Organisation of the Paper

The remaining material of this work is organised as follows: For completeness, in Section
2 we provide some very elementary results, which are either known or easy to derive. In
Section 3 we analyse the so-called ‘planted model’ to approximate the distribution Uk(n, m).
Then in Section 4 we show Theorem 1. In Section 5 we show Theorem 3. In Section 6 we
show Theorem 5. In Section 7 we show Theorem 6. In Section 8 we show Theorem 7.

2. PRELIMINARIES AND NOTATION

In this section we collect a few basic concepts and results that are either known or follow
from known arguments. We will need the following Chernoff bounds on the tails of a sum
of independent Bernoulli variables.

Theorem 8. Let I1, I2 . . . , In be independent Bernoulli variables. Let X = ∑n
i=1 Ii and

μ = E[X]. Then

P[X < (1 − δ)μ] ≤ exp
(−μδ2/2

)
for any 0 < δ ≤ 1, and (2)

P[X > (1 + δ)μ] ≤ exp
(−μδ2/4

)
for any 0 < δ < 2e − 1. (3)

Random Structures and Algorithms DOI 10.1002/rsa



444 COJA-OGHLAN AND EFTHYMIOU

Also, for any x ≥ 7E[X] it holds that

P[X ≥ x] ≤ exp(−x). (4)

The tail bounds in (2) and (3) are from [36] while (4) is from [37], Corollary 2.4.
Let G∗(n, m) be a random graph on n vertices obtained as follows: choose m pairs

of vertices independently out of all n2 possible pairs; insert the ≤ m edges induced by
these pairs, omitting self-loops and replacing multiple edges by single edges. For technical
reasons it will sometimes be easier to first work with G∗(n, m) and then transfer the results
to G(n, m). The two distributions are related as follows.

Lemma 9. Let A be any (possibly infinite) set of graphs. For any fixed c > 0 and m = cn
we have

P[G(n, m) ∈ A] ≤ (1 + o(1)) exp(c + c2) · P[G∗(n, m) ∈ A]

The proof of Lemma 9, which is based on standard arguments, is deferred to Section 9.1.

Corollary 10. Suppose that m = cn for a fixed c > 0. For a graph G let Zk(G) = |Sk(G)|.
Then for any 1 ≤ k ≤ 0.99n we have

ln E[Zk(G
∗(n, m))] = ln E[Zk(G(n, m))] + O(1).

For a proof of Corollary 10 see Section 9.2.
Finally, we present an estimate that will be very useful in the course of this paper.

Lemma 11 (Expectation). Let m = dn/2 for a real d > 0. Let 0 < β < ln d − ln ln d +
1 − ln 2 and set

k = 2n

d
(ln d − ln ln d + 1 − ln 2 − β) > 0.

If Zk(G) is the number of independent sets of size k in G, then

ln E[Zk(G
∗(n, m))] = k

[
β − ln

(
1 − ln ln d − 1 + ln 2 + β

ln d

)
− 1 − εd

2

k

n

]
.

for εd → 0 as d → ∞.

Proof. Since G∗(n, m) is obtained by choosing m independent pairs of vertices, we have

E[Zk(G
∗(n, m))] =

(
n

k

)
(1 − (k/n)2)m. (5)

Let s = k
n . By Stirling’s formula and the fact that for x > 0 it holds that ln(1 − x) =

−x − x2

2(1−ξ)2 for some 0 < ξ < x, we get that

ln

(
n

k

)
= −n(s ln s + (1 − s) ln(1 − s)) + o(n)

= ns(− ln s + 1 − s/2 − s2/(2(1 − ξ1)
2) + o(n) [where 0 < ξ1 < s]
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= k
[
ln d − ln ln d − ln 2 + 1 − ln(1 − qd) − k/(2n) + (k/n)2/(2(1 − ξ1)

2)
]

+ o(n), (6)

where qd = ln ln d−1+ln 2+β

ln d . As m = d
2 n, we obtain

ln(1 − s2)m = −dn/2
(
s2 + s4/(2(1 − ξ2)

2)
)

[where 0 < ξ2 < s2]

= −ns[ds/2 + ds3/(2(1 − ξ2))
2]

= −k
(
ln d − ln ln d − ln 2 + 1 − β + d(k/n)3/(2(1 − ξ2)

2)
)

. (7)

Note that both ξ1, ξ2 tend to zero with d. Combining (6) and (7) yields the assertion.

We also need the following theorem from Dani and Moore [9] on the independence
number of G∗(n, m).

Theorem 12. There is a constant α0 > 0 such that for any x > 4/e and any k ≤ α0n the
following is true. Suppose that

d ≤ 2(n/k)(ln(n/k) + 1) − x
√

n/k

and let m = dn/2. Then α(G∗(n, m)) ≥ k w.h.p.

Remark. In a previous version of this work [8] we derived a slightly weaker bound on d,
i.e. d ≤ 2(n/k)(ln(n/k) + 1) − O(

√
ln(n/k) · (n/k)). As opposed to the weighted second

moment in [9], our approach is based on “vanilla” second moment calculations and the use
of a Talagrand type inequality, i.e. similar to that in [16].

From [9] we, also, have the following corollary.

Corollary 13. Let W(z) denote the largest positive root y of the equation yey = z. W.h.p.
it holds that

0 ≤ 2

d
W

(
ed

2

)
− α(G∗(n, m)) ≤ y

√
ln d

d3
,

for any constant y > 4
√

2/e. Expanding W(ed/2) asymptotically in d we have that

W

(
ed

2

)
= ln d − ln ln d + 1 − ln 2 + ln ln d

ln d
− 1 − ln 2

ln d

+ 1

2

(
ln ln d

ln d

)
− (2 − ln 2)

ln ln d

ln2 d
+ 3 + ln2 2 − 4 ln 2

2 ln2 d
+ O

((
ln ln d

ln d

)3
)

.

It is well known that the independence number α(G∗(n, m)) of the random graph is
tightly concentrated. More precisely, the following lower tail bound follows from a standard
application of Talagrand’s large deviations inequality [39], similar to the one used in [37,
Section 7.1] to establish concentration for α(G(n, p)).
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Theorem 14. Suppose that d, k are as in Theorem 12. Then for m = dn
2 and for any

positive integer t < k it holds that

P[α(G∗(n, m)) < t] ≤ 12 exp

(
− (k − t + 1)2

4k

)
.

Proof. Consider the graph G(n, p) where p = d/n and let E(G(n, p)) denote the number
of its edges. It holds that

P[α(G(n, p)) ≥ k] =
(n

2)∑
M=0

P[α(G∗(n, M)) ≥ k]P[E(G(n, p)) = M]

≥
∑

M≤dn/2

P[α(G∗(n, m)) ≥ k]P[E(G(n, p)) = M] [where m = dn/2]

≥ P[α(G∗(n, m)) ≥ k]P
[

E(G(n, p)) ≤ dn

2

]
.

From the above derivations and Theorem 12, it is direct that

P[α(G(n, p)) ≥ k] ≥ 1

3
P[α(G∗(n, m)) ≥ k] ≥ 1/4. (8)

A standard vertex exposure argument allows us to apply Talagrand’s large deviation inequal-
ity for the independence number of G(n, p) (in the form that appears in [37], page 41 (2.39)).
The following holds:

P[α(G(n, p)) < t]P[α(G(n, p)) ≥ k] ≤ exp
(−(k − t + 1)2/4k

)
.

Using (8) we get

P[α(G(n, p)) < t] ≤ 4 exp
(−(k − t + 1)2/4k

)
.

Working as in (8) we get that 1
3 P[α(G∗(n, m)) < t] ≤ P[α(G(n, p)) < t]. The theorem

follows.

Corollary 15. For an integer k > 0 let

δk = 2(n/k) ln(n/k) + 2(n/k) − 8
√

n/k.

There is a constant α0 > 0 such that for k < α0n and G∗(n, m) of expected degree d ≤ δk

it holds that

P[α(G∗(n, m)) < k] ≤ 12 exp
(−n/(d2 ln5 d)

)
. (9)

Also, for d = δk it holds that E|Sk(G∗(n, m))| ≤ exp
(

14n
√

ln5 d/d3
)

.

Proof. Let G∗(n, m) be of expected degree d = 2(n/k)(ln(n/k) + 1) − 8
√

n/k, where k
is as in the statement. Also, let k′ be such that d = 2(n/k′)(ln(n/k′) + 1) − 2

√
n/k′. By

Theorem 14 we have that

P[α(G∗(n, m)) < k] ≤ 12 exp

(
− (k′ − k + 1)2

4k′

)
≤ 12 exp

(
− (k′ − k + 1)2

8k

)
, (10)
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where the last inequality follows from the fact that k′ < 2k. The tail bound in (9) will follow
by bounding appropriately t = k′ − k > 0. We bound t by using the fact that

2(n/k)(ln(n/k) + 1) − 8
√

n/k = 2(n/k′)(ln(n/k′) + 1) − 2
√

n/k′.

Set s = k/n and q = t/k. Let h(s, q) be the difference of the l.h.s. minus r.h.s. in the above
equality, written in terms of s, t. Clearly, it holds that that h(s, q) = 0. That is

h(s, q) = 2 ln(1 + q)

s
+ q

1 + q
(− ln s − ln(1 + q) + 1) − 2√

s

(
4 − 1√

1 + q

)
= 0.

For 1.5n ln d/d < k, k′ < 2n ln d/d, it is direct to verify that for q = 10/
√

d ln5 d and
sufficiently small s it holds that h(s, q) < 0. Furthermore, it is easy to see that

∂

∂q
h(s, q) = 2

s(1 + q)
+ 1

(1 + q)2
(− ln s − ln(1 + q) + 1 − q) − 1√

s(1 + q)3
.

For any q ∈ [0, 1] and sufficiently small s we have that ∂

∂q h(s, q) > 0. This entails that

for any q ≤ 10/
√

d ln5 d and sufficiently small s we have h(s, q) < 0. Thus, we get that

k′ − k ≥ 10k/
√

d ln5 d. Plugging this into (10) we get that

P[α(G∗(n, m)) < k] ≤ 12 exp

(
−100

8

k

d ln5 d

)

≤ 12 exp

(
−300

16

n

d2 ln4 d

)
, [as k ≥ 1.5n ln d/d]

which implies (9).
For the rest of the proof, consider G∗(n, m) with expected degree d = δk . Assume

that we add to G∗(n, m) edges at random so as to increase the expected degree to d+ =
2 s ln s+(1−s) ln(1−s)

ln(1−s2)
and get the graph G∗(n, m′). That is, we need to insert into G∗(n, m) as many

as (d+ − d)n/2 random edges. Therefore, each independent set of size k in G∗(n, m) is also

an independent set of G∗(n, m′) with probability
(
1 − (k/n)2

)(d+−d)n/2
. Let s = (k/n). It is

direct that

E|Sk(G(n, m′))| = (
1 − s2

)(d+−d)n/2
E[|Sk(G(n, m))|]. (11)

Using Corollary 10 we get that

1

n
ln E|Sk(G(n, m′))| = 1

n
ln

((
n

k

)
(1 − (k/n)2)d+n/2

)
+ O

(
1

n

)

∼ −[s ln s + (1 − s) ln(1 − s)] + d+ ln(1 − s2)/2 − ln n

2n

∼ − ln n

2n
. (12)

Furthermore, using the fact that − x
1−x ≤ ln(1 − x) ≤ −x, for 0 < x < 1, it is direct that

2
− ln s + 1

s
≤ d+ ≤ 2

− ln s + 1

s
+ 2. (13)
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Combining (11), (12) and (13), we get that

1

n
ln E|Sk(G(n, m))| ≤ − ln(1 − s2)(d+ − d)/2 − o(1) [by (11) and (12)]

≤ 4
s3/2

1 − s2
[by (13) and 1 − x > e−x/(1−x) for 0 < x < 1].

The upper bound for E|Sk(G(n, m))| follows by using the above inequality and noting that
k ≤ 2n ln d/d, i.e. s ≤ 2 ln d/d.

Corollary 16. For the graph G(n, m) of expected degree d it holds that

P [α(G(n, m)) ≥ 2n(1 − εd)ln d/d] ≥ 1 − exp
[−8n/(d ln3 d)

]
.

where εd → 0 as d increases.

Proof. Consider G∗(n, m) of expected degree d and let k be such that

k/n = 2

d

(
W(ed/2) − 10

√
ln d/d3 − 2

ln ln d

ln d

)
,

where W(z) is defined in the statement of Corollary 13. Using Corollary 13 and Theorem
14, we get that

P
[
α(G∗(n, m)) ≤ k

] ≤ exp

(
−8(ln ln d)2

d ln3 d
n

)
.

The corollary follows by using Lemma 9.

The following is taken from [37, p. 156].

Lemma 17. Let d > 0 be fixed and m = dn/2. Let Y be the number of isolated vertices
in G(n, m). Then Y = (1 + o(1))n exp(−d) w.h.p.

3. APPROACHING THE DISTRIBUTION Uk (n, m)

3.1. The Planted Model

The main results of this paper deal with properties of ‘typical’ independent sets of a given
size in a random graph, i.e., the probability distribution Uk(n, m). In the theory of random
discrete structures often the conceptual difficulty of analysing a probability distribution
is closely linked to the computational difficulty of sampling from that distribution (e.g.,
[37, Chapter 9]). This could suggest that analysing Uk(n, m) is a formidable task, because
for k > (1 + ε)n ln(d)/d there is no efficient procedure known for finding an independent
set of size k in a random graph G(n, m), let alone for sampling one at random. In effect, we
do not know of an efficient method for sampling from Uk(n, m).

To get around this problem, we are going to ‘approximate’ the distribution Uk(n, m)

by another distribution Pk(n, m) on the set �k(n, m) of graph/independent set pairs, the
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so-called planted model, which is easy to sample from. This distribution is induced by the
following experiment:

Choose a subset σ ⊂ [n] of size k uniformly at random.
Choose a graph G with m edges in which σ is an independent set uniformly at random.
Output the pair (G, σ).

In other words, the probability assigned to a given pair (G0, σ0) ∈ �k(n, m) is

PPk (n,m) [(G0, σ0)] =
[(

n

k

)
·
((n

2

) − (k
2

)
m

)]−1

, (14)

i.e., Pk(n, m) is nothing but the uniform distribution on �k(n, m). The key result that allows
us to study the distribution Uk(n, m) is the following.

Theorem 18. There is εd → 0 such that for k < (2 − εd)n ln(d)/d the following is true.
If B is an event such that

PPk (n,m) [B] = o

(
exp

(
−14n

√
ln5 d/d3

))
, (15)

then PUk (n,m) [B] = o(1).

Hence, Theorem 18 allows us to bound the probability of some ‘bad’ event B in the
distribution Uk(n, m) by bounding its probability in the distribution Pk(n, m).

To establish Theorem 18, we need to find a way to compare Pk(n, m) and Uk(n, m).
Suppose that k < (2−εd)n ln(d)/d is such that α(G(n, m)) ≥ k w.h.p. Then the probability
of a pair (G0, σ0) ∈ �k(n, m) under the distribution Uk(n, m) is

PUk (n,m) [(G0, σ0)] ∼
[((n

2

)
m

)
· |Sk(G0)|

]−1

(16)

(because we first choose a graph uniformly, and then an independent set of that graph).
Hence, the probabilities assigned to (G0, σ0) under (16) and (14) coincide (asymptotically)
iff

|Sk(G0)| ∼
(

n

k

)((n
2

) − (k
2

)
m

)
/

((n
2

)
m

)
. (17)

A moment’s reflection shows that the expression on the r.h.s. of (17) is precisely the expected
number E|Sk(G(n, m))| of independent sets of size k. Thus, Pk(n, m) and Uk(n, m) coincide
asymptotically iff the number |Sk(G(n, m))| of independent sets of size k is concentrated
about its expectation.

This is indeed the case in ‘dense’ random graphs with m � n3/2. For this regime one can
perform a ‘second moment’ computation to show that |Sk(G(n, m))| ∼ E|Sk(G(n, m))|
w.h.p., (e.g. see [37, Chapter 7]) whence the measures Pk(n, m) and Uk(n, m) are
interchangeable. This fact forms (somewhat implicitly) the foundation of the proofs in [25].

By contrast, in the sparse case m � n3/2 a straight second moment argument fails utterly.
As it turns out, this is because the quantity |Sk(G(n, m))| simply it not concentrated about
its expectation anymore. In fact, maybe somewhat surprisingly Theorem 18 can be used
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to infer the following corollary, which shows that in sparse random graphs the expectation
E|Sk(G(n, m))| ‘overestimates’ the typical number of independent sets by an exponential
factor w.h.p.

Corollary 19. There exist functions εd → 0 and g(d) > 0 such that for 10n/d < k <

(2 − εd)n ln(d)/d we have

|Sk(G(n, m))| ≤ E|Sk(G(n, m))| · exp(−g(d)n) w.h.p.

The proof of Corollary 19 appears in Section 3.3.
Conversely, in order to prove Theorem 18 we need to bound the ‘gap’ between the typical

value of |Sk(G(n, m))| and its expectation from above. This estimate can be summarized as
follows.

Proposition 20. There is εd → 0 such that for k < (2 − εd)n ln(d)/d we have

|Sk(G(n, m))| ≥ E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)

with probability at least 1 − exp
[−n/(2d2 ln4 d)

]
.

Before we prove Proposition 20 in Section 3.2, let us indicate how it implies Theorem 18.

Corollary 21. There is εd → 0 such that for k < (2 − εd)n ln(d)/d the following is true.
Let

Z =
{
(G, σ) ∈ �k(n, m) : |Sk(G)| ≥ E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)}
. (18)

Then PUk (n,m) [Z] = 1 − o(1), and for any event B ⊂ �k(n, m) we have

PUk (n,m) [B|Z] ≤ (1 + o(1)) exp

(
14n

√
ln5 d/d3

)
· PPk (n,m) [B] .

Proof. Proposition 20 directly implies that

PUk (n,m) [Z] = 1 − o(1). (19)

Furthermore, by the definition (16) of the distribution Uk(n, m),

PUk (n,m) [B ∩ Z] =
∑

(G,σ)∈B∩Z

[((n
2

)
m

)
|Sk(G)|

]−1

≤ exp

[
14n

√
ln5 d/d3

] ∑
(G,σ)∈B∩Z

[((n
2

)
m

)
E|Sk(G(n, m))|

]−1

[by (18)]

= exp

[
14n

√
ln5 d/d3

]
PPk (n,m) [B ∩ Z] [by (14)]

≤ exp

[
14n

√
ln5 d/d3

]
PPk (n,m) [B] . (20)

The assertion is immediate from (19) and (20).

Proof of Theorem 18. The theorem follows directly from Corollary 21.
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3.2. Proof of Proposition 20

Since the second moment method fails to yield a lower bound on the typical number of
independent sets |Sk(G(n, m))|, we need to invent a less direct approach to prove Proposition
20. Of course, the demise of the second moment argument also presented an obstacle to
Frieze [16] in his proof that

α(G(n, m)) ≥ (2 − εd)n ln(d)/d w.h.p. (21)

However, unlike the number |Sk(G(n, m))| of independent sets α(G(n, m)), the size of
the largest one actually is concentrated about its expectation. In fact, an arsenal of large
deviations inequalities applies (e.g., Azuma’s and Talagrand’s inequality), and [16] uses
these to bridge the gap left by the second moment argument.Unfortunately, these large
deviations inequalities draw a blank on |Sk(G(n, m))|. Therefore, we are going to derive the
desired lower bound on |Sk(G(n, m))| directly from (21).

To simplify our derivations we consider the model of random graphs G∗(n, m) and we
show the following proposition.

Proposition 22. There is εd → 0 such that for k < (2 − εd)n ln(d)/d we have

|Sk(G
∗(n, m))| ≥ E|Sk(G

∗(n, m))| · exp

(
−14n

√
ln5 d/d3

)
(22)

with probability at least 1 − exp
[−n/(d ln2 d)2

]
.

Then, Proposition 20 follows by Lemmas 9 and 10.
Given some integer k > 0 and q ∈ [0, 1], let Zk(G∗(n, m)) = |Sk(G∗(n, m))| and let

Mq
k = max{m ∈ N : P[Zk(G

∗(n, m)) > 0] ≥ 1 − q}.
In words, Mq

k is the largest number of edges that we can squeeze in while keeping the
probability that G∗(n, m) has an independent set of size k above 1 − q. The following
lemma summarizes the key step of our proof of Proposition 22. The idea is that Lemma 23
gives a tradeoff between the likely number of independent sets of size k in the random
graph with m < Mq

k edges and the expected number of such independent sets in the random
graph with Mq

k edges. More precisely, we show that it is very unlikely that the number of
independent sets at ‘time’ m is smaller than its expectation by much more than a factor of
E[Zk(G∗(n, Mq

k ))].

Lemma 23. Suppose that k, m > 0, q ∈ [0, 1] are such that m < Mq
k . Then

P

[
Zk(G

∗(n, m)) <
E[Zk(G∗(n, m))

2E[Zk(G∗(n, Mq
k ))]

]
≤ 2q.

Proof. Let M = Mq
k . The random graph G∗(n, M) is obtained by choosing M pairs of

vertices independently and inserting the corresponding edges (while omitting loops and
reducing multiple edges to single edges). Let us think of the M pairs as being generated
in two rounds. In the first round, we generate m pairs, which induce the random graph
G1 = G∗(n, m). In the second round, we choose a further M − m pairs independently and
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add the corresponding edges to G1 (again, omitting self-loops and reducing multiple edges
to single edges) to obtain G2 = G∗(n, M).

By the linearity of the expectation and because the m (resp. M) pairs that the random
graph G1 (resp. G2) consists of are chosen independently, we have (cf. (5))

E [Zk(G1)] =
(

n

k

)
(1 − (k/n)2)m, and

E [Zk(G2)] =
(

n

k

)
(1 − (k/n)2)M = E [Zk(G1)] · (1 − (k/n)2)M−m. (23)

Furthermore, with respect to the number of independent sets of size k in G2 given their
number in the outcome G1 of the ‘first round’, we have

E[Zk(G2)|Zk(G1)] = Zk(G1)(1 − (k/n)2)M−m. (24)

Indeed, for each independent set Q of size k in G1 each of the M − m additional random
pairs has its two vertices in Q with probability (k/n)2. Hence, (24) follows because these
M − m pairs are independent and by the linearity of the expectation.

Now, let E1 be the event that

Zk(G1) <
E[Zk(G1)]

2E[Zk(G2)] .

Then by Markov’s inequality and (24),

1

2
≤ P

[
Zk(G2) < 2E [Zk(G2)|E1]

∣∣E1

] ≤ P

[
Zk(G2) <

E[Zk(G1)] · (1 − (k/n)2)M−m

E[Zk(G2)]
∣∣∣∣E1

]
,

whence

P

[
Zk(G2) <

E[Zk(G1)] · (1 − (k/n)2)M−m

E[Zk(G2)]
]

≥ P [E1] /2. (25)

Combining (25) and (23), we see that P [E1] ≤ 2 P [Zk(G2) < 1] ≤ 2q, as claimed.

Proof of Proposition 22. Consider G∗(n, m) of expected degree d and let k =
2
d (ln d − ln ln d + 1 − ln 2). We are going to show that (22) holds for G∗(n, m) and k with
probability at least 1 − exp

[−n/(d ln2 d)2
]
.

Consider, now, the graph G(n, M) of expected degree d+ = 2 − ln s+1
s + 8√

s , where s = k/n.

According to Corollary 15 it holds that P[|Sk(G(n, M))| > 0] ≥ 1−12 exp
(−n/(d2 ln5 d)

)
and

E|Sk(G(n, M))| ≤ exp

⎛
⎝14

√
ln5 d

d3
n

⎞
⎠ .

The proposition will follow by just showing that m < M, i.e. d+ > d, and using Lemma
23. Note, first, that

− ln s + 1 = ln d − ln ln d + 1 − ln 2 − ln

(
1 − ln ln d − 1 + ln 2

ln d

)

≥ ln d − ln ln d + 1 − ln 2 + ln ln d − 1 + ln 2

ln d
. [as 1 − x ≤ e−x]
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Using the above, it is elementary to derive that 2 − ln s+1
s ≥ d. Then, it follows that d+ > d

as promised.

3.3. Proof of Corollary 19

In this section we keep the assumptions of Corollary 19, i.e., we let k, d be such that
10n/d < k < (2 − εd)n ln(d)/d, with εd → 0 sufficiently slowly in the limit of large d.

First we are going to show that for in a pair (G, σ) chosen from the distribution Pk(n, m),
the number of isolated vertices are somehow, exceedingly many, compared to those in
G(n, m)

Lemma 24. There exist numbers ξ > 0 and η = η(d) > 0 such that the following is true.
Let (G, σ) be a pair chosen from the distribution Pk(n, m). Let X be the number of isolated
vertices in G. Then

P
[
X ≤ n(η + exp(−d))

] ≤ exp(−3ξn). (26)

Proof. Let α = k/n. It is convenient to first consider the following variant of the planted
distribution: given a set σ ⊂ V of size k, let G′ be the random graph obtained by including
each of the

(n
2

) − (k
2

)
possible edges that do not link two vertices in σ with probability

q = m(n
2

) − (k
2

) ∼ m(n
2

)
(1 − α2)

∼ d

n(1 − α2)

independently. Hence, the total number of edges in G′ is binomially distributed with mean
m. By Stirling’s formula, the event E that G′ has precisely m edges has probability �(m−1/2),
and given that E occurs, the pair (G′, σ) has the same distribution as the pair (G, σ) chosen
from the distribution Pk(n, m). Therefore, for any event A we have

P [(G, σ) ∈ A] = P
[
(G′, σ) ∈ A|E] ≤ O(

√
m) · P

[
(G′, σ) ∈ A

]
. (27)

Now, consider the number X ′ of vertices in σ that are isolated in G′. Since each possible
edge is present in G′ with probability q independently, the degree of each vertex v ∈ σ has
a binomial distribution Bin(n − k, q) with mean

q(1 − α)n = d · 1 − α

1 − α2
= d

1 + α
.

In particular, for each v ∈ σ we have

P
[
v is isolated in G′] ∼ exp(−d/(1 + α)).

Hence,

E
[
X ′] ∼ αn exp(−d/(1 + α)). (28)

In addition, let X ′′ be the number of isolated vertices in V \ σ . Since for each v ∈ X ′′ the
expected number of neighbors is (n − 1)q ∼ d/(1 − α2), we have

E
[
X ′′] ∼ (1 − α)n exp(−d/(1 − α2)). (29)
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Combining (28) and (29), we see that

n−1
E [X] ∼ α exp(−d/(1 + α)) + (1 − α) exp(−d/(1 − α2)). (30)

If α ≥ 10/d and d sufficiently large, then there is η = η(d) > 0 such that

α exp(−d/(1 + α)) + (1 − α) exp(−d/(1 − α2)) > exp(−d) + 3η.

Hence, (31) yields

E [X] > n(exp(−d) + 2η). (31)

Finally, the assertion follows from (31) and a standard application of Azuma’s inequality.

Proof of Corollary 19. Let B ⊂ �k(n, m) be the set of all pairs (G, σ) such that G has
fewer than n(η + exp(−d)) isolated vertices. Lemmas 17 and 24 entail that

PUk (n,m) [B] = 1 − o(1) while PPk (n,m) [B] ≤ exp(−ξn). (32)

Since Pk(n, m) is the uniform distribution over �k(n, m), (32) implies that

|B| ≤ |�k(n, m)| · exp(−ξn) =
((n

2

)
m

)
E|Sk(G(n, m))| · exp(−ξn). (33)

Now, let A ⊂ �k(n, m) be the set of all pairs (G, σ) such that |Sk(G)| ≥
exp(−ξn/3)E|Sk(G(n, m))|, and assume for contradiction that there is a fixed ε > 0 such
that PUk (n,m) [A] ≥ ε. Then (32) implies that

PUk (n,m) [A ∩ B] ≥ ε − o(1)

Therefore,

|B| ≥ |A ∩ B| ≥
((n

2

)
m

)
PUk (n,m) [A ∩ B] · exp(−ξn/3)E|Sk(G(n, m))|

≥ (ε − o(1))

((n
2

)
m

)
exp(−ξn/3)E|Sk(G(n, m))| ≥ (ε − o(1)) exp(−ξn/3) · |�k(n, m)| ,

which contradicts (33). Hence, PUk (n,m) [A] = o(1), as claimed.

4. PROOF OF THEOREM 1

Instead of the random graph model G(n, m) we consider the model G(n, p), where p = d/n
for fixed real d and we prove the following theorem.

Theorem 25. There is εd → 0 such that Sk(G(n, d/n)) is 20d-connected for any k ≤
(1 − εd)

ln d
d · n, with probability at least 1 − exp

(
− ln40 d

d n
)

.

Theorem 1 follows by using standard arguments, i.e. the following corollary.
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Fig. 1. Short chains of adjacent independent sets. E.g. σ ′ is adjacent to both σ and σ ′′.

Corollary 26. For any fixed d > 0, m = dn/2 and any graph property A it holds that
P[G(n, m) ∈ A] ≤ �(

√
n)P[G(n, d/n) ∈ A].

Proof. Let Ed be the number of edges in G(n, d/n). It holds that

P[G(n, m) ∈ A] = P[G(n, d/n) ∈ A|Ed = dn/2] ≤ P[G(n, d/n) ∈ A]
P[Ed = dn/2] .

Ed is binomially distributed with parameters
(n

2

)
and d/n. Straightforward calculations yield

that P[Ed = dn/2] = �(1/
√

n). The corollary follows.

For every vertex u in G(n, d/n) we let N(u) denote the set of vertices which are adjacent
to u. A sufficient condition for establishing the connectivity of Sk(G(n, d/n)) is requiring
this space to have what we call Property �:

Property �. For any two σ , τ ∈ Sk(G(n, d/n)) there exist “chains” σ , σ ′, σ ′′ and τ , τ ′, τ ′′

of independent sets in Sk(G(n, d/n)) ∪ Sk+1(G(n, d/n)) such that

• the independent sets are connected as in Fig. 1; i.e.,

dist(σ , σ ′), dist(σ ′, σ ′′), dist(τ , τ ′), dist(τ ′, τ ′′) ≤ 20d.

• |σ ′′| = |τ ′′| = k,
• dist(σ ′′, τ ′′) < dist(σ , τ), and thus |σ ′′ ∩ τ ′′| = |σ ∩ τ | + 1.

The following result is straightforward.

Corollary 27. If Sk(G(n, d/n)) has Property �, then it is connected.

Using Corollary 27, Theorem 25 will follow by showing that with probability 1−o(1) the
set Sk(G(n, d/n)) has Property �, for k < (1 − εd)n ln d/d . For this, we need to introduce
the notion of “augmenting vertex”.

Definition 28 (Augmenting vertex). For the pair σ , τ ∈ Sk(G(n, d/n)) the vertex v ∈
V\(σ ∪ τ) is augmenting if one of the following A, B holds.

A. N(v) ∩ (σ ∪ τ) = ∅
B. N(v) ∩ (σ ∩ τ) = ∅ and there are sets Iv(σ ) and Iv(τ ) of size at most 7d such that
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Fig. 2. σ , τ with Property �.

• Iv(σ ) ∪ {v} is an independent set of G(n, d/n)

• |Iv(σ )| = |N(v) ∩ σ |
• each w ∈ Iv(σ ) has a unique neighbour in σ which is a neighbour of the augmenting

vertex v. In symbols,

∀w ∈ Iv(σ ) : |N(w) ∩ σ | = 1 ∧ |N(w) ∩ N(v) ∩ σ | = 1.

The corresponding conditions hold for Iv(τ ), as well. We refer to the vertices in
Iv(σ ), Iv(τ ) as terminals.

Figure 2 shows an example of a pair of independent sets where the vertex v is an aug-
menting vertex. We emphasize that in B. we require that N(v) does not share a vertex with
the intersection σ ∩ τ , while A. requires that N(v) does not contain a vertex from the union
σ ∪ τ .

We will show that for a pair σ , τ ∈ Sk(G(n, d/n)) that has an augmenting vertex v we
can find short chains σ , σ ′, σ ′′ and τ , τ ′, τ ′′. That is, if we can find an augmenting vertex for
any two members of Sk(G(n, d/n)), then Sk(G(n, d/n)) has Property �.

First, let us show how we can create short chains as in Figure 1 for two independent
sets σ , τ with augmenting vertex v. For this, we introduce a process called Collider. This
process takes as an input σ , τ and the augmenting vertex v and returns the independent sets
σ ′′ and τ ′′ of the chains.

Collider (σ , τ , v):

Phase 1. /*Creation of σ ′ and τ ′.*/

1. Derive σ ′ from σ by removing the all its vertices in N (v) ∩ σ and by inserting
{v} ∪ Iv(σ ).

2. Do the same for τ ′.

Phase 2. /* Creation of σ ′′ and τ ′′*/.

1. σ ′′ is derived from σ ′ by deleting one (any) vertex from σ ′\τ ′.
2. τ ′′ is derived from τ ′ by deleting one (any) vertex from τ ′\σ ′.

Return σ ′′ and τ ′′.

End
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Fig. 3. The independent sets σ ′, τ ′.

Figure 3 shows the changes that have taken place to the independent sets in Fig. 2 at the
end of Phase 1. Note that after Phase 1 both σ ′, τ ′ contain the augmenting vertex v, i.e. the
overlap has increased as σ ′ ∩ τ ′ = (σ ∩ τ) ∪ {v}. After Phase 2, the independent sets in
Fig. 3 are transformed to those in Fig. 4. There the vertices u2 and u7 are removed from σ ′

and τ ′, correspondingly.
In the following lemma we show that Collider has all the desired properties we promised

above.

Fact 29. Let σ , τ ∈ Sk(G) with augmenting vertex v. Let σ ′′ and τ ′′ be the two sets
of vertices that are returned from Collider(σ , τ , v) . The two sets have the following
properties:

1. σ ′′, τ ′′ ∈ Sk(G),
2. |σ ′′ ∩ τ ′′| = |σ ∩ τ | + 1,
3. There are σ ′, τ ′ ∈ Sk+1(G) such that σ ′ (resp. τ ′) is adjacent to both σ and σ ′′ (resp.

τ and τ ′).

Fact 29 is immediate from Figs. 2–4.
Since for every pair σ , τ ∈ Sk(G(n, d/n)) with augmenting vertex we can construct short

chains as in Fig. 1 by using Collider, we have the following corollary:

Corollary 30. If for any two σ , τ ∈ Sk(G) there is an augmenting vertex v, then Sk(G)

has Property �.

Fig. 4. Final sets.
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We are going to use the first moment method to show that with probability 1 − o(1),
the graph G(n, d/n) has no pair of independent sets in Sk(G(n, d/n)) without augmenting
vertex. Corollary 30, then, implies that with probability 1 − o(1) the set Sk(G(n, d/n)) has
Property �. Then, Theorem 25 follows from Corollary 27.

We compute, first, the conditional probability that σ , τ have an augmenting vertex given
that σ , τ ∈ Sk(G(n, d/n)).

Proposition 31. For some integers i, k, consider σ , τ , two sets of vertices each of size
k such that |σ ∩ τ | = i. Let Gσ ,τ denote G(n, d/n) conditional that each of σ , τ is an
independent set. Also, let pk,i be the probability that the pair σ , τ has an augmenting vertex
in Gσ ,τ . Then, there exists εd → 0 such that for any εd ≤ ε ≤ 1 − εd and k = (1 − ε) ln d

d n
the following is true

pk,i ≥ 1 − exp

(
− ln90 d

d
n

)
for any i ≤ k.

Observe that the lower bound we get for pk,i is independent of i. The proof of
Proposition 31 appears in Section 4.1.

Proof of Theorem 25. Let �k be the number of pairs of independent sets of size k in
G(n, d/n) that do not have an augmenting vertex. From Corollary 30 and Corollary 27, it
suffices to show that P

[∑
k≤K �k > 0

] = o(1), where K = (1−εd)n ln d/d and εd → 0 with
d. For this, we are going to use Markov’s inequality, i.e. P

[∑
k≤K �k > 0

] ≤ E
[∑

k≤K �k

]
and we are going to show that E

[∑
k≤K �k

] = o(1).
First consider the case where 1

10
ln d
d n ≤ k ≤ (1 − εd)

ln d
d n and εd is as defined in the

statement of Proposition 31. Using Proposition 31 we get that

E[�k] ≤
(

n

k

)2

exp

(
− ln90 d

d
n

)
. (34)

It follows easily that
(n

k

)2 ≤ ( n
ln d
d n

)2 ≤
(

de
log d

)2 ln d
d n = exp

(
3n ln2 d/d

)
. Thus, from (34) we

get that there is εd → 0 with d such that

E[�k] ≤ exp

(
−0.5

ln90 d

d
n

)
,

for any k = (1 − ε) ln d
d n, where εd < ε < 1 − εd .

Consider now the case where k < n ln d/(10d). For a pair of independent sets any vertex
that is not adjacent to the vertices of the pair is an augmenting vertex. Let σ , τ be a pair
of independent sets each of size k ≤ (1 − ε)n ln d/d, for ε ≥ 0.9. Let Rσ ,τ be the vertices
not in σ ∪ τ but not adjacent to any vertex in σ ∪ τ , as well. Every w /∈ σ ∪ τ belongs to
Rσ ,τ independently of the other vertices with probability at least (1 − p)2k = (dε/d)

2. Thus,
E|Rσ ,τ | ≥ (n − 2k)(dε/d)2. Using Chernoff bounds we get

P[|Rσ ,τ | = 0] ≤ exp

(
− d2ε

10d2
n

)
≤ exp

(
− d0.8

10d
n

)
[since ε > 0.9].
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Since Rσ ,τ consists of augmenting vertices for the pair σ , τ , the probability for σ , τ not to
have any augmenting vertex is upper bounded by P[|Rσ ,τ | = 0]. For k < n ln d/(10d) it
holds that

E[�k] ≤
(

n

k

)2

exp

(
− d0.8

10d
n

)
≤ exp

(
3

ln2 d

d
n

)
· exp

(
− d0.8

10d
n

)
≤ exp

(
− d0.8

15d
n

)
.

The theorem follows.

4.1. Proof of Proposition 31

Consider an arbitrary pair σ , τ ∈ Sk(G(n, d/n)) where k = (1 − ε)n ln d/d and 100 ln ln d
ln d ≤

ε ≤ 1 − 100 ln ln d
ln d . For the rest of the proof assume that |σ ∩ τ | = ak where a ∈ [0, 1]. Also,

let ε ′ ∈ [
100 ln ln d

ln d , 1
]

be such that 1−ε ′ = (1−a)(1−ε). We consider two cases, in the first
one we assume that ε ′ ≤ 1 − 100 ln ln d

ln d , in the second one we assume that 1 − 100 ln ln d
ln d < ε ′.

Consider ε ′ as in the first case. We will show that with sufficiently large probability there
exists a non-empty set Q0 of augmenting vertices for the pair σ , τ . The set Q0 contains a
specific kind of augmenting vertices. To specify Q0, we need the following definitions:

Q1(σ ): Q1(σ ) ⊆ V\(σ ∪ τ) contains every vertex v that has exactly one neighbour in
σ\τ but it does not have exactly one neighbour in τ\σ .

Q2(σ ): Q2(σ ) ⊆ σ\τ is the set of vertices in σ\τ that have at least one neighbour in
Q1(σ ).

Q3(σ ): Q3(σ ) ⊆ V\(σ ∪τ∪Q1(σ )) contains every vertex w such that following holds:
S1- N(w) ∩ (σ\τ) ⊆ Q2(σ ) and |N(w) ∩ (σ\τ)| ≤ 7d.
S2- There exists R ⊆ Q1(σ ) that contains exactly one neighbour of each v ∈

N(w) ∩ (σ\τ) in Q1(σ ) and no other vertex. Furthermore, R ∪ {w} is an
independent set.

In an analogous manner we define Q1(τ ), Q2(τ ) and Q3(τ ). Basically, the idea is that Q1(σ )

contains the vertices that can possibly become terminals (the set Iσ in Fig. 2). Moreover, the
reader should think of Q2(σ ) as the “middle vertices” in u1, . . . , u5 in Fig. 2, and of Q3(σ )

as comprising the possible augmenting vertices.
Indeed, for the augmenting vertex u ∈ Q0 the following holds: the terminal set Iu(σ ) is

a subset of Q1(σ ). Also, the neighbours of u inside σ\τ are exclusively in Q2(σ ). Finally,
we require that Q0 ⊆ Q3(σ ). The corresponding holds w.r.t. independent set τ . To be more
precise, for u ∈ Q0 the following holds:

• u ∈ Q3(σ ) ∩ Q3(τ )

• u has no neighbour in σ ∩ τ

• N(u) ∩ (σ\τ) ⊆ Q2(σ ) and N(u) ∩ (τ\σ) ⊆ Q2(τ ),
• Iu(σ ) ⊆ Q1(σ ) and Iu(τ ) ⊆ Q1(τ ).

Consider a process where we reveal all the sets Qi(σ ), Qi(τ ), for i = 1, 2, 3 in steps. In
each step we reveal a certain amount of information regarding these six sets. Since Qi(σ )

is symmetric to Qi(τ ) we just present results related to Qi(σ ), those regarding Qi(τ ) will
be immediate. The results appear as a series of claims whose proofs appear after the proof
of this proposition.
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In Step 1, we reveal which vertex u /∈ σ ∪τ has exactly one neighbour either in σ\τ or
in τ\σ or in both. Clearly, this reveals the sets Q1(σ ), Q1(τ ). There we have the following
result.

Claim 32. Let X1 = |Q1(σ )|. It holds that E[X1] = (1−ε′) ln d

d1−ε′ n(1 − εd) − O(1), where
εd → 0 as d grows. Furthermore, it holds that

P [|X1 − E[X1]| ≥ 0.5E[X1]] ≤ 2 exp
(
−ndε′

/d
)

.

In Step 2, we reveal the edges between Q1(σ ) and σ (resp. Q1(τ ) and τ ). By definition
each vertex in σ which has a neighbour in Q1(σ ), belongs to Q2(σ ). Thus, in this step we
also reveal Q2(σ ) and Q2(τ ). Then we have the following result.

Claim 33. Let X2 = |Q2(σ )|. For γ = 1 − ln−5 d, it holds that

P[X2 ≤ γ · |σ\τ ||F1] ≤ exp
(
−ndε′

/(4d ln5 d)
)

,

where F1 = {|X1 − E[X1]| < 0.5E[X1]}.

It remains to reveal the sets Q3(σ ) and Q3(τ ). Revealing these sets is, technically, a
more complex task. Let us make some observations regarding these sets. Assume that some
vertex u ∈ V\(σ ∪ τ ∪ Q1(σ )) satisfies S1, in the definition of Q3(σ ). So as u to belong to
Q3(σ ) there should exist a set R ⊆ Q1(σ ) as specified by S2. However, the possibility of
edges between vertices in Q1(σ ) leaves open whether we can have such a set for u. To this
end consider the following.

Definition 34. For every i = 1 . . . 7d, let Ai be the family of subsets B ⊆ Q2(σ ) with
|B| = i which have the following property: There exists an independent set R ⊆ Q1(σ ) that
contains exactly one neighbour of each v ∈ B in Q1(σ ) and no other vertex.

That is, a vertex u which satisfies S1 satisfies also S2 only if either N(u) ∩ (σ\τ) ∈ Ai,
for some appropriate i > 0, or N(u) ∩ (σ\τ) = ∅.

In Step 3 we reveal the edges with both ends in Q1(σ ) (resp. in Q1(τ )). Observe
that the families Ai are uniquely determined by the edges we reveal at this step. Thus, by
revealing the aforementioned edges we get Ai. Then, we get the following result.

Claim 35. Let F2 = {F1 and X2 > γ · |σ\τ |}. For every 2 ≤ i ≤ 7d it holds that

P

[
|Ai| ≤ (1 − 2d5/n)

(|Q2(σ )|
i

)∣∣∣∣F2

]
≤ 2 exp

(
−nd2ε′

/d
)

.

Also A1 = Q2(σ ).

Let the vertex set V ′ contain each v such that u /∈ σ∪τ and |N(u)∩σ\τ |, |N(u)∩τ\σ | �= 1.
The set V ′ contains all the vertices whose edges with σ and τ are not revealed during Step
1. Both Q3(σ ), Q3(τ ) will be subsets of V ′.

In Step 4, we reveal the edges between each v ∈ V ′ and the set Q1(σ )∪ Q2(σ ) as well
as the edges between v and Q1(τ ) ∪ Q2(τ ). Once we have revealed these edges, it is direct
to tell whether v belongs to Q3(σ ) (resp. Q3(τ ) or not.
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Claim 36. Let the event F3 = {
F2 and |Ai| ≥ (1 − 2d5/n)

(|Q2(σ )|
i

)}
. For every u ∈ V ′, it

holds that

P[u ∈ Q3(σ )|F3] ≥ 9/10.

For every v ∈ V ′ let Jv be an indicator random variable such that Jv = 1 if v ∈ Q3(σ ) ∩
Q3(τ ) and Jv = 0 otherwise. Observe that the edge events between v and Q1(σ ) ∪ Q2(σ )

are independent of the edge events between v and the vertices in Q1(τ ) ∪ Q2(τ ). The event
F3 affects only the cardinality of V ′. As long as V ′ is non empty Jvs for various v ∈ V ′ are
independent.

Let X3 = ∑
v∈V ′ Jv. Using Claim 36 we get that

E[X3|F3] ≥
(

1 − 10dε′
ln d/d

)
n · (P[u ∈ Q3(σ )|F3])2 ≥ 8n/10,

It is not hard to see that v ∈ Q3(σ ) ∩ Q3(τ ) independently of the other vertices in V ′. That
is, X3 is a sum of independent identically distributed random variables. Applying Chernoff
bounds for X3 and we get that

P[X3 < 0.7n|F3] ≤ exp (−n/350) . (35)

In Step 5, the last step, we reveal the edges between every v ∈ Q3(σ )∩ Q3(τ ) and σ ∩ τ .
Clearly, every such vertex which does not have neighbours in σ ∩ τ belongs to Q0, i.e. it is
augmenting. We have no information about the edges between the sets Q3(σ ) ∩ Q3(τ ) and
σ ∩ τ , as we never examined edges with an end in the later set.

Every u ∈ Q3(σ ) ∩ Q3(τ ) is augmenting independently of all the rest vertices with
probability d−a(1−ε) +O(n−1), as |σ ∩τ | = αk. Let the event F4 = {F3 and X3 ≥ 0.7n}. It is
direct that E[|Q0||F4] ≥ 0.7nd−a(1−ε) − O(1). Since a ∈ [0, 1], there exists δ = δ(ε, a) > ε

such that a(1 − ε) = 1 − δ. Applying Chernoff bounds we get that

P[|Q0| = 0|F4] ≤ exp
(−0.2dδn/d

) ≤ exp (−0.2dεn/d) [as δ > ε]. (36)

Using (35) and Claims 32, 33 and 35 we get that P[F4] ≥ 1 − 20 exp
(
−ndε′

/(4d ln5 d)
)

.

Combining this bound for P[F4] with (36) we get that

P[|Q0| = 0] ≤ 30 exp
(
−ndε′

/(3d ln5 d)
)

≤ exp
(−n ln90 d/d

)
(37)

as 100 ln ln d
ln d ≤ ε ′ ≤ 1 − 100 ln ln d

ln d .
It remains to consider the case where 1 − 100 ln ln d

ln d < ε ′ ≤ 1. There, it holds that
|σ ∪ τ | = k0 ≤ (1 − ε) ln d

d n + 100 ln ln d
d n. Let Rσ ,τ be the set of vertices, outside σ , τ , that

are not adjacent to any vertex in σ ∪ τ . Every w /∈ σ ∪ τ belongs to Rσ ,τ independently of
the other vertices with probability (1 − p)k0 ≤ (

dε/2/d
)
. Thus, E|Rσ ,τ | ≥ (n − k0)dε/2/d.

Using Chernoff bounds we get

P[|Rσ ,τ | = 0] ≤ exp

(
−dε/2

2d
n

)
. (38)

Since Rσ ,τ consists of augmenting vertices for the pair σ , τ , the probability that there is no
augmenting vertex is upper bounded by P[|Rσ ,τ | = 0]. The proposition follows from (37)
and (38).
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Proof of Claim 32. Let r be the probability for a vertex v outside σ , τ , to have exactly one
neighbour in σ\τ . It holds that

r = (1 − a)kp(1 − p)(1−a)k−1 = (1 − ε ′) ln d/d1−ε′ − O(n−1).

Of course, with the same probability v has exactly one neighbour in τ\σ . Then, the proba-
bility for v to be in Q1(σ ) is p1 = r(1 − r). Observe that v belongs to Q1(σ ) independently
of the other vertices. It is direct that there exists εd → 0 such that

E[X1] = (n − 2k)p1 = (1 − ε ′) ln d

d1−ε′ n (1 − εd) − O(1).

The claim follows by applying Chernoff bounds.

Proof of Claim 33. Due to symmetry each vertex u ∈ Q1(σ ) is adjacent to exactly one
random vertex in σ\τ , independently of the other vertices in Q1(σ ). An equivalent way of
looking at adjacencies between vertices in Q1(σ ) and σ\τ is by assuming that the vertices
in Q1(σ ) are balls and each vertex in σ\τ is a bin and each ball is thrown into a uniformly
random bin. The non-empty bins correspond to vertices in Q2(σ ). The claim will follow by
deriving an appropriate tail bound on the number of occupied bins.

Let N denote the number or balls and m denote the number of bins, it holds that N ≥ dε′
d n

and m = (1 − ε ′) ln d
d n. For c ∈ (0, 1), let Pc be the probability that there is a subset of bins

of size cm that contains all the balls. For Bc a fixed subset of bins of size cm and for a fixed
ball r, it holds that

Pc ≤
(

m

cm

)
(P[r is placed into some bin in Bc])N ≤

(me

cm

)cm

cN

≤ exp (cm(1 − ln c) + N ln c) .

For c0 = (1 − ln−5 d) we have that

Pc0 ≤ exp

(
2

ln d

d
n − dε′

2d ln5 d
n

)
[as 1 − x ≥ exp(−x/(1 − x) for 0 < x < 0.1]

≤ exp
(
−ndε′

/(3d ln5 d)
)

[for large d].

It is easy to check that for any 0 ≤ c ≤ c0 we have Pc ≤ Pc0 . Hence, letting Ec0 be the event
that there is a subset of at most c0 · m bins that has all the balls, it holds that

P[Ec0 ] ≤ exp
(
−ndε′

/(4d ln5 d)
)

.

The claim follows.

Proof of Claim 35. The cardinality of each family Ai, for 2 ≤ i ≤ 7d, depends on the
edges whose both ends are in Q1(σ ). As a first step we estimate the number of these vertices
conditional on the event F2.

Let R1 be the set of edges whose both ends are in Q1(σ ). The bound on X1 and the
cardinality of Q1(σ ) that F2 specifies as well as the fact that each edge appears independently
with probability d/n yields the following relation.

E[|R1||F2] = C
d2ε′

n

d
(1 − ε ′)2 ln2 d,
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where 1/8 < C < 9/8. Chernoff bounds yield the following inequality.

P

[
|R1| ≥ n/d1−3ε′ |F2

]
≤ exp

(
−nd2ε′

/d
)

. (39)

Let the event H = {F2 and |R1| < n/d1−3ε′ }.
Next, we compute E[|Ai||H]. Note that the event H specifies, only, an upper bound on

|R1| and it does not specify where the edges are placed. That is, all subsets of Q2(σ ) of
cardinality i are symmetric thus they belong to Ai with the same probability. By the linearity
of expectation we get that

E[|Ai‖H] =
(|Q2(σ )|

i

)
P[L /∈ Ai|H] [for a fixed L ⊆ Q2(σ ) and |L| = i]

Let ML be the family of subsets of Q1(σ ), each of cardinality i, such that for each W ∈ ML

the following is true: The set W contains exactly one neighbour of each vertex q ∈ L and
no other vertex. By definition the family ML must have at least one member. Moreover, if
there exists one set in ML which is independent, then L ∈ Ai.

When we reveal the edges between the vertices in Q1(σ ) it is easy to see that the prob-
ability that ML contains no independent set is maximized when ML is a singleton. Given
|R1| and X1, observe that each pair of vertices in Q1(σ ) is adjacent with probability at
most |R1|/

(X1
2

)
. Each subset of Q1(σ ) of cardinality i has expected number of adjacent ver-

tices
( i

2

)|R1|/
(X1

2

) ≤ d4/n, for large d. That is, the probability that ML does not contain an
independent set is at most d4/n. Thus,

E[|Ai‖H] ≥
(

1 − d4

n

)(|Q2(σ )|
i

)
. (40)

Having calculated a lower bound for E[|Ai||H] we will show that given the event H, |Ai|
is tightly concentrated about its expectation. Then, claim will be immediate. So as to show
the concentration result, we use an edge exposure martingale argument for the edges in R1

and then we apply Azuma’s inequality (see e.g. [37] Theorem 2.25).
Observe that the revelation of each edge in R1 cannot reduce the cardinality of Ai by

more than c = (X2−2
i−2

) ≤ (X2)
i−2/(i − 2)! sets. Standard arguments with Azuma’s inequality

yield to that for any λ > 0 it holds that

P [|Ai| ≤ E[Ai|H] − λ|H] ≤ exp

(
− λ2

2|R1|c2

)
.

Setting λ = d4Xi−1
2 /i! we get that

P

[
|Ai| ≤

(
1 − 2

d5

n

)(
Q2(σ )

i

)∣∣∣∣H

]
≤ exp

(
− d8X2

2

2|R1|i2

)
≤ exp (−dn) ,

where the last derivation follows by using the fact that 1 ≤ i ≤ 7d, |R1| ≤ n/d1−3ε′
and

100 ln ln d/ ln d < 1 − ε ′ < 1 − 100 ln ln d/ ln d. The claim follows by just using the law
of total probability and get that
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P

[
|Ai| ≤

(
1 − 2

d5

n

)(
Q2(σ )

i

)∣∣∣∣F2

]

≤ P

[
|Ai| ≤

(
1 − 2

d5

n

)(
Q2(σ )

i

)∣∣∣∣H

]
+ P

[
|R1| ≥ n/d1−3ε′ ∣∣∣F2

]
≤ 2 exp

(
−nd2ε′

/d
)

.

Proof of Claim 36. For some u ∈ V , let dσ ,τ (u) be the number of vertices in σ\τ which
are adjacent to u. Also, let the event Ei = {N(u) ∩ (σ\τ) ∈ Ai} for i > 0 and E0 =
{N(u) ∩ (σ\τ) = ∅}. By the law of total probability we get that

P[u ∈ Q3(σ )|F3] ≥
7d∑

i=0

P[u ∈ Q3(σ )|dσ ,τ = i, Ei, F3] · P[Ei|dσ ,τ = i, F3]

· P[dσ ,τ = i|F3]. (41)

We impose the bound i ≤ 7d since no vertex in Q3(σ ) can have more than 7d neighbours
in Q2(σ ). Conditional on dσ ,τ (u) = i, all the subsets of size i in σ\τ are equally likely to
be adjacent to u. Thus, we get that

P[Ei|dσ ,τ = i, F3] = |Ai|(|σ\τ |
i

) ≥ (1 − 2d5/n)

(X2
i

)
(|σ\τ |

i

) [by Claim 35]

≥
(

X2

|σ\τ |
)i

(1 − o(1)) ≥ γ i(1 − o(1)), (42)

where γ = 1 − ln−5 d. Also, it is easy to see that

P[u ∈ Q3(σ )|dσ ,τ = i, Ei, F3] ≥ (1 − d/n)i ≥ 1 − 7d2/n. [as 0 ≤ i ≤ 7d] (43)

Let the event C be dσ ,τ (u) �= 1 and dσ ,τ (u) ≤ 7d. Observe that the variable dσ ,τ (u) is
distributed as in B((1 − a)k, d/n) conditional on the event C. Using this along with (43)
and (42) we can rewrite (41) as follows:

P[u ∈ Q3|F3]

≥ 1 − o(1)

P[C|F3]

[
7d∑

i=0

(
(1 − a)k

i

)
pi(1 − p)(1−a)k−iγ i − γ

(
(1 − a)k

1

)
p(1 − p)(1−a)k−1

]

≥ (1 − o(1))

[
7d∑

i=0

(
(1 − a)k

i

)
pi(1 − p)(1−a)k−iγ i − d−(1−ε′) ln d

]
, (44)

where the last inequality follows from the fact that γ , P[C|F3] ≤ 1 and a simple derivation
which implies that

(
(1−a)k

1

)
p(1 − p)(1−a)k−1 ≤ d−(1−ε′) ln d. Also, note that

(1−a)k∑
i=7d+1

(
(1 − a)k

i

)
pi(1 − p)(1−a)k−iγ i ≤

(1−a)k∑
i=7d+1

(
(1 − a)k

i

)
pi(1 − p)(1−a)k−i [as 0 ≤ γ < 1]

≤ exp (−7d) . (45)
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The last inequality follows by noting that the summation on the l.h.s. of the first line is equal
to the probability P[B((1 − a)k, d/n) > 7d] and bounding it by using Theorem 8, i.e. (4).
Using (45), we get that

7d∑
i=0

(
(1 − a)k

i

)
pi(1 − p)(1−a)k−iγ i ≥ (1 − p ln−5 d)(1−a)k − exp(−7d)

≥ exp
[−(1 − ε ′) ln−4 d − O(n−1)

] − exp(−7d)

[as ln(1 − x) = −x − O(x2)]

≥ 1 − 1 − ε ′

ln4 d
− exp(−7d) − O(n−1) [as 1 + x ≤ ex]

≥ 95/100. (46)

The claim follows by plugging (46) into (44) and get that P[u ∈ Q3|F3] ≥ 9/10.

5. PROOF OF THEOREM 3

The following proposition reduces the problem of establishing shattering to an exercise in
calculus.

Proposition 37. There exist a constant d0 > 0 and εd → 0 such that for all d > d0 the
following is true. Suppose that s = (1 + q) ln d/d for εd ≤ q ≤ (1 − εd) and let

ψ(x) = ψd,s(x) = xs(2 − 2 ln x − ln s) + d

2
ln

(
1 − s2(1 − (1 − x)2)

1 − s2

)
.

If there is a real 0 < b < 1 such that

ψ(b) < −18qs and (47)

sup
x<b

ψ(x) < −s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2) − 20s (48)

then for k = sn there occurs shattering.

To prove Theorem 3, consider a pair (G, σ) chosen from the planted model Pk(n, m). We
are going to show that under the assumptions (47) and (48) the independent set σ belongs to
a small ‘cluster’ of independent sets that is separated from the others by a linear Hamming
distance with a probability very close to one. We will then use Theorem 18 to transfer this
result to the distribution Uk(n, m). Let Zk,β be the number of independent sets τ ∈ Sk(G)

such that |σ ∩ τ | = (1 − β)k.

Lemma 38. We have 1
n ln EPk (n,m)

[
Zk,β

] ≤ ψ(β) + o(1).

Proof. Let τ ⊂ V be such that |σ ∩ τ | = (1 − β)k. The total number of graphs with m
edges in which both σ , τ are independent sets equals((n

2

) − 2
(k

2

) + (
(1−β)k

2

)
m

)
.
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For we can choose any m edges out of those potential edges that do not join two vertices
of either σ or τ . Since both σ , τ have size k and |σ ∩ τ | = (1 − β)k, the number of such
‘bad’ potential edges is 2

(k
2

)− (
(1−β)k

2

)
by inclusion/exclusion. Since G is chosen uniformly

among all
((n

2)−(k
2)

m

)
graphs in which σ is independent, we thus get

P
[
τ is independent

] =
((n

2

) − 2
(k

2

) + (
(1−β)k

2

)
m

)/((n
2

) − (k
2

)
m

)

=
m−1∏
j=0

(n
2

) − 2
(k

2

) + (
(1−β)k

2

) − j(n
2

) − (k
2

) − j
≤

((n
2

) − 2
(k

2

) + (
(1−β)k

2

)
(n

2

) − (k
2

)
)m

=
(

1 − k2 − ((1 − β)k)2

n2 − k2
+ O(1/n)

)m

≤ O (1) ·
(

1 − s2(1 − (1 − β)2)

1 − s2

)m

[as k = sn]. (49)

Furthermore, the total number of ways to choose a set τ with |σ ∩ τ | = (1 − β)k equals( k
(1−β)k

) · (n−k
βk

)
(choose the (1 − β)k vertices in the intersection σ ∩ τ and then choose the

remaining βk vertices). By the linearity of the expectation, we get from (49)

E
[
Zk,β

] = O(1) ·
(

k

(1 − β)k

)
·
(

n − k

βk

)
·
(

1 − s2(1 − (1 − β)2)

1 − s2

)m

= O(1) ·
(

k

βk

)
·
(

n − k

βk

)
·
(

1 − s2(1 − (1 − β)2)

1 − s2

)m

≤ O(1) ·
(

e

β

)βk (e(n − k)

βk

)βk

·
(

1 − s2(1 − (1 − β)2)

1 − s2

)m

= O(1) ·
(

e2(1 − s)

sβ2

)βsn

·
(

1 − s2(1 − (1 − β)2)

1 − s2

)dn/2

[as k = sn and m = dn/2].

Taking logarithms and dividing by n completes the proof.

Let us call an independent set σ of size k of a graph G (b1, b2, γ )-good if G
has no independent set τ such that (1 − b1)k ≤ |σ ∩ τ | ≤ (1 − b2)k and if
|{τ ∈ Sk(G) : |σ ∩ τ | > (1 − b2)k}| ≤ exp(−γ n)|Sk(G)|. Moreover, let

Zd,k =
{
(G, σ) ∈ �k(n, m) : |Sk(G)| ≥ E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)}
. (50)

Corollary 39. Suppose that b > 0 is such that (47) and (48) hold. Then there exist
b1, b2, γ > 0 such that

PUk (n,m)

[
(G, σ) is (b1, b2, γ )-good|Zd,k

] ≥ 1 − exp(−γ n).
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Proof. The function ψ is continuous. Therefore, if (47) and (48) are satisfied for some
b < 0 then there exist b1 > b2 and ζ > 0 such that

sup
b2≤β≤b1

ψ(β) < −18qs − ζ and (51)

sup
x<b2

ψ(x) < −s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2) − d−1.49 − ζ . (52)

Let Zk,b1,b2(G, σ) be the number of τ ∈ Sk(G) such that (1 − b1)k ≤ |σ ∩ τ | ≤ (1 − b2)k.
Then Lemma 38, (51), and Markov’s inequality yield

PPk (n,m)

[
Zk,b1,b2 > 0

] ≤ EPk (n,m)

[
Zk,b1,b2

] ≤
∑

b2k≤j≤b1k

EPk (n,m)

[
Zk,j/k

]

≤ exp

[
n

(
sup

b2≤β≤b1

ψ(β) + o(1)

)]
≤ exp [−n ln ln d/d] . (53)

The last inequality follows by taking q > 100 ln ln d/ ln d and then 18qs ≥ ln ln d/d.
Similarly, let Zk,<b2(G, σ) be the number of τ ∈ |Sk(G)| such that |σ ∩ τ | > (1 − b2)k.
Moreover, let s = k/n and let

μ = E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)

= O(1)

(
n

k

)
(1 − (k/n)2)m · exp

(
−14n

√
ln5 d/d3 + o(n)

)
[by Corollary 10]

= exp

[
n

(
−s ln(s) − (1 − s) ln(1 − s) − d

2
ln(1 − s2) − 14

√
ln5 d/d3 + o(1)

)]
,

where in the last step we used Stirling’s formula. Using (52) and Markov’s inequality, we
find that

PPk (n,m)

[
Zk,<b2 > μ

] ≤ EPk (n,m)

[
Zk,<b2

]
μ

≤
∑
j<b2k

EPk (n,m)

[
Zk,j/k

]
μ

≤ 1

μ
exp

[
n

(
sup
β<b2

ψ(β) + o(1)

)]
≤ exp [−n ln d/d] . (54)

Combining (53) and (54) with Corollary 21, and letting, say, γ = d−2, we see that

PUk (n,m)

[
(G, σ) is not (b1, b2, γ )-good|Zd,k

]
≤ PUk (n,m)

[
Zk,<b2 > μ or Zk,b1,b2 > 0

]
≤ (1 + o(1))PPk (n,m)

[
Zk,>b2 > μ or Zk,b1,b2 > 0

] · exp

[
14n

√
ln5 d/d3

]
≤ exp(−γ n),

as claimed.

Proof of Proposition 37. Let Z be the event that

|Sk(G(n, m))| ≥ E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)
.
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Corollary 39 implies that there exists b1, b2, γ such that given Z , w.h.p. G = G(n, m) has
the property that all but exp(−γ n)|Sk(G(n, m))| independent sets σ ∈ Sk(G) are (b1, b2, γ )-
good. Let G denote this event. As Lemma 20 ensures that G(n, m) ∈ Z w.h.p., we have

P [G] ≥ P [G ∩ Z] = P [G|Z] · P [Z] = 1 − o(1).

As a consequence, we just need to show that the two conditions in Definition 2 are satisfied
if G occurs.

Thus, let G ∈ G. We construct a decomposition of Sk(G) into pairwise disjoint subsets
S1, . . . , SN inductively as follows. Suppose i ≥ 1. If the set Sk(G)\⋃i−1

j=1 Sj does not contain
a (b1, b2, γ )-good set anymore, let N = i, set

SN = Sk(G) \
N−1⋃
j=1

Sj

and stop. Otherwise, choose some σi ∈ Sk(G) \ ⋃i−1
j=1 Sj that is (b1, b2, γ )-good, let

Si = {τ ∈ Sk(G) : |σi ∩ τ | > b2k} \
i−1⋃
j=1

Sj

and proceed to i + 1.
Let ζ = k(b1 − b2)/n. We claim that this construction satisfies the two conditions in

Definition 2. Indeed, each σi is (b1, b2, γ )-good for all, we have |Si| ≤ exp(−γ n) |Sk(G)|
for all i < N . Furthermore, as G ∈ G we have |SN | ≤ exp(−γ n) |Sk(G)|. Thus, the partition
S1, . . . , SN satisfies the first condition in Definition 2.

With respect to the second condition, let τ ∈ Si and τ ′ ∈ Sj with 1 ≤ i < j ≤ N . Assume
for contradiction that dist(τ , τ ′) < ζn. Then

dist(σi, τ
′) ≤ dist(σi, τ) + dist(τ , τ ′) = 2(k − |σi ∩ τ |) + ζn ≤ 2b2k + ζn,

and thus |σi ∩ τ ′| = k − dist(σi, τ ′)/2 ≤ (1 − b2)k − ζn/2 ∈ [(1 − b1)k, (1 − b2)k]. This
contradicts the fact that σi is good (which implies that there is no independent set σ ′ such
that |σi ∩ σ ′| ∈ [(1 − b1)k, (1 − b2)k]). Thus, we have established the second condition in
Definition 2.

Lemma 40. There exist a constant d0 > 0 and εd → 0 such that for all d > d0 the
following is true. If s = (1 + q) ln d/d, where εd ≤ q ≤ 1 − εd , then for b = 20/ ln d
conditions (47) and (48) are satisfied.

Proof. Let εd = 5 ln ln d/d. Using the elementary inequality ln(1 − x) ≤ −x, we find

ψ(x) ≤ sx(2 − 2 ln x − ln s) − ds2

2
(1 − (1 − x)2)

= sx (2 − 2 ln x − ln s − ds + dsx/2)

≤ sx (2 − 2 ln x − ln d − ds + dsx/2) [as s ≥ ln d/d]

≤ sx (2 − 2 ln x − δ ln d + dsx/2) [as s ≥ (1 + εd) ln d/d]. (55)
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Hence, for d ≥ d0 sufficiently large our choice of s, b ensures that

ψ(b) ≤ bs (22 + 2 ln ln d − ln 20 − q ln d) ≤ − 9

10
bsq ln d ≤ −18qs.

Thus, we have verified (47).
Starting from (55), we see that for any β < b and d > d0 large,

ψ(β) ≤ βs(22 − 2 ln β − 100 ln ln d) [as βds < 40 and by the choice of εd]

≤ −2βs ln β < s, (56)

because −x ln x < 1/2 for all x > 0. By comparison, for s ≤ (2 − εd) ln d/d we have

− s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2)

≥ −s ln s + s − ds2

2
− ds4

2
[using ln(1 − x) ≥ −x − x2]

≥ s (− ln s − ds/2 + 1)

≥ s

(
1 − q

2
ln d − ln ln d + 1

)
≥ 40s ln ln d. (57)

Combining (56) and (57), we obtain

ψ(β) < −s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2) − s

< −s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2) − 20s

as s ≥ ln d/d. Thus, we have got (48).

Finally, Theorem 3 is immediate from Proposition 37 and Lemma 40.

6. PROOF OF THEOREM 5

In this section we assume that d ≥ d0 for some large enough constant d0 > 0. Moreover,
let εd → 0 be a function of d that tends to 0 sufficiently slowly, and assume that k =
(1 − ε)n ln d/d for some ε ∈ [εd , 1 − εd].

Our goal is to show that for a random pair (G, σ) chosen from Uk(n, m) w.h.p. there is a
larger independent set τ in G that contains σ as a subset. More precisely, τ is supposed to
have size k(1 + 2ε

1−ε
). In order to construct such a set τ we need the following concept.

Definition 41. A vertex v ∈ V\σ is called σ -pure in G if it is not adjacent to any vertex
in σ .

Basically, in order to expand σ we are going to show that G has an independent set
I ⊂ V \ σ of size |I| = 2εk/(1 − ε) consisting of σ -pure vertices. Then τ = σ ∪ I is the
desired larger independent set. We begin by estimating the number of σ -pure vertices and
the density of the graph that they span.

Random Structures and Algorithms DOI 10.1002/rsa



470 COJA-OGHLAN AND EFTHYMIOU

Lemma 42. Let (G, σ) be chosen from Pk(n, m), where k = (1 − ε) ln d
d n with ε ∈

[10 ln ln d/ ln d, 1]. Let Q be the set of σ -pure vertices. Then with probability at least
1 − exp

(− n
d

)
the following two statements hold.

1. Let N = |Q|. Then N ≥ (1 − od(1))dε−1n.
2. Let M be the number of edges in the induced subgraph G [Q]. Then M ≤ ( 1

2 +δ)d2ε−1n,
with 0 < δ < 2d−ε/3.

Proof. Instead of working directly with the distribution Pk(n, m), let us consider the fol-
lowing variant P ′

k(n, m). First, choose a set σ ′ ⊂ V of size k uniformly at random. Then,
construct a graph G′ by inserting each of the

(n
2

) − (k
2

)
possible edges that do not join two

vertices in σ ′ with probability p = m/(
(n

2

) − (k
2

)
) independently.

Thus, the number of edges in G′ is binomially distribution with mean m. Furthermore,
given that G′ has precisely m edges, it is a uniformly random graph with this property in
which σ ′ is an independent set. Therefore, for any event A we have

PPk (n,m) [A] = PP ′
k (n,m)

[
A | |E(G′)| = m

]
≤ PP ′

k (n,m) [A]

P
[
Bin

((n
2

) − (k
2

)
, p
) = m

] = �(
√

m) · PP ′
k (n,m) [A] , (58)

where the last step follows from Stirling’s formula.
Now, let N ′ be the number of σ ′-pure vertices in G′. For each vertex v �∈ σ the number of

neighbours in σ is binomially distributed with mean kp. In effect, v is pure with probability
(1 − p)k . Since these events are mutually independent for all v �∈ σ , N ′ has a binomial
distribution Bin(n − k, (1 − p)k). Hence, letting s = k/n = (1 − ε) ln d/d, we have

E
[
N ′] = (n − k)(1 − p)k ∼ (1 − s)n exp(−kp) ∼ (1 − s)n exp

[
− ds

1 − s2

]
≥ (1 − s)n exp

[−ds
(
1 + 2s2

)] ≥ 0.99ndε−1,

provided that d is sufficiently big. Letting γ = d−ε/3 = od(1), we obtain from Theorem 8
(the Chernoff bound)

P
[
N ′ < (1 − γ )ndε−1

] ≤ exp
[−ndε/3−1/4

] ≤ exp [−2n/d]

for d large enough. Together with (58) this implies the first assertion.
To prove the second assertion, we need an upper bound on N ′. Once more by the Chernoff

bound,

P
[
N ′ > (1 + γ )ndε−1

] ≤ exp
[−ndε/3−1/8

] ≤ exp [−2n/d] (59)

for d large enough. Let Q be the set of σ ′-pure vertices in G′. Since each potential edge
that does not link two vertices in σ ′ is present in G′ with probability p independently, given
the value of N ′ the number M ′ of edges spanned by Q is binomially distributed with mean(N ′

2

)
p. Therefore,

E
[
M ′|N ′ ≤ (1 + γ )ndε−1

] ≤ (1 + γ )2n2d2ε−2

2
· dn/2(n

2

) − (k
2

) ≤ 1 + 3γ

2
nd2ε−1,
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provided that d is large. Hence, by the Chernoff bound and (59),

P

[
M ′ >

(
1

2
+ 2γ

)
nd2ε−1

]
≤ P

[
M ′ >

(
1

2
+ 2γ

)
nd2ε−1

∣∣∣∣N ′ ≤ (1 + γ )ndε−1

]
+ P

[
N ′ > (1 + γ )ndε−1

]
≤ exp

[−nd2ε−1/8
] + exp [−2n/d] ≤ 2 exp [−2n/d]

(60)

for d big. Finally, the second assertion follows from (58) and (60).

Proof of Theorem 5. Suppose that k = (1 − ε)n ln d/d. Let (G, σ) be a pair chosen from
the distribution Pk(n, m). Let Q be the set of σ -pure vertices and let N , M be as in Lemma 42.
Crucially, given Q, N , M, the induced subgraph G [Q] is just a uniformly random graph on
N vertices with M edges, because the conditioning only imposes the absence of Q-σ -edges.
In other words, G [Q] is nothing but a random graph G(N , M). We are going to use this
observation to show that G [Q] contains a large independent set w.h.p.

Let A be the event that N ≥ (1 − od(1))dε−1n and M ≤ ( 1
2 + od(1))d2ε−1n. Then by

Lemma 42

PPk (n,m) [A] ≥ 1 − exp(−n/d). (61)

Given A, the average degree of G [Q] is

D = 2M

N
≤ (1 + od(1))

d2ε−1

dε−1
= (1 + od(1))dε.

Let B be the event that α(G [Q]) ≥ (2 −od(1))N ln D
D . Since G [Q] is distributed as G(N , M),

Corollary 16 implies that

PPk (n,m) [B|A] ≥ 1 − exp

(
− 8n

ε3d ln3 d

)
. (62)

Combining (61) and (62) with Theorem 18, we thus get

PUk (n,m) [A ∩ B] = 1 − o(1). (63)

Now assume that (G, σ) ∈ A ∩ B. Let I be the largest independent set of G [Q]. Then

|I| = (1 − od(1))
2dε−1n · ln(dε)

dε
= (1 − od(1))

2ε ln d

d
= (1 − od(1))

2εk

1 − ε
. (64)

Since σ ∪ I is independent, (64) shows that σ is ((2−od(1))ε/(1−ε), 0)-expandable. Thus,
the assertion follows from (63).

7. PROOF OF THEOREM 6

Let εd = 3 ln ln d/ ln d → 0. In this section we assume that k = (1 + ε)n ln d/d with
εd ≤ ε ≤ 1 − εd , and that d ≥ d0 for some large enough constant d0 > 0. Assuming that
γ , δ > 0 are reals such that

γ > εd and δ < γ + 2(ε − εd)

1 + ε
, (65)

Random Structures and Algorithms DOI 10.1002/rsa



472 COJA-OGHLAN AND EFTHYMIOU

we are going to show that in a pair (G, σ) chosen from the distribution Uk(n, m), σ is not
(γ , δ)-expandable.

To see why this is plausible, consider a pair (G, σ) chosen from the distribution Pk(n, m).
(The following argument is not actually needed for our proof of Theorem 6; it is only
included to facilitate understanding.) Then for each vertex v �∈ σ the expected number of
neighbours of v inside of σ is greater than kd/n = (1 + ε) ln d. Indeed, one could easily
show that for each vertex v the number of neighbours in σ dominates a Poisson variable
Po((1+ε) ln d). Hence, the probability that v is σ -pure is bounded by exp(−(1+ε) ln d) =
d−ε−1, and thus the expected number of σ -pure vertices is ≤ nd−ε−1 = od(1) ·k. In effect, in
order to expand σ significantly we would have to include some vertices that are not σ -pure.
But each such vertex would ‘displace’ some other vertex from σ (by the very definition of
σ -pure). In fact, most vertices that are not σ -pure have several neighbours in σ , and thus it
seems impossible to expand σ substantially without first removing a significant share of its
vertices.

To actually prove Theorem 6 we use a first moment argument. We begin by analysing
the planted model.

Lemma 43. With d ≥ d0 sufficiently large and k, γ , δ as above, we have

PPk (n,m)[σ is not (γ , δ)-expandable ] ≥ 1 − exp
(
− n

d

)
.

Proof. Let s = k/n. For (G, σ) chosen from the distribution Pk(n, m), let X be the number
of independent sets τ such that

|τ | = (1 + γ )k and |τ ∩ σ | ≥ (1 − δ)k. (66)

The total number of ways to choose a set τ ⊂ V satisfying (66) is

H =
(

k

(1 − δ)k

)(
n − k

(γ − δ)k

)
(67)

(first choose (1 − δ)k vertices from σ , then choose the remaining (1 + γ )k − (1 − δ)k =
(γ − δ)k vertices from V \ σ ). Furthermore, for any τ ⊂ V satisfying (66) the probability
of being independent is

P =
((n

2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−δ)k

2

)
m

)
/

((n
2

) − (k
2

)
m

)
(68)

Indeed, in order for both σ and τ to be independent we have to forbid all edges that connect
two vertices in either set, and the number of potential such edges is

(|σ |
2

) + (|τ |
2

) − (|σ∩τ |
2

)
by inclusion/exclusion. This explains the numerator in (68), and the denominator simply
reflects that G is chosen randomly from all graphs in which σ is independent.

Combining (67) and (68) and using the linearity of the expectation, we see that

E [X] = H · P . (69)

We are going to show that E [X] < e−d/n and then apply Markov’s inequality to obtain the
lemma.
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We begin by estimating H and P separately. For H we get

H =
(

k

δk

)(
(1 − s)n

(γ + δ)sn

)
≤

(e

δ

)δk
(

e(1 − s)

(γ + δ)s

)(γ+δ)k

= exp

[
s

[
δ(1 − ln δ) + (γ + δ)

(
1 + ln

(
1 − s

(γ + δ)s

))]
n

]
≤ exp

[
s
[
δ(1 − ln δ) + (γ + δ) (1 − ln(γ + δ) − ln s)

]
n
]

.

As we assume that s ≥ ln d/d and γ ≥ εd ≥ 1/ ln d and δ ≥ 0, we have − ln s ≤ ln d
and − ln(γ + δ) ≤ ln ln d. Furthermore, the function x �→ x(1 − ln x) is monotonically
increasing for x ≤ 1. Hence, if γ + δ ≤ 1, then δ(1 − ln δ) ≤ (γ + δ) (1 − ln(γ + δ)). If,
on the other hand, γ + δ > 1, then δ(1 − ln δ) ≤ 1 < γ + δ. In either case we obtain

1

n
ln H ≤ s(γ + δ)(1 + ln ln d − ln d). (70)

With respect to P , we have

E =
((n

2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−δ)k

2

)
m

)/((n
2

) − (k
2

)
m

)

=
m−1∏
j=0

(n
2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−δ)k

2

) − j(n
2

) − (k
2

) − j
≤

((n
2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−δ)k

2

)
(n

2

) − (k
2

)
)m

= O(1)·
(

1 − s2 − (1 + γ )2s2 + (1 − δ)2s2

1 − s2

)m

= O(1)·
(

1 − s2(γ + δ)(2 + γ − δ)

1 − s2

)m

.

Since m = dn/2 and d = (1 + ε) ln d/d, the elementary inequality ln(1 − x) ≤ −x yields

1

n
ln E ≤ d

2
ln

(
1 − s2(γ + δ)(2 + γ − δ)

) ≤ −s(γ + δ)

(
1 + γ − δ

2

)
(1 + ε) ln d.

(71)

Finally, plugging (70) and (71) into (69), we get for d ≥ d0 large enough

1

n
ln E [X] = 1

n
ln H + 1

n
ln E ≤ s(γ + δ)

[
1 + ln ln d − ln d −

(
1 + γ − δ

2

)
(1 + ε) ln d

]

≤ s(γ + δ)

[
1 + ln ln d −

(
ε + γ − δ

2

)
ln d

]

≤ s(γ + δ)
[
1 + ln ln d − εd

2
ln d

]
[by our assumption (65) and γ , δ]

≤ −s(γ + δ) [as εd = 3 ln ln d/ ln d]

≤ −sεd ≤ −1/d [as γ ≥ ε and s ≥ ln d/d].

Thus, the assertion follows from Markov’s inequality.

Theorem 6 follows directly from Lemma 43 and Theorem 18.
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8. PROOF OF THEOREM 7

Let εd → 0 slowly. Throughout this section we assume that

(1 + εd)
ln d

d
· n ≤ E [μ(G(n, m), λ)] ≤ (2 − εd)

ln d

d
· n. (72)

The proof of Theorem 7 is based on a conductance-type argument, similar in spirit to the
ones used in [13,25]. We are going to show that the Metropolis process can be “trapped” in a
tiny “cluster” of independent sets from which it is likely to escape only after an exponential
number of steps. More specifically, we already know (from Theorem 3) that the large
independent sets of our random graph shatter into an exponential number of tiny “clusters”.
Think of them as the peaks in a mountain range. We are going to show that, typically, to pass
from one peak to another, the Metropolis process has to follow a narrow “ridge” consisting
of relatively small independent sets. Moreover, under the stationary distribution the total
mass of the “ridges” that from one cluster to the others typically is tiny by comparison to
the mass of the cluster itself.

To be more specific, let

K = {
k : |E [

μ(Gn,m, λ)
] − k| ≤ 4n/d

}
. (73)

We show that
⋃

k∈K Sk can be partitioned into parts C1, . . . , CN disconnected with each
other. That is, it is impossible for the process to move from one part to another without
using independent sets of size much smaller than the minimum k ∈ K .

The “typical” independent sets in
⋃

k∈K Sk , belong only to some Ci, for i ∈ [N]. We
consider a process that starts from such a typical independent set, i.e. it will start from
some Ci. Then the time for the chain to reach equilibirium depends heavily on the number
of transitions that are required to escape from Ci. As we are going to show, this time is
typically exponentially large. This will imply that the mixing time is exponentially large,
too.

Before showing Theorem 7 we provide some auxiliary results. The following proposition
shows that for a given parameter λ the stationary distribution of the Metropolis process
concentrates on a small range of sizes of independent sets.

Proposition 44. With probability at least 1 − 2 exp
[−n/(2d2 ln4 d)

]
the random graph

G = G(n, m) has the following property.

For an independent set I chosen from the stationary distribution of the Metropolis process on G
we have

P[|I| /∈ K] ≤ exp (−n/d) (74)

(where in (74) probability is taken over the choice of I only).

The proof of Proposition 44 appears in Section 8.1.

Lemma 45. W.h.p. the random graph G = G(n, m) has the following property. The
set

⋃
k∈K Sk(G) admits a partition into classes C1, . . . , CN such that the following three

statements hold.
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C1. The distance between any two independent sets in different classes is at least 2.
C2. For a random set I chosen from the stationary distribution of the Metropolis process

we have

P[I ∈ Ci] ≤ 5 exp
(−n/(2d2 ln4 d)

)
for each i ≤ i ≤ N .

C3. Furthermore, P[I ∈ ⋃
1≤i≤N Ci] ≥ 1 − 5 exp

(−n/(2d2 ln4 d)
)
.

The proof of Lemma 45 appears in Section 8.2.

Proof of Theorem 7. Let K be as in (73) and assume that G = Gn,m is such that
⋃

k∈K Sk(G)

has a partition C1, . . . , CN satisfying C1–C3 in Lemma 45. We are going to show that the
mixing time of the Metropolis process exceeds exp

(
n/d3

)
. The proof is by contradiction.

Thus, assume that the mixing time of the Metropolis process is T ≤ exp
(
n/d3

)
. Let It be

the state of the Metropolis process at time (t ≥ 0).
Let t1 = n2T and t2 = 2n2T . Since T is the mixing time, for any t1 ≤ t ≤ t2 the

distribution of It is extremely close to the stationary distribution. More precisely, if I∞
chosen from the stationary distribution, then for any t ∈ [t1, t2] we have

‖It − I∞‖tv ≤ exp
(−n2

)
.

Therefore, C3 implies that for any t ∈ [t1, t2],

P

[
It /∈

⋃
1≤i≤N

Ci

]
≤ P

[
I∞ /∈

⋃
1≤i≤N

Ci

]
+ ‖It − I∞‖tv ≤ 6 exp

[−n/(2d2 ln4 d)
]

.

Applying the union bound, we get for d ≥ d0 large enough

P

[
∃t ∈ [t1, t2] : It /∈

⋃
1≤i≤N

Ci

]
≤ 6 exp

(
− n

2d2 ln4 d
+ n/d3

)

≤ exp

(
− n

3d2 ln4 d

)
. (75)

In other words, we have shown that to get from It1 to It2 , the Metropolis process very likely
only passes through independent sets from

⋃
1≤i≤N Ci.

Most likely, the two independent sets It1 , It2 belong to different classes of the partition
C1, . . . , CN , because the time difference t2 − t1 = n2T is much bigger than the mixing time
T . Formally, if I∞ is chosen from the stationary distribution and i1 such that It1 ∈ Ci1 , then
by C2

P
[
It2 ∈ Ci1

] ≤ P
[
I∞ ∈ Ci1

] + ∥∥It2−t1 − I∞
∥∥

tv
≤ 2 exp(−n/(3d2 ln4 d)). (76)

Combining (75) and (76), we thus get

P[∃i, j ∈ [N], i �= j : It1 ∈ Ci ∧ It2 ∈ Cj] ≥ 1 − exp(−n/(3d2 ln4 d)). (77)

Thus, assume that there are two distinct i, j ∈ [N] such that It1 ∈ Ci and It2 ∈ Cj. Let t > t1 be
the first time that It /∈ Ci. Then by definition of the Metropolis process, dist(It , It−1) ≤ 1.
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Consequently, It /∈ ⋃
l∈N Cl because otherwise there would be two independent sets in

different classes at distance one. Thus,

P[∃i, j ∈ [N], i �= j : It1 ∈ Ci ∧ It2 ∈ Cj] ≤ P

[
∃t1 ≤ t ≤ t2 : It /∈

⋃
1≤i≤N

Ci

]
,

in contradiction to (75) and (77).

8.1. Proof of Proposition 44

For a graph G, let

RG(k, λ) = |Sk(G)|λk .

It is easy to deduce from the definition of Metropolis process (see e.g. [25]) that for any set
of integers A it holds that

P[|I| ∈ A] ∝
∑
k∈A

RG(k, λ).

Therefore, we have

P[|I| /∈ A] =
∑

k /∈A RG(k, λ)∑
k RG(k, λ)

≤
∑

k /∈A RG(k, λ)∑
k∈A RG(k, λ)

. (78)

Consider some λ that satisfies (72). Then, Proposition 44 will follow by bounding appro-
priately the rightmost ratio above, for A = K (as defined in (73)) and G being a typical
instance of G(n, m).

Remark. Observe that when the graph G is distributed as in G(n, m) the quantity RG is
a random variable which depends only on the underlying graph.

Before proving the proposition we need some preliminary results. With the parameter
λ > 0 and the expected degree d in mind, for any x ∈ (0, 1) we define the following
function:

fλ(x) = −(x ln x + (1 − x) ln(1 − x)) + d

2
ln(1 − x2) + x ln λ.

It is straightforward to verify that 1
n ln E[RG(k, λ)] ∼ fλ(k/n). fλ(x) is twice differentiable,

as a matter of fact it holds that

f ′
λ(x) = ln(1 − x) − ln x − d

x

1 − x2
+ ln λ (79)

f ′′
λ (x) = − 1

x(1 − x)
− d

1 + x2

(1 − x2)2
. (80)

For any λ and x ∈ (0, 1) it holds that f ′′
λ (x) < 0. That is, f ′

λ(x) is strictly decreasing.
Furthermore, if for given λ, d there exists x0 ∈ (0, 1) such that

λ = x0

1 − x0
exp

(
d

x0

1 − x2
0

)
, (81)
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then fλ(x0) is a global maximum for fλ. Since f ′
λ(x) is strictly decreasing, for any given

x′ ∈ (0, 1) and d, we can find unique λ0 > 0 such that fλ0(x) is maximized when x = x′.

Claim 46. Take x0 ∈ (0, 1) and let λ be such that fλ(x) is maximized for x = x0. Then for
any x such that |x − x0| = t it holds that

fλ(x) ≤ fλ(x0) − 1

2
t2d.

Proof. From (80) it is easy to show that for any x ∈ (0, 1), it holds that f ′′
λ (x) < −d. Also,

for any x ∈ (0, 1) we can find appropriate ξ ∈ [0, 1) such that

fλ(x) = fλ(x0) + (x − x0)f
′
λ(x0) + (x − x0)

2

2
f ′′
λ (ξ)

≤ fλ(x0) − (x − x0)
2

2
d, [as f ′

λ(x0) = 0 and f ′′
λ (x) < −d]

as promised.

Let λc be such that fλc(x) is maximized for x = (1 + c) ln d/d.

Lemma 47. For c ∈ [εd , 1 − εd] and k = (1 + c) ln d
d n, it holds that

P

[
RG(n,m)(k, λc) ≤ exp

(
−14n

√
ln5 d/d3

)
· E[RG(n,m)(k, λc)]

]
≤ exp

[−n/(2d2 ln4 d)
]

.

Proof. The lemma follows directly from Proposition 20.

Lemma 48. For c ∈ [εd , 1 − εd], let k = (1 + c) ln d
d n and

Rc = exp

(
−14n

√
ln5 d/d3

)
E[RG(n,m)(k, λc)].

It holds that

P

⎡
⎢⎣ ∑

k′:|k−k′|> 1.9n
d

R(k′, λc) ≥ exp (−n/d) Rc

⎤
⎥⎦ ≤ exp (−n/(2d)) .

Proof. Observe that for any integer 0 ≤ k′ ≤ 2n ln d/d it holds that

E[RG(n,m)(k
′, λc)] = exp

[
f (k′/n)n + o(n)

]
.

Since the function fλc(x) is increasing for every 0 ≤ x < (1 + c) ln d/d and decreasing for
(1 + c) ln d/d < x < 1, for k0 = k − 1.9n/d and sufficiently large n it holds that

E[RG(n,m)(k0, λc)] ≥ max
k′:|k′−k|>1.9n/d

{
E[RG(n,m)(k

′, λc)]
}

. (82)

Furthermore, using Claim 46 we get that

E[RG(n,m)(k0, λc)] ≤ E[RG(n,m)(k, λc)] exp

(
−1.8n

d
+ o(n)

)
. (83)
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Let Q = ∑
k′:|k−k′|> 1.9n

d
R(k′, λc). It holds that

E[Q] =
∑

k′:|k−k′|> 1.9n
d

E[R(k′, λc)]

≤ nE[RG(n,m)(k0, λc)] [from (82)]

≤ E[RG(n,m)(k, λc)] exp

(
−1.8n

d
+ o(n)

)
. [from (83)] (84)

The lemma follows by applying Markov’s inequality. That is, for sufficiently large d it holds
that

P
[
Q ≥ exp (−n/d) Rc

] ≤ P

[
Q ≥ E[Q] exp

( n

2d

)]
[from (84)]

≤ exp
(
− n

2d

)
, [from Markov’s inequality]

as promised.

Proof of Proposition 44. Let c ∈ (εd , 1 − εd), for εd → 0.
Observe that quantity μ(G, λ) for fixed λ and G distributed as in G(n, m) is a random

variable which depends only on the graph G. We are going to show that for λc it holds that

P

[∣∣∣∣μ(G(n, m), λc) − (1 + c)
ln d

d
n

∣∣∣∣ >
1.95n

d

]
≤ exp [−n/(2d)] . (85)

Observe that once we have the above tail bound, the proposition follows easily from Lemma
48. In particular (85) implies that∣∣∣∣E[μ(G(n, m), λc)] − (1 + c)

ln d

d
n

∣∣∣∣ ≤ 1.95n

d
+ n exp [−n/(2d)] . (86)

Also, from Lemma 48 and (78) we have the following: Consider the Metropolis process with
underlying graph G(n, m) and parameter λc. Then, with probability at least 1−exp(−n/(2d))

over the graph instances G(n, m), if we choose I according to the stationary distribution of
the Metropolis process, then

P[I /∈ K̂] ≤ exp (−n/d) , (87)

where K̂ = {k ∈ N : |k − (1 + c) ln d
d n| ≤ 1.9n

d }. The proposition follows from (86) and (87).
It remains to show (85). By definition we have that for any fixed graph G it holds that

μ(G, λ) = 1
Z(G,λ)

∑n
k=1 kRG(k, λ), where Z(G, λ) = ∑n

k=1 RG(k, λ). From Lemma 48 we
have that with probability at least 1 − exp [−n/(2d)] over the graph instances G(n, m) it
holds that

0 ≤ Z(G(n, m), λc) −
∑
k∈K̂

RG(n,m)(k, λc) ≤ exp (−n/d)

⎛
⎝∑

k∈K̂

RG(n,m)(k, λc)

⎞
⎠ (88)

and

0 ≤
n∑

k=0

kRG(n,m)(k, λc) −
∑
k∈K̂

kRG(n,m)(k, λc) ≤ n exp (−n/(2d))

⎛
⎝∑

k∈K̂

kRG(n,m)(k, λc)

⎞
⎠ .

(89)

Random Structures and Algorithms DOI 10.1002/rsa



ON INDEPENDENT SETS IN RANDOM GRAPHS 479

Combining (88) and (89) we get that with probability at least 1−exp [−n/(2d)] over G(n, m)

it holds that

μ(G(n, m), λc) = (1 + r)
∑
k∈K̂

k
RG(n,m)(k, λc)∑

k∈K̂ RG(n,m)(k, λc)
,

for some |r| ≤ 2n exp (−n/(2d)). Then, it is elementary to verify that the summation on
the r.h.s. is a convex combination of values of k in K . That is, the summation is at most
max{k ∈ K̂} and at least min{k ∈ K̂}. Then (85) follows.

8.2. Proof of Lemma 45

As in (50) let

Zd,k =
{
(G, σ) ∈ �k(n, m) : |Sk(G)| ≥ E|Sk(G(n, m))| · exp

(
−14n

√
ln5 d/d3

)}
.

Lemma 49. Let (G, σ) ∈ �k(n, m) be distributed as in Uk(n, m), for k ∈ K, where K
and μ(G, λ) are as in (73) and (1), respectively. The set

⋃
k∈K Sk(G) admits a partition into

classes C1, . . . , CN such that

1. P[σ ∈ Ci|Zd,k] ≤ exp[−n/(2d1.2)], for any i ∈ [N]
2. P[σ /∈ ⋃

i∈[N] Ci|Zd,k] ≤ exp(−n/d)

3. The distance between two independent sets in different classes is at least 2.

Proof of Lemma 45 (Given Lemma 49). Consider G(n, m) and the Metropolis process
with parameter λ, for λ as in (72). Let the independent set I be chosen according to the
stationary distribution of the process.

Conditional that |I| = k, I is distributed uniformly at random in Sk(G(n, m)), for any
k. For any A ⊂ 2[n] it holds that

P[I ∈ A|Zd,k] ≤ P[I ∈ A|Zd,k , |I| ∈ K] + P[|I| /∈ K|Zd,k]
≤ max

k∈K
{P[I ∈ A|Zd,k , |I| = k]} + P[|I| /∈ K|Zd,k].

the last inequality follows from the fact that P[I ∈ A|Zd,k , |I| ∈ K] is a convex combination
of P[I ∈ A|Zd,k , |I| = j] for j ∈ K . Also, it holds that

P[|I| /∈ K|Zd,k] ≤ P[|I| /∈ K]
P[Zd,k] ≤ 2P[|I| /∈ K] [from Proposition 20]

≤ 4 exp
(−n/(2d2 ln4 d)

)
[from Proposition 44].

Hence,

P[I ∈ A|Zd,k] ≤ max
k∈K

{P[I ∈ A|Zd,k , |I| = k]} + 4 exp
(−n/(2d2 ln4 d)

)
. (90)
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Also, from the law of total probability we get that

P[I ∈ A] ≤ P[I ∈ A|Zd,k] + P[Zc
d,k] [Zc

d,k is the complement of Zd,k]

≤ P[I ∈ A|Zd,k] + exp
(−n/(2d2 ln4 d)

)
[from Proposition 20]

≤ max
k∈K

{P[I ∈ A|Zd,k , |I| = k]} + 5 exp
(−n/(2d2 ln4 d)

)
[from (90)]. (91)

The statement C1 holds from the statement 3 in Lemma 49. Setting A = Ci in (91) and using
Statement 1 from Lemma 49, we get the Statement C2. Similarly, Statement C3 follows by
setting A = (⋃

k∈K Sk

)\(⋃i∈[N] Ci

)
in (91) and using Statement 2 from Lemma 49.

8.3. Proof of Lemma 49

Consider a uniform pair (G, σ) ∈ �k(n, m), for some k ∈ K . For fixed 0 < β < 1, and
|γ | < 1, let Zk,β,γ be the number of independent sets τ ∈ S(1+γ )k(G) such that |σ ∩ τ | =
(1 − β)k. Also, for 0 < β1 < β2 < 1 consider �β = (β1, β2) and let the independent set σ

be called ( �β, γ , δ)-good if G has no independent set τ such

• τ ∈ Sk,γ = ⋃(1+γ )k
t=(1−γ )·k St(G)

• (1 − β2)k < |σ ∩ τ | < (1 − β1)k

while |{τ ′ ∈ Sk,γ : (σ ∩ τ ′) > (1 − β1)k}| < exp (−δn) |Sk(G)|.
Lemma 50. For ψ(x) is as defined in statement of Proposition 37 and s = k/n, it holds
that

1

n
ln EPk (n,m)[Zk,β,γ ] ≤ ψ(β) + ξ(β, γ ) + o(1),

where

ξ(x, y) = s[−x ln(1 + y/x) + y(1 − ln s − ln(x + y))]
+ d

2
ln

(
1 − s2 2y + y2

1 − (1 + 2x − x2)s2

)
.

Proof. Let τ ⊂ V be such that |τ | = (1+γ )k and |σ ∩τ | = (1−β)k. With application of
inclusion/exclusion principle we get that the total number of graphs with m edges in which
σ and τ are independent sets equals((n

2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−β)k

2

)
m

)
.

Since G is chosen uniformly at random among all
((n

2)−(k
2)

m

)
graphs on n vertices and m edges

such that σ is an independent set, we get that

P[τ is independent] =
((n

2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−β)k

2

)
m

)/((n
2

) − (k
2

)
m

)

=
m−1∏
i=0

(n
2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−β)k

2

) − i(n
2

) − (k
2

) − i

Random Structures and Algorithms DOI 10.1002/rsa



ON INDEPENDENT SETS IN RANDOM GRAPHS 481

≤
((n

2

) − (k
2

) − (
(1+γ )k

2

) + (
(1−β)k

2

)
(n

2

) − (k
2

)
)m

≤
(

1 − (1 + γ )2k2 − (1 − β)2k2

n2 − k2
+ O(1/n)

)m

≤ O(1) ·
(

1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)m

[as k = sn].

The total number of ways to choose a set of vertices τ of size (1 + γ )k such that |σ ∩ τ | =
(1 − β)k is equal to

( k
(1−β)k

)( n−k
(γ+β)k

)
. By the linearity of expectation, we get that

E[Zk,β,γ ] = O(1) ·
(

k

(1 − β)k

)
·
(

n − k

(γ + β)k

)
·
(

1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)m

≤ O(1) ·
(

k

βk

)
·
(

n − k

(γ + β)k

)
·
(

1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)m

≤ O(1) ·
(

e

β

)βk

·
(

(1 − s)e

(γ + β)s

)(γ+β)k

·
(

1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)dn/2

≤ O(1) ·
(

e

β

)βk

·
(

e

(γ + β)s

)(γ+β)k

·
(

1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)dn/2

.

(92)

By definition (see Proposition 37), it holds that

exp (ψ(β)n) =
(

e

β

)βk ( e

βs

)βk (
1 − s2 1 − (1 − β)2

1 − s2

)dn/2

. (93)

Combining (92) and (93) we get that

E[Zk,β,γ ]
exp (ψ(β)n)

≤ O(1)

(
β

β + γ

)βk ( e

(γ + β)s

)γ k (
1 − s2 2γ + γ 2

1 − (2 − (1 − β)2)s2

)dn/2

,

(94)

since (
(1 − s)e

(γ + β)s

)(γ+β)k
/(

(1 − s)e

(γ + β)s

)βk

=
(

β

β + γ

)βk (
(1 − s)e

(γ + β)s

)γ k

and

(
1 − s2 (1 + γ )2 − (1 − β)2

1 − s2

)dn/2
/(

1 − s2 1 − (1 − β)2

1 − s2

)dn/2

=
(

1 − s2 2γ + γ 2

1 − (2 − (1 − β)2)s2

)dn/2

.

Taking the logarithm and dividing by n the quantities in (94) we get the lemma.

Lemma 51. There is εd → 0 such that for (1 + εd)n ln d/d ≤ k ≤ (2 − εd)n ln d/d the
following is true: For γ = 4/ ln d, and δ = 1/d1.2 there is �β ∈ [0, 1]2 such that

PUk (n,m)[(G, σ) is ( �β, γ , δ)-good|Zk,d] ≥ 1 − exp(−n/d).
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Proof. Let εd = 100 ln ln d/ ln d. Assume that k = (1+q) ln d/d for some q ∈ [εd , 1−εd].
Consider the functions ψ(x) and ξ(x, y) as defined in the statement of Lemma 50. In what
follows take b = 20

ln d . Let

Hk(x) = ψ(x) + max
(β,ρ)∈A

ξ(β, ρ),

where A = {(β, ρ) ∈ [0, b] × [−γ , γ ]|β + ρ ≥ 0}. Our choices for b and γ ensure that for
any (β, ρ) ∈ A it holds that

ξ(β, ρ) = s[−β ln(1 + ρ/β) + ρ(1 − ln s − ln(β + ρ))]
+ d

2
ln

(
1 − s2 2ρ + ρ2

1 − (1 + 2β − β2)s2

)
≤ s[−(β + ρ) ln(β + ρ) + β ln(β) + ρ(1 − ln s)] − ds2ρ − ds2ρ2/2.

≤ s

[
25

ln ln d

ln d
+ ρ (1 − ln s − ds)

]
[−x ln x is increasing for 0 < x < 1/e and β ln β < 0]

≤ s

[
25

ln ln d

ln d
+ γ q ln d

]
[as s = (1 + q) ln d/d and ρ ≥ −γ ]

< 5qs [as q ≥ 100 ln ln d/ ln d]. (95)

Using (95) and (47), from Lemma 40, we get that

Hk(b) ≤ −13qs ≤ −1300 ln ln d/d. (96)

The function Hk(x) is continuous, therefore there exist b2 > b1 > 0 and ζ such that

sup
b1<β<β2

Hk(β) < −1300 ln ln d/d − ζ

sup
b>β

Hk(β) < −s ln(s) − (1 − s) ln(1 − s) + d

2
ln(1 − s2) − 15s − ζ .

The last relation follows from (48), of Lemma 40 and (95).
Let �k,b1,b2(G, σ), be the number of τ ∈ ⋃(1+γ )k

t=(1−γ )k St(G) such that (1−b2)k ≤ |σ ∩τ | ≤
(1 − b1)k. Then, Markov’s inequality yields

PPk (n,m)[�k,b1,b2 > 0] ≤ EPk (n,m)[�k,b1,b2 ] =
∑
i∈A

∑
j∈B

EPk (n,m)[Zk,j/k,i/k]

where A = [−4k/ ln d, 4k/ ln d] and B = [b1k, b2k]. Using Lemma 50 we get

PPk (n,m)[�k,b1,b2 > 0] ≤ exp

[
n ·

(
sup

b2≤β≤b1

H(β) + o(1)

)]
≤ exp(−10n/d). (97)

Let �k,b1(G, σ) be the number of τ ∈ ⋃(1+γ )k
t=(1−γ )k St(G) such that |σ ∩ τ | > (1 − b1)k.

Moreover, let

μ = E[|Sk(G)|] exp
(−n/d1.2

)
= exp

[
n

(
−s ln s − (1 − s) ln(1 − s) − d

2
ln(1 − s2) − n/d1.2 + o(1)

)]
.
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For the derivation in the second line, see in the proof of Corollary 39. For A′ =
[−4k/ ln d, 4k/ ln d] and B′ = [0, b1k), it holds that

PPk (n,m)[�k,b1 > μ] ≤ EPk (n,m)[�k,b1 ]
μ

≤
∑
i∈A′

∑
j∈B′

EPk (n,m)[Zk,j/k,i/k]
μ

≤ 1

μ
exp

[
n

(
sup
β<b1

H(β) + o(1)

)]
≤ exp (−15n/d) .

The lemma follows by noting the following for δ = 14
√

ln5 d/d3,

PUk (n,m)

[
(G, σ) is not ( �β, γ , δ)-good|Zd,k

]
≤ PUk (n,m)

[
�k,b1 > μ or �k,b1,b2 > 0|Zd,k

]
≤ (1 − o(1))PPk (n,m)

[
�k,b1 > μ or �k,b1,b2 > 0|Zd,k

] · exp

[
14n

√
ln5 d/d3

]
≤ exp(−n/d),

as claimed.

Now, Lemma 49 follows from the above lemma and by using arguments very similar to
those in the proof of Proposition 37.

9. REMAINING PROOF

9.1. Proof of Lemma 9

This is a standard counting argument. The random graph G∗(n, m) is obtained by choosing
one of the n2m possible sequences of vertex pairs uniformly at random. Out of these n2m

sequences, precisely 2m
(n

2

)
m

sequences induce simple graphs with m edges (where (·)m

denotes the falling factorial). Indeed, each of the
((n

2)
m

)
simple graph with m edges can be

turned into a sequence of pairs by ordering the edges arbitrarily (a factor m!), and then
choosing for each edge in which order its vertices appear in the sequence (a factor 2m).
Hence, letting � denote the event that G∗(n, m) is a simple graph with m edges, we see that

P[G∗(n, m) ∈ �] = 2m
(n

2

)
m

n2m
=

(
2

n2

)m

·
m−1∏
j=0

(
n

2

)
− j =

m−1∏
j=0

1 − 1

n
− 2j

n2

= exp

[
m∑

j=0

ln

(
1 − 1

n
− 2j

n2

)]

∼ exp

[
−

m∑
j=0

1

n
+ 2j

n2

]
[using ln(1 − x) = −x + O(x2) as x → 0]

∼ exp
[−c − c2

]
. (98)
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Furthermore, given that the event � occurs, G∗(n, m) is just a uniformly distributed (simple)
graph with m edges. Therefore, (98) yields

P [G(n, m) ∈ A] = P
[
G∗(n, m) ∈ A|�] ≤ P [G∗(n, m) ∈ A]

P [G∗(n, m) ∈ �]

∼ exp
[
c + c2

]
P
[
G∗(n, m) ∈ A

]
,

as claimed.

9.2. Proof of Corollary 10

Let Q ⊂ V be a set of size k, and let ZQ(G) = 1 if Q is independent in G, and set ZQ(G) = 0
otherwise. The total number of sequences of m vertex pairs such that Q is an independent
set in the corresponding graph G∗(n, m) equals (n2 −k2)m (just avoid the k2 pairs of vertices
in Q). Hence,

E
[
ZQ(G∗(n, m))

] = (n2 − k2)m

n2m
, and similarly (99)

E
[
ZQ(G(n, m))

] =
((n

2

) − (k
2

)
m

)/((n
2

)
m

)
= (

(n
2

) − (k
2

)
)m(n

2

)
m

. (100)

Combining (99) with (100) and using ln(1 − x) = −x + O(x2) as x → 0, we obtain

E
[
ZQ(G∗(n, m))

]
E
[
ZQ(G(n, m))

] = 2m
(n

2

)
m

n2m
· (n2 − k2)m

2m(
(n

2

) − (k
2

)
)m

(98)∼ exp(−c − c2)
(n2 − k2)m

2m(
(n

2

) − (k
2

)
)m

= exp

[
−c − c2 −

m−1∑
j=0

ln

(
1 − n − k

n2 − k2
− 2j

n2 − k2

)]

∼ exp

[
−c − c2 + m(n − k)

n2 − k2
+ m2

n2 − k2

]

= exp

[
−c − c2 + c

1 + k/n
+ c2

1 − (k/n)2

]

= exp

[
− ck

n + k
+ c2k2

n2 − k2

]
.

Hence, by the linearity of expectation,

E[Zk(G
∗(n, m))] =

(
n

k

)
· E

[
ZQ(G∗(n, m))

]
= exp

[
− ck

n + k
+ c2k2

n2 − k2

]
·
(

n

k

)
E
[
ZQ(G(n, m))

]
= exp

[
− ck

n + k
+ c2k2

n2 − k2

]
E[Zk(G(n, m))].

Taking logarithms and recalling that k ≤ 0.99n completes the proof.
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[14] P. Erdős, Some remarks on the theory of graphs, Bull Am Math Soc 53 (1947), 292–294.

[15] U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semirandom
graph, Random Struct Algor 16 (2000), 195–208.

[16] A. M. Frieze, On the independence number of random graphs, Discrete Math 81 (1990),
171–175.

[17] A. M. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Struct Algor
10 (1997), 5–42.

[18] A. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT, J Algor
20 (1996), 312–355.

[19] Y. Fu and P. W. Anderson, Applications of statistical mechanics to NP-complete problems in
combinatorial optimization, J Phys A 19 (1986), 1605.

[20] D. Gamarnik, T. Nowick, and G. Swirscsz, Maximum weight independent sets and matchings
in sparse random graphs, Random Struct Algor 28 (2005), 76–106.

[21] D. Gamarnik and M. Sudan, Limits of Local Algorithm over sparse random graphs, arXiv
preprint arXiv:1304.1831, 2013.

[22] A. Gaudilliére, B. Scoppola, E. Scoppola, and M. Viale, Phase transitions for the cavity approach
to the clique problem on random graphs, J Stat Phys 145 (2011), 1127–1155.

[23] G. R. Grimmett and C. J. H. McDiarmid, On colouring random graphs, Math Proc Cambridge
Philos Soc 77 (1975), 313–324.

Random Structures and Algorithms DOI 10.1002/rsa



486 COJA-OGHLAN AND EFTHYMIOU

[24] H. Hatami, L. Lovász, and B. Szegedy, Limits of local-global convergent graph sequences,
arXiv preprint, Available at: http://arxiv.org/abs/1205.4356, 2012.

[25] M. R. Jerrum, Large cliques elude the Metropolis process, Random Struct Algor 3 (1992),
347–359.

[26] R. M. Karp, The probabilistic analysis of some combinatorial search algorithms, F. Traub
(Editor), In Algorithms and Complexity: New Directions and Recent Results, Academic Press,
USA, 1976, pp. 1–19.

[27] R. Karp and M. Sipser, Maximum matchings in sparse random graphs, In proceedings of FOCS,
Nashville, Tennessee, USA, 1981, pp. 364–375.

[28] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimisation by simulated annealing, science 220
(1983), 671–680.

[29] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjianc, and L. Zdeborova, Gibbs states
and the set of solutions of random constraint satisfaction problems, Proc Natl Acad Sci USA
104 (2007), 10318–10323.
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