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STATISTICAL MECHANICS AND THE PARTITIONS

OF NUMBERS

BY F. C. AULUCK AND D. S. KOTHARI

Communicated by A. H. WILSON

Received 4 January 1946

1. The properties of partitions of numbers extensively investigated by Hardy and
Ramanujan(i) have proved to be of outstanding mathematical interest. The first
physical application known to us of the Hardy-Ramanuj an asymptotic expression for
the number of possible ways any integer can be written as the sum of smaller positive
integers is due to Bohr and Kalckar (2) for estimating the density of energy levels for
a heavy nucleus. The present paper is concerned with the study of thermodynamical
assemblies corresponding to the partition functions familiar in the theory of numbers.
Such a discussion is not only of intrinsic interest, but it also leads to some properties
of partition functions, which, we believe, have not been explicitly noticed before.
Here we shall only consider an assembly of identical (Bose-Einstein, and Fermi-Dirac)
linear simple-harmonic oscillators. The discussion will be extended to assemblies of
non-interacting particles in a subsequent paper.

2. We shall use the following notation for partitions of a (positive) integer v:
(i) p(y) denotes the number of distinct ways of expressing f a s a sum of positive

integers. Hardy and Ramanujan established the asymptotic expression

Recently, Rademacher (3) has given an exact expression for p(v).
(ii) q(v) denotes the number of partitions of v into summands which must be all

different*. For example, for v = 3 the allowed partitions are 3,2 + 1; q(3) = 2; #(4) = 2;
q(5) = 3; g(6) = 4. The asymptotic formula for q(v) due to Hardy and Ramanujan is

(iii) pk(y) denotes the number of partitions of v into exactly k or less than k parts:
Tk>v,pk{v) =p(v).
We shall use Pk(v) to denote partitions of v into exactly k parts. We have

r = l

* In representing partition functions we shall use the letter q instead of p when the summands
are required to be all different.
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(iv) qk{v) represents the number of partitions of v into exaotly k or less different parts,
fc

and Qk{v) the number of partitions into exactly k different parts: qk(v) = £ Qr(v)-
r=l

We may note the following relations:

pk(v) = Pk(v + k), Pk(v) = Qk(v + \k{k~ 1)),

P*(») = Qk{v + \k(k+\)), Qk(v + k) = Q^ + Q^v).

(v) We shall use p(v | s) to represent the number of ways of expressing v as

i> = of + a |+. . .+a? (r= 1,2,3,...),
where 1 < a^ < a2 ... < ar are positive integers. In the case of q(y \ s) the summands must
be all different. Hardy and Bamanujan have given asymptotic expressions for a
positive integral s. The above definition can be extended to include non-integral
(positive) values of s. We define p(v \ s) Av as the number of distinct sums of the type
2 o* which lie between v and v + Av, ar's being positive integers satisfying the above
r

relation. Similarly q(v\s), pk(v\s) and qk(v\s) can be defined*.
In the sequel we shall obtain asymptotic expressions for the partition functions

defined in (iii) and (iv).
3. We contemplate an assembly of N identical (non-interacting) linear simple-

harmonic oscillators. The energy levels of an oscillator will be ep = (p + £) fao, where
(o is the (angular) frequency and p is a positive integer (including zero). If E denotes
the energy of the assembly, a number v is defined by

lU»v=E-\Nhh), (3)

where ^NfUo is the residual energy of the oscillators: v represents, in units ofha>, the
energy of the assembly, excluding the residual energy. Let w(E) represent the number
of distinct wave functions accessible to the assembly when in the energy state E. For
a Bose-Einstein assembly the number of accessible wave functions is the number of
ways of distributing v energy quanta among N similar oscillators, there being no
restriction as to the number of quanta assigned to an oscillator. For a Fermi-
Dirac assembly the energy quanta assigned to the oscillators must be all different.
Hence we have

w(E) — pN(v) for Bose-Einstein assembly,

w(E) = QN(v) + QN^{v) = QN(v + N) for Fermi-Dirac assembly,
NH (N + v—Dl

and w(E) = — : = „ „ „ - ^ , for Maxwell-Boltzmann assembly.
N\ iVM(IVrl)!i'!

(4)

In the case of a ' classical' (Maxwell-Boltzmann) assembly the oscillators are considered
as distinguishable from each other, and the number of wave functions is simply the
number of ways of distributing v quanta among N distinguishable oscillators which
is equal to the number of ways of assigning N ' objects' to v ' places', repetitions of any

* These functions will be required to describe the thermodynamic behaviour of an assembly
to be discussed in a subsequent paper.
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object being permissible. There is no valid classical reason for the inclusion of the
factor 1/N!, but it is necessary for the expression for entropy to be sensible*.

The function Z for the assembly—called hereafter as states function—is as usual
defined by

Z = S#,)e-*^, (5)
i

which serves to determine the thermodynamic functions according to the relations

l Z (6a)

8 = \ogZ+/iv = \ogZ-/i=-logZ, (66)
OjJb

where U is the energy, 8 the entropy and F the Helmholtz free energy of the assembly.
The temperature measured in energy units is Ij/i. The application of the Mellin-
Burkill inversion formula to (5) readily gives

which we shall refer to as Bethe's theorem (4).
The states function Z which for the Bose-Einstein assembly of linear oscillator is

defined by

i (8)

where l//i is the temperature measured in terms of the energy unit fm (/i = ho>HJcT),
where k is the Boltzmann constant), may also be written as

Ze*N>> = II (1 - e-^)-1. (9)

For the Fermi-Dirac assembly we obtain, as can readily be verified,

v-l

- * II (1 - e-")"1, (10)

and for the ' classical' case we have

Ze*N» = (1 - e-")-N/N!. (11)

I t may be noted that for N2/i-*-0

and hence both (9) and (10) tend to the 'classical' expression (11).

* When N = 0{v*), ps(v) and QAv) + Qs-iW tend to *Hv/N! which means that for
Bose and Fermi statistics merge into classical statistics.
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Using the above expressions for the state function Z we have for the thermodynamic
functions E and S,

ha _

N
2 - B.-E. statistics, (12a)

F.-D. statistics, (126)
2 ',

N
M.-B. statistics, (12c)

N TIL N

S - ^ £ - - S log (1 - e-rr) B.-E. and F.-D. statistics, (13a)

—^—logiVH-iVlogfl-e-/') M.-B. statistics. (136)

I t is remarkable that for an assembly of a given number of oscillators at an assigned
temperature the entropy is the same whether the assembly obeys Fermi-Dirac or Bose-
Einstein statistics.

4. We shall first discuss the Bose-Einstein assembly. We begin with the limiting
case when N/i is small compared to unity. The expression (12a) for v gives the power
series in terms of /i

717 O a Q

where Bt = | , B2 = -fa, Ba = ^ , . . . are the Bernoulli numbers and

N

n-1

The expansion (14) holds so long as
or N/i< 1-256 (15)

(which includes N~O(v*)). Similarly for the entropy we have the expression

^ ^ ^ . . . , (16)

and hence •

these are valid under restriction (15).
For N/i ->• 0 (this condition, because of (14) is equivalent to iV/v* -> 0) which represents

the non-degenerate or ' classical' approximation, the expressions for E, S and F reduce
to N fffaj

v = - or E = -^+NkT, (18a)
H 2

eleT
or fi-Klog^, (186)

and F = -log^ or F = NkT\og^. (18c)
IJL 6 QIC A
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We shall now consider series expressions for v, S and F suitable for fiNp 1 but which
also hold generally. We have for v, using the Euler summation formula,

tdt 1 N , 1 , 1 / 1

Similarly we have for the entropy and free energy the series expressions

( n2 oo p—rNp\ I oo p-rN/i

( n2 <Bp-rN/i\ ] 1

We shall utiHze the above expression for entropy to derive the asymptotic formulae
for the partition functions pN(y) and p(v) with the help of Bethe's theorem. We have,
using (14) and (16) in (7),

1 e2NvN-l
f o r N<vi> ( 2 2 )

and from (19), (20) and (7) we obtain

and hence p(v)~ ( 4 /3)l,
exP[^V(f y)] . (24)

which is the Hardy-Ramanujan formula. In general we obtain from (19) and (20) for
pN(v) the expression

where

and x=fiN is given by (19). I t may be noticed that the above expression for pN{v)
reduces to (22) when x^-0 and to (23) when a;->oo*.

5. We now revert to the Fermi-Dirac assembly for which the treatment runs on
essentially the same lines as for the Bose-Einstein case, and we shall quote the results.
We have

N(N-i) j_CNll^L L N J_ _LJ L
y _ t l i l _ _ _ i + _ I I | ) '— I Q(u*) ^26^

O ' ..2 I „< 1 o. . "̂  o/^Na l \ ' o^ ' i n\^Na 1 (nNu "\ \2I ' VVA* /> V /

* Erdos and Lehner(5) have discussed the functions ps(v) and qs(v), and obtained asymptotic
expressions for certain ranges for N. The present simple treatment gives expressions for pN(v)
covering the entire range for 2V (see also Auluck, Chowla and Gupta(6),
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»" 1 1
e-"/<) 24 + 12(e" /<l ) + ^ ' ' K '2 /

As in Bose statistics the case for Nv~i~N/i->-0 represents the non-degenerate or
' classical' approximation and the expressions for E, 8 and F reduce to (18). From (4)
it follows that

QN(V)~^]NH,, when N*v>, (29)

and hence we have

?*(") = S QrW-^H,, when N^vK (30)

When N is given by the relation*

(N+1) ,
(31)

we have QN(v) ~ 4 y !(3 t ; ) e*P Wd*/)"* ~ 2vi e~m

The above expression for QN(y) does not appear suitable for evaluating qN(v). The
discussion of the present paper is specially convenient for treating Pt/Mt-

It may be mentioned that a two-dimensional (two spatial coordinates) gas or non-
interacting particles corresponds practically, though not exactly, to an assembly of
linear-harmonic oscillators and is, therefore, describable by the partition functions
pN(v) and QN(v). It is easy to see that an assembly of non-interacting particles, where
each particle requires a spatial coordinates to describe its motion, requires for its
description the partition functions pN(y\2joi) and QN(p\2/a); the notation is in
accordance with § 2. The properties of p(v\s) will be discussed in a subsequent paper.

* The non-degenerate case corresponds to Nfi<g 1, i.e. N<^vl. For the degenerate case
which in Bose-Einstein statistics reduces to Npv*, and in Fermi-Dirac statistics to 2V

t The general method for evaluating ps(,v\s) and qK{v\8) for any «, to be described in a sub-
sequent paper, readily lends itself to the determination of qs(v).
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