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Abstract. Consider N equally spaced points on a circle of circumference N .
Pick at random n points out of N on this circle and consider the discrete random
spacings between consecutive sampled points, turning clockwise. This defines in
the first place a random partitioning of N into n positive summands. Append
then clockwise an arc of integral length k to each such sampled point, ending
up with a discrete random set on the circle. Questions such as the evaluation
of the probability of random covering or parking configurations, number and
length of the gaps are addressed. For each value of k, asymptotic results are
presented when n,N both go to ∞ according to two different regimes. In the first
thermodynamical regime n/N → ρ, the occurrence of, say, covering and parking
configurations is exponentially rare in the whole admissible range of density ρ.
We compute the rates from the equations of state. In the second one, they are
macroscopically frequent. These questions require some understanding of both
the smallest and largest extreme summands in the partition of N .

We consider next an urn model where N indistinguishable balls are assigned
at random into N distinguishable boxes. This urn model consists of a random
partitioning model of integer N into N non-negative summands. Given there
are n non-empty boxes this gives back the original partitioning model of N
into n positive parts. Following this circle of ideas, a grand canonical balls in
boxes approach is supplied, giving some insight into the multiplicities of the box
occupancies.

The random set model defines a k-nearest neighbor random graph with N
vertices and kn edges. We shall also briefly consider the covering problem in
the context of a random graph model with N vertices and n (out-degree 1)
edges whose endpoints are no longer bound to be neighbors. In the latter setup,
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connectivity is increased in that there exists a critical density ρc above which
covering occurs with probability 1.

Keywords: rigorous results in statistical mechanics, stochastic processes
(theory), random graphs, networks
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1. Introduction

Many authors have considered the problems related to the coverage of the unit circle by
arcs of equal sizes randomly placed on the circle, among which [22, 20, 6, 7, 19, 8, 9, 11]. In
this paper, motivated by a remark in the paper ([2], p 18) on random graphs, we shall be
concerned with a discrete version of the above problem, following [10] and [14].

Consider N equally spaced points (vertices) on the circle of circumference N , so with
arc length 1 between consecutive points. Sample at random n out of these N points
and consider the discrete random spacings between consecutive sampled points, turning
clockwise on the circle. This defines a random partitioning of N into n positive summands.

Let then k be an integer and append clockwise an arc of length k to each sampled
point, forming a random set of arcs on the circle. What is the probability that the circle
is covered? If the circle is not covered, how many gaps do we have in the random set
of arcs? What is the probability that no arcs overlap (the discrete hard rods model),
what is the probability that no arcs overlap and that the gap lengths are smaller than
k itself (the discrete version of Rényi’s parking model). All these questions require some
understanding of both the smallest and largest spacings in the sample (or equivalently the
smallest and largest summands in the random partitioning point of view). They are the
discrete versions of similar problems raised in the continuum. We will focus on the limiting
thermodynamical regime, n, N → ∞ while n/N → ρ, and also, sometimes, on a regime
where n, N → ∞ while n(1−n/N)k → α, 0 < α < ∞. In the first regime, the occurrence
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of say covering and parking configurations is exponentially rare in the whole admissible
density range of ρ, whereas in the second one they are macroscopically frequent. At the
heart of this model is the Bose–Einstein distribution for discrete spacings.

Finally, a Bosonic grand canonical approach to the above model will be considered
where N indistinguishable balls are assigned at random into N distinguishable boxes. As
it is defined, this urn model consists of a random partitioning model of integer N into
N non-negative summands. Conditioning this balls in boxes model on having exactly n
positive summands (or non-empty boxes) yields back the original random partitioning
model of N into n positive summands. For this urn model, we will study the number
of empty boxes and the number of boxes with i balls, giving some insight into the box
occupancy multiplicities, in both the canonical and the grand canonical ensembles.

The model just developed may as well be viewed as a k-nearest neighbors random
graph with N vertices and kn edges. In relation to this, in section 6 we shall consider a
random graph model with N vertices and n (out-degree 1) edges whose endpoints are no
longer necessarily neighbors, being now chosen at random on the whole set of vertices.
In this model of a different kind, each of the n sampled points is allowed to create a link
far away with any of the N vertices, not necessarily with neighbors. We estimate the
covering probability for this random graph model in the spirit of Erdős–Rényi (see [1]).
We show that, in sharp contrast to the k-nearest neighbor graph, there exists a critical
density ρc = 1 − e−1 above which covering occurs with probability one. The take-home
message is to what extent when connections are not restricted to neighbors the chance of
connectedness is increased.

To summarize: sampling at random n points on the circle out of N is related to the
following.

• A random partitioning model of N into n positive summands.

• A discrete geometrical random set problem on the circle1.

• A balls in boxes urn model and a random partitioning model of N into N non-negative
summands.

• A k-nearest neighbors random graph model.

2. Random partition of an integer and discrete spacings

Consider a circle of circumference N , with N integer. Consider N equally spaced points on
the circle so with arc length 1 between consecutive points. We shall call this discrete set of
points the N -circle. Draw at random n ∈ {2, . . . , N−1} points without replacement at the
integer sites of this circle (thus, with M1, . . . , Mn independent and identically distributed,
say iid, and uniform on {1, . . . , N}). Pick at random one of the points M1, . . . , Mn and
call it M1:n. Next, consider the ordered set of integer points (Mm:n, m = 1, . . . , n), turning
clockwise on the circle, starting from M1:n. Let Nm,n = Mm+1:n −Mm:n, m = 1, . . . , n−1,
be the consecutive discrete spacings, with Nn,n = M1:n − Mn:n, modulo N , closing the

1 In relation to this, it seems to be an open problem as to whether or not one can obtain some precise statistical
information on the joint law of the sizes of the connected components. This program could be partly achieved
(in [11]) for the continuous random partitioning of the unit circle problem but it is not clear whether similar tools
can be used in the discrete setup.
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loop. Under our hypothesis Nm,n
d
=Nn, m = 1, . . . , n, independent of m, the distribution

of which is F̄Nn(k) := P(Nn > k) = 1 − FNn(k) =
( N − k − 1

n − 1

)
/
( N − 1

n − 1

)
, with ENn = N/n.

It is indeed a result of considerable age (see e.g. [10]) that identically distributed
(id) discrete spacings Nn := (Nm,n; m = 1, . . . , n) with |Nn| :=

∑
m Nm,n = N can be

generated as the conditioning

Nn = Gn | {|Gn| = N}, (1)

where |Gn| :=
∑n

m=1 Gm is the sum of n iid geometric (α) random variables ≥1 (with
P(G1 ≥ k) = αk−1, k ≥ 1, α ∈ (0, 1)), and so Nn has the claimed Pòlya–Eggenberger

PE(1, n − 1) distribution: P(Nn = k) =
( N − k − 1

n − 2

)
/
( N − 1

n − 1

)
, k = 1, . . . , N − n + 1.

Note that as n, N → ∞, while n/N = ρ < 1 is fixed, using the Stirling formula we
get the convergence in distribution

Nn
d→G, (2)

where G ≥ 1 is a discrete random variable (rv) with geometric (1 − ρ) distribution:
P(G ≥ m) = (1 − ρ)m−1, m ≥ 1. The limiting expected value of Nn is 1/ρ.

With k := (km; m = 1, . . . , n), the joint law of Nn is

P(Nn = k) =
1

(
N − 1
n − 1

)1(|k| = N), (3)

which is the exchangeable uniform distribution on the restricted discrete N -simplex
|k| :=

∑n
m=1 km = N , km ≥ 1, also known as the Bose–Einstein distribution. This

distribution occurs in the following Pòlya–Eggenberger urn model context (see [15]). An
urn contains n balls all of different colors. A ball is drawn at random and replaced together
with adding another ball of the same color. Repeating this N −n times, Nn is the number
of balls of different colors in the urn. See [10].

From the random model just defined we get

N =

n∑

m=1

Nm,n, (4)

which corresponds to a random partition of N into n id parts or components ≥1.
It also models the following random allocation problem (see [16]). N items are to

be shared at random between n recipients. Nm,n is the share of the N items allocated
to recipient m. Although all shares are id, there is a great variability in the recipients’
parts as will become clear from the detailed study of the smallest and largest shares in
the sample.

This model is connected to the continuous spacings between n randomly placed

points on the unit circle in the following way. As N → ∞, Nn/N
d→Sn, where

Sn := (S1,n, . . . , Sn,n) has Dirichlet uniform density function on the continuous unit n-
simplex [17]

fS1,...,Sn(s1, . . . , sn) = (n − 1)! · δ(∑n
m=1 sm−1). (5)

doi:10.1088/1742-5468/2011/08/P08021 4
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Let Pn(1) :=
∑n

m=1 1(Nm,n > 1) be the number of sampled points whose distance
to their clockwise neighbors is more than one unit. There are n − Pn(1) sampled points
which are neighbors, therefore

N = 1 · (n − Pn(1)) +

n∑

m=1

Nm,n1 (Nm,n > 1)

= n +

n∑

m=1

(Nm,n − 1)+ ,

where i+ = max(i, 0). Appending an arc of length 1 clockwise to the n sampled points
and considering the induced covered set from {1, . . . , N}, L̄n(1) :=

∑n
m=1(Nm,n − 1)+

represents the length of the gaps (the size of the uncovered set). So, from the model
L̄n(1) = N − n is a constant and

N − n =
n∑

m=1

(Nm,n − 1)+

corresponds to a random partition of N − n into n id parts or components ≥0. Stated
differently, the length of the covered set Ln(1) = N −Ln(1) is constant, equal to n, which
is obvious.

Of considerable interest is the sequence (Nm:n; m = 1, . . . , n) obtained while ordering
the components’ sizes (Nm,n; m = 1, . . . , n), with N1:n ≤ · · · ≤ Nn:n.

By the exclusion–inclusion principle, the cumulative distribution function FNm:n(k) =
P(Nm:n ≤ k) is easily seen to be

FNm:n(k) =
1

(
N − 1
n − 1

)
n∑

q=m

(
n
q

) n∑

p=n−q

(−1)p+q−n

(
q

n − p

) (
N − pk − 1

n − 1

)

, (6)

which has been known for a while in the context of spacings in the continuum (see [22]).
In particular,

FNn:n(k) := P (Nn:n ≤ k) =
1

(
N − 1
n − 1

)
n∑

p=0

(−1)p

(
n
p

) (
N − pk − 1

n − 1

)

(7)

and

F̄N1:n(k) := P (N1:n > k) =

(
N − nk − 1

n − 1

) / (
N − 1
n − 1

)

(8)

are the largest and smallest component size distributions in this case.
In the formula giving FNn:n(k), with [x] standing for the integral part of x, the sum

should as well stop at n ∧ [(N − n)/k], observing
( i

j

)
= 0 if i < j.

Clearly, if k = 1, P(Nn:n = 1) = 0 (=1) whatever n < N (if n = N). If k = 2 and

N > 2n, P(Nn:n ≤ 2) = P(Nn:n = 2) = 0. If N = 2n, P(Nn:n = 2) = 1/
( 2n − 1

n − 1

)
is

the probability of a regular configuration with all sampled points equally spaced by two
arc length units. If n < N < 2n, P(Nn:n = 2) is the probability of a configuration with
2n − N neighbor points distant by one arc length unit and N − n points distant by two
units.

doi:10.1088/1742-5468/2011/08/P08021 5
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As N, k → ∞ while k/N → s
(

N − pk − 1
n − 1

)/ (
N − 1
n − 1

)

→ (1 − ps)n−1
+ .

With 0 < a < b ≤ N , the joint law of (N1:n, Nn:n) is given by

P (N1:n > a, Nn:n ≤ b) =
n∑

m=0

(−1)m

(
N − 1
n − 1

)

(
n
m

) (
N − (na + m (b − a)) − 1

n − 1

)

. (9)

In the random partitioning of N ’s image, it gives the probability that the shares of all n
recipients all range between a and b. Putting (a = k, b = N) and (a = 0, b = k) gives
FNn:n(k) and F̄N1:n(k). This formula was first obtained by [3] in the continuum. Putting
next a = k, b = 2k, we get

P (N1:n > k, Nn:n ≤ 2k) =
1

(
N − 1
n − 1

)
n∑

m=0

(−1)m

(
n
m

) (
N − (n + m) k − 1

n − 1

)

. (10)

When k = 1, we have P(N1:n > 1, Nn:n ≤ 2) =
( N − 1

n − 1

)−1
1N=2n. If N = 2n,

( 2n − 1
n − 1

)−1

is the probability of the configuration where the n sampled points are exactly equally
spaced, each by two arc length units.

As n, N → ∞ while n/N → ρ < 1, with E an rv with rate 1 exponential distribution,

− log (1 − ρ) n (N1:n − 1)
d→E;

ρ

log n
Nn:n

a.s.→ 1, (11)

suggesting that the smaller (larger) integer component in the partition of N is of order
n−1 (respectively log n) in the considered asymptotic regime. More precisely, using the
joint law of (N1:n, Nn:n),

(

− log (1 − ρ)n (N1:n − 1) , Nn:n − log n

ρ

)
d→ (E, G) , (12)

where (E, G) are independent rvs on R+ × R, with distributions P(E > t) = e−t and
P(G ≤ t) = e−e−t

with E(G) = γ the Euler constant (exponential and Gumbel).
Although in the random partitioning of N , all parts attributed to each recipient are

id, there is a great variability in the shares as the smallest one is of order 1 and the largest
one of order log n.

3. N -circle covering problems

Let Sn := {M1, . . . , Mn} be the discrete set of points drawn at random on the N -circle
with circumference N . Fix k ∈ {1, . . . , N}. Consider the coarse-grained discrete random
set of intervals

Sn(k) := {M1 + l, . . . , Mn + l, 1 ≤ l ≤ k} (13)

appending clockwise an arc of integral length k ≥ 1 to each starting-point atom of Sn.

doi:10.1088/1742-5468/2011/08/P08021 6
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The number of gaps and the length of the covered set. Let Pn(k) be the number of gaps
of Sn(k) (which is also the number of connected components), so with Pn(k) = 0 as soon
as the N -circle is covered by Sn(k).

Let also Ln(k) be the total integral length of Sn(k). As there are n − Pn(k) spacings
covered by k and Pn(k) gaps each contributing k to the covered length, it can be expressed
as a contribution of two terms (i ∧ j = min(i, j)),

Ln(k) =

n−Pn(k)∑

m=1

Nm:n + kPn(k) =

n∑

m=1

(Nm,n ∧ k) . (14)

Note also that the vacancy, which is the length of the N -circle not covered by any arc, is

Ln(k) := N −Ln(k) =

Pn(k)∑

p=1

(Mn−p+1:n − k) =
n∑

m=1

(Nm,n − k)+ , (15)

summing the gaps’ lengths over the gaps (with Nn:n − k the largest gap size and
Nn−Pn(k)+1:n −k the smallest gap size). We recover the result (i) originally due to [20] and
its asymptotic consequences. The following statements are mainly due to Holst, see [10].
It holds that

(i) The distribution of Pn(k) is

P (Pn(k) = p) =

(
n
p

)

(
N − 1
n − 1

)
n∑

m=p

(−1)m−p

(
n − p
m − p

) (
N − mk − 1

n − 1

)

. (16)

(ii) As n, N → ∞, while n(1 − (n/N))k → α, 0 < α < ∞,

Pn(k) → Poi (α) , (17)

where Poi(α) is a random variable with Poisson distribution of parameter α.

(iii) (a) Number of gaps. As n, N → ∞ while n/N → ρ, with 0 < ρ < 1,
1√
n

(
Pn(k) − n (n/N)k

)
d→

N→∞
N (

0, σ2 = ρk
(
1 − ρk

))
, (18)

where N (m, σ2) stands for the normal law with mean m and variance σ2.
(b) Gap length:

1√
n

(
Ln(k) − N (1 − n/N)k

)
d→

N→∞
N (

0, σ2
)
, (19)

where σ2 = (1 + ρ̄ − ρ̄k)ρ̄k − (ρ̄ + kρ)2ρ2k−1, ρ̄ = 1 − ρ.

The proofs of (ii) and (iiib) are in [10]. The proof of (iiia) follows from similar central
limit theorem arguments developed there. In the first case (ii), n ∼ N(1− (α/N)1/k) and
so n is very close to N ; because of that, there are finitely many gaps in the limit and the
covering probability is e−α, so macroscopic. However, in the second case (iii), n ∼ ρN is
quite small: the number of gaps is of order nρk and the covering probability is expected
to be exponentially small. Note from (iiib) that the variance of the limiting normal law
is 0 when k = 1, in accordance with the fact that L̄n(1) = N − n remains constant.
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The number of arcs needed to cover the N -circle. In (16), P(Pn(k) = 0) is the cover
probability and P(Pn(k) = n) the probability that no overlap of arcs or rods takes place
(the hard rods model). We have P(Pn(k) = 0) = P(Nn:n ≤ k).

The cover probability P(Pn(k) = 0) is also the probability that the number of arcs of
length k (the sample size), say N(k) required to cover the N -circle is less than or equal
to n. We have N(k) = inf(n : Nn:n ≤ k). In other words, P(N(k) > n) = P(Nn:n > k)

and so EN(k) =
∑N

n=1 P(Nn:n > k), with

P (Nn:n > k) =
1

(
N − 1
n − 1

)
n∑

m=1

(−1)m−1

(
n
m

) (
N − mk − 1

n − 1

)

.

We wish to estimate EN(k) as N grows large.

When n(1 − (n/N))k → α, so when n ∼ N(1 − (α/N)1/k), we have P(Pn(k) = 0) =
P(N(k) ≤ n) → e−α. Therefore, as N → ∞,

N1/k

(

1 − N(k)

N

)
d→Ek, (20)

where Ek has a Weibull(k) distribution with P(Ek > x) = e−xk
and E(Ek) = Γ(1 + k−1).

Thus

EN(k) ∼N→∞ N

(

1 − Γ (1 + k−1)

N1/k
+ o

(
N−1/k

)
)

(21)

is the estimated expected number of length-k arcs required to cover the N -circle.

4. Large deviation rate functions in the thermodynamical limit: hard rods,
covering and parking configurations

k-hard rods configurations are those for which N1:n > k ≥ 1 (the smallest part in the
decomposition of N exceeds the arc length k: appending an arc of length k to all sampled
points does not result in overlapping of the added arcs). k-covering configurations with
k > 1 are those for which Nn:n ≤ k (the largest part in the decomposition of N is smaller
than the arc length k: appending an arc of length k to each sampled point results in the
covering of all points of the N -circle, a connectedness property). k-parking configurations
are those for which both N1:n > k and Nn:n ≤ 2k (the smallest part in the decomposition
of N exceeds the arc length k and the largest part in the decomposition of N is smaller
than twice the arc length k: appending an arc of length k to all sampled points results in
a hard rods configuration where sampled points are separated by gaps of length at least k
but with the extra excess gaps being smaller than k, so with no way to add a new rod (or
car) of size k without provoking an overlap). All these configurations are exponentially
rare in the thermodynamic limit n, N → ∞ while n/N → ρ ∈ (0, 1). We make this
statement precise by computing the large deviation rate functions in each case, extending
to the discrete formulation similar results obtained in the continuum, see [18, 12, 21, 4].
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4.1. Hard rods

k-hard rods configurations are those for which N1:n > k > 1. (In the partitioning approach
of the fortune N amongst n recipients, this event is realized if the share of the poorest is
bounded below by k, a rare event.) When the number of sampled points n is a fraction of N
(the case with a density n = ρN), there are too few sampled points for a non-overlapping
configuration to occur with a reasonably large probability. Rather, one expects that the
probability of non-overlapping (hard rods) configurations tends to zero exponentially fast.
To see this, we need to evaluate the large n expansion of P(N1:n > k). Note that the
event N1:n > k is an event with positive probability if and only if N ≥ n(k + 1) so, in the
following, we shall assume that ρ < 1/(k + 1), k ≥ 1. We have

P (N1:n > k) =
Zn,N∑

k1,...,kn≥1

∏n
m=1 1∑ km=N

=
Zn,N(
N − 1
n − 1

) ∼ C
( n

N

)n (
1 − n

N

)N−n

Zn,N ,

where Zn,N =
∑

k1,...,kn≥1

∏n
m=1 1km>k1∑ km=N . In the limit n, N → ∞ with n/N → ρ

− 1

n
logP (N1:n > k) → −1

ρ
(ρ log ρ + (1 − ρ) log (1 − ρ)) + lim

n→∞
−1

n
log Zn,N . (22)

In the limit n, N → ∞ with fixed n/N limit, the quantity P(N1:n > k) is easier
to evaluate in an isobaric ensemble where the pressure p is held fixed instead of

∑
km.

Therefore, relaxing the constraint
∑

km = N , we shall work instead with the modified
random variables Ñm,n, with exponentially tilted law

P
(
Ñm,n = km > k, m = 1, . . . , n

)
=

∏n
m=1 1km>ke

−pkm

Zn,p
.

Here

Zn,p =
∑

k1,...,kn≥1

n∏

m=1

1km>ke
−pkm =

(
∑

l>k

e−pl

)n

=

(
e−p(k+1)

1 − e−p

)n

is the normalizing constant.
Defining Gn,p := − log Zn,p, we have ∂pGn,p = EN,p(

∑
Ñm,n1Ñm,n>k) and one must

choose p in such a way that ∂pGn,p = N , leading to N = n(k + 1 + e−p/(1 − e−p))
or 1/ρ = e−p/(1 − e−p) + k + 1, so p = − log((1 − ρ(k + 1))/(1 − ρk)). The latter
equation relating p, ρ and k is an equation of state. Due to the equivalence of ensembles
principle, see [4] for similar arguments, we have Zn,N = epNZn,pO(N−1/2), leading to
−(1/n) log Zn,N ∼ −(1/n) log Zn,p − p/ρ. Proceeding in this way, we finally get

− 1

n
logP (N1:n > k) → Fhr(p, ρ)

= −1

ρ
(ρ log ρ + (1 − ρ) log (1 − ρ)) − p

ρ
− log

(
e−p(k+1)

1 − e−p

)

, (23)

with ρ ∈ (0, 1/(k + 1)). Here, thermodynamical ‘pressure’ p > 0 and density ρ are related
through the ‘state equation’ ∂pFhr(p, ρ) = 0 which can consistently be checked to be

1

ρ
= k + 1 +

e−p

1 − e−p
, (24)
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Figure 1. A plot of Fhr versus ρ when k = 2 or ρ ∈ (0, 1/3).

leading to p = − log((1 − ρ(k + 1))/(1 − ρk)) > 0 (which is well defined and positive
because ρ < 1/(k + 1)). Thus Fhr is an explicit entropy-like positive function of ρ and k,
namely

Fhr(ρ) = −1

ρ
((1 − ρ) log(1 − ρ) − (1 − ρ(k + 1))

× log(1 − ρ(k + 1)) + (1 − ρk) log(1 − ρk)). (25)

In the thermodynamical limit, hard rods configurations are exceptional and the hard rods
large deviation rate function Fhr is an explicit function of ρ and k. We conclude that with
probability tending to 1, N1:n = 1. In the partitioning approach of the fortune N amongst
n recipients, the share of the poorer is the smallest possible.

As ρ ↑ 1/(k + 1), pressure tends to ∞ and Fhr(ρ) → (k + 1) log(k + 1)− k log(k) > 0.
As ρ ↓ 0, pressure tends to 0 and Fhr(ρ) → 0. Figure 1 shows a graph of Fhr(ρ) when
k = 2.

4.2. Covering configurations

Covering configurations are those for which we have Nn:n ≤ k. In the partitioning
approach of the fortune N amongst n recipients, this event is realized when the share of the
richest is bounded above by k (a rare event). Assume n, N → ∞ with n/N → ρ ∈ (1/k, 1)
where k > 1 is fixed. One also expects that the probability of covering configurations by
arcs of length k tends to zero exponentially fast. Working now with

Zn,p =
∑

k1,...,kn≥1

n∏

m=1

1km≤ke
−pkm =

(

e−p 1 − e−pk

1 − e−p

)n

and proceeding as for the hard rods case we easily get

−1

n
log P (Nn:n ≤ k) → Fc (p, ρ) ,
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Figure 2. A plot of Fc versus ρ when k = 2 or ρ ∈ (1/2, 1).

where the covering large deviation rate function is

Fc (p, ρ) = −1

ρ
(ρ log ρ + (1 − ρ) log (1 − ρ)) − p

ρ
− log

(
e−p(1 − e−pk)

1 − e−p

)

. (26)

Here, thermodynamical pressure p and density ρ ∈ (1/k, 1) are related through the
covering state equation ∂pFc(p, ρ) = 0, namely

1

ρ
= 1 +

e−p

1 − e−p
− ke−pk

1 − e−pk
. (27)

For all finite arc lengths k, k-covering configurations are also exceptional. The k-covering
large deviation rate function Fc is in general an implicit function of ρ and k, ρ ∈ (1/k, 1).
When ρ ↓ 1/k, pressure tends to −∞ and Fc(ρ) → k log k − (k − 1) log(k − 1) > 0. As
ρ ↑ 1, pressure tends to ∞ and Fc(ρ) → 0. By continuity, there is a value of ρ0 inside
the definition domain of ρ where p = 0. We have Fc(p, ρ0) = −(1/ρ0)(ρ0 log ρ0 + (1 −
ρ0) log(1−ρ0))−log k. In the partitioning approach of the fortune N amongst n recipients,
the share of the richest is bounded above with probability tending to 0 exponentially fast.

Remark. When k = 2, the covering equation of state can be solved explicitly because
it boils down to a second degree equation in e−p. One finds p = − log((1 − ρ)/(2ρ − 1)).
Plugging in this expression of p in Fc(p, ρ) with k = 2 gives

Fc = −1

ρ
(2ρ log ρ − (2ρ − 1) log (2ρ − 1)) ,

an explicit function of ρ ∈ (1/2, 1). Note that p ↑ ∞ as ρ ↑ 1, p ↓ −∞ as ρ ↓ 1/2 and
p = 0 when ρ = 2/3. We have Fc(p, 2/3) = 3

2
log 3 − 2 log 2. Figure 2 shows a graph of

Fc(ρ) when k = 2.
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4.3. Parking configurations

Parking configurations are those for which we have N1:n > k, Nn:n ≤ 2k. In the
partitioning approach of the fortune N amongst n recipients, this event is realized if
the share of the richest is bounded above by twice the share of the poorest. Assume
n, N → ∞ with n/N → ρ ∈ (1/(2k), 1/(k + 1)). One expects that the probability of
k-parking configurations tends to zero exponentially fast. Working now with

Zn,p =
∑

k1,...,kn≥1

n∏

m=1

1k<km≤2ke
−pkm =

(

e−p(k+1)1 − e−pk

1 − e−p

)n

and proceeding as for the hard rods case we easily get

−1

n
log P (N1:n > k, Nn:n ≤ 2k) → Fπ (p, ρ) ,

where the parking large deviation rate function is

Fπ (p, ρ) = −1

ρ
(ρ log ρ + (1 − ρ) log (1 − ρ)) − p

ρ
− log

(
e−p(k+1)

(
1 − e−pk

)

1 − e−p

)

. (28)

Here, thermodynamical pressure p and density ρ ∈ (1/k, 1) are related through the parking
equation of state ∂pFπ(p, ρ) = 0, namely

1

ρ
= k + 1 +

e−p

1 − e−p
− ke−pk

1 − e−pk
. (29)

The parking configuration large deviation rate function Fπ is an implicit function of ρ and
k with ρ ∈ (1/(2k), 1/(k+1)). The latter formula can be extended to the border case k = 1.
Indeed, when k = 1, ρ = 1/2, pressure tends to ∞ and Fπ(p, ρ) = 2 log 2. From the Stirling

formula, this is in agreement with the fact P(N1:n > 1, Nn:n ≤ 2) =

(
N − 1
n − 1

)−1

�= 0

only if N = 2n, which is the probability of the regular configuration where the n sampled
points are all exactly equally spaced by two arc length units.

Remark. When k = 2, the parking equation of state can be solved explicitly to give
p = − log((1 − 3ρ)/(4ρ − 1)). Plugging in this expression of p into Fπ(p, ρ) with k = 2
gives Fπ as an explicit function of ρ ∈ (1/4, 1/3). Note that p ↑ ∞ as ρ ↑ 1/3, p ↓ −∞ as
ρ ↓ 1/4 and p = 0 when ρ = 2/7. figure 3 shows a graph of Fπ(ρ) when k = 2.

Equations (25), (26) and (28), as given from their respective equations of state,
constitute the discrete versions of the large deviation rate functions occurring in the
continuum in [18, 12, 21], [12], [21, 4], respectively, for hard rods, covering and parking
configurations.

5. The grand canonical partition of N

Suppose N indistinguishable balls are assigned at random into N distinguishable boxes.
Let Nn,N ≥ 0 be the number of balls in box number n. This leads to a random partition
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Figure 3. A plot of Fπ versus ρ when k = 2 or ρ ∈ (1/4, 1/3).

of N now into N id summands which are ≥0:

N =

N∑

n=1

Nn,N . (30)

We have

P (N1,N = k1, . . . , NN,N = kN) =
1

(
2N − 1

N

) , (31)

which is a Bose–Einstein distribution on the full N -simplex:
{

kn ≥ 0 satisfying
N∑

n=1

kn = N

}

.

Summing over all the kn but one, the marginal distribution of N1,N is easily seen to be

P (N1,N = k) =

(
2N − k − 2

N − k

)

(
2N − 1

N

) , k = 0, . . . , N. (32)

Let PN =
∑N

n=1 1(Nn,N > 0) count the number of summands which are strictly positive
(the number of non-empty boxes). With km ≥ 1 satisfying

∑n
m=1 km = N , we obtain

P (N1,N = k1, . . . , Nn,N = kn; PN = n) =

(
N
n

)

(
2N − 1

N

) , (33)

which is independent of the filled box occupancies (k1, . . . , kn) (the probability being
uniform).
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As there are
( N − 1

n − 1

)
sequences km ≥ 1, m = 1, . . . , n satisfying

∑n
m=1 km = N ,

summing over the km ≥ 1, we get the hypergeometric distribution for PN :

P (PN = n) =

(
N
n

) (
N − 1
n − 1

)

(
2N − 1

N

) , n = 1, . . . , N. (34)

This distribution occurs in the following urn model. Draw N balls without replacement
from an urn containing 2N − 1 balls in total, N of which are white, N − 1 are black. The
law of PN describes the probability that there are n white balls drawn from the urn. Its
mean is N2/(2N − 1) ∼ N/2 and its variance is (N2(N − 1))/(2(2N − 1)2) ∼ N/8.

As a result,

P (N1,N = k1, . . . , Nn,N = kn | PN = n) =
1

(
N − 1
n − 1

)1(|k| = N), (35)

which is the spacings conditional Bose–Einstein model with k ≥ 1 described in (3). The
balls in boxes model just defined is therefore an extension of the conditional Bose–Einstein
model allowing the number of sampled points to be unknown and random.

Repetitions (grand canonical). It is likely that some boxes contain the same number of
particles. To take these multiplicities into account, let Ai,N , i ∈ {0, . . . , N} count the
number of boxes with exactly i balls, that is

Ai,N =# {n ∈ {1, . . . , N} : Nn,N = i} =
N∑

n=1

1 (Nn,N = i) . (36)

Then
∑N

i=0 Ai,N = N , where
∑N

i=1 Ai,N = PN is the number of filled boxes and
A0,N = N − PN the number of empty ones. The joint probability of the Ai,N is given by
the Ewens formula (see [5, 13])

P (A0,N = a0, A1,N = a1, . . . , AN,N = aN) =
1

(
2N − 1

N

)
N !

∏N
i=0 ai!

, (37)

on the set
∑N

i=0 ai =
∑N

i=1 iai = N .
Let us now investigate the marginal law of the Ai,N . Firstly, the law of A0,N = N−PN

clearly is

P (A0,N = a0) =

(
N
a0

) (
N − 1

a0

)

(
2N − 1

N

) , a0 = 0, . . . , N − 1, (38)

with E(A0,N) ∼ N/2. Secondly, recalling Ai,N =
∑N

n=1 1(Nn,N = i), with (N)l :=
N(N − 1) · · · (N − l + 1), using the exchangeability of (N1,N , . . . , NN,N), the probability
generating function of Ai,N (i �= 0) reads

E
(
zAi,N

)
= 1 +

∑

l≥1

(z − 1)l

l!
(N)lP (N1,N = i, . . . , Nl,N = i) .

doi:10.1088/1742-5468/2011/08/P08021 14

http://dx.doi.org/10.1088/1742-5468/2011/08/P08021


J.S
tat.M

ech.
(2011)

P
08021

Bose–Einstein and integer partitioning

Using P(N1,N = k1, . . . , Nl,N = kl) =
(

2N − l −∑l
1 km − 1

N − l − 1

)
/
( 2N − 1

N − 1

)
, we get the falling

factorial moments of Ai,N as

ml,i (N) := E
[
(Ai,N)l

]
= (N)l

(
2N − l − li − 1

N − l − 1

) / (
2N − 1
N − 1

)

, (39)

where l ∈ {0, . . . , l(i) = (N − 1) ∧ [N/i]}. The marginal distribution of Ai,N is thus

P (Ai,N = ai) =

l(i)∑

l=ai

(−1)l−ai

l!

(
l
ai

)

ml,i (N) , ai ∈ {0, . . . , l(i)} . (40)

If l = 1, E(Ai,N) = N
( 2N − i − 2

N − 2

)
/
( 2N − 1

N − 1

)
. The variance of Ai,N is σ2(Ai,N) =

m2,i(N) + m1,i(N) − m1,i(N)2.
In particular, we find that E(A1,N) = N(N + 1)/(2(2N + 1)) ∼ N/4 is the mean

number of singleton boxes in the grand canonical model: when N is large, about one
fourth out of the N boxes is filled by singletons (recall that one half of N is filled by
no ball). The variance of A1,N is σ2(A1,N) ∼ N/4 so we expect that A1,N , properly
normalized, converges to a normal distribution. Next, we can check that E(A2,N) ∼ N/8
and further that E(Ai,N) ∼ N/2i+1, showing a geometric decay in i of E(Ai,N).

Finally, note that the probability that Ai,N takes its maximal possible value l(i) is

P (Ai,N = l(i)) = ml(i),i (N) /l(i)! =

(
N
l(i)

) / (
2N − 1
N − 1

)

.

For example P(A1,N = N − 1) = N/
( 2N − 1

N − 1

)
is the (exponentially small) probability that

all N boxes are filled by singletons.

Multiplicities and conditioning. Let us now investigate the same problem while
conditioning on PN = n.

Firstly, note that
∑N

i=1 iAi,N(i) = N is the total number of balls. Using the

multinomial formula, with
∑N

i=1 iai = N and
∑N

i=1 ai = n, we thus get

P (A1,N = a1, . . . , AN,N = aN , PN = n) =

(
N
n

)

(
2N − 1

N

)
n!

∏N
i=1 ai!

(41)

and

P (A1,N = a1, . . . , AN,N = aN | PN = n) =
n!

(
N − 1
n − 1

)
1

∏N
i=1 ai!

. (42)

The latter formulas give the joint (Ewens-like) distributions of the repetition vector count.
Let us investigate the marginal distribution of the Ai,N conditional given PN = n.

Firstly, the law of A0,N = N − PN is P(A0,N = a0 | PN = n) = δa0−(N−n).

Secondly, recalling Ai,N =
∑N

n=1 1(Nn,N = i), with (n)l = n(n− 1) · · · (n− l +1) (and
(n)0 := 1), using the exchangeability of (N1,N , . . . , NN,N), the conditional probability
generating function of Ai,N reads

E
(
zAi,N | PN = n

)
= 1 +

∑

l≥1

(z − 1)l

l!
(n)l P (N1,N = i, . . . , Nl,N = i | PN = n) .
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Using P(N1,N = k1, . . . , Nl,N = kl | PN = n) =
(

N −∑l
1 km − 1

n − l − 1

)
/
( N − 1

n − 1

)
, we get the

conditional falling factorial moments of Ai,N as

ml,i (n, N) := E
[
(Ai,N)l | PN = n

]
= (n)l

(
N − li − 1
n − l − 1

) / (
N − 1
n − 1

)

, (43)

where l ∈ {0, . . . , l(i) = (n − 1) ∧ [(N − 1)/i]}. The conditional marginal distribution of
Ai,N is thus

P (Ai,N = ai | PN = n) =

l(i)∑

l=ai

(−1)l−ai

l!

(
l
ai

)

ml,i (n, N) . (44)

If l = 1, E(Ai,N | PN = n) = n
( N − i − 1

n − 2

)
/
( N − 1

n − 1

)
. In particular, E(A1,N | PN =

n) = n(n − 1)/(N − 1) is the mean number of singleton boxes. In the thermodynamical
limit n, N → ∞, n/N → ρ, E(A1,N | PN = n) ∼ ρn and a fraction ρ of the n filled
boxes is filled with singletons. For the variance, we have σ2(A1,N | PN = n) ∼ ρn. We
can also check that a fraction ρ(1 − ρ) of the n filled boxes is filled with doubletons,
E(A2,N | PN = n) ∼ ρ(1 − ρ)n, and more generally that E(Ai,N | PN = n) ∼ ρ(1 − ρ)in.

Finally, note that the probability that Ai,N reaches its maximal possible value l(i) is

P (Ai,N = l(i) | PN = n) = ml(i),i (n, N) /l(i)! =

(
n

l(i)

) / (
N − 1
n − 1

)

.

For example P(A1,N = n − 1 | PN = n) = n/
( N − 1

n − 1

)
is the probability that n − 1 boxes

are filled by singletons and one box by N − n + 1 balls, which is obvious.

6. Random graph connectivity

The latter model may be viewed as a clockwise k-nearest neighbor graph with N vertices
and kn edges. Consider as before N equally spaced points (vertices) on the N -circle so
with arc length 1 between consecutive points. Draw at random n ∈ {2, . . . , N − 1} points
without replacement at the integer vertices of this circle. Assume N ≤ 2n and draw an
edge at random from each of the n sampled points, removing each sampled point once
it has been paired. At the end of this process, we get a random graph with N vertices
and n (out-degree 1) edges whose endpoints are no longer neighbors, being now chosen at
random on {1, . . . , N}. We wish to estimate the covering probability for this new model
in the spirit of Erdős–Rényi random graphs.

Let Bm, m = 1, . . . , n be a sequence of independent (but not id) Bernoulli rvs with
success probabilities pm = ((N − n)/(N − (m − 1))), m = 1, . . . , n. With [zk]φ(z) the
zk-coefficient of φ(z), the N -covering probability is

Pn,N (cover) = P

(

N − n ≤
n∑

m=1

Bm ≤ n

)

=

n∑

k=N−n

[
zk

]
E

(
z
∑n

m=1 Bm

)
, (45)

which is just the probability of hitting all points of the un-sampled set {n + 1, . . . , N}
at least once in a uniform pairing without replacement of the n-sample. This covering
probability is the probability of connectedness of the random graph with N vertices and

doi:10.1088/1742-5468/2011/08/P08021 16

http://dx.doi.org/10.1088/1742-5468/2011/08/P08021


J.S
tat.M

ech.
(2011)

P
08021

Bose–Einstein and integer partitioning

Figure 4. A plot of FG versus ρ when ρ ∈ (1/2, 1 − e−1).

n out-degree 1 edges. It is of course zero if N > 2n. Let p̄n = (1/n)
∑n

m=1 pm be the
sample mean of the Bernoulli rvs. The covering probability can be bounded by

Pn,N (cover) ≤
n∑

k=N−n

(
n
k

)

(1 − p̄n)k p̄n−k
n . (46)

Assume n, N → ∞ while n/N → ρ, so with ρ ∈ (1/2, 1). Then

p̄n → −1 − ρ

ρ
log (1 − ρ) =: μ(ρ).

Clearly σ2(Bm) < ∞ and
∑n

m=1 m−2σ2(Bm) has a finite limit. By the Kolmogorov strong

law of large numbers (1/n)
∑n

m=1 Bm
a.s.→ μ(ρ) and so Pn,N(cover) → 1 if ρ ≥ ρc := 1− e−1

because in this case the probability to estimate is

P

(
1

n

n∑

m=1

Bm ≥ 1 − ρ

ρ

)

,

with μ(ρ) ∈ [(1 − ρ)/ρ, 1].

Meanwhile, when ρ < 1−e−1, the bound for the covering probability can be estimated
by

Pn,N (cover) ≤ N

∫ ρ

1−ρ

(
Nρ
Nx

)

(1 − μ(ρ))Nx μ (ρ)N(ρ−x) dx

∼ CN

∫ ρ

1−ρ

eNHρ(x) dx,

where Hρ(x) = ρ log ρ − x log x − (ρ − x) log(ρ − x) + x log(1 − μ(ρ)) + (ρ − x) log μ(ρ).
The function x → Hρ(x) is concave and attains its maximum at x = ρ(1− μ(ρ)) < 1− ρ,
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which is outside the integration interval [1 − ρ, ρ]. By the saddle point method, when
ρ ∈ (1/2, ρc)

lim inf
n,N→∞,n/N→ρ

−1

n
log Pn,N (cover) = FG(ρ) := −1

ρ
Hρ (1 − ρ) > 0. (47)

So only in the low-density range 1
2

< ρ < ρc := 1 − e−1 is the graph’s connectedness
probability exponentially small. Note that the graph’s large deviation rate function FG is
maximal (minimal) at ρ = 1/2 (ρc = 1− e−1), with FG(ρ) →

ρ→ρ−c
−((3 − e)/(e − 1)) log(e−

2) > 0. Figure 4 shows a graph of FG(ρ) when ρ ∈ [ρc, 1), FG(ρ) = 0.
We conclude that in the random graph approach to the covering problem, in sharp

contrast to the k-nearest neighbor graph (compare with (26) with k = 2 and ρ ∈ (1/2, 1)),
there exists a critical density ρc = 1−e−1 above which covering occurs with probability one.
These results illustrate to what extent, when connections are not restricted to neighbors,
the chance of connectedness is increased. This question was also raised in ([2], p 18) in
relation to small-world graphs.
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