
Dynamic Generation of DiscreteRandom VariatesJe�rey Scott Vitter and Wen-Chun NiDepartment of Computer ScienceBrown UniversityProvidence, Rhode Island 02912CS-92-36August 1992

Dynamic Generation ofDiscrete Random VariatesJe�rey Scott Vitter� and Wen-Chun Ni yDepartment of Computer ScienceBrown UniversityProvidence, R.I. 02912{1910August 1992AbstractWe present and analyze an e�cient new algorithm for generating a ran-dom variate distributed according to a dynamically changing set of weights.The algorithm can generate the random variate and update a weight each inO(log�N) expected time. (For all feasible values of N , we have log�N � 5.)The O(log�N) expected update time is amortized; in the worst-case the ex-pected update time is O(2log�N). The algorithm is simple, practical, and easyto implement.Keywords: random number generator, random variate, alias, bucket, rejec-tion, dynamic update.
�Support was provided in part by a National Science Foundation Presidential Young InvestigatorAward with matching funds from IBM, by NSF research grant CCR{9007851, and by Army ResearchO�ce grant DAAL03{91{G{0035.ySupport was provided in part by the O�ce of Naval Research and the Defense Advanced ResearchProjects Agency under contract N00014{91{J{4052, ARPA order 8225.

Contents1 Introduction 12 The General Ideas 13 The Generation Method 54 Updating the Weights|Basic Approach 65 Properties of the Data Structure 86 Modi�cation to Achieve O(log�N) Update Time 116.1 Properties of the Modi�ed Data Structure : : : : : : : : : : : : : : : 116.2 Amortized Analysis of the Modi�ed Algorithm : : : : : : : : : : : : : 137 Conclusions 15References 17Appendix 18A Preprocessing 18B Three Important Techniques 20B.1 Rejection Method. : 20B.2 Table Doubling Technique. : 21B.3 Dynamic Hashing : 22
ii

11 IntroductionThe generation of random variates based on arbitrary �nite, discrete distributionshas long been a key component of many computer simulations [6], [10]. Given theelements 1, 2, . . . , N and their respective weights w1, w2, . . . , wN � 0, we want todesign an algorithm to generate a random variate that has value j with probabilitywj=P1�i�N wi. In the static case, when the N weights are �xed, we can utilize theclever optimal algorithm by Walker, commonly called the alias method; the time togenerate a random variate is constant and the preprocessing cost is O(N) [6], [10].In this paper we consider the problem in the important and more challengingdynamic case, in which the weights of the elements can vary dynamically. The rel-evant measures of e�ciency are the generation time and the update time. We canrerun Walker's algorithm each time a weight is updated, but the update cost O(N)is too high. Up until recently, the best known algorithm for the dynamic problemwas the binary tree-based scheme developed by Wong and Easton [11], whose gen-eration and update times are both O(logN). Each generation requires one call toa random number generator that provides a uniform random number in the range[0; P1�i�N wi).Recently, Rajeskaran and Ross [8] and Greenberg and Vitter [5] developed di�erentalgorithms for the dynamic case that do generation and update in constant expectedtime for various restricted classes of updates. Independently to our work, Matias [7]developed an algorithm that does generation in O(log�N) expected time and withO(log�N) expected calls to a uniform random number generator, although generalupdate requires O(2log�N) expected time.1In this paper, we introduce a very practical and more e�cient randomized algo-rithm for the general dynamic case that does generation and update each in O(log�N)expected time. Generation requires an average of O(log�N) calls to a uniform [0; 1)random number generator. The O(log�N) expected update time is amortized; thatis, if the total number of updates is t � 0, the expected total time to do all theupdates is O(t log�N). The worst-case expected update time for a single update isO(2log�N), which is still reasonably small. The expectations are over the randomnessin the algorithm; no assumptions are made about the weight updates. The imple-mentation is especially simple and practical with very small constant factors implicitin the big-oh terms.2 The General IdeasIn this section, we describe the basic idea of our algorithm; the analysis and moresubtle aspects of it will be discussed in later sections. For completeness, we have1We use the standard terminology that log� n is the smallest integer k such that k applications ofthe binary logarithm function applied to n, namely, lg(lg(. . . lg(n))), is at most 1. For N � 65536,we have log�N � 4; for N � 265536, we have log�N � 5.

2 2 THE GENERAL IDEASincluded in Section B of the Appendix background information on three importanttechniques used by our algorithm, namely, the rejection method, table doubling, anddynamic hashing.Let the initial total weight of the N elements be W = P1�i�N wi. For simplicity,we assume that each weight wi can be stored in a single computer word; modi�cationsotherwise are straightforward. The idea of our algorithm is to partition the elementsby weight into ranges R(1)j , for j � lgW , such that R(1)j is associated with the range[2j�1; 2j). Note that j may be negative, since we do not restrict the elements' weightsto be integers. There may be more than one element falling into a range R(1)j , andtheir total weight, written as weight (R(1)j) is in the range [2j0�1; 2j0), for some j0 > j;we can treat the range R(1)j as a new \�rst-level" element with weight weight (R(1)j)and put it into the second-level range R(2)j0 , de�ned as [2j0�1; 2j0). For those rangescontaining only one element, we put them into a level table T1 rather than into asecond-level range.Given a list of ranges R(2)j1 ; R(2)j2 ; . . . ; R(2)jn each containing at least two elements, werepeat the same partition process using R(2)j1 ; R(2)j2 ; . . . ; R(2)jn as second-level elements.More generally, by applying the same process to each range R(`)j containing at leasttwo elements, for j � lgW and ` � 1, we can build level-(`+1) range R(`+1)k , de�nedas [2k�1; 2k), for some k � lgW . The process repeats until there is no range containingat least two elements.The process is best viewed as a level-by-level, bottom-up construction of a forestof trees. The elements 1, 2, . . . , N , are implicit leaves in the trees being built and canbe regarded as comprising the implicit level 0. Any range (node) on some level ` � 1is called internal in the collection of trees. More importantly, there is no distinctionbetween the elements and the nonempty ranges from this viewpoint: they are alltreated as nodes in a tree or elements in a set. For ` � 1, if R(`)i has at least twochildren and its total weight is in the range R(`+1)j , then R(`)i is a child of range R(`+1)j ;conversely, R(`+1)j is the parent of R(`)i . A range with only one child is said to be aroot range and has no parent. We de�ne the degree of range R(`)j to be the numberof children it has; the degree of a root range is 1. The relation between a range andits parent range is illustrated by Figure 1.Each level table T`, for ` � 1, contains the nonempty root ranges created duringthe `th iteration of the tree-building process. Each nonempty root range R(`)j is storedin a dynamic hash table, as described in Section B.3 in the Appendix, indexed by jand `. When we insert the level-` roots into T`, we also compute the total weightof these roots, denoted weight (T`). After the preprocessing, we have a forest of treeswhose roots may be on di�erent levels. We denote by L the maximum level numberof a root. The data structure consists of levels 1, 2, . . . , L. Figure 2 gives a view ofthe trees built.The remaining question is how to store the children for a given internal range R(`)j .Within each range R(`)j , for ` � 1, we keep a dynamic table of buckets. Inser-tions and deletions of ranges are handled by the table-doubling technique described

3

m

Level

Level

l+1

lFigure 1: A range with degree m on level ` and its parent range on level `+ 1.

4 2 THE GENERAL IDEAS
1

2

3

4

5Figure 2: A forest of trees built, with L = 5 levels. The break lines mark the levels.Root nodes are denoted by solid circles.
1

2

3

4

5

 wiFigure 3: Generating a random variate from level ` = 4.in Section B.2 in the Appendix. Each bucket contains one range R(`�1)i such thatweight (R(`�1)i) 2 [2j�1; 2j). The total weight weight (R(`)j) for ` � 1 is de�ned to bePi weight (R(`�1)i), where the summation is taken over the children R(`�1)i of R(`)j .The generation of a random variate according to the current distribution of weightsw1, w2, . . . , wN is done as follows:Step 1. We choose some T`, where 1 � ` � L, based on the weights of the leveltables.Step 2. We choose one root range R(`)j on level ` according to the weight distributionof the ranges.Step 3. Within R(`)j , we use the rejection method (see Section B.1 in the Appendix)to choose one of its children according to their weight distribution. We repeatthe process until we reach level 1, where the chosen child is one of the Nelements. We output the chosen element.Steps 2 and 3 are explained pictorially in Figure 3. We show in Sections 3 and 5 thatthe expected time to generate a random variate is O(log�N).

5On-line update of the weight of any element is permitted in the dynamic case.When the weight wi in range R(1)j is changed to wi + �, we must move the corre-sponding element i to another range R(1)k if wi +� 62 [2j�1; 2j), in which case we saythat element i \changes its parent." A change of an individual weight may thus causethe total weights of two level-1 ranges R(1)j and R(1)k to change, which may cause fur-ther parent changes higher in the trees. The total expected update time is O(2log�N)in the worst case. Our main result, described later, yields an O(log�N) amortizedexpected update time. The details and analysis will be given in Sections 4{6.3 The Generation MethodGenerating the random variate based on the current values of the weights consistsof the three steps outlined in Section 2. In Step 1 we choose one of the levels T`by generating a uniform random variate U 2 [0; 1) and setting ` to the minimumpositive integer such that U < P1�k�` weight (Tk). The value of ` is found by asequential search using values ` = 1, 2, In Step 2 we choose a nonempty rootrange R(`)j on level ` by processing the nonempty root ranges R(`)j1 , R(`)j2 , . . . R(`)js insequence, where j1 > j2 > � � � > js until we �nd the minimum value 1 � j � ssuch that U � P1�k�j weight (R(`)k). The �rst (largest) index j1 is computed asblg roots(T`)c + 1. The successive indices j2, j3, . . . can be obtained by iterativelysubtracting 2ji and taking the discrete log function again. Alternatively, it su�ces tostep down iteratively from j1 until we �nd the values ji for which R(`)ji is nonempty.Step 3 consists of descending level by level from R(`)j using the rejection methodat each step until an element at the bottom level is reached, which we output, asdescribed below:algorithm generate range(R(`)j);begin;`0 := `;while `0 > 0 dobeginj :=bucket rejection(R(`0)j);`0 := `0 � 1end;return(j)end;The cost of Step 1 is O(L), since there are L levels to choose from. We showin Theorem 3 that L � log�N + 1 in the worst case (although it is typically evensmaller). Only one call to a uniform random number generator is needed for Step 1.In Step 2, generating one root range R(`)j on level ` may cost time linear in the numberof nonempty root ranges on level `. The optimistic side is that its expected time isconstant, since the range weights decrease exponentially. Let R(`)j1 , R(`)j2 , . . . , R(`)jn be

6 4 UPDATING THE WEIGHTS|BASIC APPROACHthe set of nonempty root ranges on level `, where j1 > j2 > � � � > js. The expectedcost E of Step 2 isP1�k�n k�weight (R(`)jk)=weight (T`). Since 2jk�1 � weight (R(`)jk) < 2jkand weight (T`) � P1�k�n 2jk�1 � 2j1�1, we haveE < X1�k�n k � 2jk�j1+1 � X1�k�n k2�k < 2:Step 2 requires only one call to a uniform random number generator. In Step 3 wewalk down the levels from R(`)j in constant expected time per level, by Corollary 1 inSection B.1, using a total of O(log�N) expected time and O(log�N) expected callsto a uniform random number generator.Theorem 1 The expected cost for generating a random variate according to the cur-rent weights is O(log�N), where N is the number of elements.The dynamic scheme of Wong and Easton [11] uses O(logN) time per generation,but it requires only one call to a random number generator that outputs a uniformnumber in the range [0; P1�i�N wi). Our algorithm uses an average of at most about2L calls to a uniform random number generator, primarily due to Step 3. It maybe possible to use a faster uniform random number generator or to \share" randomnumbers: The random numbers needed in Step 3 do not usually require the precisionof those needed for Wong and Easton's algorithm, especially when P1�i�N wi is large;the maximum precision needed is proportional to the degree of the current node inthe tree, which is at most N but is typically very small.4 Updating the Weights|Basic ApproachOn-line update of weights is permitted in the dynamic case. If we want to changeweight wi to wi + �, the structure of the hierarchy may have to be changed. If thenew value of wi is no longer be in its original range, we must move element i intoanother range.Coordinating the updates from the bottom up is achieved by associating to eachlevel a queue, as we do in the preprocessing stage. Once the weight of a range hasbeen changed on level `, we re
ect the required update to level ` + 1 by putting thevalue changed and the range into the queue. We can view the e�ect by looking atFigure 4. In Figure 4b, the node v changes its parent node from w to w0 because ofweight increase. (We can use the table doubling technique of Section B.2 to organizethe buckets in each range.) The paths upward from w and w0 should be updatedaccordingly.The number of ranges a�ected on level ` is no more than 2`, since each updatealong an upward path in the data structure spawns at most one new upward updatepath. Since we have at most log�N + 1 levels, to be shown in Theorem 3, the totalnumber of ranges a�ected is bounded by 2log�N+1. By using the universal hashing

7(a)
v v

w
w’

(b)Figure 4: Two views of the update operation. (a) Moving one bucket from one rangeto another. (b) The tree view: changing the parent of v from w to w0.scheme of Section B.3 and its variants, we are able to insert new ranges and deleteold ranges in constant expected time. This means that each update takes O(2log�N)expected time.Theorem 2 Updating the weight of any element can be performed in O(2log�N) ex-pected time in the worst case.The same result that we have described so far, namely, O(log�N) expected timeand expected calls to a uniform random number generator per generation, but anexpected update time of O(2log�N), was obtained independently by Matias [7] usinganother interesting technique. Matias inserts elements into ranges (as we do), but\elevates" to the next level all the \signi�cant" ranges, de�ned as those nonemptyranges whose range numbers are within 4 lgN of the largest range number. Sig-ni�cant ranges may have only one element in them. (In our algorithm, we elevateall ranges with at least two elements in them, although some may be insigni�cant.)This process is repeated recursively, with N reset to the number of elevated signi�cantranges; the height of the resulting data structure is O(log�N). At each level, elementscorresponding to non-signi�cant ranges are generated in a brute-force way; elements

8 5 PROPERTIES OF THE DATA STRUCTUREcorresponding to signi�cant ranges are generated recursively using the constructedtree.The update time in Matias's algorithm is O(2log�N) and not O(log�N), for areason similar to the one described above: Changing the weight of a range may causeit in the next level of the data structure to be removed from one parent range andadded to a di�erent parent range, resulting in an exponential blowup in work fromone level to the next. It is easy to construct sequences of updates where each updaterequires
(2log�N) time.The maximum height of Matias's data structure is about the same as the maxi-mum height of our data structure, but the topmost level of Matias's data structurecan contain many arbitrarily weighted entries, perhaps 20 depending on the imple-mentation, making the e�ective height larger. One interesting point is that for typicalweight distributions, even for large N , our data structure has height 1 or 2; in fact it isdi�cult to specify in an informal way distributions for which the height is log�N +1.Matias's data structure, on the other hand, can have maximum height for some com-mon distributions. For example, if the weights are increasing powers of 2, our datastructure has height 1 and Matias's data structure has maximum height.The main result of this paper, which we cover in Section 6, is showing how tomodify the basic algorithm described so far in order to reduce the update time fromO(2log�N) expected time to O(log�N) amortized expected time.5 Properties of the Data StructureIn this section we derive some important invariants that are crucial to the analysis ofthe size and height of the data structure.Lemma 1 If the degree of range R(`)j is m � 2, then weight (R(`)j) is in the range[2j0�1; 2j0), where lgm� 1 < j0 � j < lgm+ 1.Proof : Since every bucket in R(`)j represents an element with weight in the range[2j�1; 2j), we have weight (R(`)j) 2 [m2j�1;m2j). If weight (R(`)j) falls into R(`+1)j0 , then2j0�1 � weight (R(`)j) < m2j and m2j�1 � weight (R(`)j) < 2j0 . The result follows bytaking logarithms. 2Lemma 2 For ` � 2, if the degree of range R(`)j is m � 2, then one of its childrenhas degree at least 2m�1 + 1; moreover, the number of R(`)j 's grandchildren is at least2m +m� 1.Proof : Figure 5 demonstrates the relations between a degree-m node and its childrenand grandchildren. Let the children of R(`)j be R(`�1)j1 , R(`�1)j2 , . . . , R(`�1)jm , for j > j1 >j2 > � � � > jm. By Lemma 1 and the fact that ji � j � i, it follows that R(`�1)ji hasat least 2j�ji�1 + 1 � 2i�1 + 1 children. The total number of grandchildren of R(`)j isthus at least P1�i�m (2i�1 + 1) = 2m +m� 1. 2

9
m

2 + 12
m−1

+ 1
m −2 2Figure 5: A typical tree built.Lemma 3 For ` � k � 3, if the degree of range R(`)j is m � 2, then the di�erence inrange numbers between the smallest-numbered range on level ` � k and the smallest-numbered range on level ` � k + 1 among the descendants of R(`)j is at least22���2m �k + 1; (1)22���2m �k + 1:which is 22m + 1 and 222m + 1 for k = 3 and k = 4, respectively. In addition, thenumber of descendants of R(`)j on level ` � k is at least (1).Proof : By induction on k. We shall demonstrate that the inductive hypothesis is truefor either k = 2 or k = 3. Let us assume that the inductive hypothesis does not holdfor the smaller value k = 2. Range R(`)j 's m children at level `� 1 occupy contiguousranges R(`�1)j1 , R(`�1)j2 , . . . , R(`�1)jm , where ji = j� i; otherwise, jm � j �m� 1 and thenumber of R(`�1)jm 's children on level ` � 2 is at least 2m + 1, by Lemma 1, in whichcase the inductive hypothesis holds for k = 2.Now suppose that the inductive hypothesis does not hold for the value k = 3.There are exactly 2m + m � 1 grandchildren of range R(`)j on level ` � 2 occupyingcontiguous ranges R(`�2)j�2 , R(`�2)j�3 , . . . , R(`�2)j�m�2m ; otherwise by Lemma 1, the numberof children of the smallest-numbered range on level `� 2 is at least 22m + 1, in whichcase the base case holds for k = 3.The number of ranges on level `� 3 can be minimized if the ranges on level `� 2are ordered by the numbers of their parents on level ` � 1, so we assume that suchan ordering occurs. The 2i�1 + 1 children of R(`�1)j�i on level ` � 2 occupy contiguousranges R(`�2)j�2i�1�i, . . . , R(`�2)j�2i�i. By Lemma 1, the number of R(`�1)j�i 's grandchildren onlevel ` � 3 is at least�22i�1�1 + 1�+ � � �+ �22i�1 + 1� = 22i � 22i�1�1 + 2i�1 + 1:

10 5 PROPERTIES OF THE DATA STRUCTUREHence, the number of R(`)j 's great grandchildren on level ` � 3 is at leastX1�i�m �22i � 22i�1�1 + 2i�1 + 1� = 22m + 12 X1�i<m 22i + 2m +m� 2: (2)The number of the smallest-numbered range on level ` � 3 among the great grand-children of R(`)j is thus at most(j � 2) � �22m + 12 X1�i<m 22i + 2m +m� 2� = j �m� 2m � 22m � 12 X1�i<m 22i:The resulting di�erence between the smallest range number on level ` � 3 and thesmallest range number j �m� 2m on level `� 2 among the descendants of R(`)j is atleast 22m + 12 X1�i<m 22i � 22m + 2:The inductive hypothesis therefore holds for the base case k = 3.For the inductive step, for k � 2, suppose that the di�erence in range numbersbetween the smallest-numbered range on level `�k and the smallest-numbered rangeon level `� k + 1 among the descendants of R(`)j is at least22���2m �k + 1:By Lemma 1, the smallest-numbered range on level ` � k has at least22���2m �k+1 + 1children, and the inductive hypothesis holds for k + 1. 2Each range in the topmost level must be a root and can have degree 1, but all itsdescendants must have degree � 2. Let us choose ` to be one less than the topmostlevel number; the degree of each non-root range in level ` is therefore � 2. Since thereare only N elements in the data structure, Lemma 3 implies the following bound onthe height of the data structure:Theorem 3 The maximum number of levels L in the trees is � log�N +1, where Nis the number of elements.The space requirement of the algorithm depends on the number of ranges actuallyput into the table.Lemma 4 The total number of nonempty ranges is O(N), where N is the number ofelements, and the total storage space used by the data structure is O(N).

11Proof : Each tree constructed by the algorithm is height-balanced. With the exceptionof root ranges, every range in the trees has degree at least 2. This means that thetotal number of nodes in each height-balanced tree is of the same order as the numberof the leaves of the tree, which is N . The dynamic hash tables used to store the rangesfor each level occupy O(N) space collectively. 2The universal hashing schemes of Section B.3 can be bypassed in favor of simpletable lookup at the cost of a super-linear bound on storage space.6 Modi�cation to Achieve O(log�N) Update TimeIn this section we present our main result: how to modify our basic algorithm inorder to achieve O(log�N) expected update time when amortized over the sequenceof updates. That is, if there are t updates, for any t � 0, the expected time tocomplete all t updates is O(t log�N). In contrast, the expected update time for theunmodi�ed algorithm derived in Theorem 2 is O(2log�N).The key to achieving this better amortized bound is by considering the followingparameters:1. We introduce \tolerance" into the ranges to allow \lazy updating." We choosea tolerance factor 0 � b < 1. For convenience, we choose b so that 2+b1�b is powerof 2. (Previously we used b = 0.) We relax the range of weights that canbe stored in the range R(`)j associated with the interval [2j�1; 2j) by toleratingweights in the interval [(1 � b)2j�1; (2 + b)2j�1). We associate range R(`)j withthe tolerated interval [(1 � b)2j�1; (2 + b)2j�1). Note that the resulting set oftolerated ranges overlap. However, when an element with weight w is insertedinto a level-` range, it is inserted into the unique range R(`)j where 2j�1 � w < 2j.The element must change its weight by at least the tolerance b2j�1 of range R(`)jbefore it is moved to another range.2. We modify the criteria de�ning roots and require that each non-root node havedegree at least d = 12(2+b1�b)22c, where c is a nonnegative integer to be speci�edlater. (Previously we used d = 2.) The number d is the minimally allowablenumber of buckets in a non-root range; from the graph-theoretic viewpoint, itis the minimal degree of the non-root nodes in the trees we build.6.1 Properties of the Modi�ed Data StructureIn this more general setting, we must modify Lemmas 1{3 and Theorem 3 in orderto take into account the tolerance b and degree bound d. In this section we derivenew versions, which we call Lemmas 10{30 and Theorem 30. Using a larger valueof d slightly decreases the worst-case bound on the number L of levels from that of

12 6 MODIFICATION TO ACHIEVE O(LOG�N) UPDATE TIMETheorem 3. For example, if we take b = 0:4 and c � 1, Theorem 30 shows that themaximum height L of the trees is � log�N � 1.For conciseness, we refer to the expanded ranges in the modi�ed algorithm simplyas ranges; they have tolerance factor 0 < b < 1 and all ranges except the roots havedegree at least d = 12(2+b1�b)22c, for nonnegative integer c. With these modi�cations,Lemma 1 takes the following form:Lemma 10 If the degree of range R(`)j is m � d, then weight (R(`)j) is in therange R(`+1)j0 , where lgm� lg(2+b1�b) < j0 � j < lgm+ lg(2+b1�b).Proof : Each of the m children of R(`)j has weight in the range [(1�b)2j�1; (2+b)2j�1),so weight (R(`)j) must be in the range [m(1�b)2j�1;m(2+b)2j�1). If weight (R(`)j) fallsinto [(1 � b)2j0�1; (2 + b)2j0�1), then (1 � b)2j0�1 � weight (R(`)j) < m(2 + b)2j�1and m(1 � b)2j�1 � weight (R(`)j) < (2 + b)2j0�1. The inequality follows by takinglogarithms. 2We can use Lemma 10 to get the following modi�cation of Lemma 2:Lemma 20 For ` � 2, if the degree of range R(`)j is m � d, then one of its childrenhas degree at least 2m�1+c; moreover, the number of R(`)j 's grandchildren is at least2m+c � 2c +m.Proof : Let the children of a range R(`)j be R(`�1)j1 ; R(`�1)j2 ; . . . ; R(`�1)jm , for j > j1 > j2 >� � � > jm. By Lemma 10, we have j1 � j � lg(2+b1�b) � c, ji � j � i + 1 � lg(2+b1�b) � c,and the number of children of R(`�1)ji is at least maxfd; 2i�1+c + 1g. Thus, the totalnumber of grandchildren of R(`)j is �P1�i�m(2i�1+c + 1) = 2m+c � 2c +m. 2Lemma 30 For ` � k � 3, if the degree of range R(`)j is m � d, then the di�erence inrange numbers between the smallest-numbered range on level ` � k and the smallest-numbered range on level ` � k + 1 among the descendants of R(`)j is at least22���2m �k + lg 2 + b1� b!+ 1:In addition, the number of descendants of R(`)j on level ` � k is at least22���2m �k:Proof : The full proof is similar to that of Lemma 3, except that the minimum dif-ference of range numbers between a parent node and its largest-numbered child isc+lg(2+b1�b) rather than 1. This enlarges the di�erences between the smallest-numberedranges on adjacent levels and introduces the term lg(2+b1�b). The details are suppressedfor brevity. 2

6.2 Amortized Analysis of the Modi�ed Algorithm 13Lemma 30 can be strengthened substantially, but it su�ces for our purposes. Asbefore, we choose ` to be one below the topmost level number; the degree of eachnon-root range in level ` is � d. Let us suppose that d � 16 = 222 . Since thereare only N elements in the data structure, Lemma 30 implies the following improvedbound on the height of the data structure (cf. Theorem 3):Theorem 30 The maximum number of levels L of the trees is � log�N � 1, whereN is the number of elements.6.2 Amortized Analysis of the Modi�ed AlgorithmWhen a node w is made a child of range R(`)j represented by node x, node w mustlater change its weight by at least x's tolerance b2j�1 in order for it to \change itsparent." This tolerance prevents too many insertions and deletions from occurring.When w changes its parent, x loses weight and w's new parent gains weight; twopaths of nodes need to be updated: the one upward from node x and the one upwardfrom w's new parent. All the nodes on the two paths should revise their weights tore
ect the changes.To facilitate the amortized analysis, we use an accounting method [9], where wecharge C` units of cost to a level-` node w that changes its parent. Since we onlychange the weights of one of the N bottom-level elements on level 0, and in the worstcase the element will change its parent, we charge C0 to each dynamic weight updateoperation. The credits accumulated at each node must pay for the cost of a parentchange for that node, when it occurs, plus the cost of processing the resulting twoupward update paths.Suppose that node w changes its parent from x1 to y1 during an update. Theupdate path starting from w is de�ned to be w ! x1 ! x2 ! � � � ! xm, where xm isa root, and we call this path the old ancestor path of w. The new ancestor path of wis w ! y1 ! y2 ! � � � ! yn, where yn is a root.Let us consider for reasons of brevity only the case in which w is decremented inweight by � and changes its parent from x1 to y1, and we restrict ourselves to theanalysis of the old ancestor path w ! x1 ! x2 ! � � � ! xm. Node w is on level `, andnode xj is on level ` + j. Let node xj correspond to the range R(`)ij+1, for 1 � j � m.Suppose that the nodes x1, x2, . . . xj�1 do not change their parents or becomeroots as a result of the parent change of w. The change of weight of node xj due tothe update of w is weight (w) � (2 + b)2i1. Let us de�ne �(xj; xj+1) = weight (xj) �(1 � b)2ij to be the di�erence between the weight of xj and the lower boundary ofthe range R(`)ij+1+1 represented by xj+1 at the time when xj was last inserted into oneof xj+1's buckets (or, equivalently, when xj changed its parent to xj+1). We have�(xj; xj+1) � b2ij+1 . By Lemma 10, we have 2ij+1 � 2i1((2+b1�b)2c)j, which gives us�(xj; xj+1) � b((2+b1�b)2c)j2i1 . Therefore, the ratio fj between xj's weight change and

14 6 MODIFICATION TO ACHIEVE O(LOG�N) UPDATE TIMEthe tolerated weight change �(xj; xj+1) satis�esfj � (2 + b)2i1b�(2+b1�b)2c�j2i1 = �2b + 1� 2 + b1� b! 2c!�j :Since the weight change of xj is at most fj of the total weight change needed to causea parent change, it su�ces to deposit fjC`+j credits on node xj during the processingof w's parent change.Next let us consider the case in which nodes x1, x2, . . . xj�1 do not change theirparents, but nodes x1, x2, . . . xk become roots, for k � j�1, as a result of the parentchange of w. Nodes x1, x2, . . . xk do not need credits deposited on them, since theyno longer have parents, and the credits can be deferred instead to xk+1, Bysimilar reasoning to above, the ratio fj between xj's weight change and the toleratedweight change �(xj; xj+1) satis�esfj � �2b + 1� 2 + b1 � b! 2c!�j+k ;and it su�ces to deposit fjC`+j credits on node xj during the processing of w's parentchange.The number of credits deposited on node xj is at least C`+j times the fraction ofthe tolerance represented by xj's weight change. Thus, at the future time when theweight of node xj is out of the range of node xj+1 and xj changes parent, there willbe at least C`+j credits on xj to pay for the required updating.The other cases to consider, such as consideration of the new update path and thecase in which w is incremented in weight, are analogous to the ones discussed aboveand are left to the reader. This gives us the following lemma:Lemma 4 The total number of credits allocated to a level-` node between two timesit changes parent is at least C`.By the above reasoning, we get the following recurrence on the number of cred-its C` needed to perform a parent change of a node on level `:C` � 2(L� ` + 1) + 2 X1�j�L�` �2b + 1��(2+b1�b)2c�jC`+j� 2(L� ` + 1) + 2 �2b + 1�(2+b1�b)2c � 1C`+1 (3)where CL = 1. The �rst term on the right-hand side corresponds to the minimumcost needed to process the two update paths of length � L � ` + 1 caused by theparent change. The jth term in the summation represents the credits needed forthe two level-(`+ j) nodes on the old ancestor path and the new ancestor path. If2(2b + 1) < (2+b1�b)2c � 1, the solution to (3) is C` = O(L � `).

15Lemma 5 If c > lg((2b +1)(1� b)), then C` = O(L� `), where L � log�N � 1 is thenumber of levels in the trees.We can choose the constants b and c (and thus d) so that the conditions of The-orem 30 and Lemma 5 are satis�ed. For example, we can choose b = 0:4 and d = 32.The number of credits we need to allocate for the update of an element's weight isthus C0 = O(L) = O(log�N). This gives us our main result:Theorem 4 The amortized expected cost for each update operation is O(log�N),where N is the number of input elements.With the modi�cation discussed above, the time to implement Steps 1{3 for gen-erating a random variate increases by a multiplicative factor of 1=b (because of thee�ect on the rejection method in Step 3) and an additive factor of log d (because ofthe e�ect on the the weights of the roots in the level table in Step 2). Since 1=b and dcan be chosen to be to be reasonably small constants, the resulting increase in gener-ation time is not much. A bene�cial e�ect of the modi�cation, which we mentionedabove, is that the worst-case bound on the number of levels L decreases slightly as dgets larger. In practice, we can probably avoid this modi�cation and keep b = 0 andd = 2, or else use a partially modi�ed algorithm with a larger d, but for theoreticaland worst-case purposes, the full modi�cation is needed in order to get the O(log�N)time bound for generation and update.7 ConclusionsWe present practical and e�cient randomized algorithms for generating a randomvariate according to a set of weights that can vary dynamically. In the �rst algorithm,the expected time to generate the random variate is O(log�N), and the expected timeto update a weight value is O(2log�N). Our main result is showing in Section 6 howto modify the algorithm by introducing the notion of tolerance and by requiring eachnon-root range to contain at least d buckets, for some large enough d, in order toimprove the expected update time from O(2log�N) to O(log�N), amortized over thesequence of updates. The expectations in each algorithm are over the randomness inthe algorithms; we make no assumptions about the weight updates.The �rst algorithm may be preferable to the modi�ed algorithm for normal use inpractice, especially if there are a priori upper and lower bounds on the weights, and ifthe dynamic hashing technique is removed in favor of simple table lookup. However,it may be better to use degree bound d > 2 because of its e�ect on lessening theheight of the data structure. Experimentation is needed.The interesting algorithm developed independently by Matias [7] (see Section 4) isroughly comparable to our �rst algorithm: the maximum height of its data structureis about log�N , each generation uses on the average O(log�N) time and O(log�N)calls to a uniform [0; 1) random number generator, and the expected update time is

16 7 CONCLUSIONSO(2log�N). We can show how to modify Matias's algorithm and improve the expectedupdate time in the amortized setting to O(log�N), as we did for our algorithm inSection 6, by incorporating our notion of tolerance and by requiring that the signi�-cant ranges must have degree � d, for some large enough d, in order to be promotedto the next higher level. This requires keeping level tables of roots, similar to theones we use in our algorithm.

REFERENCES 17References[1] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions, Journal ofComputer and System Sciences, 18: 143{154, April 1979.[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.McGraw-Hill, New York, NY, 1990.[3] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,and R. E. Tarjan. Dynamic Perfect Hashing: Upper and Lower Bounds, Proceed-ings of the 29th IEEE Symposium on Foundations of Computer Science, IEEEComputer Society Press, 524{531, October 1988.[4] M. Dietzfelbinger and F. Meyer auf der Heide. A New Universal Class of HashFunctions and Dynamic Hashing in Real Time, Proceedings of the 17th Interna-tional Colloquium on Automata, Languages, and Programming, Springer-Verlag,Lecture Notes in Computer Science, 443: 6{19, July 1990.[5] A. Greenberg and J. S. Vitter. Constant-Time Generation of Dynamic RandomVariates, Notes, June 1990.[6] D. E. Knuth. Seminumerical Algorithms, Volume 2: The Art of Computer Pro-gramming. Addison Wesley, Reading, MA, 1981.[7] Y. Matias. Rolling a Dice with Varying Biases, Manuscript, July 1992.[8] S. Rajasekaran and K. W. Ross. Fast Algorithms for Generating Discrete RandomVariates with Changing Distributions, Manuscript, February 1992.[9] R. E. Tarjan. Amortized Computational Complexity, SIAM Journal on Algebraicand Discrete Methods, 6(2): 306{318, 1985.[10] A. J. Walker. New Fast Method for Generating Discrete Random Numbers withArbitrary Distributions, Electronic Letters, 10(8):127{128, 1974.[11] C. K. Wong and M. C. Easton. An E�cient Method for Weighted Samplingwithout Replacement, SIAM Journal on Computing, 9(1):111{114, 1980.

18 A PREPROCESSINGAppendixIn the Appendix we give describe the preprocessing algorithm and give some back-ground on the rejection method, table doubling, and universal hashing, which areused by our algorithm.A PreprocessingIn this section we give a detailed description of the preprocessing stage, which is usedif some of the N weights are initially nonzero. Algorithm preprocess partitions theelements into ranges R(1)j = [2j�1; 2j), for integer j, and calls algorithm construct levelto build the trees from the �rst level constructed. We use a list of queues to coordinatethe events like insertions and deletions. The function �nd range(i; `) is used to searchfor the range R(`)i in the level-` hash table organized using universal hashing, asmentioned in Section B.3. If it does not exist, we create one and make R(`)i an emptyrange. Only level-` ranges containing at least one element are created and put intoa level-` hash table. We prove later that the number of ranges created during theexecution of the algorithm is O(N). The algorithm insert bucket(source ; destination)is used to insert a range or element called source into the range de�ned by destination.It also updates the current total weight in the range destination. Since we use anarray of buckets in each range to hold the children of the range, generation of onebucket in the range is done by indexing into the array. The insertion and deletion ofbuckets can be handled by table doubling techniques mentioned in Section B.2. Theuse of queues Q` is to avoid the searching of nonempty ranges on the next level.algorithm preprocess;input weights w1; w2; . . . ; wN ;beginQ1 := ;;for i := 1 to N dobeginj := blgwic+ 1; f wi 2 [2j�1; 2j) gR(1)j := �nd range(j; 1);insert bucket(i; R(1)j);if R(1)j 62 Q1 then insert queue(R(1)j ; Q1)end;construct level(1)end;We construct a level structure recursively until there are only one-element rangesleft. The level weight weight (T`) is the summation of weights of the root rangeson level `. The method of algorithm construct level is basically the same as thatof algorithm preprocess. We use the queue Q` passed from the previous level ` to

19construct the new level ` + 1. For any range R(`)i in Q` containing more than oneelement, we insert R(`)i into the appropriate range R(`+1)j on level ` + 1 by callinginsert bucket (R(`)i ; R(`+1)j), which also deletes R(`)i from the level table T`. For anyrange in Q` that has only one element left, we put it into the level table T`. We alsomaintain a variable roots(T`) whose bit positions indicate the existence of these rootranges. For example, if the range R(`)i is a root, we just add 2i to roots(T`). Theprocedures insert queue and delete queue are trivial to implement such that the costper call is constant.algorithm construct level(`)beginweight (T`) := 0;roots(T`) := 0;Q`+1 := ;;more than one := false;while Q` 6= ; dobeginR(`)i := delete queue(Q`);w�i := weight (R(`)i);if there are more than one element in R(`)i thenbeginLet j be the integer such that w�i 2 [2j�1; 2j);R(`+1)j := �nd range(j; `+ 1);if R(`+1)j 62 Q`+1 then insert queue(R(`+1)j ; Q`+1);insert bucket (R(`)i ; R(`+1)j);delete range(R(`)i);more than one:=trueendelse beginweight (T`) := weight (T`) + w�i ;roots(T`) := roots(T`) + 2iendend;if more than one then construct level(` + 1)end;After we construct each level, the total weight of each range is known. Moreover,those ranges containing more than one element will be deleted from the current level;the remaining elements in the table T` should be the roots of the trees rooted at thatlevel.Theorem 5 The preprocessing requires O(N) expected time.Proof : We put each range into a queue when it needs to be inserted into the leveltable T`. When we process ranges on level `, we just pick the elements from the queue

20 B THREE IMPORTANT TECHNIQUESand insert them in constant time using dynamic hashing. So the cost is proportionalto the number of nonempty ranges on the level, rather than the number of entries oneach level. 2In the next section we show that the resulting trees share a common property thatthey are very \shallow."B Three Important TechniquesTo make the paper self-contained, we review three important techniques whose ideascome into play in our algorithm: the rejection method, table doubling, and dynamichashing.B.1 Rejection Method.If we want to generate a random variate X with density f(t), we can �nd anotherdensity function g(t) such that f(t) � cg(t) for all t, where c is a constant. Thefunction g is selected so that it is relatively easy to compute g(t) and to generate arandom variate with density g(t), and the selected constant c is small. The algorithmworks as follows:algorithm rejection methodbeginrepeatGenerate uniform random number U 2 [0; 1);Generate X according to density g(t)until U < f(X)=cg(X);return(X)end;Proposition 1 The expected number of iterations to generate X by the rejectionmethod shown above is c.We specialize the algorithm to handle the case in which f(t) corresponds to dis-crete weights w1, w2, . . . , wn, where 1=2 � f(i) = wi � 1 and cg(i) = 1, for all1 � i � n. The probability of generating value j equals wj=P1�i�n wi.algorithm bucket rejection(T)beginrepeatGenerate uniform random number U 2 [0; 1);I = bUncuntil Un� I < w[I + 1];return(I + 1)end;

B.2 Table Doubling Technique. 21
1/2 Figure 6: Rejection MethodFigure 6 gives a graphical view of the rejection method. First we randomly selectthe table entry and then randomly select a real number between 0 and 1. If theselected number lies in the shaded area, we mark it a \hit"; otherwise, we repeat theprocess.Corollary 1 The expected number of iterations in algorithm bucket rejection is 2.B.2 Table Doubling Technique.A comprehensive treatment of table doubling can be found in [2]. Suppose we wantto implement a dynamic table that supports insertion and deletion. In order to usethe power of the random-access model, the table is implemented as an array. The sizeof the table cannot be determined in advance, so dynamic allocation and deallocationof the array is necessary. A trivial algorithm allocates an (n+1)-element array whenan element is inserted into an n-element array, but this causes worst-case update costproportional to the size of the array. Since the number of elements in the table is notnecessarily the same as the size of the table, let us use � to denote the load factor ofthe table, or its fraction of occupancy. Initially, the table T has size zero. The size ofthe empty table T becomes 1 when we insert an element into it. Inserting an elementinto a nonempty table T results in two cases:1. If � < 1, we just insert the new element into one of the free slots.2. If � = 1, the table is full, and we expand the size of the table to twice its originalsize.Deleting an element from the table is handled in an analogous way, except that wedo not contract the table until � < 1=4. The cost for either table expansion orcontraction is linear in the size of the table, but the amortized cost for each insertionor deletion is constant.

22 B THREE IMPORTANT TECHNIQUESProposition 2 A sequence of m insertion and deletion operations on a dynamic tableusing the table-doubling method requires O(m) time.This algorithm can be modi�ed to run in constant time per operation in the worstcase, as follows: In addition to the current table of size n, we also maintain two tablesT+ of size 2n and T� of size n=2. If the table T over
ows because of insertions, wejust reassign T+ to T , make T the new T�, and deallocate the old T�. The new T+is initially empty, but is �lled up twice as fast as T , so that if T over
ows again, T+is once again consistent. Deletion is handled in an analogous way.B.3 Dynamic HashingAny single hash function chosen can encounter some bad worst-case inputs that causelinear-time rather than constant-time performance. The remedy devised by Carterand Wegman [1] is to choose a hash function randomly from a good collection H ofhash functions and get constant expected performance independent of any particularinput sequence.Let H = fh1; h2; . . . ; hmg be a set of hash functions; each hi is a mapping fromf0; . . . ; n� 1g to f0; . . . ;M � 1g. We say that H is c-universal if, for every pair ofinputs x 6= y in f1; 2; . . . ; n� 1g, the total number of h 2 H such that h(x) = h(y)is no more than c � jHj =m; that is, only a fraction of c=M of the hash functions in Hcause a collision on any pair of inputs.Proposition 3 Let H be a c-universal class of hash functions, the expected cost ofan insert, delete , or access operation is O(1 + c�), where � is the load factor of thetable.We can use the c-universal class of hash functionsH = fha;b j ha;b(x) = ((ax+ b) mod n) mod m; a; b 2 f0; . . . ; n� 1gg ;where (dn=me=(n=m))2 = O(1). When the number of elements changes dynamically,the table may have to be expanded or contracted from time to time, but the cost ofthe rebuilding can be amortized so that the operations still run in amortized constantexpected time.More complicated techniques for implementing the table lookup method in con-stant expected time are dynamic perfect hashing and its variants [4, 3].

