Dynamic Generation of Discrete
Random Variates

Jeffrey Scott Vitter and Wen-Chun Ni

Department of Computer Science
Brown University

Providence, Rhode Island 02912

CS-92-36
August 1992

Dynamic Generation of
Discrete Random Variates

Jeffrey Scott Vitter* and Wen-Chun Nif

Department of Computer Science
Brown University

Providence, R.I. 02912-1910
August 1992

Abstract

We present and analyze an efficient new algorithm for generating a ran-
dom variate distributed according to a dynamically changing set of weights.
The algorithm can generate the random variate and update a weight each in
O(log™ N') expected time. (For all feasible values of N, we have log* N < 5.)
The O(log™ N) expected update time is amortized; in the worst-case the ex-
pected update time is O(QIOg*N). The algorithm is simple, practical, and easy
to implement.

Keywords: random number generator, random variate, alias, bucket, rejec-
tion, dynamic update.

*Support was provided in part by a National Science Foundation Presidential Young Investigator
Award with matching funds from IBM, by NSF research grant CCR-9007851, and by Army Research
Office grant DAAL03-91-G—-0035.

TSupport was provided in part by the Office of Naval Research and the Defense Advanced Research
Projects Agency under contract N00014-91-J-4052, ARPA order 8225.

Contents

1 Introduction

2 The General Ideas

3 The Generation Method

4 Updating the Weights—Basic Approach
5 Properties of the Data Structure

6 Modification to Achieve O(log” N) Update Time
6.1 Properties of the Modified Data Structure
6.2 Amortized Analysis of the Modified Algorithm

7 Conclusions
References
Appendix

A Preprocessing

B Three Important Techniques
B.1 Rejection Method. oo
B.2 Table Doubling Technique.
B.3 Dynamic Hashing

i

11
11
13

15

17

18

18

1 Introduction

The generation of random variates based on arbitrary finite, discrete distributions
has long been a key component of many computer simulations [6], [10]. Given the
elements 1, 2, ..., N and their respective weights wq, wy, ..., wy > 0, we want to
design an algorithm to generate a random variate that has value j with probability
w;/ Y 1<i<y wi. In the static case, when the N weights are fixed, we can utilize the
clever optimal algorithm by Walker, commonly called the alias method; the time to
generate a random variate is constant and the preprocessing cost is O(N) [6], [10].

In this paper we consider the problem in the important and more challenging
dynamic case, in which the weights of the elements can vary dynamically. The rel-
evant measures of efficiency are the generation time and the update time. We can
rerun Walker’s algorithm each time a weight is updated, but the update cost O(N)
is too high. Up until recently, the best known algorithm for the dynamic problem
was the binary tree-based scheme developed by Wong and Easton [11], whose gen-
eration and update times are both O(log N). Each generation requires one call to
a random number generator that provides a uniform random number in the range
[07 ZlgiSN wi)-

Recently, Rajeskaran and Ross [8] and Greenberg and Vitter [5] developed different
algorithms for the dynamic case that do generation and update in constant expected
time for various restricted classes of updates. Independently to our work, Matias [7]
developed an algorithm that does generation in O(log™ V) expected time and with
O(log™ N) expected calls to a uniform random number generator, although general
update requires O(2'8" V) expected time.'

In this paper, we introduce a very practical and more efficient randomized algo-
rithm for the general dynamic case that does generation and update each in O(log™ N)
expected time. Generation requires an average of O(log™ N) calls to a uniform [0, 1)
random number generator. The O(log™ N') expected update time is amortized; that
is, if the total number of updates is ¢ > 0, the expected total time to do all the
updates is O(tlog™ N). The worst-case expected update time for a single update is
O(2°¢" V) which is still reasonably small. The expectations are over the randomness
in the algorithm; no assumptions are made about the weight updates. The imple-
mentation is especially simple and practical with very small constant factors implicit
in the big-oh terms.

2 The General Ideas

In this section, we describe the basic idea of our algorithm; the analysis and more
subtle aspects of it will be discussed in later sections. For completeness, we have

'We use the standard terminology that log™ n is the smallest integer k such that k& applications of
the binary logarithm function applied to n, namely, lg(lg(. ..lg(n))), is at most 1. For N < 65536,
we have log"™ N < 4; for N < 295538 we have log* N < 5.

2 2 THE GENERAL IDEAS

included in Section B of the Appendix background information on three important
techniques used by our algorithm, namely, the rejection method, table doubling, and
dynamic hashing.

Let the initial total weight of the N elements be W = 3" ;- n w;. For simplicity,
we assume that each weight w; can be stored in a single computer word; modifications
otherwise are straightforward. The idea of our algorithm is to partition the elements
by weight into ranges R;l), for y < lgW, such that R;l) is associated with the range
[2/71,27). Note that j may be negative, since we do not restrict the elements’ weights
to be integers. There may be more than one element falhng into a range R(l) and
their total weight, written as wezght(R()) is in the range [2/'~",27"), for some j’ >{
we can treat the range R, Y as a new “first-level” element Wlth weight weight (R
and put it into the second level range R(,), defined as [27'~',27"). For those ranges
containing only one element, we put thern into a level table 7, rather than into a
second-level range.

Given a list of ranges R;f), Rg), cees R;i) each Contalnln at least two elements, we
repeat the same partition process using R§1)7 Rg), . ,R as second-level elements
More generally, by applying the same process to each range R() Contalnln at least
two elements, for j <lgW and ¢ > 1, we can build level-({+ 1) range R(, defined
as [2F71 28y, for some k < lg W. The process repeats until there is no range containing

at least two elements.

The process is best viewed as a level-by-level, bottom-up construction of a forest
of trees. The elements 1, 2, ..., N, are implicit leaves in the trees being built and can
be regarded as comprising the implicit level 0. Any range (node) on some level { > 1
is called internal in the collection of trees. More importantly, there is no distinction
between the elements and the nonempty ranges from this VieWPOIHt they are all
treated as nodes in a tree or elements in a set. For ¢ > 1, if R has at least two
children and its total weight is in the range R(2 , then Rg)] is a child of range R(Hl)
conversely, R(“l) is the parent of R(A range With only one child is said to be a
root range and has no parent. We define the degree of range R() to be the number
of children it has; the degree of a root range is 1. The relation between a range and
its parent range is illustrated by Figure 1.

Each level table 7,, for { > 1, contains the nonempty root ranges created during
the (th iteration of the tree-building process. Each nonempty root range Ry) is stored
in a dynamic hash table, as described in Section B.3 in the Appendix, indexed by j
and (. When we insert the level-¢ roots into 7;, we also compute the total weight
of these roots, denoted weight (7). After the preprocessing, we have a forest of trees
whose roots may be on different levels. We denote by L the maximum level number
of a root. The data structure consists of levels 1, 2, ..., L. Figure 2 gives a view of
the trees built.

The remaining question is how to store the children for a given internal range R()
Within each range R() for { > 1, we keep a dynamic table of buckets. Inser—
tions and deletions of ranges are handled by the table-doubling technique described

Level I+1

) . Level |

m

Figure 1: A range with degree m on level ¢ and its parent range on level { + 1.

4 2 THE GENERAL IDEAS

1

Figure 2: A forest of trees built, with . = 5 levels. The break lines mark the levels.
Root nodes are denoted by solid circles.

Figure 3: Generating a random variate from level ¢ = 4.

in Section B.2 in the Appendix. Each bucket contains one range Ry_l) such that

weight(]i’y_l)) € [2/71,27). The total weight weight(Ry)) for £ > 1 is defined to be
Do weight(RE _1)), where the summation is taken over the children Ry_l) of Ry).

The generation of a random variate according to the current distribution of weights
wy, Wa, ..., wy 1s done as follows:

Step 1. We choose some 7;, where 1 < { < [, based on the weights of the level
tables.

Step 2. We choose one root range Ry) on level £ according to the weight distribution
of the ranges.

Step 3. Within Ry), we use the rejection method (see Section B.1 in the Appendix)
to choose one of its children according to their weight distribution. We repeat
the process until we reach level 1, where the chosen child is one of the N
elements. We output the chosen element.

Steps 2 and 3 are explained pictorially in Figure 3. We show in Sections 3 and 5 that
the expected time to generate a random variate is O(log™ N).

On-line update of the weight of any element is permitted in the dynamic case.
When the weight w; in range R() is changed to w; + A, we must move the corre-
sponding element ¢ to another range R; Vifw; + A ¢ [2- i ,27), in which case we say
that element ¢ “changes its parent.” A change of an individual weight may thus cause
the total weights of two level-1 ranges R;l)
ther parent changes higher in the trees. The total expected update time is O(2'°¢" V)
in the worst case. Our main result, described later, yields an O(log™ N) amortized

expected update time. The details and analysis will be given in Sections 4-6.

and RS) to change, which may cause fur-

3 The Generation Method

Generating the random variate based on the current values of the weights consists
of the three steps outlined in Section 2. In Step 1 we choose one of the levels T}
by generating a uniform random variate U € [0,1) and setting ¢ to the minimum
positive integer such that U < > cp<, weight(Ty). The value of ¢ is found by a
sequential search using values ¢ = 1, 2, In Step 2 we choose a nonempty root
range Ry) on level ¢ by processing the nonempty root ranges R;f), R;?, R%) in
sequence, where j; > jo > --- > j, until we find the minimum value 1 < 5 < s
such that U < 301 weight(Ré)). The first (largest) index j; is computed as
|lg roots(7y)| + 1. The successive indices j3, js, ...can be obtained by iteratively
subtracting 2/ and taking the discrete log function again. Alternatively, it suffices to
step down iteratively from j; until we find the values j; for which R(Vs nonempty.
Step 3 consists of descending level by level from R() using the reJection method
at each step until an element at the bottom level is reached, which we output, as

described below:

algorithm genemte_mnge(]%y));
begin;
0=
while ¢ > 0 do
begin
J ::bucket_rejection(ﬂ’;g/));
U.=0-1
end;
return(y)

end;

The cost of Step 1 is O(L), since there are L levels to choose from. We show
in Theorem 3 that L < log™ N + 1 in the worst case (although it is typically even
smaller). Only one call to a uniform random number generator is needed for Step 1.
In Step 2, generating one root range R(z)
of nonempty root ranges on level . The optimistic side is that 1ts eX ected time is

RY be

g1]27"'7 In

on level £ may cost time linear in the number

constant, since the range weights decrease exponentially. Let RY

6 4 UPDATING THE WEIGHTS—BASIC APPROACH

the set of nonempty root ranges on level ¢, where j; > jo > --- > j;. The expected
cost F of Step 21s 371 <4<y ktweight(R;i))/weight (77). Since 27x~1 < weight(]i’;?) < 2k
and weight(7;) > Y14, 2671 2 2771 we have

E< 3 k2wt gt <o

1<k<n 1<k<n

Step 2 requires only one call to a uniform random number generator. In Step 3 we
walk down the levels from Ry) in constant expected time per level, by Corollary 1 in
Section B.1, using a total of O(log™ N) expected time and O(log™ N) expected calls

to a uniform random number generator.

Theorem 1 The expected cost for generating a random variate according to the cur-
rent weights is O(log™ N), where N is the number of elements.

The dynamic scheme of Wong and Easton [11] uses O(log V) time per generation,
but it requires only one call to a random number generator that outputs a uniform
number in the range [0, >1<;<n w;). Our algorithm uses an average of at most about
2L calls to a uniform random number generator, primarily due to Step 3. It may
be possible to use a faster uniform random number generator or to “share” random
numbers: The random numbers needed in Step 3 do not usually require the precision
of those needed for Wong and Easton’s algorithm, especially when 37, ., 5 w; 18 large;
the maximum precision needed is proportional to the degree of the current node in
the tree, which is at most N but is typically very small.

4 Updating the Weights—Basic Approach

On-line update of weights is permitted in the dynamic case. If we want to change
weight w; to w; + A, the structure of the hierarchy may have to be changed. If the
new value of w; is no longer be in its original range, we must move element 2 into
another range.

Coordinating the updates from the bottom up is achieved by associating to each
level a queue, as we do in the preprocessing stage. Once the weight of a range has
been changed on level ¢, we reflect the required update to level { 4+ 1 by putting the
value changed and the range into the queue. We can view the effect by looking at
Figure 4. In Figure 4b, the node v changes its parent node from w to w’ because of
weight increase. (We can use the table doubling technique of Section B.2 to organize
the buckets in each range.) The paths upward from w and w’ should be updated
accordingly.

The number of ranges affected on level / is no more than 2¢, since each update
along an upward path in the data structure spawns at most one new upward update
path. Since we have at most log™ N + 1 levels, to be shown in Theorem 3, the total
210g* N-I—l‘

number of ranges affected is bounded by By using the universal hashing

-
- -
—_—_——————— e ———

Figure 4: Two views of the update operation. (a) Moving one bucket from one range
to another. (b) The tree view: changing the parent of v from w to w'.

scheme of Section B.3 and its variants, we are able to insert new ranges and delete
old ranges in constant expected time. This means that each update takes O(2'°¢" V)
expected time.

Theorem 2 Updating the weight of any element can be performed in O(2°5" V) ex-
pected time in the worst case.

The same result that we have described so far, namely, O(log™ N) expected time
and expected calls to a uniform random number generator per generation, but an
expected update time of O(2'°8" V), was obtained independently by Matias [7] using
another interesting technique. Matias inserts elements into ranges (as we do), but
“elevates” to the next level all the “significant” ranges, defined as those nonempty
ranges whose range numbers are within 41g N of the largest range number. Sig-
nificant ranges may have only one element in them. (In our algorithm, we elevate
all ranges with at least two elements in them, although some may be insignificant.)
This process is repeated recursively, with V reset to the number of elevated significant
ranges; the height of the resulting data structure is O(log™ V). At each level, elements
corresponding to non-significant ranges are generated in a brute-force way; elements

8 5 PROPERTIES OF THE DATA STRUCTURE

corresponding to significant ranges are generated recursively using the constructed
tree.

The update time in Matias’s algorithm is O(2'°¢" V) and not O(log* N), for a
reason similar to the one described above: Changing the weight of a range may cause
it in the next level of the data structure to be removed from one parent range and
added to a different parent range, resulting in an exponential blowup in work from
one level to the next. It is easy to construct sequences of updates where each update
requires (296" V) time.

The maximum height of Matias’s data structure is about the same as the maxi-
mum height of our data structure, but the topmost level of Matias’s data structure
can contain many arbitrarily weighted entries, perhaps 20 depending on the imple-
mentation, making the effective height larger. One interesting point is that for typical
weight distributions, even for large IV, our data structure has height 1 or 2; in fact it is
difficult to specify in an informal way distributions for which the height is log™ N + 1.
Matias’s data structure, on the other hand, can have maximum height for some com-
mon distributions. For example, if the weights are increasing powers of 2, our data
structure has height 1 and Matias’s data structure has maximum height.

The main result of this paper, which we cover in Section 6, is showing how to
modify the basic algorithm described so far in order to reduce the update time from
029" V) expected time to O(log* N) amortized expected time.

5 Properties of the Data Structure

In this section we derive some important invariants that are crucial to the analysis of
the size and height of the data structure.

Lemma 1 If the degree of mnge R() is m > 2, then wezght(Ry)) is in the range
(21,27, where lgm — 1 < j' — j <1gm—|—1.

Proof: Since every bucket in R() represents an element with weight in the range
[2] 1.27), we have wezght(R()) [ij_l,mZJ) If wezght(R()) falls into R(2 , then
211 < wezght(ﬂ’(z)) < m2 and m2/7! < wezght(ﬂ’(z)) < 2/, The result follows by
taking logarithms. O

Lemma 2 For { > 2, if the degree of range R() is m > 2, then one of its children
has degree at least 2™~1 4+ 1; moreover, the number ofR Y s grandchildren is at least
2" +m — 1.

Proof: Figure 5 demonstrates the relations between a degree-m node and its children
and grandchlldren Let the children of R() be R(g 2 R% 1), cees R(2 ,for j > 51 >
J2 >+ > J;u. By Lemma 1 and the fact that 5, < g5 —1, it follows that R(Y has
at least 2i=3i=1 4 1 > 2=1 4 1 children. The total number of grandchildren of R()

thus at least >-1<; < (214 1) = 2" +m — 1. O

> ////\\\ -7
he)
Mgy M\ /:‘) 2
/, \ ° ° ° ° /\

. _ | L\ L___ —

Figure 5: A typical tree built.

Lemma 3 For (> k > 3, if the degree of range R(z) ism > 2, then the difference in
range numbers between the smallest-numbered range on level K — k and the smallest-
numbered range on level { — k + 1 among the descendants ofR D is at least

2m
27 }k
2 + 1, (1)

2m
2" }k
2 + 1.

which is 2" + 1 and 922" —|— 1 for k = 3 and k = 4, respectively. In addition, the
number of descendants ofR D on level € — k is at least (1).

Proof: By induction on k. We shall demonstrate that the inductive hypothesis is true
for either £ = 2 or £k = 3. Let us assume that the inductive hypothesis does not hold
for the smaller value & = 2. Range R(s m children at level ¢ — 1 occupy contiguous
ranges R(f 2 R(f 2 ces R;fn 2 Where j; = j —t; otherwise, j,, <7 —m —1 and the
number of R (1=1¥: S chlldren on level { — 2 is at least 2" 4+ 1, by Lemma 1, in which
case the mductlve hypothesis holds for & = 2.

Now suppose that the inductive hypothesis does not hold for the value £ = 3.
There are exactly 2™ + m — 1 grandchildren of range R() on level ¢ — 2 occupying
contiguous ranges R;g 22), R;g 32), cee R(g 2) L gm; 0therw1se by Lemma 1, the number
of children of the smallest-numbered range on level £ — 2 is at least 22" 4 1, in which
case the base case holds for k = 3.

The number of ranges on level £ — 3 can be minimized if the ranges on level { — 2
are ordered by the numbers of their parents on level { — 1, so we assume that such
an ordering occurs. The 2:=1 41 children of R(Y on level ¢ — 2 occupy contiguous
ranges R(g__;l) Ly ey Ry 221) .- By Lemma 1, the number of R(Vg grandchildren on
level £ — 3 is at least

(22"—1—1 + 1) b g (22"—1 + 1) _ 22i . 22i—1—1 + 9i=1 +1.

10 5 PROPERTIES OF THE DATA STRUCTURE

()

Hence, the number of R;”’s great grandchildren on level { — 3 is at least

7 1—1 ; m 1 7
So(2¥ -2 2 1) =2 ty 2 A m-2 (2)

1<i<m 1<i<m

The number of the smallest-numbered range on level { — 3 among the great grand-
children of Ry) is thus at most

(j—2)—<22 +5 > 22 —|—2m—|-m—2):j—m—2m—22 —= 3y 2%

1<i<m 1<i<m

The resulting difference between the smallest range number on level ¢ — 3 a(n)d the
¢

smallest range number j —m — 2™ on level { — 2 among the descendants of I}’ is at

least |
27+ > 27 > 2
1<i<m
The inductive hypothesis therefore holds for the base case k = 3.
For the inductive step, for k£ > 2, suppose that the difference in range numbers
between the smallest-numbered range on level { — &k and the smallest-numbered range

on level { — k + 1 among the descendants of Ry) is at least

2m
2" }k
2 + 1.

By Lemma 1, the smallest-numbered range on level { — k has at least

2m
2 }k-|—1
2 +1

children, and the inductive hypothesis holds for & + 1. a

Each range in the topmost level must be a root and can have degree 1, but all its
descendants must have degree > 2. Let us choose ¢ to be one less than the topmost
level number; the degree of each non-root range in level £ is therefore > 2. Since there
are only N elements in the data structure, Lemma 3 implies the following bound on
the height of the data structure:

Theorem 3 The maximum number of levels L in the trees is < log™ N + 1, where N
is the number of elements.

The space requirement of the algorithm depends on the number of ranges actually
put into the table.

Lemma 4 The total number of nonempty ranges is O(N), where N is the number of
elements, and the total storage space used by the data structure is O(N).

11

Proof: Each tree constructed by the algorithm is height-balanced. With the exception
of root ranges, every range in the trees has degree at least 2. This means that the
total number of nodes in each height-balanced tree is of the same order as the number
of the leaves of the tree, which is N. The dynamic hash tables used to store the ranges
for each level occupy O(N) space collectively. O

The universal hashing schemes of Section B.3 can be bypassed in favor of simple
table lookup at the cost of a super-linear bound on storage space.

6 Modification to Achieve O(log® N) Update Time

In this section we present our main result: how to modify our basic algorithm in
order to achieve O(log™ N) expected update time when amortized over the sequence
of updates. That is, if there are ¢ updates, for any ¢ > 0, the expected time to
complete all ¢ updates is O(tlog™ N). In contrast, the expected update time for the
unmodified algorithm derived in Theorem 2 is O(2'°¢" V),

The key to achieving this better amortized bound is by considering the following
parameters:

1. We introduce “tolerance” into the ranges to allow “lazy updating.” We choose
a tolerance factor 0 < b < 1. For convenience, we choose b so that ﬁ is power
of 2. (Previously we used b = 0.) We relaX the range of Welghts that can
be stored in the range Ry) associated with the interval [2771,27) by tolerating
weights in the interval [(1 — 5)2/7% (2 + 5)2/~1). We associate range Ry) with
the tolerated interval [(1 — b)2j_1, (2 + b)Zj_l). Note that the resulting set of
tolerated ranges overlap. However, when an element with weight w is inserted
into a level-£ range, it is inserted into the unique range R() where 2i-1 <w< 2.
The element must change its weight by at least the tolerance b2/~ of range R()

before it is moved to another range.

2. We modity the criteria defining roots and require that each non-root node have

degree at least d = %(%)220, where ¢ is a nonnegative integer to be specified
later. (Previously we used d = 2.) The number d is the minimally allowable
number of buckets in a non-root range; from the graph-theoretic viewpoint, it

is the minimal degree of the non-root nodes in the trees we build.

6.1 Properties of the Modified Data Structure

In this more general setting, we must modify Lemmas 1-3 and Theorem 3 in order
to take into account the tolerance b and degree bound d. In this section we derive
new versions, which we call Lemmas 1'-3' and Theorem 3’. Using a larger value
of d slightly decreases the worst-case bound on the number L of levels from that of

12 6 MODIFICATION TO ACHIEVE O(LOG™ N) UPDATE TIME

Theorem 3. For example, if we take b = 0.4 and ¢ > 1, Theorem 3’ shows that the
maximum height L of the trees is <log® N — 1.

For conciseness, we refer to the expanded ranges in the modified algorithm simply
as ranges; they have tolerance factor 0 < b < 1 and all ranges except the roots have
degree at least d = %(%)220, for nonnegative integer ¢. With these modifications,
Lemma 1 takes the following form:

Lemma 1’ If the degree of range R() is m > d, then wezght(Ry)) is in the
range R(,), where lgm —1g(3t2) < j' —j <lgm —|—1g(2+b)

Proof: Fach of the m children of Ry) has weight in the range [(1—5)2/71, (2+5)2/71),
so weight(Ry)) must be in the range [m (1 —5)2/"!, m(2+5)2/71). If wezght(R() falls
into [(1 —)21 (2 4)2/7), then (1 — b)2/ -1 < weight (RY) < m(2 + b)2/~!
and m(1 — 5271 < weight(R(g)) < (2 4+ b)2'7'. The inequality follows by taking
logarithms. O

We can use Lemma 1’ to get the following modification of Lemma 2:

Lemma 2" For { > 2, if the degree of range R() ism > d, then one of its children

has degree at least 271 moreover, the number ofR (0) 74 grandchildren is at least

2mte 2 4 m,

Proof Let the children of a range R(z) be R(g_l) Rg_l), ey Ry—l) for 3 > 51 > 32 >
- > j,. By Lemma 1, we have j; < J —1g(2+b) —c, ;1 <j—1+1 —1g(2+b) ¢,

and the number of children of R(Yis at least max{d,2'7'7¢ 4 1}. Thus, the total

number of grandchildren of R(Vis > Sicicm (2071 £ 1) = 2mFe —2¢ 4o, O

Lemma 3’ For (> k > 3, if the degree of range Ry) is m > d, then the difference in
range numbers between the smallest-numbered range on level { — k and the smallest-
numbered range on level { — k + 1 among the descendants of Ry) is at least

2m
2" k 240
2 } | 1.
+ g(l—b) +

In addition, the number of descendants of Ry) on level { — k is at least

2m
2 }k
2 .

Proof: The full proof is similar to that of Lemma 3, except that the minimum dif-
ference of range numbers between a parent node and its largest-numbered child is
c+lg(2+b) rather than 1. This enlarges the differences between the smallest-numbered
ranges on adjacent levels and introduces the term 1g(2+b) The details are suppressed
for brevity. a

6.2 Amortized Analysis of the Modified Algorithm 13

Lemma 3’ can be strengthened substantially, but it suffices for our purposes. As
before, we choose ¢ to be one below the topmost level number; the degree of each
non-root range in level ¢ is > d. Let us suppose that d > 16 = 2%, Since there
are only N elements in the data structure, Lemma 3" implies the following improved
bound on the height of the data structure (cf. Theorem 3):

Theorem 3’ The maximum number of levels L of the trees is < log®™ N — 1, where
N is the number of elements.

6.2 Amortized Analysis of the Modified Algorithm
()

When a node w is made a child of range R;
later change its weight by at least z’s tolerance 627! in order for it to “change its

represented by node x, node w must

parent.” This tolerance prevents too many insertions and deletions from occurring.
When w changes its parent, x loses weight and w’s new parent gains weight; two
paths of nodes need to be updated: the one upward from node & and the one upward
from w’s new parent. All the nodes on the two paths should revise their weights to
reflect the changes.

To facilitate the amortized analysis, we use an accounting method [9], where we
charge C; units of cost to a level-¢ node w that changes its parent. Since we only
change the weights of one of the NV bottom-level elements on level 0, and in the worst
case the element will change its parent, we charge Cy to each dynamic weight update
operation. The credits accumulated at each node must pay for the cost of a parent
change for that node, when it occurs, plus the cost of processing the resulting two
upward update paths.

Suppose that node w changes its parent from z; to y; during an update. The
update path starting from w is defined to be w — 1y — 29 — -+ — x,,, where x,, is
a root, and we call this path the old ancestor path of w. The new ancestor path of w
isw— Yy, — Yz — -+ — Y,, Where ¥, is a root.

Let us consider for reasons of brevity only the case in which w is decremented in
weight by A and changes its parent from z; to y;, and we restrict ourselves to the
analysis of the old ancestor path w — 1 — 9 — -+ — z,,. Node w is on level £, and
node z; is on level £ 4 j. Let node x; correspond to the range Rgfl_l, for 1 <53 <m.

Suppose that the nodes xy, x5, ... 2;1 do not change their parents or become
roots as a result of the parent change of w. The change of weight of node x; due to
the update of w is weight(w) < (2 + b)2"1. Let us define §(x;, z;41) = weight(z;) —
(1 — b)2% to be the difference between the weight of z; and the lower boundary of
the range Rgf)ﬂﬂ represented by x;4; at the time when z; was last inserted into one
of 2;41’s buckets (or, equivalently, when x; changed its parent to x;11). We have
S(xj,x541) > 29+, By Lemma 1/, we have 24+ > Zil((%)Zc)j, which gives us

8(2j,aj41) > b((3£2)2°)72" . Therefore, the ratio f; between z;’s weight change and

14 6 MODIFICATION TO ACHIEVE O(LOG™ N) UPDATE TIME

the tolerated weight change é(x;, x;11) satisfies

e o) (20)2)

Since the weight change of x; is at most f; of the total weight change needed to cause
a parent change, it suffices to deposit f;C/4; credits on node z; during the processing
of w’s parent change.

Next let us consider the case in which nodes z1, 3, ... ;-1 do not change their
parents, but nodes xy, x5, ... x; become roots, for k¥ < j—1, as a result of the parent
change of w. Nodes 1, x3, ... x; do not need credits deposited on them, since they
no longer have parents, and the credits can be deferred instead to zpiq, By
similar reasoning to above, the ratio f; between x;’s weight change and the tolerated
weight change ¢(x;, x;11) satisfies

fi< (%H) ((f—fi) Qc)—m?

and it suffices to deposit f;Cy4; credits on node x; during the processing of w’s parent
change.

The number of credits deposited on node x; is at least Cyy; times the fraction of
the tolerance represented by z;’s weight change. Thus, at the future time when the
weight of node x; is out of the range of node z;4; and x; changes parent, there will
be at least Cpy; credits on z; to pay for the required updating.

The other cases to consider, such as consideration of the new update path and the
case in which w is incremented in weight, are analogous to the ones discussed above
and are left to the reader. This gives us the following lemma:

Lemma 4 The total number of credits allocated to a level-l node between two times
it changes parent is at least C.

By the above reasoning, we get the following recurrence on the number of cred-
its Cy needed to perform a parent change of a node on level ¢:

Z_|_1
Cg < 2(L—€—|—1)—|—2 Z (67),0“_]‘

1<j<L—t ((%)20)]

< 20L—-0+1)+ 2(%+1)C (3)
>~ (%)20 1 /41
where (', = 1. The first term on the right-hand side corresponds to the minimum
cost needed to process the two update paths of length < I — ¢ 4+ 1 caused by the
parent change. The jth term in the summation represents the credits needed for

the two level-(£ 4 j) nodes on the old ancestor path and the new ancestor path. If
2(% +1)< (%)ZC — 1, the solution to (3) is Cy = O(L —{).

15

Lemma 5 [fc>1g((241)(1—0b)), then Co = O(L — (), where L <log" N —1 is the

number of levels in the trees.

We can choose the constants b and ¢ (and thus d) so that the conditions of The-
orem 3’ and Lemma 5 are satisfied. For example, we can choose b = 0.4 and d = 32.
The number of credits we need to allocate for the update of an element’s weight is

thus Cy = O(L) = O(log™ N)). This gives us our main result:

Theorem 4 The amortized expected cost for each update operation is O(log™ N),
where N is the number of input elements.

With the modification discussed above, the time to implement Steps 1-3 for gen-
erating a random variate increases by a multiplicative factor of 1/b (because of the
effect on the rejection method in Step 3) and an additive factor of logd (because of
the effect on the the weights of the roots in the level table in Step 2). Since 1/b and d
can be chosen to be to be reasonably small constants, the resulting increase in gener-
ation time is not much. A beneficial effect of the modification, which we mentioned
above, is that the worst-case bound on the number of levels L decreases slightly as d
gets larger. In practice, we can probably avoid this modification and keep b = 0 and
d = 2, or else use a partially modified algorithm with a larger d, but for theoretical
and worst-case purposes, the full modification is needed in order to get the O(log™ N)
time bound for generation and update.

7 Conclusions

We present practical and efficient randomized algorithms for generating a random
variate according to a set of weights that can vary dynamically. In the first algorithm,
the expected time to generate the random variate is O(log™ N), and the expected time
to update a weight value is O(2°¢" V). Our main result is showing in Section 6 how
to modify the algorithm by introducing the notion of tolerance and by requiring each
non-root range to contain at least d buckets, for some large enough d, in order to
improve the expected update time from O(2"°¢" V) to O(log™ N), amortized over the
sequence of updates. The expectations in each algorithm are over the randomness in
the algorithms; we make no assumptions about the weight updates.

The first algorithm may be preferable to the modified algorithm for normal use in
practice, especially if there are a priori upper and lower bounds on the weights, and if
the dynamic hashing technique is removed in favor of simple table lookup. However,
it may be better to use degree bound d > 2 because of its effect on lessening the
height of the data structure. Experimentation is needed.

The interesting algorithm developed independently by Matias [7] (see Section 4) is
roughly comparable to our first algorithm: the maximum height of its data structure
is about log™ IV, each generation uses on the average O(log™ N) time and O(log™ N)
calls to a uniform [0, 1) random number generator, and the expected update time is

16 7 CONCLUSIONS

O(2°¢" V), We can show how to modify Matias’s algorithm and improve the expected
update time in the amortized setting to O(log™ N), as we did for our algorithm in
Section 6, by incorporating our notion of tolerance and by requiring that the signifi-
cant ranges must have degree > d, for some large enough d, in order to be promoted
to the next higher level. This requires keeping level tables of roots, similar to the
ones we use in our algorithm.

REFERENCES 17

References

1]

2]

[6]

7]
[3]

[9]

J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions, Journal of
Computer and System Sciences, 18: 143-154, April 1979.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. [Introduction to Algorithms.
McGraw-Hill, New York, NY, 1990.

M. Dietztelbinger, A. Karlin, K. Mehlhorn, F. Meyer aut der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic Perfect Hashing: Upper and Lower Bounds, Proceed-
ings of the 29th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, 524-531, October 1988.

M. Dietzfelbinger and F. Meyer auf der Heide. A New Universal Class of Hash
Functions and Dynamic Hashing in Real Time, Proceedings of the 17th Interna-
tional Colloquium on Automata, Languages, and Programming, Springer-Verlag,
Lecture Notes in Computer Science, 443: 6-19, July 1990.

A. Greenberg and J. S. Vitter. Constant-Time Generation of Dynamic Random
Variates, Notes, June 1990.

D. E. Knuth. Seminumerical Algorithms, Volume 2: The Art of Computer Pro-
gramming. Addison Wesley, Reading, MA, 1981.

Y. Matias. Rolling a Dice with Varying Biases, Manuscript, July 1992.

S. Rajasekaran and K. W. Ross. Fast Algorithms for Generating Discrete Random
Variates with Changing Distributions, Manuscript, February 1992.

R. E. Tarjan. Amortized Computational Complexity, SIAM Journal on Algebraic
and Discrete Methods, 6(2): 306-318, 1985.

[10] A. J. Walker. New Fast Method for Generating Discrete Random Numbers with

Arbitrary Distributions, Electronic Letters, 10(8):127-128, 1974.

[11] C. K. Wong and M. C. Easton. An Efficient Method for Weighted Sampling

without Replacement, STAM Journal on Computing, 9(1):111-114, 1980.

18 A PREPROCESSING

Appendix

In the Appendix we give describe the preprocessing algorithm and give some back-
ground on the rejection method, table doubling, and universal hashing, which are
used by our algorithm.

A Preprocessing

In this section we give a detailed description of the preprocessing stage, which is used
if some of the N weights are initially nonzero. Algorithm preprocess partitions the
elements into ranges R;l) = [2/71,279), for integer 7, and calls algorithm construct_level
to build the trees from the first level constructed. We use a list of queues to coordinate
the events like insertions and deletions. The function find_range(z, () is used to search
for the range Ry) in the level-¢ hash table organized using universal hashing, as
mentioned in Section B.3. If it does not exist, we create one and make Ry) an empty
range. Only level-f ranges containing at least one element are created and put into
a level-¢ hash table. We prove later that the number of ranges created during the
execution of the algorithm is O(N). The algorithm insert_bucket(source, destination)
is used to insert a range or element called source into the range defined by destination.
It also updates the current total weight in the range destination. Since we use an
array of buckets in each range to hold the children of the range, generation of one
bucket in the range is done by indexing into the array. The insertion and deletion of
buckets can be handled by table doubling techniques mentioned in Section B.2. The
use of queues () is to avoid the searching of nonempty ranges on the next level.

algorithm preprocess;

input weights wy, w,, ..., wy;

begin

Q1 :=0;

for::=1to N do
begin
jom g £ 1w e [202))
R;l) = ﬁnd_mnge({', 1);
insert_bucket(i,REI);
if R;l) ¢ ()1 then insert_queue(ﬂ’;l), (1)
end;

construct_level(1)

end;

We construct a level structure recursively until there are only one-element ranges
left. The level weight weight(7;) is the summation of weights of the root ranges
on level {. The method of algorithm construct_level is basically the same as that
of algorithm preprocess. We use the queue), passed from the previous level ¢ to

19

“ -

construct the new level £/ + 1. For any range R;’ in Qg contammg more than one

element, we insert Rf) into the appropriate ran% on level { 4+ 1 by calling
insert _ bucket(Rf),R;Hl)), which also deletes R from the level table 7;,. For any

range in)y that has only one element left, we put it into the level table 7,. We also
maintain a variable roots(7;) whose bit positions indicate the existence of these root
ranges. For example, if the range Ry) is a root, we just add 2 to roots(7;). The
procedures insert_queue and delete_queue are trivial to implement such that the cost
per call is constant.

algorithm construct_level(()
begin
weight(7y) := 0;
roots(7;) := 0;
Qe = 0;
more_than_one := false;
while Q, # 0 do
begin
RE = delete_queue(Qg);
wr = wezght(R())
if there are more than one element in R() then
begin
Let j be the integer such that w} € [2/71,27);
R(Hl = find_range(j,{ + 1);
if R(Hl & (Qoy1 then insert_ queue(,Qg_H)
msert bucket(R(g), R; +1)),
delete_mnge(]%ys);
more_than_one:=true
end
else begin
weight (7)) := weight (Ty) + w;
roots(T;) := roots(T;) + 2¢
end
end;
if more_than_one then construct_level({ 4 1)

end;

After we construct each level, the total weight of each range is known. Moreover,
those ranges containing more than one element will be deleted from the current level;
the remaining elements in the table 7, should be the roots of the trees rooted at that
level.

Theorem 5 The preprocessing requires O(N) expected time.

Proof: We put each range into a queue when it needs to be inserted into the level
table 7;. When we process ranges on level ¢, we just pick the elements from the queue

20 B THREE IMPORTANT TECHNIQUES

and insert them in constant time using dynamic hashing. So the cost is proportional
to the number of nonempty ranges on the level, rather than the number of entries on
each level. O

In the next section we show that the resulting trees share a common property that
they are very “shallow.”

B Three Important Techniques

To make the paper self-contained, we review three important techniques whose ideas
come into play in our algorithm: the rejection method, table doubling, and dynamic

hashing.

B.1 Rejection Method.

If we want to generate a random variate X with density f(¢), we can find another
density function g¢(t) such that f(¢) < cg(t) for all ¢, where ¢ is a constant. The
function ¢ is selected so that it is relatively easy to compute ¢(¢) and to generate a
random variate with density ¢(t), and the selected constant ¢ is small. The algorithm
works as follows:

algorithm rejection_method

begin

repeat
Generate uniform random number U € [0, 1);
Generate X according to density ¢(t)

until U < f(X)/ecg(X);

return(.X)

end;

Proposition 1 The expected number of iterations to generate X by the rejection

method shown above is c.

We specialize the algorithm to handle the case in which f(#) corresponds to dis-
crete weights wq, wsy, ..., w,, where 1/2 < f(i) = w; < 1 and ¢g(2) = 1, for all
1 <4 < n. The probability of generating value j equals w;/ 371 <;<,, wi.

algorithm bucket_rejection(T')

begin

repeat
Generate uniform random number U € [0, 1);
I=|Un]|

until Un — [< w[l + 1];
return(/ + 1)
end;

B.2 Table Doubling Technique. 21

1/2 H

—_—— e ——————
—_————r—

Figure 6: Rejection Method

Figure 6 gives a graphical view of the rejection method. First we randomly select
the table entry and then randomly select a real number between 0 and 1. If the
selected number lies in the shaded area, we mark it a “hit”; otherwise, we repeat the

process.

Corollary 1 The expected number of iterations in algorithm bucket_rejection is 2.

B.2 Table Doubling Technique.

A comprehensive treatment of table doubling can be found in [2]. Suppose we want
to implement a dynamic table that supports insertion and deletion. In order to use
the power of the random-access model, the table is implemented as an array. The size
of the table cannot be determined in advance, so dynamic allocation and deallocation
of the array is necessary. A trivial algorithm allocates an (n 4 1)-element array when
an element is inserted into an n-element array, but this causes worst-case update cost
proportional to the size of the array. Since the number of elements in the table is not
necessarily the same as the size of the table, let us use « to denote the load factor of
the table, or its fraction of occupancy. Initially, the table T" has size zero. The size of
the empty table T' becomes 1 when we insert an element into it. Inserting an element
into a nonempty table T' results in two cases:

1. If @ < 1, we just insert the new element into one of the free slots.

2. If @ =1, the table is full, and we expand the size of the table to twice its original
size.

Deleting an element from the table is handled in an analogous way, except that we
do not contract the table until @ < 1/4. The cost for either table expansion or
contraction is linear in the size of the table, but the amortized cost for each insertion
or deletion is constant.

22 B THREE IMPORTANT TECHNIQUES

Proposition 2 A sequence of m insertion and deletion operations on a dynamic table
using the table-doubling method requires O(m) time.

This algorithm can be modified to run in constant time per operation in the worst
case, as follows: In addition to the current table of size n, we also maintain two tables
T of size 2n and T~ of size n/2. If the table T" overflows because of insertions, we
just reassign T'* to T', make 1" the new 7'~, and deallocate the old 7~. The new 7't
is initially empty, but is filled up twice as fast as T', so that if T' overflows again, Tt
is once again consistent. Deletion is handled in an analogous way.

B.3 Dynamic Hashing

Any single hash function chosen can encounter some bad worst-case inputs that cause
linear-time rather than constant-time performance. The remedy devised by Carter
and Wegman [1] is to choose a hash function randomly from a good collection H of
hash functions and get constant expected performance independent of any particular
input sequence.

Let H = {h1,ha,...,hy,} be a set of hash functions; each h; is a mapping from
{0,....n—1} to {0,..., M — 1}. We say that H is c-universal if, for every pair of
inputs @ # y in {1,2,...,n — 1}, the total number of h € H such that h(x) = h(y)
is no more than ¢- |H| /m; that is, only a fraction of ¢/M of the hash functions in H
cause a collision on any pair of inputs.

Proposition 3 Let H be a c-universal class of hash functions, the expected cost of
an insert, delete, or access operation is O(1 + ca), where « is the load factor of the
table.

We can use the c-universal class of hash functions
H=Ahap| hap(z) = ((ax + b) mod n) mod m, a,b€ {0,...,n —1}},

where ([n/m]/(n/m))* = O(1). When the number of elements changes dynamically,
the table may have to be expanded or contracted from time to time, but the cost of
the rebuilding can be amortized so that the operations still run in amortized constant
expected time.

More complicated techniques for implementing the table lookup method in con-
stant expected time are dynamic perfect hashing and its variants [4, 3].

