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This chapter is an extended version of The many facets of community detection in complex
networks, Appl. Netw. Sci. 2: 4 (2017) by the same authors.

4.1 Introduction

A precise definition of what constitutes a community in networks has remained elusive.
Consequently, network scientists have compared community detection algorithms on bench-
mark networks with a particular form of community structure and classified them based on the
mathematical techniques they employ. However, this comparison can be misleading because
apparent similarities in their mathematical machinery can disguise different reasons for why
we would want to employ community detection in the first place. Here we provide a focused
review of these different motivations that underpin community detection. This problem-driven
classification is useful in applied network science, where it is important to select an appropriate
algorithm for the given purpose. Moreover, highlighting the different approaches to community
detection also delineates the many lines of research and points out open directions and avenues
for future research.

While research related to community detection dates back to the 1970s in mathematical soci-
ology and circuit design [21, 46], Newman’s and Girvan’s work on modularity in complex
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© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.



�

� �

�

106 Advances in Network Clustering and Blockmodeling

systems just over ten years ago revitalized the field of community detection, making it one
of the main pillars of network science research [53, 54]. The promise of community detection,
that we can gain a deeper understanding of a system by discerning important structural patterns
within a network, has spurred a huge number of studies in network science. However, it has
become abundantly clear by now that this problem has no canonical solution. In fact, even a
general definition of what constitutes a community is still lacking. The reasons for this are not
only grounded in the computational difficulties of tackling community detection. Rather, vari-
ous research areas view community detection from different perspectives, illustrated by the lack
of a consistent terminology: “network clustering”, “graph partitioning”, “community”, “block”
or “module detection” all carry slightly different connotations. This jargon barrier creates con-
fusion, as readers and authors have different preconceptions and intuitive notions are not made
explicit.

We argue that community detection should not be considered as a well-defined problem, but
rather as an umbrella term with many facets. These facets emerge from different goals and
motivations for what it is about the network that we want to understand or achieve, and lead
to different perspectives on how to formulate the problem of community detection. It is crit-
ically important to be aware of these underlying motivations when selecting and comparing
community detection methods. Thus, rather than an in-depth discussion of the technical details
of different algorithmic implementations [16, 26, 28, 47, 52, 58, 72, 82], here we focus on the
conceptual differences between different perspectives on community detection.

By providing a problem-driven classification, however, we do not argue that the different
perspectives are unrelated. In fact, in some situations, different mathematical problem formu-
lations can lead to similar algorithms and methods, and the different perspectives can offer
valuable insights. For example, for undirected networks, optimizing the objective function mod-
ularity [54], initially proposed from a clustering perspective, can be interpreted as optimizing
both a particular stochastic block model [50] and an auto-correlation measure of a particular
diffusion process on the networks [20]. In other situations, however, such relationships disap-
pear.

While some perspectives arguably are more principled than others, we do not assert that there
is a particular perspective that is a priori better suited for any given network. In fact, as in data
clustering [31], no one method can consistently perform the best on all kinds of networks [59].
Community detection is an unsupervised learning task that is blind to a researcher’s intent with
the analysis. Accordingly, to understand a particular method’s usefulness, we must take the
researcher’s interest in the communities into context [80].

In the following, we unfold different aims underpinning community detection – in a relaxed
form that includes assortative as well as disassortative group structures with dense and sparse
internal connections, respectively – and discuss how the resulting problem perspectives relate
to various applications. We focus on four broad perspectives that have served as motivation for
community detection in the literature: (i) the cut-based perspective minimizes a constraint such
as the number of links between groups of nodes, (ii) the clustering perspective maximizes inter-
nal density in groups of nodes, (iii) the stochastic block model perspective identifies groups of
nodes in which nodes are stochastically equivalent, and (iv) the dynamical perspective identifies
groups of nodes in which flows stay for a relatively long time such that they form building blocks
of dynamics on networks (see Figure 4.1). While this categorization is not unique, we believe
that it can help clarify concepts about community detection and serve as a guide to determining
the appropriate method for a particular purpose.
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(i) Cut-based perspective (ii) Clustering perspective (iii) Stochastically equivalent 

nodes

(iv) Dynamical perspective
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x = f(x) ≈ y = g(y)· ·

Figure 4.1 Schematic of four different approaches to community detection. (i) The cut-based perspective
aims at minimizing the number of links between groups of nodes, independently of their intrinsic structure.
(ii) The clustering perspective produces groups of densely connected nodes. (iii) The stochastic equivalence
perspective looks for groups in which nodes are stochastically equivalent, typically inferred through a
generative statistical network model. (iv) The dynamical perspective focuses on the impact of communities
on dynamical processes and searches for dynamically relevant coarse-grained descriptions.

4.2 Minimizing Constraint Violations: the Cut-based Perspective

An early network partitioning application was circuit layout and design [3, 26]. This application
spurred development of the now classical Kernighan–Lin algorithm [39] and the work by Donath
and Hoffmann [21, 22], who were among the first to suggest the use of eigenvectors for network
partitioning. For example, we might be confronted with a network that describes the signal flows
between different components of a circuit. To design the circuit in an efficient way, our goal is
now to partition the network into a fixed number of approximately equally sized groups for
balanced load with a small number of edges between those groups for minimal communication
overhead. The edges that run between the groups are commonly denoted as the cut. To design
the most efficient circuit, our aim is thus to minimize this cut with more or less balanced groups.

To make this more precise, let us consider one specific variant of this scheme, known as
ratio cut [32]. Let us denote the adjacency matrix of an undirected network N with n nodes
by A, where Auv = 1 if there is a connection from node u to node v, and Auv = 0 if there is no
connection. We can now write the problem of optimizing the ratio cut for a bipartition of all
nodes V into two communities V1 and V2 = V ∖V1 as follows [32, 79]:

min
V1

RatioCut(V1,V2) ∶= min
Vu

∑
u

cut(Vu,V ∖Vu)
|Vu| , (4.1)

where cut(V1,V2) ∶=
∑

u∈V1,v∈V2
(Auv + Avu)∕2 is the sum of the possibly weighted edges

between the two vertex sets V1,V2. Related problem formulations also occur in the context
of parallel computations and load scheduling [64, 77], where approximately equally sized
portions of work are to be sent to different processors, while keeping the dependencies
between those tasks minimal. Further applications include scientific computing [64, 77], where
partitioning algorithms divide the coordinate meshes when discretizing and solving partial
differential equations. Image segmentation problems may also be phrased in terms of cut-based
measures [76, 79].

Investigating these types of problems has led to many important contributions to partitioning
networks, in particular in relation to spectral methods. The connection between spectral algo-
rithms and cut-based problem formulations arises naturally by considering relaxations of the
original, combinatorially hard discrete optimization problems, such as Equation (4.2), or other
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related objective functions such as the average or normalized cuts. This can be best seen when
rewriting the above optimization problem as follows:

min
f

f TLf (4.2)

subject to f ⟂ 𝟏 ∥ f ∥=
√

n (4.3)

where fu ∶=

{
−
√|V2|∕|V1| if u ∈ V1√|V1|∕|V2| if u ∈ V2

(4.4)

Here the Laplacian matrix of the network has been defined as L = D − A, where D is the diagonal
degree matrix with Duu =

∑
vAuv. Fiedler realized already in the 1970s that the second smallest

eigenvalue of the Laplacian matrix is associated with the connectivity of the network, and that
the associated eigenvector thus can be used to compute spectral bi-partitions [24, 25]. Such spec-
tral ideas led to many influential algorithms and methods; see, for example, von Luxburg [79]
for a tutorial on spectral algorithms.

In this cut-based problem formulation, there is no specification as to how the identified groups
in the partition should be connected internally. While the implicit constraint is that the groups
must not split into groups with an even smaller cut, there is no specification that the groups of
nodes should be densely connected internally. Indeed, the type of networks considered in the
context of cut-based partitions are often of a mesh- or grid-like form, for which several guaran-
tees can be given in terms of the quality of the partitions obtained by spectral algorithms [77].
While such non-dense groupings emerging from the analysis of non-clique structures [73] can
also be dynamically relevant (see section 4.5), they are likely missed when employing a com-
munity notion that focuses on finding dense groupings, as discussed next.

4.3 Maximizing Internal Density: the Clustering Perspective

A different motivation for community detection arises in the context of data clustering. We use
the term clustering, which can have many definitions, in the following sense: for a set of given
data points in a possibly high-dimensional space, the goal is to partition the points into a number
of groups such that points within a group are close to or similar to each other in some sense,
and points in different groups are more distant from each other. To achieve this goal, one often
constructs a proximity or similarity network between the points and tries to group together nodes
that are closer to each other than they are to the rest of the network. This approach results in a
form of community detection problem where the closeness between nodes is described by the
presence and weight of the edges between them.

Although minimizing the cut size and maximizing the internal number of links are closely
related, there are differences pertaining to the typical constraints and search space associated
with these objective functions. First, when employing a clustering perspective, there is normally
no a priori information about the number of groups we are looking for. Second, we do not
necessarily require the groups to be balanced in any way; rather we would like to find an optimal
split into densely knit groups irrespective of their relative sizes.

Unsurprisingly, finding an optimal clustering is a computationally difficult problem. Further,
as Kleinberg has shown [40], there are no clustering algorithms that satisfy a certain set of
intuitive properties we might require from a clustering algorithm in continuous spaces. Similar
problems also arise in the discrete setting for clustering of networks [13].
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Nevertheless, there exists a large number of methods that follow a clustering-like paradigm
and separate the nodes of a network into cohesive groups of nodes, often by optimizing a quality
function. An important clustering metric in this context is the so-called conductance [4, 37, 41,
78]. Optimizing the global conductance was introduced as a way to produce a global bi-partition
similarly to the two-way ratio-cut. However, this quantity has been successfully employed more
recently as a local quality function to find localized clusters around one or more seed nodes. The
local conductance of a set of nodes Vq ⊂ V can be written

𝜙(Vq) ∶=

∑
u∈Vq,v∉Vq

Auv

min{vol(Vq), vol(V − Vq)}
, (4.5)

where vol(Vq) ∶=
∑

u∈Vq

∑
vAuv is the total degree of the nodes in set Vq, commonly called

its volume in analogy with geometric objects. Interestingly, it has been shown that, in specific
contexts, the conductance can be a good predictor of some latent group structures in real-world
applications [84].

Moreover, a local perspective on community detection has two appealing properties. First, the
definition of a cluster does not depend on the global network structure but only on the relative
local density. Second, only a portion of a network needs to be accessed, which is advantageous
if there are computational constraints in using large networks, or we are only interested in a
particular subsystem. In such cases, we would like to avoid having to apply a method to the
whole network in order to find, for example, the cluster containing a particular node in the
network.

The Newman–Girvan modularity [53, 54] is arguably one of the most common clustering
measures used in the literature and was originally proposed from the clustering perspective dis-
cussed here. It is a global quality function and aims to find the community structure of the
network as a whole. Given a partition C = {V1, … ,Vk} of a network into k groups, the modu-
larity of C can be written as:

Q(C) ∶= 1
2m

k∑
q=1

∑
u,v∈Vq

[
Auv −

dudv

2m

]
, (4.6)

where du =
∑

vAuv is the degree of node u and 2m =
∑

udu is the total weight of all edges in
the network. By optimizing the modularity measure over the space of all partitions, one aims to
identify groups of nodes that are more densely connected to each other than one would expect
from a statistical null model of the network. This statistical null model is commonly chosen to
be the configuration model with preserved degree sequence.

However, a by-product of this choice of a global null-model is the tendency of modularity
to balance the size of the groups in terms of their total connectivity. While different variants
of modularity aim to account for this effect [26], it means modularity can be interpreted as a
trade-off between a cut-based measure and an entropy [20]. Modularity is typically optimized
with spectral or greedy algorithms [11, 26, 51]. While there are problems with modularity, such
as its resolution limit [27] and other spurious effects [27, 29, 30, 44], the general idea has trig-
gered researchers to develop a plethora of algorithms that follow a similar strategy [26]. Several
works have addressed some of the shortcomings, by incorporating a resolution parameter, for
example, or by explicitly accounting for the density inside each group [14, 15]. In practice,
however, less seems to beat more and the original formulation of modularity remains the most
widely used.
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4.4 Identifying Structural Equivalence: the Stochastic Block Model
Perspective

By grouping similar nodes that link to similar nodes within communities, we constrain our-
selves to finding assortative group structure [28]. While we may also have hierarchical clusters
with clusters of clusters, etc., such an assortative structural organization is too restrictive if we
want to define groups based on more general connectivity patterns that include disassortative
communities with weaker interactions within rather than between communities.

In social network analysis, a common goal is to identify nodes within a network that serve
a similar structural role in terms of their connectivity profile. Accordingly, nodes are similar if
they share the same kind of connection patterns to other nodes [46]. This idea is captured in
concepts such as regular equivalence, which states that nodes are regularly equivalent if they
are equally related to equivalent others [23, 33]. The first algorithms for identifying groups of
“approximately equivalent” nodes were deterministic and permuted adjacency matrices to reveal
block structures in so-called block models [6, 81].

A relaxation of regular equivalence is stochastic equivalence [34], where nodes are equivalent
if they connect to equivalent nodes with equal probability. The stochastic formulation general-
izes observations and forms generative models, which can be used for prediction. Because of
this advantage over non-stochastic formulations, we focus on stochastic equivalence.

One of the most popular techniques to model and detect stochastically equivalent relation-
ships in network data is to use stochastic block models (SBMs) [34, 56] and associated inference
techniques. These models have their roots in the social networks literature [5, 34], and provide
a flexible framework for modeling block structures within a network. When considering block
models, we are interested in identifying node groups such that nodes within a community con-
nect to nodes in other communities in an “equivalent way” [28].

Consider a network composed of n nodes divided into k classes. The standard SBM is defined
by a set of node class labels and the affinity matrix Ω. More precisely, the link probability
between two nodes u, v belonging to class cu and cv is given by:

puv ∶= ℙ(Auv) = Ωcucv
.

Under an SBM, nodes within the same class share the same probability of connecting to nodes
of another class. This is the mathematical formulation of having stochastically equivalent nodes
within each class. Finding the latent groups of nodes in a network now amounts to inferring the
model parameters that provide the best fit for the observed network. That is, find the SBM with
the highest likelihood of generating the data.

The standard SBM assumes that the expected degree of each node is a Poisson binomial
random variable, a binomial random variable with possibly non-identical success probabilities
in each trial. Because inferring the most likely SBM typically results in grouping nodes based
on their degree in empirical networks with broad degree distributions, it can be advantageous to
include a degree-correction into the model. In the degree corrected SBM [38], the probability
puv that a link will appear between two nodes u, v depends both on their class labels cu, cv and
their respective degree parameters di, dj (each entry Aij might be a Bernoulli or a Poisson random
variable such as in [38]):

puv ∼ dudvΩcucv
.

Thus, while edges in real-world networks tend to be correlated with effects such as triadic clo-
sure [26], by construction edges are conditionally independent random variables in SBMs.
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Moreover, most common SBMs are defined for unweighted networks or networks with integer
weights by modeling the network as a multi-graph. Though generalizations are available [2, 61],
this is still a less studied area.

In contrast to the notions of community considered above, with stochastic equivalence we are
no longer interested in maximizing some internal density or minimizing a cut. To see this, con-
sider a bipartite network that from a cut- or density-based perspective contains no communities.
From the stochastic equivalence perspective, however, we would say that this network contains
two groups because nodes in each set only connect to nodes in the other set. When adopting an
SBM to detect such structural organization of the links, we explicitly adopt a statistical model
for the networks. The network is essentially an instance of an ensemble of possible networks
generated from such a model.1

This model-based approach comes with several advantages. First, by defining the model, we
effectively declare what is signal and what is noise in the data under the SBM. We can thus pro-
vide a statistical assessment of the observed data with, for example, p-values under the SBM.
In other words, we can identify patterns that cannot be reasonably explained from density fluc-
tuations of edges inherent to any realization of the model. Second, we are able, for example, to
generate new networks from our model with a similar group structure, or predict missing edges
and impute data. Third, we can make strong statements about the detectability of groups within
a network. For example, precise criteria specify when any algorithm can recover the planted
group structure for a network created by an SBM [18, 49]. By fitting an SBM to an observed
adjacency matrix, it is possible to recover such a planted group structure down to its theoretical
limit [48, 49]. These criteria apply to networks generated with SBMs and not real networks in
general, in which case we do not know what kind of process created the network [59]. It is never-
theless a remarkable result since it highlights the fact that there are networks with undetectable
block patterns.

Moreover, this model-based approach also offers ways to estimate the number of communi-
ties from the data by some form of model selection, including hypothesis testing [10], spectral
techniques [42, 70], the minimum description length principle [60], or Bayesian inference [83]
(see Chapter 11).

Finally, the generative nature of SBMs also makes them well suited for constructing bench-
mark networks. As a consequence, many benchmark networks proposed in the literature, such
as the commonly used Lancichinetti–Fortunato-Radicchi (LFR) benchmarks [45], are specific
types of SBMs. Results on these benchmark networks should therefore be taken for what they
are: the ability to recover the underlying group structure of specific types of SBM-generated net-
works. For example, sparse networks without any underlying group structure still can contain
meaningful dynamical building blocks.

4.5 Identifying Coarse-grained Descriptions: the Dynamical Perspective

Let us now consider a fourth alternative motivation for community detection, focusing on
the processes that take place on the network. All notions of community outlined above are
effectively structural in the sense that they are mainly concerned with the composition of

1 This ensemble assumption is also reflected in the modularity formalism, where the observed network is compared to
a null model.
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the network itself or its representation as an adjacency matrix. However, in many cases one
of the main reasons to apply tools from network science is to understand the behavior of a
system. While the topology of a system puts constraints on the dynamics that can take place
on the network, the network topology alone cannot explain the system behavior. For example,
instead of finding a coarse-grained description of the adjacency matrix, we might be interested
in finding a coarse-grained description of the dynamics acting on top of the network with
multi-step paths beyond the nearest neighbors.

Take air traffic as an example. An airline network, with weighted links connecting cities
according to the number of flights between them, can offer some interesting insights about air
traffic. For instance, in the US air traffic network based on the number of flying passengers, Las
Vegas and Atlanta form two major hubs. However, if we focus instead on the passenger flows
based on actual multi-leg itineraries, the two cities show very different behaviors: Las Vegas is
a tourist destination and typically the final destination of itineraries, whereas Atlanta is often
a transfer hub to other final destinations [62, 69]. Thus, these airports play dynamically quite
different roles in the network. Focusing on interconnection patterns alone can give an incom-
plete picture if we are interested in the dynamical behavior of a system, for which additional
dynamical information should be taken into account. Conversely, a concentration of edges with
high impact on the dynamics may arise just from a statistical fluctuation, if the network is seen
as a realization of a particular random network model. In this way, structural and dynamical
approaches can offer complementing information.

In general, however, they are blocks of nodes with different identities that trap the flow or
channel it in specific directions. That is, they form reduced models of the dynamics where blocks
of nodes are aggregated to single meta nodes with similar dynamical function with respect
to the rest of the network. In this view, the goal of community detection is to find effective
coarse-grained system descriptions of how the dynamics take place on the network structure.

To induce multi-step paths and couple also non-neighboring nodes, the dynamical approach
to community detection has primarily focused on modeling the dynamics with Markovian dif-
fusion processes [19, 43, 65], though the work of topological scales and synchronization share
the same common ground [7]. Interestingly, for simple diffusion dynamics such as a random
walk on an undirected network, which is essentially determined by the spectral properties of the
network’s Laplacian matrix, this perspective is tightly connected to the clustering perspective
discussed in section 4.3. This is because the presence of densely knit groups within the network
can introduce a time-scale separation in the diffusion dynamics: a random walker traversing the
network will initially be trapped for a significant time inside a community corresponding to the
fast time-scale, before it can escape and explore the larger network corresponding to a slower
time-scale. However, this connection between link density and dynamical behavior breaks down
for directed networks, even for a simple diffusion process [43, 65, 70]. This apparent relation-
ship breaks down completely when focusing on longer pathways, possibly with memory effects
in the dynamics [69, 71].

A dynamical perspective is useful especially in applications in which the network itself is well
defined, but the emergent dynamics are hard to grasp. For instance, consider the nervous sys-
tem of the roundworm C. elegans, for which there exists a distinct network. A basic generative
network model, such as a Barabasi–Albert network or an SBM, might be too simple to capture
the complex architecture of the network, and sampling alternative networks from such a model
will not create valid alternative roundworm connectomes. Indeed, some more complicated net-
work generative models have been proposed to model the structure of the network [55], and
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may be used to assess the significance of individual patterns compared to the background of the
assumed model. However, if we are interested instead in assessing the dynamical implications
of the evolutionary conserved network structure, it may be fruitful to engineer differences in the
actual network and investigate how they affect the dynamical flows in the system. For instance,
one can replicate experimental node ablations in silico and assess their dynamical impact [8].

In the dynamical perspective, we are typically interested in how short-term dynamics integrate
into long-term behavior of the system and seek a coarse-grained description of the dynamics
occurring on a given network. That is, the network itself represents the true structure, save for
empirical imperfections. Therefore, in the dynamical perspective, model selection is in general
not about comparing competing models [60, 83] but about comparing coarse-grained descrip-
tions of the dynamics on resampled realizations of the observed network with, for example, the
bootstrap [66] or cross-validation [63]. Nevertheless, it is possible to formulate generative statis-
tical models for empirically observed pathways [62]. However, whereas the generative approach
in, for example, [62] explicitly models the underlying state space of trajectories, we may simply
be interested in effectively compressing the long-term behavior of the system [63].

Two methods that exploit the long-term dynamics of the system by identifying communities
with long flow persistence are the Markov stability [20] and the map equation [65]. Whereas
the Markov stability detailed in Chapter 12 takes a statistical approach and favors communi-
ties inside which a random walker is more likely to remain after a given time t than expected
at infinite time, the map equation reveals modular regularities by compressing the dynamics.
It is an information-theoretic approach that uses the duality between compressing data and
finding regularities in the data [65, 75]. It measures the quality of communities by how much
they can compress a modular description of the dynamics. The shorter description, the more
detected regularities, such that the shortest description captures the most regularities. Given
module assignments C of all nodes in the network, the map equation measures the description
length L(C) of a random walker that moves within and between modules from node to node by
following the links between the nodes [68]:

L(C) = q↶H(Q) +
k∑

q=1

pq
↻

H(Pq) (4.7)

Here the entropy H(Q) measures the average per-step description length of movements between
modules derived from module-enter rates Q of all k modules and H(Pq) measures the aver-
age per-step description length of movements within module q derived from node-visit and
module-exit rates Pq. The description lengths are weighted by their rate of use, q↶ and pq

↻
,

respectively. The visit rates can be obtained by first calculating the PageRank of links and nodes
or directly from the data if they represent flow themselves. In any case, finding the optimal par-
tition of the network by assigning each node to one or more modules corresponds to testing
different node assignments and picking the one that minimizes the map equation. This sim-
ple formulation allows for straightforward generalizations to coarse-grained hierarchical [67]
descriptions of dynamics in memory [69] and multilayer [17] networks.

As the air traffic example above illustrates, it can be crucial to go beyond standard network
abstractions and consider memory and higher-order effects in multi-step pathways to better
understand system behavior. For example, higher-order abstractions, such as memory and mul-
tilayer networks, provide principled means to reveal highly overlapping modular organization
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in complex systems: link clustering [1] and clique percolation [57] methods can be interpreted
as trying to account for second-order Markov dynamics (see Supplementary Note 3 in [69]).

Compared to some of the other perspectives, the dynamical viewpoint has received somewhat
less attention and has been confined mainly to diffusion dynamics (see Chapter 12). A key
challenge is to extend this perspective to other types of dynamics and link it more formally
to approaches of model order reduction considered in control theory. In light of the recently
growing interest in the control of complex systems, this could help us better understanding
complex systems.

4.6 Discussion

Community detection can be viewed through a range of different lenses. Rather than looking at
community detection as a generic tool that is supposed to work in a generic context, considering
the application in mind is important when choosing between or comparing different methods.
Each of the perspectives outlined above has its own particularities, which may or may not be
suitable for the problem of interest.

We emphasize the different perspectives in the following example. Given a real-world net-
work generated by a possibly complex random assignment of edges, we assume that we are
interested in some particular dynamics taking place on this network, such as epidemic spread-
ing. We also assume that the network is structured such that the dynamics exhibit a time-scale
separation. If, for instance, we want to coarse-grain an epidemic and identify critical links that
should be controlled to confine the epidemic, then it does not matter whether or not random fluc-
tuations generated the modules that induce the time-scale separation. In any case, these modules
will be relevant for the dynamics.

Assume now that the same network encodes interdependency of tasks in a load-scheduling
problem. In such a circumstance, a cut-based approach will find a relevant community structure,
in that it will allow an optimally balanced assignment of tasks to processors that minimizes com-
munication between processors. These communities may be different from the ones attached to
the epidemic-spreading example.

If we instead assume that the links represent friendships, we may want to identify densely
knit groups irrespective of their relative sizes. Accordingly, taking the clustering perspective
and maximizing the internal density can give yet another set of communities.

In these three cases, we considered a single realization of the network with the goal of extract-
ing useful information about its structure, independently of the possible mechanisms that gen-
erated it.

Let us finally consider the same network from a stochastic equivalence perspective, and
assume for simplicity that the network is a particular realization of an Erdős–Rényi network. In
this case, an approach based on the SBM is expected to declare that there is no significant pat-
tern to be found here at all, as the encountered structural variations can already be explained by
random fluctuations rather than by hidden class labels. Thus, communities in the SBM picture
are defined via the latent variables within the statistical model of the network structure, and not
via their impact on the behavior of the system. In this way, different motivations for community
detection can find different answers even for the very same network.

To illustrate that different motivations can give different answers for the same network, we
use an example from [65]. The directed, weighted network is formed as a ring of rings such that
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each internal ring captures flows for a relatively long time despite the stronger links between
the rings (see Figure 4.2). For example, a random walker takes on average three steps within a
ring highlighted as a cluster in Figure 4.2a before exiting. In contrast, a random walker takes
on average only 2.4 steps within a cluster in Figure 4.2b. A method that seeks to coarse-grain
the dynamics will therefore identify the flow modules in Figure 4.2a rather than the clusters
with high internal density in Figure 4.2b. For example, the modular description quantified by
the map equation is almost twice as efficient with the flow modules as it is with the clusters with
high internal density. The opposite is true for a method that highlights structural regularity and
high internal density: the modularity score is twice as large for the clustering in Figure 4.2b.
While this example only illustrates the fundamental difference between two methods applied to
a schematic network, methods from different perspectives will give different answers for real
networks as well [36].

In addition to the differences between these perspectives, there are also variations within each
perspective. For instance, distinct plausible generative models such as the standard SBM or the
degree-corrected SBM will, for a given network, lead to different inferred community structure.
Similar variations exist in the dynamical paradigm as well: distinct natural assumptions for
the dynamics, such as dynamics with or without memory, uniform across nodes or edges, etc.,
applied to a given network will lead to different partitions. Also different balancing criteria
(see section 4.2) or different concepts of high internal density (see section 4.3) will be valid in
different contexts.

In fact, some of the internal variations make the perspectives overlap in particular scenar-
ios. For instance, one can compare all the algorithms on simple, undirected LFR benchmark
networks [45]. However, the LFR benchmark clearly imposes a density-based notion of com-
munities. Similarly, for simple undirected networks, optimizing modularity corresponds to the
inference of a particular SBM [50] or may be reinterpreted as a diffusion process on a net-
work [20]. Nevertheless, this overlap of concepts, typically present in unweighted, undirected
networks, is only partial, and breaks down, for example, in directed networks or for more com-
plex dynamics.

(b)(a)

Modularity

Map equation L = 4.13 bits/step

Q = 0.50Modularity

Map equation L = 2.67 bits/step

Q = 0.25

Figure 4.2 Communities that highlight different aspects of networks. Identifying coarse-graining flows
in groups, here illustrated by the map equation, and densely connected groups, here illustrated by modular-
ity, highlights different aspects of structure in directed and weighted networks. Each shaded area represents
a cluster in two alternative clusterings of a schematic network. (a) The clustering as optimized by the map
equation (minimum L). (b) The clustering as optimized by modularity (maximum Q). The thicker links
have double the weight of the thinner links. Example from [65].
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4.7 Conclusions

In summary, no general purpose algorithm will ever serve all applications or data types [59]
because each perspective emphasizes a particular core aspect: a cut-based method provides good
separation of balanced groups, a clustering method provides strong cohesiveness of groups with
high internal density, stochastic block models provide strong similarity of nodes inside a group
in terms of their connectivity profiles, and methods that view communities as dynamical build-
ing blocks aim to provide node groups that influence or are influenced by some dynamics in
the same way. As more and more diverse types of data are collected, leading to ever more com-
plex network structures, including directed [47], temporal [35, 74], multi-layer or multiplex
networks [12], the differences between the perspectives presented here will become even more
striking – the same network might have multiple valid partitions depending on the question
about the network we are interested in. We might moreover not only be interested in partition-
ing the nodes, but also in partitioning edges [1], or even motifs [9]. Rather than striving to
find a “best” community-detection algorithm for a better understanding of complex networks,
we argue for a more careful treatment of what network aspects we seek to understand when
applying community detection.
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