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 BIOMETRICS 28, 157-75

 March 1972

 COVARIANCE SELECTION

 A. P. DEMPSTER

 Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, U. S. A.

 SUMMARY

 The covariance structure of a multivariate normal population can be simplified by
 setting elements of the inverse of the covariance matrix to zero. Reasons for adopting such a
 model and a rule for estimating its parameters are given in section 2. It is also proposed to
 select the zeros in the inverse from sample data. A numerical illustration of the proposed
 technique is given in section 3. Appendix A sketches the general theory of exponential
 families which underlies the special results of section 2, and Appendix B describes two
 approaches to computation of the proposed estimator.

 1. INTRODUCTION

 Two main currents of thought underlie the covariance fitting technique
 introduced in this paper. The first is the principle of parsimony in parametric

 model fitting, which suggests that parameters should be introduced sparingly
 and only when the data indicate they are required. The second is the ex-
 ploitation of the powerful and elegant theory of exponential families of
 distributions, as a tool for practical data analysis. These currents come
 together in multivariate analysis because the complexity of even the simplest
 multivariate population models places a premium on the availability of
 both parameter reduction techniques and relatively simple general theory.

 Parameter reduction involves a tradeoff between benefits and costs.
 If a substantial number of parameters can be set to null values, the amount
 of noise in a fitted model due to errors of estimation is substantially reduced.
 On the other hand, errors of misspecification are introduced because the null
 values are incorrect. Every decision to fit a model involves an implicit balance
 between these two kinds of errors, i.e., a decision is made not to complicate
 a model by adding more parameters. However, once a parametric model
 is adopted, the question of whether or not to thin out the parametric structure
 is too often settled by default, especially when optimal estimates of the
 complete set of parameters are easily computed. Such optimality provides
 no protection against the costs of introducing unnecessary parameters.
 For example, it is widely recognized that ordinary least squares for multiple
 regression analysis has many optimal properties, and yet can often be im-
 proved by selecting predictors from a full set, thus effectively reducing
 many regression coefficients to null values of zero.

 In this paper, the covariance structure of an assumed multivariate normal
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 158 BIOMETRICS, MARCH 1972

 population is studied. If the number of variables p becomes moderate, the

 number of parameters 2p(p + 1) in the covariance structure becomes large.
 For a fixed sample size n, the number of parameters per data point increases

 like 2I (p + 1) as p increases. The computational ease with which this abun-
 dance of parameters can be estimated should not be allowed to obscure the
 probable unwisdom of such estimation from limited data. How should the

 data analyst move to reduce the parameter set? One answer comes from

 considering the natural parameters in the representation of the hypothetical
 normal populations as an exponential family.

 An exponential family consists of densities whose logarithms are linear

 in the parameters. In symbols, if x = (x , x2, . * *, X.) denotes a multivariate
 vector of observables, and J(x; 4) denotes a meaningful probability density
 function of x given parameters 4 = ('a, 'P . 'Pr), then the family of
 densities is said to be exponential if it is expressible in the form

 f(x; 4) = exp [O + t(x) + 41t1(x) + 'P2t2(x) + . + 4rt,(x)] (1)
 where t(x), t,(x), t2(x), .** , tr(x) are specific functions of the observable x,
 and ' is a specific function of the parameters ', b, ' P2 'r satisfying

 J f(x; 4)dx =1 (2)

 or

 eo X f exp [t(x) + P1t1(x) + *. + '7t,(x)] dx = 1. (3)

 Note that x can in principle consist of discrete or continuous variables,
 or both, and the notation f ( ... ) dx is being used as a convenient shorthand
 for multiple sums or integrals, or both.

 Exponential families have played a central role in mathematical statistics

 because optimality properties of tests and estimators are readily available.

 For example, if xl , X2, * * *, X. denote a random sample from an unknown
 member of the family (1), then it is obvious that the likelihood of the sample

 xi? al X 2 ***X.a) f(gl + (4)

 depends only on the statistics E ti(x1), E t2(x) , , Z'd tr(x,), which
 are therefore sufficient statistics.

 Efforts to exploit exponential families as population models for multi-
 variate data have been limited mainly to two special cases, the first being
 the family of multivariate normal densities widely used for continuous
 observables. The second instance appears in the recent stress on log linear
 models for multivariate analysis of categorical variables. In the contingency
 table context, log linear means that the log of the density follows a linear
 model, which is equivalent to the definition (1) of an exponential family.
 See Fienberg [1972] and references given there.

 Undoubtedly there is scope for the use of more general exponential
 families in multivariate data analysis. Moreover, the concept of exponential
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 COVARIANCE SELECTION 159

 family is easily generalized by allowing the parameters + to depend linearly
 on fixed variables, as indicated in Dempster [1971]. There are, however,
 problems to be faced in fitting more general models, some being statistical
 problems such as goodness-of-fit assessment or parameter reduction, and

 others being technical difficulties of carrying out the moment calculations

 which the model-fitting process requires. Moments which can be represented
 analytically in the case of normal distributions must be found numerically
 in general.

 The covariance fitting technique of this paper involves the exponential
 family of normal distributions with unknown covariance structure, repre-

 sented by the family of continuous densities

 whr ) (deIi) exp (-2 lx'),(5)
 where Y; and its inverse 7-' are both p X p positive definite symmetric
 matrices. The (i, i) element o-i of 1, is the familiar covariance of xi and xi ,
 or variance of xi when j = i. The (i, j) element aid of '-1 is the less familiar
 concentration of xi and xi (cf. Dempster [1969]). Note that the vii play the
 role of the 0l in (1), and therefore beg consideration as natural parameters
 of the model. Specifically, (5) can be written in the form (1) where

 r = 2P(P + 1)

 t1(x) = -2,1 t2(X) = X1X2 , * * tr(X) = (6)

 t(x) = 0, and

 0= -2P log 2w- log det Z.

 The representation (6) suggests that parameter reduction may reasonably
 be attempted by setting certain vi" to 0. More detailed theoretical reasons
 for the attractiveness of this special type of parameter reduction will be
 spelled out below. Having decided on a basis set of parameters, there re-
 mains a fundamental choice between setting parameters to zero on a priori
 grounds or on grounds that the data provide no evidence that individual

 ,i differ from 0. In this paper I follow the latter approach which is more
 appropriate when a priori knowledge is weak.

 2. COVARIANCE SELECTION: THEORY

 Suppose that S is an estimated p X p sample covariance matrix on m
 D.F., typically computed from a sample of m + 1 p-variate observation
 vectors xi , x2 * , x,+1 using the formula

 1 n+1

 S _ (XI (xl-)T(Xi ,(7)

 where
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 160 BIOMETRICS, MARCH 1972

 = m 1 m+1

 Suppose that I denotes a subset of the index pairs (i, j) with 1 < i < j < p
 and J denotes the remaining set of pairs (i, j) with 1 < i < j < p. For
 example, the array of pairs

 (1, 1) (1, 2) (1, 3) (1, 4)

 (2, 2) (2, 3) (2, 4)

 (3, 3) (3, 4)

 (4, 4)

 corresponding to the distinct elements of S or X or so' could be partitioned
 into

 I = (1, 2), (1, 3), (3, 4)} and

 J = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 4), (2, 3), (2, 4)}.

 I will represent in general the indices of the subset of o" parameters to be
 set to 0. To begin the discussion, it will be assumed that I is fixed.

 The following simple recipe is proposed for defining an estimate ? of X
 and a corresponding estimate ?-" of '-1:

 Rule: Choose X to be the positive definite symmetric matrix such that S and

 i are identical for index pairs (i, j) in J while ?-1 is identically 0 for index
 pairs (i, j) in I.
 The estimation rule possesses three basic properties (a), (b), (c) which enhance
 its attractiveness. These properties are now described, with some explanatory
 remarks. Since it is easier to prove theorems in the setting of a general ex-
 ponential family, the derivation of the properties (a), (b), (c) is deferred
 to Appendix A.
 (a) Existence and uniqueness. If there is any positive definite symmetric matrix

 which agrees with S in the positions (i, j) in J, then there is exactly one such
 matrix i with the additional property that ?-' is 0 in positions 1. For example,
 S itself is usually a positive definite symmetric matrix which agrees with S
 in positions J, so that according to property (a) the existence and uniqueness
 of the estimate X is guaranteed for such S.
 (b) Maximum entropy model. Among all normal models (5) such that I
 agrees with S over the indices J, the special choice ?; has maximum entropy.
 In general, the entropy of a distribution specified by the density f(x; +)
 is defined to be

 f f(x; P) log f (x; A) dx. (9)

 Entropy is a measure of smoothness or simplicity in a distribution. For
 example, among all discrete distributions over a finite number of cells, the
 uniform distribution has maximum entropy, or among all continuous distri-
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 COVARIANCE SELECTION 161

 butions with a given mean and variance, the normal distribution has maxi-
 mum entropy (cf. Rao [1965]). These are good examples of smooth and simple
 distributions characterized by maximizing entropy. Thus (cf. Good [1963]),
 the principle of seeking maximum entropy is a principle of seeking maximum
 simplicity of explanation. In the normal covariance example, the integration
 (9) can be carried out analytically on the density (5) to yield

 2p log 22r + 2 log det T; + 2p, (10)

 so that entropy is essentially log det ;. Since

 det 2; = [011022 ... a,,] X det R, (11)

 where R is the correlation matrix, and since all, O22, * * * X a,, are held fixed
 at s8l , 822 , ... , Sm, in the estimation procedure, the principle of maximum
 entropy asserts that the choice of 2; which produces zeros in the elements
 I of I` is also the 2; which maximizes det R. Since det R is a measure of
 overall correlation (cf. Dempster [1969]), the principle is also a principle of
 minimum overall correlation.
 (c) Maximum likelihood (ML) estimation. Among all normal models (5)
 such that the elements of ;-' in positions I are all 0, the special choice ?E is
 the ML estimate of a. By writing down the likelihood it is trivial to see that
 the elements of S in the J positions are sufficient statistics for the restricted
 estimation problem. Property (c), which is less trivial, shows how to use
 these sufficient statistics to produce ML estimates.

 Given a decision to fit a covariance matrix 2: using only a subset J of

 the elements of S, it might at first appear more natural to propose as an
 estimate the matrix I; which agrees with S in positions J and whose re-
 maining elements are simply zero. x suffers the disadvantage that it may
 not be positive definite, meaning that it may not be a valid covariance
 matrix. Second, although ?; reduces certain estimated correlation coefficients
 to null values, it does not minimize the overall correlation measure det R.
 Finally, the elements of S corresponding to indices in J are not in general
 sufficient statistics for the model in which 2; is 0 in positions I, so that 2:
 is not an efficient estimate for the corresponding model. None of this proves
 that the model with 0 in positions I of I is not empirically more correct
 than the model with 0 in positions I of 2:-l, but in the absence of firm prior
 knowledge favoring the former, the theoretical advantages of the latter
 suggest it be given priority.

 Extensive iterative computations are required to produce i from S,
 and several alternative approaches are available. One tack is to pass through
 a sequence S = S(0) -* S" > S - (2) , where each S(k) agrees with S
 and ? in the positions J and is such that the elements of S(k)1' in positions I
 are being driven to 0 as k increases. An alternative is to pass through a
 sequence in which the I elements of the inverse are held constant at 0 while
 the J elements of the covariance matrix are driven to the corresponding
 values in S. Within each of these approaches there is a choice among shifting
 one, several, or all variable elements in a single iteration. More detail on
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 162 BIOMETRICS, MARCH 1972

 computational theory, much of it applicable to exponential families generally,
 will be given in Appendix B.

 Data-based rules for selecting the subsets I and J can be defined in
 various ways analogous to the various forward and backward procedures
 used for selecting predictor variables in multiple regression analysis (cf.
 Draper and Smith [1966]). A forward approach means beginning with I

 empty and successively adding pairs (i, j) to I until such time as a larger
 I appears not to improve fit significantly. A backward approach means

 beginning with ? = S, corresponding to I consisting of all off-diagonal
 elements, and then dropping pairs (i, j) from I one at a time as long as the
 decrease in fit is not significantly large. Exact tests of significance are not

 available, but several approximate tests are easily devised. For example,
 the change in 2 log likelihood when another parameter is added can be

 regarded as roughly a x2 variable on 1 D.F. Alternatively, the estimate &"
 of an added exponential parameter can be divided by an estimate of its
 standard deviation and treated as a standard normal deviate. The two tests
 are asymptotically equivalent.

 3. COVARIANCE SELECTION: EXAMPLE

 The technique proposed in section 2 will now be illustrated numerically

 on the 6 X 6 covariance matrix S:

 14.029 5.6635 1.9866 2.733 4.867 2.0744

 5.6635 14.537 0.1271 1.347 0.206 1.5747

 1.9866 0.1271 2.068 0.294 -0.5446 0.644
 2.733 1.347 0.294 17.11 5.42 0.885

 4.867 0.206 0.5446 5.42 7.87 1.933
 2.0744 1.5747 0.644 0.885 1.933 3.552

 used for different illustrative purposes in Cochran [1938] and Dempster
 [1969]. The data refer to a nocturnal insect trap. The 6th variable is the log
 of an insect count plus 1, while the other 5 variables measure weather con-
 ditions. S has 72 D.F. coming from successive days after removal of certain
 linear cycle effects.

 The estimation procedures of section 2 use the sample variance of each
 of the p variables to estimate the corresponding population variance, what-
 ever the choice of the subsets I and J. Moreover, the procedures produce
 equivalent results under linear changes of scale of the p variables. Accordingly,
 there is no loss of generality in working with the correlation matrix R:

 1 0.396583 0.368826 0.176401 -0.463192 0.293861
 0.396583 1 0.023181 -0.0854093 0.0192594 0.219141
 0.368826 0.023181 1 0.049425 -0.134994 -0.237615
 0.176401 -0.0854093 0.049425 1 0.467075 0.113522
 0.463192 0.0192594 -0.134994 0.467075 1 -0.365602
 0.293861 0.219141 -0.237615 0.113522 -0.365602 1

 computed from S.
 A forward selection procedure was used which started with J consisting

 only of the diagonal elements, and successively added off-diagonal elements
 to J one at a time. At each stage in the selection procedure the correlation
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 COVARIANCE SELECTION 163

 matrix was re-estimated using the direct Newton-type algorithm described
 in Appendix B. The starting point in the iterations was taken to be the

 fitted correlation matrix from the previous stage. The decision rule for
 choosing the next off-diagonal element for inclusion in J was to carry out
 the first iteration of the fitting procedure for all of the candidates, and to
 compute a crude t statistic for each candidate as indicated in Appendix B.

 The selected parameters and corresponding approximate x2 from 2 log
 likelihood are shown in Table 1.

 The first 5 selected parameters appear to be clearly significant, while

 the 6th is borderline. Note that at stage 6, the choice is made among 10
 possible parameters, so that an overall significance level of 0.05 would require
 very roughly that the largest x2 be significant at level 0.05 + 10. By this
 standard, the 6th and later stages are introducing estimates which cannot
 be judged to differ from random noise.

 The first 8 fitted correlation matrices are reproduced overleaf.
 Note that by stage 5 all 15 of the estimated correlation coefficients

 are nonzero, even though only 5 parameters are in the model.
 The above procedure is presented here as a speculative technique meriting

 further study. Simulation studies will be required to check out the improve-
 ment in estimating correlation coefficients and regression coefficients which
 can be achieved from covariance selection. If, as seems likely from preliminary

 TABLE 1

 SELECTED OFF-DIAGONAL ELEMENTS IN ORDER, WITH CORRESPONDING INCREASES IN 2 LOG
 LIKELIHOOD

 Stage Selected pair (ij) X2

 1 (4 ,5) 17.72

 2 (1,5) 17.39

 3 (1,2) 12.32

 4 (1,3) 10.53

 5 (5,6) 10.33

 6 (3,6) 7.10

 7 (1,6) 6.40

 8 (2,5) 4.63

 9 (2,6) 2.88

 10 (2,3) .843

 11 (2 ,4) .540

 12 (4 ,6) .182

 13 (3,5) .116

 14 (3,4) . 0 7O2

 is _ (1 ,4) .00004
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 166 BIOMETRICS, MARCH 1972

 studies, the improvement can be substantial, the question may be raised:
 is it ever wise to simply use a sample correlation matrix or a sample co-

 variance matrix as an estimate of the corresponding population quantity?
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 SELECTION DE COVARIANCE

 RESUME

 La structure de la covariance d'une population normale multivariate peut se simplifier
 en imposant a des e16ments de l'inverse de la matrice de covariance d'6tre 6gaux A z6ro. Des
 raisons pour adopter un tel modele et une regle pour estimer ses parametres sont donn6es
 dans la section 2.

 On propose aussi de selectionner les z6ros de l'inverse A partir des donn6es de 1'6chan-
 tillon. A la section 3 on donne une illustration num6rique de la technique propose. L'ap-
 pendice A esquisse la th6orie generale des families exponentielles sous-jacentes aux resultats
 particuliers de la section 2, et l'appendice B d6crit deux approches pour calculer l'estimateur
 propose.
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 APPENDIX A: STATISTICAL THEORY

 Several basic properties of the general exponential family (1) will now
 be derived and the usefulness of these properties will be illustrated by ap-
 plication to the special family (5).

 Alongside the exponential parameters 4+ = (012, 021 0 * i) of the family
 (1), it is convenient to consider the moment parameters 0 = (01 , 02 , * * Or)
 defined by
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 COVARIANCE SELECTION 167

 = I tj(x)f(x;+) dx. (Al)

 It will be assumed further that the variances of and covariances among

 t1(x), t2(x) , * , tr(x), namely the

 i; = f [ti(X) - i][ti(x) - Oj]f(x;4) dx, (A2)

 are all finite, and that the r X r covariance matrix F with (i, j) element 'yj
 is positive definite throughout the family. The positive definiteness assures

 that no linear combination of t1(x), t2(x) , * * *, t,(x) is constant and therefore
 that distinct + determine distinct members of the family. Similarly, the
 positive definiteness of F is sufficient to assure, as implied by Lemma A
 below, that distinct members of the family determine distinct 0. The expres-
 sion (1) may be integrable, and therefore a valid density, only for a restricted
 set of vectors +, and similarly only certain vectors 0 may result from the
 definition (Al). Accordingly, the positive definiteness of r implies one-to-one
 correspondences among the points of three mathematical spaces, namely
 the restricted set of valid +, the restricted set of possible 0, and the exponential
 family (1) itself. It is easily checked that the set of 4+ vectors and the set of 0
 vectors are both convex sets.

 In the special case of the family (5), the exponential parameters defined
 in (6) are the distinct elements o-' of '-1. The ti(x) explicitly displayed in (6)
 have easily computed expected values, namely

 o = (-2 ?11 O-?12 i . . . i-1p X-2 ?O22 - 023 X . . . 0-2p y . . . 12 Ode) (A3)

 Thus 0 consists of the distinct elements of the covariance matrix X except
 that the variances have the factors -2 and the covariances have the factors

 -1. The covariance -yi of ti(x) and t,(x) can be deduced easily from the
 standard formula (cf. Dempster [1969] p. 318):

 COV (XiXj , XkXL) = o'ik0_i1 + 0oijk f (A4)

 where again the factors - 2 and -1 must be applied in various combinations.
 The family (5) is defined for all positive definite symmetric X, or equivalently
 for all + such that the associated symmetric matrix with (i, j) element oft
 is positive definite. The restriction on 0 is then simply the positive definiteness
 of I. The one-to-one correspondences among '-1, I, and the family (5)
 are well known for the case of normal distributions. Moreover, it is easily
 checked that r is positive definite within the family (5), for example, because

 no quadratic function of xl , x2, X, . is constant under any distribution
 in the family.

 An important property of the general model is that F provides the partial
 derivatives of the 0 parameters with respect to the + parameters, i.e.

 ii = 90i/ap0. (A5)

 To see this, differentiate (2) and (Al) after substituting from (1), to obtain
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 168 BIOMETRICS, MARCH 1972

 do + [f t1(x)f(x; ) dx] dq5 + * * + [f tr(x)f(x;;) dx] dq, = 0 (AG)

 and

 [f t1(x)f(x; 4) dx] do + [f ti(x)t1(x)f(x; 4) dx] date +

 + [I ti(x)t7(x)f(x; ) dx] d4). = do., (A7)

 Substituting from (AG) into (A7) yields

 dGi = Yi d41 + Yi2 d02 + + Tir dO4r (A8)

 which is equivalent to (A5). Note that, because r is symmetric,

 aoi/aoi = a0o/a0o. (A9)
 The fitting procedure described in section 2 suggests that the theory

 of exponential families be developed in relation to a partition of the pa-

 rameter set into two classes. In general, suppose that 1 = (12, y2 ... * * r)
 is written as

 4)= (41 4)2) (A10)

 where 4)i = (41, 02 y 4*8) and 42 = (48+1 , 4s+2 , * * *tr), and corre-
 spondingly suppose that

 0 = (01, 02), (All)

 where 0? and 02 are 1 X s and 1 X (r - s) vectors. The estimation rule of
 section 2 depends on a solution of the following type of problem:

 Find a member of the family (1) whose exponential parameters have a pre-
 specified 4)2 and whose moment parameters simultaneously have a prespecified 01 .

 For example, in section 2 the fitted member of the family (5) was made to
 agree with the moment parameters of the sample covariance in positions
 I and to have exponential parameters 0 in positions J. A general version

 of this fitting procedure, based on a sample xi , x2 * , X, from the density
 (1), would be to match 01 with the estimates

 01= [ E tI(x)) > A (X), ... t(xl) (A12)

 while setting 4)2 0, where 0 denotes a vector of zeros. Although this type
 of estimate is of greater practical importance, it is of interest to note that

 there exist situations of a reverse type where 42 is specified from observed
 data and 01 is fixed on a priori grounds. See Ireland and Kullback [1968]
 for a discussion of the latter type in the context of contingency tables, where
 exponential interaction parameters of an observed table are held constant
 while the observed table is modified into a fitted table with prespecified
 margins. Here margins are moment parameters.
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 COVARIANCE SELECTION 169

 The problem of simultaneously matching 61 and 42 gives rise to important
 mathematical theory which will be summarized in three lemmas related to
 the properties (a), (b), and (c) of section 2. The following notation will be

 used: g(x) denotes a member of the family (1) which has a prespecified 42;
 h(x) denotes a member of the family (1) which has a prespecified 01 and is
 distinct from g(x); k(x) denotes a member of the family (1) which possesses
 both Pa and 01.

 Lemma A. Under fairly general circumstances k(x) exists given g(x) and
 h(x). When k(x) exists, it is unique.

 Lemma B. When k(x) exists,

 f k(x) log g(x) dx > h(x) log g(x)dx, (A13)
 k~~~x) ~h (x)

 i.e., among all members h*(x) of the family (1) with the given 61, a unique
 maximum of

 I h*(x) log [g(x)/h*(x)] dx (A14)

 is attained when h*(x) = k(x).

 Lemma C. When k(x) exists,

 f h(x) log lc(x) dx > h(x) log g(x) dx, (A15) h~~x)J ~~ h(x)

 i.e., among all members g*(x) of the family (1) with the given 4)2 , a unique
 maximum of

 f h(x) log [g*(x)/h(x)] dx (A16)

 is attained when g*(x) = k(x).

 Before deriving these results, the details of their application to the normal
 family (5) will be spelled out. Lemma A is intentionally vague, because
 detailed conditions on the existence of k(x) vary from example to example.
 In Appendix B, however, it will be shown by a computing algorithm that
 k(x) always exists for the family (5) whenever there exists any positive-
 definite T which agrees with S in positions J. The second part of Lemma A
 then assures uniqueness. It is worth noting in passing that the derivation
 of mathematical conditions for the existence of k(x) is of relatively little
 practical importance, because in practice the standard computing algorithms
 are guaranteed to find k(x) when it exists and one knows immediately when
 k(x) has been found by checking out 01 and P: . The failure of k(x) to exist
 is generally an indication that the proposed model cannot fit the data, so
 that some other analysis is desirable on scientific grounds.

 The expression (A14) can be written
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 -f h*(x) log h*(x) dx + f h*(x) log g(x) dx. (A17)

 The second term does not vary as h*(x) varies provided 42 = 0 and t(x) = 0,
 because log g(x) involves terms in tj(x), * , t8(x) but not terms in
 t8+1(x) ... , t'(X), or t(x), and the expectations of tj(x) , * * * , t8(x), namely
 01 , ,.. 0, , are constant as h*(x) varies. Thus, to maximize (A14) is to
 maximize the first term which is entropy. This explains how Lemma B
 implies property (b) of section 2. Similarly, when (A16) is written

 f h(x) log g*(x) dx - f h(x) log h(x) dx, (A18)

 it is evident that the first term is log likelihood divided by m, while the

 second term does not depend on g*(x), so that Lemma C implies the property
 (c) of section 2.

 The first part of Lemma A can be proved by defining a path through

 densities with the prespecified 01 beginning at h(x) and ending at the desired
 k(x). The condition that 01 is constant along the path implies from (A5)

 that the differential d- = (d41 , d42) along the path satisfies

 =~1 d(2Jr21l], (A19)

 where

 r [rlj r21 (A20)
 r2l r22,

 denotes the partition of (A2) into s + (r - s) rows and columns. If a curve

 is defined from the initial +2 associated with h(x) to the desired 42 associated
 with k(x), and the corresponding motion in + implied by (A19) remains
 within the space of permissible 4, then k(x) has been demonstrated to exist.
 As already remarked, such existence cannot be proved in complete generality,
 but is shown for the normal family (5) in Appendix B. To prove the
 uniqueness of k(x) when it exists, suppose to the contrary that distinct k(x)

 and E(x) possess the given 01 and 42 but different 41 vectors, say 41 and 4, .
 Differential motion along the line segment from ( 1, 4)2) to (4i , 4)2) implies
 a nonzero d41 of constant direction, which in turn implies that the elements
 of dO1 = di~jr11 have constant signs and are not all zero which in turn implies
 that some of the elements of 01 must be different at different ends of the line
 segment, a contradiction.

 Lemmas B and C are both simple corollaries of the familiar inequality
 (cf. Rao [1965])

 I h(x) log h(x) dx < -f h(x) log h*(x) dx (A21)

 for any two distinct densities h(x) and h*(x), so that for fixed h(x) the ex-
 pression -f h(x) log h*(x) dx achieves a unique minimum when h*(x) =
 h(x). Lemma B follows from the relations
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 f h(x)[log h(x) - log g(x)] dx > f h(x)[log k(x) - log g(x)] dx

 - f k(x)[log k(x) - log g(x)] dx. (A22)

 The inequality in (A22) is an application of (A21) while the equality follows

 because log k(x) -log g(x) has nonzero coefficients along the constant term
 and tj(x), t2(x), *., t.(x) whose expectations 01 are identical under both
 h(x) and k(x). To prove Lemma C, a different application of (A21) is required,
 namely

 -f k(x) log k(x) dx < - c(x) log g(x) dx. (A23)

 Using the equality in (A22), the inequality (A23) is expressible as

 - h(x) log k(x) dx < - h(x) log g(x) dx (A24)

 which in turn is equivalent to (A15), as required.
 The maximizations in Lemmas B and C can be corroborated by computing

 derivatives of the quantities (A14) and (A16). Suppose that (A14) is denoted
 B* and the parameters associated with h*(x) are denoted 4*, 0*, and r*.
 If h*(x) undergoes differential motion obeying d* = as in
 (A19) to keep 6* constant, it is easily checked that

 dB* =-d*[r]i -F -*](42-2*) (A25)
 where 42 is the fixed parameter set associated with g(x). From (A25) it is
 seen that B* has zero derivatives when 4)2 = 4,*, i.e. at the maximum indi-
 cated by Lemma B. Similarly, if (A16) is denoted C* and the parameters

 associated with g*(x) in Lemma C are denoted 4*, 0*, and r*, then dif-

 ferential changes in g*(x) keeping 4A constant at the prespecifled 42 yield

 dC* = d4*l (01 - 0*)T (A26)

 which shows that dC* = 0 when 61 = 01, i.e. at the maximum indicated
 by Lemma C.

 Finally, the first derivative relation (A25) and (A26) can be differentiated
 trivially to show that the matrix of second partial derivatives of B* with

 respect to the elements of 4A is

 - (i,* - r*Fr lr*), (A27)

 and the matrix of second partial derivatives of C* with respect to the elements

 of 4* is

 F rl* . (A28)

 It is an interesting property of exponential families that r* provides both

 first derivatives of 0* with respect to 4* as shown by (A5) and second de-
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 172 BIOMETRICS, MARCH 1972

 rivatives C* as shown by (A28). One application of this coincidence is given
 in Appendix B. Another important application of (A28) is to ML estimation.

 As remarked above, the estimation rule of section 2 illustrates ML estima-

 tion within the subfamily of (1) with 42 = 0 where 61 is a vector of sufficient

 estimators. Since mC* is log likelihood, it follows that -mrF is the matrix
 of second derivatives of log likelihood with respect to the parameters 4*.
 Thus (1/m)rF; calculated at the ML estimates provides an estimate of the
 asymptotic covariance matrix of the estimated 41, which in turn implies
 from (A5) that (1/m)r11 is an approximate asymptotic covariance matrix
 for the estimated 01 . The latter result can also be verified directly, for if

 rJ2 could be calculated at the true parameter values, it would give exactly

 the sampling covariance matrix of t1(x), t2(x) , *r, t.(x), so that (1/m)F11
 defines the covariance matrix of the sufficient estimates (1//m) E t, (xl), ***
 (1/m) 1 t.(X,) of 06

 After carrying out the fitting procedure matching 01 with the sufficient

 estimates and matching 42 with 0, any element of the fitted 4q can be tested
 approximately for significant difference from zero by dividing by the square
 root of the corresponding diagonal element of (1/m)Frlr and comparing to a
 standard normal deviate. An asymptotically equivalent test is to treat twice
 the reduction in log likelihood when adding the parameter to the model as
 ax on 1 D.F. Either of these tests can be used as a basis for parameter selec-
 tion.

 APPENDIX B: COMPUTATIONAL THEORY

 Two specific iterative procedures of the form 40) > 401) P> (2) )**
 will be described which converge to the + defining a member of the family

 (1) specified by given 06 and 42 as in (A10) and (All). In the first procedure,
 the partitions 4)() = (Mi), 4)i') are characterized by holding 4(i' at the
 desired 42 , so that only 4)" changes with i in such a way that the corre-
 sponding 0' = (O), 0i')) has 0") converging to the desired 01 . In the
 second procedure 06' is held fixed at the desired 01 which means that both

 4)" and 4<') change with i as 4)") converges to the desired 42.
 The first procedure is most simply regarded as a straightforward applica-

 tion of Newton's method for solving implicit equations. With 4+2 fixed, 01
 can be regarded as a function 01(k') and the problem is to solve the equations

 01 = 0,(41) for 4l given 01 . Having 0") = 01(4(i`) at stage i, one expands 0O
 in a Taylor series about 4' to obtain

 01 = 01 + ( - I + ... (Bi)

 where Ir") denotes the F11 part of (A20) calculated at 4(i'. Newton's method
 says one should define )i+1) by solving the first term equation (Bi) to obtain

 +(i+i) = 4(0 + (o1 - (i)),0(132)
 The process (B2) may also be regarded as an ascent procedure based on a
 quadratic approximation to the log likelihood. Denoting log likelihood at
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 P and i by mC and mC0", respectively, it follows from (A26) and (A28)
 that a two-term Taylor series expansion of mC about 4~" is given by

 mc = m[CO + (1- _ -(i) _ ))T - (i))T +

 (B3)

 It is easily checked that the maximum of the quadratic expression (B3)
 occurs when 4l = 4(") as defined in (B2). The process (B2) is not guaranteed
 to converge as it stands, but from (B3) it follows that the change vector

 +U+0)- _ (i' does set out in a direction such that the likelihood is increasing
 in a neighborhood of +';. Consequently, even if the full step (B2) should
 reduce likelihood, a shortened step in the same direction will increase likeli-

 hood. Thus, a minor modification of the process (B2) yields a monotone
 sequence of increasing likelihoods which must converge to the unique maxi-
 mum when it exists.

 The computations reported in section 2 were developed from (B2). The

 computation of 4"("+) - 4" given 01 - 0O' and r(') is formally identical
 to the computation of a vector of regression coefficients from normal equa-
 tions in least squares. For the latter, there are many variants on detailed

 calculations, and the one used in section 2 was Beaton's SWP operator as
 discussed in Dempster [1969]. This process is not one of inverting r8i) and

 then multiplying by 01 - O"). Rather, it carries out both processes simul-
 taneously, and gradually modifies 01 - 0O'" into 4 -+

 Under the second computing procedure, the stage of passing from 4';'

 to 4('+') consists of a finite sequence of operations 0, for j = s + 1, s + 2,
 ... , p, where the operation O0 is the modification of any current 4* which
 leaves all of the elements of 0* constant except Olk and simultaneously adjusts

 4* to the desired 0i . In other words, each 0, is an example of the general
 computing problem, but with the partition p = s + (p -s) replaced by

 p = (p-1) + 1.AfterapplyingOjforj = s+ 1,s+2, , pitisclear
 that 01 = (01 , 02 X * 0.) is unchanged, but unfortunately the 4A are not
 in general all at their desired values because the adjustment O0 generally
 alters all 4* and, while matching q* to its desired value 4j, it destroys any
 matches on the remaining 4. . Nevertheless, each O does produce an increase
 in the expression (A14), as follows from applying Lemma B to the partition

 p = (p - 1) + 1. Thus the sequence of operations 4(`) _ 2) * ... does
 produce an increasing sequence of values of (A14) which only stops increasing
 in the limit when 42 attains its desired values. Thus, provided there is any
 solution, the process as defined will. converge to it.

 The second computing process is of interest only if the individual opera-
 tions O are simple, as happens in the case of the covariance fitting example
 of section 2. It is also easy to see in this case that each operation Oj produces
 a resulting I which remains within the class of positive-definite matrices,
 and that the criterion (A14) which is essentially log det I is bounded above
 because

 log det I < log (of11 022, o* * ,P) (B4)
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 Thus the iterative procedure produces a monotone increasing sequence

 of log det X values which are bounded above and therefore converge to a
 finite limit. This limit must occur when the subset of o-" for pairs (i, j) in
 I match the desired values 0, because otherwise the next cycle would produce
 another finite increase in log det N. In this way the existence of the estimator
 ? defined in section 2 is proved.

 To understand why the O0 in the covariance fitting example are simple,
 one needs some facility with various different parametrizations of positive-
 definite symmetric matrices. Specifically, the information in X is equivalent
 to the information in SWP [il. i, , , i ]Y, where {il. i, , , X it} is a
 subset of {1, 2, * , p} and SWP denotes the Beaton sweep discussed in
 Dempster [1969]. In particular, consider the equivalent representations
 given by

 5X11 Y-121 (B5)

 SWP [1, 2,*. , p-2] I RSW [1,9,.* * ,p- 2]

 Y"21 122_
 SW [ W2yPyp -l 2] T RSW [I.p-l ..Yp -2

 -_ 11 _X12] (B7)
 21 22j

 where the partitions refer to p = (p - 2) + 2, (B5) defines the partition
 of A, (B7) defines the partition of -v, and (B6) is an intermediate repre-

 sentation, where -ill = a, i12 = X 112, and i22 = 22 - 211 112
 With this background consider the O-type operation which leaves all of the
 elements ki- of X intact except p-,P and which changes the (p - 1, p)
 element &-' 1 of - 1 to 0. A simple prescription for carrying out this operation
 given v is (i) pass from (B5) to (B6), (ii) set the (p - 1, p) element in (B6)
 to 0, and (iii) pass from the new (B6) back to a new (B5). Alternatively,
 one can accept the w-1 parametrization as basic and (i) pass from (B7) to
 (B6), (ii) alter (B6) as above, (iii) return to (B7). The latter is computationally
 more desirable since sweeping on only 2 indices rather than p - 2 is required.
 It is easy to check from the definitions of SWP and RSW in Dempster [1969]

 that the prescriptions satisfy the requirements. In addition, stage (ii) modifies

 I22 in such a way as to leave it positive-definite, so that the new X and I`'
 are also positive-definite. Finally, it can be checked that det X is increased
 by the factor (1 -r2) ', where r2 is the squared correlation coefficient com-
 puted from 22x

 Besides its mathematical use as a tool to prove the existence of i, the
 second process can be developed into a practical computing tool for finding
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 COVARIANCE SELECTION 175

 x from S. The steps (i), (ii), (iii) above can be streamlined for this purpose.
 It is planned to report elsewhere on precise algorithms.

 Experience has shown, however, that the Newton-type algorithm is
 generally much faster than the second algorithm. In addition, the Newton-
 type algorithm produces r-1 as a by-product, thus allowing approximate

 tests of significance to be carried out on estimated 4j parameters, here non-
 zero elements of i-. For the purposes of selecting a new o-" parameter to
 put into the fitted model, it is likely to be impractical to fit all possible
 choices by an iterative calculation.

 Received August 1971

 Key Words: Exponential families; Covariance estimation; Parameter selection; Maximum
 likelihood computation; Maximum entropy.
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