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The Nested Dirichlet Process 
Abel Rodr?guez, David B. Dunson, and Alan E. Gelfand 

In multicenter studies, subjects in different centers may have different outcome distributions. This article is motivated by the problem of 

nonparametric modeling of these distributions, borrowing information across centers while also allowing centers to be clustered. Starting 
with a stick-breaking representation of the Dirichlet process (DP), we replace the random atoms with random probability measures drawn 

from a DP. This results in a nested DP prior, which can be placed on the collection of distributions for the different centers, with centers 

drawn from the same DP component automatically clustered together. Theoretical properties are discussed, and an efficient Markov chain 

Monte Carlo algorithm is developed for computation. The methods are illustrated using a simulation study and an application to quality of 

care in U.S. hospitals. 

KEY WORDS: Clustering; Dependent Dirichlet process; Gibbs sampler; Hierarchical model; Nonparametric Bayes; Random probability 
measure. 

1. INTRODUCTION 

The Dirichlet process (DP) (Ferguson 1973, 1974) is the 
most widely used nonparametric model for random distribu 

tions in Bayesian statistics, due mainly to the availability of ef 
ficient computational techniques (Escobar and West 1995; Lo, 
Brunner, and Chan 1996; MacEachern and M?ller 1998; Neal 

2000; Jain and Neal 2000; Ishwaran and James 2001, 2003; 
Roberts and Papaspiliopoulos 2008; Blei and Jordan 2006). Be 
cause the DP puts probability 1 on the space of discrete mea 

sures, it typically is not used to model the data directly. Instead, 
it is more naturally used as a prior for a mixing distribution, re 

sulting in a DP mixture (DPM) model (Lo 1984; Escobar 1994; 
Escobar and West 1995). Some recent applications of the DP in 
clude finance (Kacperczyk, Damien, and Walker 2003), econo 

metrics (Chib and Hamilton 2002; Hirano 2002), epidemiology 
(Dunson 2005), genetics (Medvedovic and Sivaganesan 2002; 

Dunson, Herring, and Mulheri-Engel 2007a), medicine (Kottas, 
Branco, and Gelfand 2002; Bigelow and Dunson 2007), and au 

diting (Laws and O'Hagan 2002). Although most of these ap 

plications focus on problems with exchangeable samples from 
one unknown distribution, there is growing interest in extending 
the DP to accommodate collections of dependent distributions. 

The dependent DP (DDP; MacEachern 1999, 2000) repre 
sents an important step in this direction. The DDP induces de 

pendence in a collection of distributions by replacing the ele 
ments of the stick-breaking representation (McCloskey 1965; 
Sethuraman 1994) with stochastic processes. A version of 
this construction (where dependence is introduced only on the 

atoms) has been used by Delorio, M?ller, Rosner & MacEach 
ern (2004) to create ANOVA-like models for densities, and by 
Gelfand, Kottas, and MacEachern (2005) to generate spatial 
processes that allow for nonnormality and nonstationarity. This 

latter class of models was extended by Duan, Guindani, and 

Gelfand (2007) to create generalized spatial DPs (GSDPs) that 
allow different surface selection at different locations. 
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Along these lines, another approach to introducing depen 
dence is the hierarchical DP (HDP; Tomlinson 1999; Teh, Jor 

dan, Beal, and Blei 2006). In this setting, multiple group 
specific distributions are assumed to be drawn from a common 

DP whose baseline measure is in turn a draw from another DP. 

This allows the different distributions to share the same set of 
atoms but have distinct sets of weights. More recently, Griffin 
and Steel (2006) proposed an order-dependent DP, in which the 

weights are allowed to change with the covariates. 

An alternative approach is to introduce dependence through 
linear combinations of realizations of independent DPs. For ex 

ample, M?ller, Quintana, and Rosner (2004), motivated by a 

similar problem as that of Teh et al. (2006), defined the distrib 
ution of each group as the mixture of two independent samples 
from a DP process: one component that is shared by all groups 
and one that is idiosyncratic. Dunson (2006) extended this idea 
to a time setting, and Dunson, Pillai, and Park (2007b) proposed 
a model for density regression using a kernel-weighted mixture 

of DPs defined at each value of the co vari ate. 
Our work is motivated by two related problems: clustering 

probability distributions and simultaneous multilevel cluster 

ing in nested settings. As a motivating example, suppose that 

patient outcomes are measured within different medical cen 

ters. The distribution of patients within one specific center can 

be nonnormal, with mixture models providing a reasonable ap 

proximation. In assessing quality of care, it is of interest to clus 

ter centers according to the distribution of patients outcomes, 

and to identify outlying centers. On the other hand, it is also in 

teresting to simultaneously cluster patients within the centers by 

borrowing information across centers that present clusters with 

similar characteristics. This task is different from clustering pa 
tients within and across centers, which could be accomplished 

using the approaches discussed by Teh et al. (2006) and M?ller 
et al. (2004). Moreover, our approach is different from the 
nested Chinese restaurant process proposed by Blei, Griffiths, 
Jordan, and Tenenbaum (2004) for the problem of characteriz 

ing topic hierarchies within documents. The Chinese restaurant 

process induces a flexible distribution on words through a tree 
structure in which the topic on one level is dependent on the 
distribution of topics at the previous levels. We propose a dif 
ferent type of nested Dirichlet process (NDP) for modeling a 

collection of dependent distributions using random variables as 
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atoms at the higher level and random distributions as atoms at 

the lower level. 

The article is organized as follows. We start in Section 2 with 
a short review of the DP. In Section 3 we motivate and de 

fine the NDP, explore its theoretical properties, and compare 
it with other DP extensions. We discuss efficient computational 
schemes for the NDP in Section 4, and present examples that 
illustrate the advantages of our methodology in Section 5. Fi 

nally, we close with a brief discussion in Section 6. 

2. THE DIRICHLET PROCESS 

Consider the probability spaces (0, B, P) and (P, C, Q) 
such that P eV. Typically, O cM.d ,B corresponds to the Borel 

a-algebra of subsets of Rd, and P is the space of probability 
measures over (0, B), but most of the results mentioned in this 
section extend to any complete and separable metric space 0. 

We refer to (0, B, P) as the base space and to (P, C, Q) as 
the distributional space. The DP with base measure H and 

precision a, denoted as DP(aH), is a measure Q such that 

(P(B{),...,P(Bk)) 
- 

D\r(aH(B{),...,aH(Bk)) for any fi 
nite and measurable partition B\,..., Bk of 0. 

The DP can be alternatively characterized in terms of its pre 
dictive rule (Blackwell and MacQueen 1973). If (0\,..., 0n-\) 
is an iid sample from P ? DP(aH), then we can integrate out 
the unknown P and obtain the conditional predictive distribu 
tion of a new observation, 

on\on^,...,ol- -r# + V rv 4- n ? 1 ??' 

n?\ . 

a + n ? 1 7^ a + n 
?p 

where 8#l is the Dirac probability measure concentrated at 0/. 
Exchangeability of the draws ensures that the full conditional 

distribution of any 0/ has this same form. This result, which 
relates the DP to a P?lya urn, is the basis for the usual com 

putational tools used to fit DP models (Escobar 1994; Escobar 
and West 1995; Bush and MacEachern 1996; MacEachern and 

M?ller 1998). 
The DP also can be regarded as a type of stick-breaking prior 

(McCloskey 1965; Perman, Pitman, and Yor 1992; Sethuraman 

1994; Pitman 1996; Ishwaran and James 2001; Ongaro and Cat 
taneo 2004). A stick-breaking prior on the space P has the form 

K 

k-\ 

i=\ 

where the number of atoms K can be finite (either known 
or unknown) or infinite. For example, taking K = oo, ak = 

I ? a, and bk = b + ka for 0 < a < 1 and b > ?a yields 
the two-parameter Poisson-Dirichlet process, also known as 

the Pitman-Yor process (Ishwaran and James 2001), with the 
choices a = 0 and b = a, resulting in the DP (Sethuraman 
1994). 

The stick-breaking representation is probably the most ver 

satile definition of the DP. It has been exploited to generate 
efficient alternative samplers like the blocked Gibbs sampler 
(Ishwaran and James 2001), which relies on a finite-sum ap 

proximation, and the collapsed Gibbs sampler (Ishwaran and 

? be\a(ak,bk) ifk<K 
(1"Z/)' Zk 

[8, ,fk = K, 

James 2003) and the retrospective sampler (Roberts and Pa 

paspiliopoulos 2008), both of which avoid truncations. It also 
is the starting point for the definition of many generalizations 
that allow dependence across a collection of distributions, in 

cluding the DDP (MacEachern 2000), the jtDDP (Griffin and 
Steel 2006), and the GSDP (Duan et al. 2007). 

3. THE NESTED DIRICHLET PROCESS 

3.1 Definition and Basic Properties 

Suppose that yjj, for i ? 1,... ,nj are observations for dif 

ferent subjects within center j,forj 
= l,...,J. For example, 

yj 
= 

(yiy,..., ynjjY may represent patient outcomes within 

the jth hospital or hospital-level outcomes within the 7 th state. 

Although covariates, x/7- 
= 

(x?j\, ..., XijP)' 
are typically avail 

able, we initially assume that subjects are exchangeable within 

centers, with y?j 
^ 

Ej, for j 
= 1, ..., J. 

In analyzing multicenter data, various customary strategies 
can be used, the most common being to (a) pool the data from 
the different centers, (b) analyze the data from the different cen 
ters separately, and (c) fit a parametric hierarchical model to 
borrow information. The first approach is too restrictive, be 

cause subjects in different centers may have different distribu 

tions, whereas the second approach is inefficient. The third ap 

proach parameterizes Ej in terms of the finite-dimensional pa 

rameter 
K]j 

and then borrows information by assuming rjj 
? 

Fq, 

with Fo a known distribution (most commonly normal) with 

possibly unknown parameters (mean, variance). One can po 

tentially cluster centers having similar random effects, rjj, 
al 

though clustering may be sensitive to Fo (Verbeke and Lesaffre 

1996). Assuming that Fo has an arbitrary discrete distribution 

having k mass points provides more flexible clustering, but the 
model is still dependent on the choice of k and the specific para 
metric form for Fj. 

Furthermore, clustering based on the random effects has the 

disadvantage of only borrowing information about aspects of 
the distribution captured by the parametric model. For example, 

clustering centers by mean patient outcomes ignores differences 

in the tails of the distributions. Our motivation is to borrow 
information and cluster across distributions {Fj, j 

= 1,..., J] 

nonparametrically to enhance flexibility, and we use a Dirichlet 

type of specification to enable clustering of random distribu 
tions. 

Consider a collection of distributions [G \,..., Gj} such that 

Gj 
- 

Q with Q 
= 

DP(aDP0r3#)) and let 

Fj(-\4>)= I p('\0A)Gj(d0). (1) 
Je 

The collection {F\,..., Fj] is said to follow an NDP mixture. 

The definition of the NDP implies that 
00 

G;(0~? = 
2>2'SG.(.) (2) 
k=l 

and 

00 

G**(-)^2>?*tyt(0, (3) 
l=\ 

with 0*k 
? H, where H is a probability measure on (0,B), 

?>,**=?;* n's~=\d -?:*>, k=?** n*=i0 -??>. ?t 
- 

betaa, 

This content downloaded from 130.233.86.179 on Wed, 22 Apr 2015 09:06:13 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Rodr?guez, Dunson, and Gelfand: The Nested Dirichlet Process 1133 

a), and u*k 
~ 

beta(l,/3). In (1), p(-\0,(?>) is a distribution pa 
rameterized by the finite-dimensional vectors 0 and 0. For ex 

ample, in the case of a univariate response, if the collection 

{F\,..., Fj} is assumed to be exchangeable, then an attractive 

choice would be 0 ? (p, a) and p(-\0, 0) = N(-|/x, a2), which 

yields a class that is dense on the space of absolutely continu 

ous distributions (Lo 1984). On the other hand, if a vector x of 
covariates is available, then we could opt for a random-effects 

model, where 0 ? p, 0 = (y,cr2) and /?(-|0,0) = N(-|/i + 

x'y, a2), similar in spirit to the models of Mukhopadhyay and 
Gelfand (1997) and Kleinman and Ibrahim (1998). Extensions 
to multivariate or discrete outcomes are immediate. 

Because a priori, ?(Gj 
? G j\H) 

= 
-^ 

> 0, the model nat 

urally induces clustering in the space of distributions. In addi 

tion, for any measurable set A e B, 

E(Gj(A)\H) 
= H(A) and 

H(A)(\ - H (A)) 
V(Gj(A)\H) = 

' 
? + 1 

Our construction creates a collection of dependent random 

distributions. For a given set A e B, we have a collection of ran 

dom variables [G\(A),..., Gj(A)}, and (as shown in App. A) 
the correlation between them is 

cor(Gj(A), Gj>(A)\H) 
= 

?|? 
= 

F(G7 
= 

Gr\H). 

This result is independent of the set A and provides a nat 
ural interpretation for the additional parameter in the NDP. 

Therefore, hereinafter we refer to it as the prior correlation be 

tween distributions, denoted as 
cor(Gy, Gj<\H). 

The correla 

tion between draws from the process also can be calculated (see 

App. A), yielding 

1 . _ ., 

(1+?)' 
j~j 

(l+aXl+?)' 
J^J " 

This shows that the a priori correlation between observations 

arising from the same center is larger than the correlation be 

tween observations from different centers, which is an appeal 

ing feature. Given a specific form for p(-\0j, 0), the previous 
expression allows us to calculate the prior correlation that the 

model induces on the observations. 

Note that as a ?^ oo, each distribution in the collection 

is assigned to a distinct atom of the stick-breaking construc 

tion. Therefore, the distributions become a priori independent 
given the baseline measure H, which agrees with the fact that 

\irr\a^OQcor(Gj, G 
j\H) 

= 0. On the other hand, as a -> 0, the 

a priori probability of assigning all of the distributions to the 
same atom G* goes to 1, and thus the correlation goes to 1. 

Thus approaches (1) and (2) for the analysis of multiple cen 
ters described earlier are limiting cases of the NDP. Moreover, 

because Fj(-) -> p(-|0*,0) as ? -+ 0, the NDP also encom 

passes the natural parametric-based clustering [option (3)] as a 

limiting case. 

Because every G*k 
is almost surely discrete, the model simul 

taneously enables clustering of observations within each cen 

ter along with clustering the distributions themselves. For ex 

ample, we can simultaneously group hospitals having the same 

cor(0ij,0i'j>) 
= 

distribution of patient outcomes while also identifying groups 
of patients within a hospital having the same outcome distrib 
ution. Indeed, centers j and / are clustered together if Gj 

? 

G j' 
? 

G\ for some k, whereas patients / and /', from hospitals 
j and /, are clustered together if and only if Gj 

= G j' 
= 

G% 
and Oij =0i>j> 

= 
0*k for some /. 

3.2 Alternative Characterizations of the Nested 
Dirichlet Process 

Just as the DP is a distribution on distributions, the NDP can 
be characterized as a distribution on the space of distributions 

on distributions. Recall the original definition of the DP (Fergu 
son 1973, 1974) stated in Section 2. The choice 0 C R'2 for the 
base space of the DP is merely a practical one, and the afore 

mentioned results extend in general to any complete and sepa 
rable metric space 0. In particular, because the space of prob 

ability distributions is complete and separable under the weak 

topology metric, we could have started by taking (P, C, Q) (de 
fined before) as our base space and defining a new distributional 

space (Q, V, S) such that V is the smallest a -algebra generated 
by all weakly open sets in Q and Q e Q. In this setting Q is the 

space of distributions on probability distributions on (0, B). 
By requiring S to be such that (Q(C\),..., Q(Ck)) 

? 

D\r(av(C\),... ,av(Ck)) for any partition (C\,... ,Ck) of P 

generated under the weak topology and some a and suitable v, 

we have defined a new DP, S ? DP (a y), this time on an ab 
stract space, that satisfies the usual properties. The NDP is a 

special case of this formulation in which v is taken to be a 

regular DP(/3//); therefore, it is an example of a DP in which 
the baseline measure is a stochastic process generating prob 

ability distributions. This justifies the notation Gj^Q with 

Q 
- 

DP(a?P(?H)) introduced earlier. 
The NDP also can be characterized as a DDP (MacEach 

ern 2000) where the stochastic process generating the elements 
of the stick-breaking representation corresponds to a P?lya 
urn (see Rodriguez 2007 for details). Finally, the NDP can be 
viewed as a way to simultaneously define a prior on a random 

partition of the collection {G\, ..., Gj] (in the style of Quin 
tana and Iglesias 2003) and each of the resulting unique distri 
butions. 

3.3 Comparing the Nested Dirichlet Process With 
Other Nonparametric Models 

It is important to note that although both approaches general 
ize the DP to allow hierarchical data structures, the dependence 
induced by the NDP is fundamentally different from that in 
duced by the HDP. Figure 1 illustrates these differences. In the 

HDP, one draw from a Dirichlet process is used as the base 

line measure Go of the process generating the members of the 

collection. As discussed by Teh et al. (2006), this implies that 

{G\, ..., Gj} share the same atoms (the atoms of Go) but as 

sign them different weights. Therefore, F(Gj 
= 

Gj>) =0 under 
the HDP, and clustering occurs only at the level of the observa 

tions. 

On the other hand, the construction of the NDP implies that 
two given distributions either share both atoms and weights 
[making them exactly equal, as G\ and G3 in Fig. 1(b)] or do 
not share any of the features (like G\ and G2 in the same panel). 
This induces clustering on both observations and distributions. 
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(a) 

HDP 

Gj 
~ 

DP(aGo) 
Go - DP(?H) 

CV 

vJTl 
? ? 

Got 

G3K 
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(b) 

NDP 

Gj~Q 
Q ~ DP(aDP{?H)) 

G\ 

G% 

G*2 

Ct4 

Figure 1. Comparing the HDP (a) and the NDP (b). For the HDP, the distributions [G\, ..., Gj] share the same atoms but assign them 

different weights. For the NDP, the different distributions have either the same atoms with the same weights or completely different atoms and 

weights. 

The NDP is also different from the linear combination mod 
els of M?ller et al. (2004), which allow for a limited form 
of clustering across distributions. M?ller et al. (2004) repre 
sented an unknown distribution Gj as a linear combination 

Gj 
= 

?jHo + (1 
? 

?j)Hj, where each Hj is an independent 
draw from a regular DP. Ho is called the common component, 

and the i//s, for j > 1, are called the idiosyncratic compo 
nents. Note that the two distributions Gj and Gj' are equal 
under this model if only if they correspond to the common 

component in the mixture, that is, ej 
= 

j' 
= 0, implying that 

Gj 
= 

Gj' 
= 

Ho. Thus there is at most one cluster with more 

than one member. 

4. POSTERIOR COMPUTATION 

Broadly speaking, there are three strategies for computa 
tion in standard DP models: (a) Use the Poly a urn scheme 
to marginalize out the unknown infinite-dimensional distribu 

tion^) (MacEachern 1994; Escobar and West 1995; MacEach 
ern and M?ller 1998); (b) use a truncation approximation to 
the stick-breaking representation of the process and then resort 

to methods for computation in finite-mixture models (Ishwaran 
and Zarepour 2002; Ishwaran and James 2001); and (c) use 

reversible-jump Markov chain Monte Carlo (RJMCMC) algo 
rithms for finite mixtures with an unknown number of compo 
nents (Dahl 2003; Green and Richardson 2001; Jain and Neal 
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2000). In the sequel we use the auxiliary variables ?j 
= k and 

%ij 
? I if Gj 

= 
G*k and 0;;- 

= 
0*k to indicate membership to the 

distributional and observational clusters. 

Samplers for the NDP based on Poly a urns are in general 
infeasible. Although sampling ?;_y given (?\,..., ?j) using a 

P?lya urn scheme is straightforward, sampling ?j requires eval 

uation of the predictive distributions p(yj \ H) or p(yj \ {ys\?s = 

k}) (both of which are finite mixtures with a number of terms 
that grows exponentially with nj), or p(yj\G*) (the evaluation 
of which requires an infinite sum). The supplemental material at 

http://www.amstat.org/PUBLICATIONS/jasa/ provides details. 

Algorithms using RJMCMC in the NDP are likely to en 
counter similar problems, with the added disadvantage of low 

acceptance probabilities due to the large number of parameters 

that need to be proposed at the same time, with no obvious 

way to construct efficient proposals. Thus we focus on sam 

plers based on truncation approximations, which are obtained 

by replacing the infinite sums in (2) and (3) by finite sums of 
K and L elements. It can be shown that the total variation dis 
tance between the prior predictive distributions generated by 
the NDP and its truncation has a strictly decreasing bound as 
L and K go to infinity. In addition, the posterior distribution 
for {0ij}i<nj,j<j under the truncation converges in distribution 
to the posterior distribution under the NDP prior. Details on 
these results closely follow the results of Ishwaran and James 

(2001, 2002) and are given in Appendix B. The supplemental 
material also presents some numerical evidence suggesting rea 

sonable truncation values as a function of sample size, which 

for the numerical examples discussed in this article were fixed 
to K = 35 and L ? 55. Computation proceeds through the fol 

lowing steps: 

1. Sample the center indicators ?j for j 
= 1,..., J from a 

multinomial distribution with probabilities 

h L 

?=il=i 

2. Sample the group indicators ?;7 for j 
? 

!,...,] and 

i = I,.. .,nj from another multinomial distribution with 

probabilities 

mij=l\'")=b\jOCwl?jp(yij\0t?r4>) 
3. Sample ixk by generating 

(u*k\---) 
~ beta I 1 + mk,a + ^2 ms\ \ s=k+l / 

k=\,...,K 
- 

1, 

* 1 

where m^ is the number of distributions assigned to com 

ponent k, and constructing 7tk 
= 

u*k Y\s=\ (1 
~~ 

w*) 

4. Sample w*k by generating 

(i4|..0~beta?l+rt/ifc,j8+ ? nh\, 

/ = !,...,L-l, 

vlk = h 

where n\k is the number of observations assigned to 

atom / of distribution k, and constructing w*k 
= 

v*k 
x 

5. Sample $*k from 
<*) 

p(0?t|---)oc [7 p(y,vl*r*.0) 
(' .ylfy=*'^='} 

hWk), 

where h(0*k) is the density corresponding to the baseline 
measure H. If no observation is assigned to a specific 

cluster, then the parameters are drawn from the prior dis 

tribution h(0*k). If the prior is conjugate to the likelihood, 
then sampling is greatly simplified; however, nonconju 
gate priors can be accommodated using rejection sam 

pling or Metropolis-Hastings steps. 

6. Sample the concentration parameters a and ? from 

p(ot\ ) cxaK 
l 
exp| 

a 
^ log(l 

[ k=\ 
u*k) \p(oi) 

and 

p(?\ ) ex ?K(L^ exp ? J2 ?log(l 
- 

i^) Ltf). 
I /=l /c= 1 J 

If conditionally conjugate priors a 

? 
~ 

G(fl^, b?) are chosen, then 
G(<za, ba) and 

?-1 

(a| ) 
- G U, + (K 

- 
1), fea 

- 
J2 iogi1 

- 
"D 

and 

fc=i 

L-l tf 

(0 | ) - G la? + K (L - 1 ), b? 
- 
^2 E loS( ! 

- 
v*k) ) 

Note that the accuracy of the truncation depends on the 
values of a and ?. Thus the hyperparameters (aa, ba) and 

(a?, b?) should be chosen to give little prior probability 
to values of a and ? larger than those used to calculate 

the truncation level. 

7. Sample 0 from its full conditional distribution, 

p(0| 
- - 

) OC nn^(wi*u-*) 
=i/=i 

p(<t>) 

Besides its simplicity of implementation, an additional ad 

vantage of this truncation scheme is that implementation in par 

allel computing environments is straightforward, which can be 

especially useful for large sample sizes. 

5. ILLUSTRATIONS 

In Section 5.1 we present a simulation study in which we fo 
cus on the problem of clustering distributions but do not attempt 
to interpret the clusters induced by the model on the observa 
tions. The problem of nested clustering is discussed in Sec 
tion 5.2 in the context of a real data set. 
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5.1 Simulation Study 

In this section we present a simulation study designed to 

(a) illustrate the ability of the model to discriminate among dis 
tribution functions and (b) show the ability of the NDP to bor 
row information and provide more accurate density estimates. 

The setup of the study is as follows: J samples of size n are 

obtained from four mixtures of four Gaussian components de 

fined in Table 1 and plotted in Figure 2. These distributions 
have been chosen to exemplify functions that are hard to dis 

tinguish; Tl and T2 are asymmetric and composed of the same 
two Gaussian components that have been weighted differently, 
whereas T3 and T4 share three distributions located symmet 
rically around the origin, differing only in an additional bump 
that T4 presents on the right tail. 

The values of J and n were varied across the study to as 

sess the influence of sample size on the discriminating ca 

pability of the model. The precision parameters a and ? 
were both fixed to 1, and a normal inverse-gamma distrib 

ution, NIG(0, .01,3, 1), was chosen as the baseline measure 

H, implying that, a priori, E(/x|a2) = 0, V(/x|a2) = lOOcr2, 
E(<72) = 1, and Y (a2) = 3. The algorithm described in Sec 
tion 4 was used to obtain samples of the posterior distribution 
under the NDP. Based on the empirical analysis presented in 
the supplemental material (available at http://www.amstat.org/ 

PUBLICATIONS/jasa/), truncation levels were chosen as 
K = 35 and L = 55. All results shown below are based on 

50,000 samples obtained after a burn-in period of 5,000 iter 
ations. 

Visualization of high-dimensional clustering structures is a 

hard task. A commonly used summary looks at the set of 

/(/ 
? 

l)/2 possible pairs of populations and for each pair ob 
tains the probability that the two of them fall in the same clus 
ter. Estimates of these probabilities are easily obtained from 
the output of our MCMC algorithm and can be effectively dis 

played using heat maps, like those shown in Figure 3. To sim 

plify interpretation of the plot, samples from the same mix 
ture distribution are adjacent. Other possible summaries are dis 

cussed in Section 5.2. 

For small values of n, the NDP is able to roughly separate 
Tl and T2 from T3 and T4, but cannot discriminate between 
Tl and T2 or between T3 and T4. This is not really surprising, 
because the method is designed to induce clustering. Therefore, 
when differences are highly uncertain, the method prefers to 
create fewer, rather than more, clusters. But as n increases, the 

model is able to distinguish between distributions and to cor 

rectly identify both the number of groups and the membership 
of the distributions. It is particularly interesting that the model 

Table 1. Parameters for the true distributions pj = 
Y^i w/ N(/x?, a2) 

used in the simulation study 

. Comp 1 Comp 2 Comp 3 Comp 4 

bution w ?i <j w ?i o w ?i o w ?i o 

Tl .75 0 1.0 .25 3.0 2.0 

T2 .55 0 1.0 .45 3.0 2.0 

T3 .40 0 1.0 .30 -2.0 2.0 .30 2.0 2.0 

T4 .39 0 1.0 .29 -2.0 2.0 .29 2.0 2.0 .03 10.0 1.0 

o CO 

LO CO 

o CM 

LO 
O 

O 
o 

LO o 

o o 

Figure 2. True distributions used in the simulation study (-, Tl ; 

-, T2; 
- , T3; 

- 
-, T4). 

finds it easier to discriminate between distributions that differ 

just in one atom rather than in weights. On the other hand, as 

J increases, the model is capable of discovering the underlying 
groups of distributions, but the uncertainty on the membership 
is not reduced without increasing n. 

Figure 4 shows density estimates obtained for sample 1 of 
the example where J ? 20 and n = 100. Panel (a) shows the 

density estimate obtained from the NDP (which borrows in 
formation across all samples), whereas panel (b) was obtained 

by fitting a regular DPM model with the same precision para 
meter ? = 1 and baseline measure. We note that although the 
NDP borrows information across samples that actually come 

from a slightly different data-generating mechanism, the esti 

mate is more accurate; it not only captures the small mode to 

the right more clearly, but also emphasizes the importance of 
the main mode. Indeed, the Kullback-Leibler divergence of the 

density estimate relative to the true distribution for the estimate 
of Tl under the NDP is .011, whereas under the regular DPM it 
is .017. 

5.2 Health Care Quality in United States 

Data on quality of care in hospitals across the United States 
and associated territories are publicly available from the De 

partment of Health and Human Services at http://www.hhs.gov/. 

Twenty measures are recorded for each hospital, comprising 
such aspects as proper and timely application of medication, 

treatment, and discharge instructions. In what follows we fo 

cus on one specific measure: the proportion of patients given 
the most appropriate initial antibiotic(s), transformed through 
the logit function. Four covariates are available for each center: 

type of hospital (either acute care or critical access), ownership 
(nine possible levels, including government at different levels, 

proprietary, and different types of voluntary nonprofit hospi 
tals), whether the hospital provides emergency services (yes or 

no), and whether it has an accreditation (yes or no). Location, 

in the form of the ZIP code, also is available. Hospitals with 
fewer than 30 patients treated and territories with fewer than 
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m 

12 16 20 
ri - 500 

Figure 3. Pairwise probabilities of joint classification for the simulation study. 

4 hospitals were judged to be misrepresentative and removed 
from the sample, yielding a final sample size of 3,077 hospitals 
in 51 territories (the 50 states plus the District of Columbia). 
The number of hospitals per state varies widely, with, for ex 

ample, 5 in Delaware, 10 in Alaska, 13 in Idaho, 164 in Florida, 
205 in Texas, and 254 in California. The number of patients per 

hospital varies between 30 and 1,175, with quartiles at 76, 130, 
and 197 patients. Because the values tend to be large, we per 
form our analysis on the observed proportion without adjusting 
for sample sizes. 

We wish to study differences in quality of care across states 

after adjusting for the effect of the available covari?tes. Specif 

ically, we are interested in clustering states according to their 

quality, rather than obtaining smoothed quality estimates. In 

deed, differences in quality of care are probably due to a com 

bination of state policies and practice standards, and clustering 
patterns can be used to identify such factors. Therefore, there is 
no reason to assume a priori that physically neighboring states 

have similar outcomes. 

To motivate the use of the NDP, we consider first a simple 
preliminary analysis of the data. To adjust for the covariates, 
an ANOVA model containing only main effects is fitted to the 
data. Of these effects, only the presence of an emergency ser 

vice and the ownership seem to affect the quality of the hospital 
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Figure 4. True (-) and estimated (-) densities for distribution 1 of the simulation with J ? 20 and n ? 100. (a) An estimate based on 
the NDP, which borrows information across all samples, (b) An estimate based only on sample 1. 

(p values .011 and 1.916 x 10~8). Residual plots for this model 
show some deviation from homocedasticity and normality (see 

Fig. 5), but, given the large sample size, it is unlikely that this 
has any impact on the significance of the covariates. 

It is clear from Figure 6 that residual distributions vary across 
states. At this point, one possible course of action is to assume 

normality within each state and cluster states according to the 
mean and/or variance of its residual distribution. But the illus 
trative density estimates in Figure 7 (obtained using Gaussian 
kernels and a bandwidth chosen using the rule of thumb de 
scribed in Silverman 1986) show that state-specific residual 

distributions can be highly nonnormal and that changes across 
states can go beyond location and scale changes to affect the en 
tire shape of the distribution. Invoking asymptotic arguments at 
this point is inappropriate, because sample sizes are small and 
we are concerned about the shape of the distribution (rather than 
the parameters), for which no central limit theorem can be in 
voked. Figure 7 also shows that states located in very different 

geographical areas (e.g., California and Minnesota or Florida 
and North Carolina) can have similar error distributions. 

To improve the analysis, we resort to a Bayesian formula 
tion of the main-effects ANOVA and use the NDP to model the 

(b) 
Normal Q-Q Plot 

Residuals 

Figure 5. Residual plots for the ANOVA model on the initial antibiotic data, (a) Residuals versus fitted values, (b) Quantile-quantile plot. 
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Figure 6. State-specific residual boxplots for the ANOVA model on the initial antibiotic data. 

Figure 7. Density estimates for the residual distribution in selected states. Note that the distributions seem clearly nonnormal, and that their 

shape can have important variations, making any parametric assumption difficult to support. 
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state-specific error distributions. Specifically, if we let y?j be the 

response of hospital i in state j after subtraction of the global 
mean, then 

yu 
= 

pij + Xij y + ij, ?j 
~ N (0, Gij ), 

(Pij, or?.) 
- 

Gj, {Gi,..., Gy} 
- 

DP(aDP(0, //)), 

where x/y is the vector of covariates associated with the hospi 
tal. Thus here, 9?j 

= 
(Pij, erf:) and 0 = y. Prior specification 

is simplified by centering the observations. We choose H = 

NIG(0, .01, 3, 3), which implies that E(p\cr2) = 0, V(p\cr2) = 

lOOor2, E(a2) = 1, and V(a2) = 3. This choice reflects the nat 
ural scale (logit) of the data, which on a Gaussian linear model 
would be expected to have mean 0 and variance close to unit 
after adjusting for covariates. We use a standard reference (flat) 
prior on y. Finally, we set a, ? 

~ 
G(3,3) a priori, implying 

that E(a) = E(?) = 1 (a common choice in the literature) and 

P(a > 3) = F(? > 3) ? .006. Note that this choice implies that 

P(cor(G,, Gy) > .25) ? .994. 
Posterior computation is straightforward using the algorithm 

presented in Section 4. As described there, the model is a regu 
lar ANOVA with known variance conditional on 0, and the full 
conditional posterior distribution of y following a normal dis 
tribution. On the other hand, conditional on y, we can use the 

NDP sampler on the pseudo-observations z?j = yij 
? 

XijY The 

results that follow are based on 50,000 iterations obtained af 
ter a burn-in period of 5,000 iterations. As with the simulation 

study, we choose K = 35 and L = 55 as the truncation levels. 
The results seem to be robust to reasonable changes in prior 
specification, and there is no evidence of lack of convergence 
from visual inspection of trace plots. 

The posterior distribution on the number of distinct G's 
shows strong evidence in favor of either two or three compo 

nents (posterior probabilities .616 and .363) and little support 
for one, four, or five distributions (posterior probabilities 0, .02, 
and .001). As with the simulated example, we visualize the ma 
trix of pairwise probabilities using a heat map, as shown in Fig 
ure 8. To make sense of the plot, we first reorder the states us 

ing an algorithm that borrows ideas from hierarchical clustering 
(see the supplemental materials for details). 

This heat map provides additional insight into the cluster 

ing structure. It shows three well-defined groups: (a) a large 
homogenous clusters of 31 members (lower left corner of the 

plot), (b) a small homogenous cluster of 6 states (upper right 
corner), and (c) an heterogeneous group comprising the remain 

ing 15 states, which are not clear members of any of the 2 previ 
ous clusters and do not seem to form a coherent cluster among 

themselves. 

Several different approaches can be used to choose one spe 
cific partition of the set of states. One appealing option is to 

0.75 

0.5 

m 

0.25 

TTTTTTTii.' 
oo>-KrTJ>?x<<2<d?05?ax53?zt/3>"!r:^5LL|c)trt:t:?>a:?LUOE? 
5Zi?<u-^?O?>l-u. 5C0Z5-ig-L|<5i?Z?<z5u3S>-ZOC0U?D:2 

I?Q*Z<LU 
zzgso <mNig 

Figure 8. Residual plots for the ANOVA model on the initial antibiotic data. 
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choose p such that it minimizes a given loss functions. Follow 

ing Binder (1978, 1981) and Lau and Green (2006), we chose 
the label-invariant loss function 

*(P,P) = E K;=^ W +M(iy*M^>)' 
{?J'YJ<J'<J} 

(4) 
where p denotes the true (unknown) partition of states, 1 a is the 
indicator function on the set A, ?j and ?j denote the true and 
estimated clustering indicators induced by p and p, and a and b 
are pairwise misclassification penalties. Minimizing the poste 
rior expected loss under *1> is equivalent to picking a partition p 
such that the function 

E \iMy){f)?f-T) 
{?J'YJ<J'<J} 

is maximized, where pjy is the probability of joint classifi 
cation for states / and j (the values depicted in Fig. 8) and 
r = b/(a + b) [0,1]. For r = 0, the optimal partition places 
all states in a single cluster. On the other hand, if r = 1, then 
the optimal allocation creates individual clusters for each state. 
Intermediate values of r correspond to a compromise between 
both types of errors. Thus for r = .3, the optimal partition di 
vides the 51 states into 2 groups, a small group comprising 
8 states (AZ, IA,IN, MD, MI, NE, OK, and WI) and a large 
group comprising all of the remaining states. For r = .5, the op 
timal allocation corresponds to three clusters: a very small clus 
ter comprising only OK and SD; an intermediate cluster com 

prising AZ, CO, DE, IA, IN, MD, MI, ND, NE, NH, RI, WI, 
and WY (note the similarities with r = .3); and a large cluster 

comprising the remaining states. Finally, for r = .75, the opti 
mal clustering agrees with the one depicted in Figure 8, with 2 

tight groups and 14 single-state clusters. The posterior probabil 
ities for each of these partitions estimated from the MCMC are 
4 x 10~5, 0, and 0. In contrast, the most frequent configuration 
sampled by the model (posterior probability 7 x 10-4, much 

larger but still rather small) divides the sample into 2 groups, 
a small group with 17 states (AZ, CO, IA, ID, IN, MD, MI, 
ND, NE, NH, NV, OK, OR, RI, SD, WI, and WY), and another 

group with the remaining states. 
We also can study the clustering of hospitals within states, 

but meaningful interpretations must be done conditionally on 
the state-level partition. As an illustration, consider condition 

ing in the optimal clustering suggested by taking r = .75. The 
small cluster (comprising AZ, IA, IN, MI, NE, and WI) is com 

posed of 1 group (posterior probability .81) or 2 groups (pos 
terior probability .18) of hospitals, whereas the large cluster 

(comprising 31 states, including TX and NC) is composed of 2 

(probability .89) or 3 (probability .10) different groups of hospi 
tals. This shows that low-/high-quality groups of hospitals can 
be identified within each group of states and that state-specific 
distributions are nonnormal as expected. 

Indeed, Figure 9 shows posterior predictive density estimates 
for the residuals of four representative states: North Carolina 

(cluster 1), Wisconsin (cluster 2), and South Dakota and Ok 

lahoma, which belong to the third group. North Carolina (and, 
in general, the states in group 1) presents a lower mean and 
a heavier-than-Gaussian left tail, indicating that each of those 
states contains some underperforming hospitals and few or no 

CM 
? 

O 
O 

Residual 

Figure 9. Mean predictive density for four representative states: 

North Carolina (NC; -), Wisconsin (WI; 
- - 

), South Dakota 

(SD; ), and Oklahoma (OK;-). 

over performing hospitals. The situation for Wisconsin and 
cluster 2 is reversed; these seem to be states with a higher aver 

age performance, quite a few hospitals with an excellent record 
in the application of antibiotics, and few or no low-quality hos 

pitals. Finally, South Dakota and Oklahoma exhibit a mixed be 

havior, showing evidence of both underperforming and overper 
forming hospitals. Note that these density estimates are much 
smoother than those shown in Figure 7. This is not surpris 
ing for three reasons: (a) As discussed by Escobar and West 

(1995), location-scale mixtures act as adaptive-bandwidth ker 
nel estimators; (b) we are borrowing information across states; 
and (c) our estimates average over a large number of alternative 

models, which induces smoothness. All of these features tend to 

produce smoother estimates than those obtained from standard 
kernel density estimates. 

It is interesting to contrast these results with those obtained 
from a similar model that uses the HDP instead of the NDP to 
induce dependence among residual distributions. Although den 

sity estimates (not shown) for the different states appear simi 
lar to those shown in Figure 9, the HDP does not provide an 

equivalent to Figure 8, because it clusters only hospitals, not 
states. Indeed, the HDP-based model divides the 3,077 hospi 
tals in roughly 3 groups, which we can easily label as average 
(for the largest, central group), underperformers, and overper 
formers (both containing a relatively small number of obser 

vations). The density estimates are then obtained by weighting 
these groups differentially for each state. 

6. DISCUSSION 

We have formulated a novel extension of the DP for a family 
of a priori exchangeable distributions that allows us to simulta 

neously cluster groups and observations within groups. More 

over, the groups are clustered by their entire distribution, rather 
than by particular features of the distribution. We demonstrated 
the flexibility of the model through both a simulation study and 
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an application where the NDP is used to jointly model the ran 

dom effect and error distribution of an ANOVA model. 
One natural generalization of the NDP is to replace the 

beta(1, a) and beta(l,/3) stick-breaking densities with more 

general forms. In the setting of stick-breaking priors for a single 
random probability measure, Ishwaran and James (2001) con 

sidered general be\a(ak, bk) forms, with the DP corresponding 
to the special case where ak = 1 and bk 

? a. Similarly, by us 

ing beta(flfc,??jO and beta(c?,<4), we can obtain a rich class 
of nested stick-breaking priors that encompasses the NDP as a 

particular case. 

Including hyperparameters in the baseline measure H is 
another straightforward extension. We note that, conditional 

on H, the distinct atoms {G*k\(f>=x are assumed to be indepen 
dent. Therefore, including hyperparameters in H allows us to 

parametrically borrow information across the distinct distribu 
tions. 

APPENDIX A: CORRELATION IN THE NESTED 
DIRICHLET PRIOR 

We start by calculating the correlation between distributions. In the 

first place, 

E(Gj(B)Gk(B)) 
= 

E(Gj(B)Gk(B)\Gj 
= 

Gk)?(Gj 
= Gk) 

+ E(Gj(B)Gk(B)\Gj # Gk)?(Gj # Gk) 

= 
E(G2(B))-^? +E(Gj(B))E(Gk(B))-^ J a + 1 J a + 1 

H(B)(\-H(B)) ? = ???-?- 
+ H2(B). 

(a + I)(j8 + 1) 

nally, 

E(Gj(B)Gk(B)) -E(Gj(B))E(Gk(B)) ?(G ?(B), Gk(B)) = -, - 
7 
JV(Gj(B)Y(Gk(B) 

H(B)(\-H(B)) H2(B) _ H2(B) (q + DQg+l) ^n {D) n {D) 

H(B)(\-H(B)) 

Finally, 

con 

H(B)( ' 
')(l+Q 

(0+1) 

1 
~~ 

a + r 

For the correlation between samples of the NDP, note that for the 

NDP and if j = /, then 

coy(0ij,eifr) 
= 

cow(ftij,eilj\eij=0ifj=0fkmeij=eilj=efk) 

+ cov(0ij,0rj\0iJ^0I>J)n0ij^0i>J) 

= 
?!?v(0?v). i + ? lk 

Because the Of,'s are iid for all / and k, it follows that 
cor(0?j, 

0i'j) 
= 

-pLg 
. On the other hand, if j ^ j', then 

cov(0lJ,0Vjl) 
= 

cov(0ij,0vr\Gj=Gj, 
= 

G*k,0lj=0Vjl=0*lk) 

xF(Gj=Gr 
= 

G*k,9ij=0i>r) 

+ cov(fiij,0Vy\Gj?Gr or Oij^Oi'j,) 

xFiGj?Gj.oTOij?Bi'j') 

(l+a)(l+j8) IV 

APPENDIX B: TRUNCATIONS 

Here we consider finite-mixture versions of the NDP. Finite mix 

tures are usually simpler to understand, and considering them can help 

provide insight into the more complicated, infinite-dimensional mod 

els. In addition, they provide useful approximations that can be used 

for model fitting. 

Definition B.I. An LK truncation of an DP(aDP(?, H)) is defined 

by the finite-mixture model 

K l-\ 

Gf(-) 
~ 

2>*5Gi-C); n*k 
= 

v*k f](l 
- 

v*) 
k=\ j=l 

L l-\ 

o?O = 
E w*khi ( ); wfk = ?ft FI (? - "**>= 

/=1 s=l 

7lk 

beta(l,a), 

beta(l,?), 

H. 

k=l, 

1 = 1, 

,K 1; 

lLk 

= 1; 

= 1; 

We refer to this model as a bottom-level truncation or NDP if 

K = oo and L < oo, whereas if K < oo and L = oo, we refer to it as 

a top-level truncation or NDP?? . Finally, if both L and K are finite, 
then we have a two-level truncation, or NDP . 

The total variation distance between an NDP and its truncation ap 

proximations can be shown to have decreasing bounds as L, K ?^ oo. 

For simplicity, we consider the case where n ; = n Vy. 

Theorem B.l. Assume that samples of n observations have been 

collected for each of J distributions and are contained in vector y = 

(fv...,y'j). Also, let 

P oc(0)= f ? P(0\Gj)Poo{dGJ\Q)Poc(dQ) 

and 

PLK(0)= ? i P(0\Gj)PL(dGj\Q)PK(dQ) 

be the prior distribution of the model parameters under the NDP model 

and its corresponding LK truncation after integrating out the random 

distributions, and let Poo (y) and PLK (y) be the prior predictive 
distribution of the observations derived from these priors. Then 

f\PLK 
(y) D(y)l^y 

f\pLK 
m H0)\ 

<eLK(a,?), 

where 

rLK 
(a,?): 

4 1 1 - 
a 

if L = oo, K < oo 

1 - ?_ 
+ 1 

if L < oo, K = oo 

K-\ 

L-\-inJ 

4 1 
+ a 

1 - + i 
if L < oo, K < oo 

K-l 

L-V nJ\ 
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The proof of this theorem closely follows theorem 1 and corol 

lary 1 of Ishwaran and James (2002) and theorem 2 of Ishwaran and 

James (2001) and is included in the supplemental material available 

at http://www.amstat.org/PUBLICATIONS/jasa/. Note that the bounds 

approach zero in the limit, so the truncation approximations and its 

predictive distribution converge in total variation (and thus also in dis 

tribution) to the NDP. Furthermore, the bounds are strictly decreasing 
in both L and AT. As a consequence of this observation, we have the 

following corollary. 

Corollary B.I. The posterior distribution under an LK truncation 

and the corresponding NDP converge in distribution as both L and 

K ->oo. 

The proof is a simple consequence of the Bayes theorem, 

lim pLK(0\y)= lim ^ ,?, / 

= p(y\0)\imK,L^ PLK(0) 

^^K.L^ooPLK(y) 

= 
poooo(0\y). 

It is straightforward to extend the previous results and show that 

lim^oo NDPL/r = NDP00^ and lim^oo NDPL^ = NDPLo? in 
distribution. 

[Received September 2006. Revised September 2007.] 
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Comment 
Daniel L. Gillen and Wesley O. Johnson 

1. INTRODUCTION 

We commend Rodriguez, Dunson, and Gelfand (RDG) for 

presenting a novel and fascinating nonparametric approach to 

inference for data that are nested (e.g., hospital within state) and 
where two kinds of clustering are are anticipated (e.g., among 

states and among hospitals within clusters of states). In con 

trast, the HDP is implemented through a single draw from a DP 
followed by iid draws from a DP with that as its base, implying 
that every state forms a unique cluster of size 1. The contrast be 

tween these approaches is quite interesting. RDG focus mainly 
on use of the NDP as a "top-level" clustering tool (e.g., for clus 

tering states). We begin our discussion by also considering the 

interpretation of regression effects in the NDP setting as well 
as other common approaches to the analysis of two-stage clus 

tered data. In Section 3 we seek to reinforce the construction of 

the NDP, further emphasizing the difference between the HDP 
and the NDP. Finally, we conclude by considering possible ex 
tensions of the NDP to other inferential settings. 

2. INTERPRETATION OF REGRESSION EFFECTS 

RDG consider the problem of analyzing multicenter data and 
draw motivation from the deficiencies of what they consider the 
most common analytic approaches. The authors mention three 

approaches to modeling, including (A) pooling the data across 

centers, (B) stratifying by center and analyzing each separately, 
and (C) using a parametric hierarchical model to borrow in 
formation from "neighboring" centers. An alternative approach 
not mentioned is the use of generalized estimating equations 

(GEEs) (cf. Zeger and Liang 1986; Prentice 1988; Prentice and 
Zhao 1991) to provide inferences that account for clustering 
(hospitals within each state form natural clusters) without hav 

ing to provide a full probability model for the data. Under mild 

regularity conditions, GEE methods as proposed by Zeger and 

Liang (1986) based on an independence working correlation 
structure and combined with the use of robust variance estima 

tors lead to consistent estimators and asymptotically valid infer 

ence (Pepe and Anderson 1994). Inefficiency due to misspeci 
fication of the working correlation structure (relative to a fully 
parametric procedure assuming the correct probability model) 

is often compensated for by the robustness of the GEE method 

ology, which has made it a common tool used in analysis of 
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correlated data. To the best of our knowledge, there is no modi 

fication of a GEE approach that handles all of the clustering is 
sues raised by RDG, because the GEE methodology is designed 
not for cluster identification, but rather for parameter estimation 

and inference. To analyze data in which cluster membership is 
unknown in the GEE framework, one likely would need to use 
a two-stage modeling strategy, first using a clustering algorithm 
to define group membership and then implementing GEE for 

parameter estimation. We also are not aware of any Bayesian 

approaches that correspond to the GEE approach. The Bayesian 
approach relies on a full probability model for the data, which 
is not specified in the GEE approach. 

RDG focus mainly on clustering aspects and consider only 

regression effects in their illustration, regarding them more as 

confounding factors requiring an adjusted analysis. Inevitably, 

the NDP model will be used in conjunction with additional 

modeling of covariate effects. RDG's model for their example 
is semiparametric and assumes that the effects of covariates on 

the mean response will be the same from one state to the next. 

In Section 4 we discuss the possibility of a fully nonparametric 
approach in which regression effects are allowed to vary from 

(top level) cluster to cluster. 
In those cases where regression effects are important, in the 

premodeling stage questions can be asked about scientific goals 
for interpreting regression effects associated with the analysis 
of multicenter data. A standard question is whether it is most 
relevant to discern the importance of (a) marginal covariate ef 

fects across the population, (b) covariate effects conditional on 

state, or (c) the characteristics defined by any random effects 

in the model. Approach A, along with GEE, estimates marginal 
covariate effects, whereas approaches B and C, as well as the 

proposed NDP, estimate conditional effects. Although this dis 
tinction is of no consequence under a standard linear model, 

various authors have discussed the ramifications of the differ 

ence between marginal and conditional effects for nonlinear 

models (e.g., Neuhaus, Kalbfleisch, and Hauck 1991; Pender 

gast et al. 1996; Heagerty and Zeger 2000). Clearly, when de 

ciding among the analytic approaches that might be considered, 
it is of utmost importance to first decide on the target of infer 
ence and then choose the methodology that best addresses the 
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scientific question of interest. In the context of the example pre 

sented by RDG, if the end goal is to modify public health policy, 
then marginal covariate effects may be of interest, whereas con 

ditional effects are important for individual patients and clini 
cians. 

3. REVISITING THE DISTINCTION BETWEEN THE 
NESTED DIRICHLET PROCESS AND THE 
HIERARCHICAL DIRICHLET PROCESS 

The major contribution of the NDP paradigm is the ability 
to allow observations to cluster both across "states" and within 

clusters. RDG point out that none of approaches A, B, or C (or 
GEE) has the capability of borrowing information in this way. 
A natural comparison is with the HDP, as RDG have done. Such 
a comparison is key to highlighting the NDP's flexibility. To 
further illustrate the differences between the HDP and NDP, we 
consider the two frameworks side by side in Figure 1, borrow 

ing from RDG's notation. As RDG note, the clear distinction 
between the two procedures comes at the top level of clustering. 

With the HDP, a single discrete realization of Go is sampled, 
followed by iid draws from a DP with that as its base, thereby 
leading to distinct G/'s with probability 1, which implies that 

Pr[G j= Gf-] = 0 for all j ^ j'. Thus every state forms a unique 
cluster of size 1. In contrast, because the NDP involves select 

ing J iid draws from {G? : k = 1,2,...} according to the dis 
crete distribution 

{nk 
: k = 1, 2,...}, it is possible to get repeats 

and thus to obtain G ? 
= G' , implying that centers may clus 

ter together along with patients within clustered centers. The 

realized distribution of outcomes from all hospitals that are in 
the same cluster of hospitals with realization 

G*k 
is then the sim 

ple mixture of kernels f p(-\0, (p)Gl(dO) 
= 

J^i wlk* p(-\0fk,(?)), 
where point masses are the support of G? and the mixing 
weights are the corresponding probabilities. By RDG's approx 
imation, this is a finite sum, but if the total mass concentration ? 

were small, then the number of terms in this sum with appre 

ciable weight would be expected to be small. This leads to the 

possibility of detecting subgroups of hospitals that might cor 

respond to a bump in either tail of the distribution. Hospitals 
associated with a bump in the upper (lower) tail would corre 

spond to better (worse) outcomes, and perhaps why this is the 
case could be discovered by investigating what these hospitals 
have in common that might explain this bump. Thus, by using 
the stick-breaking representation of the DP, RDG have provided 
an elegant approach to highlighting the flexibility of the NDP 
in relation to the HDP. They also have provided a new tool for 

guiding postanalysis exploration. 

4. POSSIBLE EXTENSIONS 

RDG have provided a flexible way to borrow information 

through clustering by using the NDP. Clearly, many possible ex 
tensions lie ahead. A conceptually simple extension can model 

covariate information nonparametrically rather than semipara 

metrically. This would be accomplished, using the notation in 
the article, by letting (p?j, y?j, o?j) 

? 
Gj in section 5.2. Thus 

instead of a DPM that mixes on the intercept and scale, this 

approach also mixes on the regression slopes. This model then 

generalizes the hierarchical parametric random effects regres 
sion model where slopes and intercepts would be distinct (al 
beit correlated) within each state. It allows for each cluster of 
states to have its own regression model (actually a mixture of 

regression models) relating covariates to response. This model 

embeds a DDP regression model in the NDP (De lorio, M?ller, 
Rosner, and MacEachern 2004; De lorio, Johnson, M?ller, and 
Rosner 2008). Conditional on the clustering of states, outcomes 

within clusters will behave as realizations from a DDP regres 
sion rather than as realizations from a simple DP. 

The covariate vector also could be partitioned into two parts, 
one with random coefficients embedded into the NDP as de 
scribed here and the other treated as having the same effect 
across clusters of states, as in RDG's approach. Another varia 

tion of this theme would incorporate the possibility of a random 
function into the regression structure to handle the correlation 

structure associated with longitudinal data (cf. Zhang, Lin, Raz, 

and Sowers 1998). It is also clear that, at least conceptually, the 
NDP structure can be easily adapted to generalized linear model 
notation and thus in all likelihood can be used to, for example, 
cluster binary outcomes associated with hospitals within states 

and, of course, in the more general context of individuals within 

centers. Of course, the devil is in the details; perhaps this is eas 
ier said than done. 

HDP NDP 

Go-DP(?H) 
Go = EaX WM') with ^*~ tf 

G7(.)~DP(aG0) 
G.,(0 

= 
E, ">,*(?%( ) with 0; 

~ 
Go 

Fj(-\4>) 
= 

f&P(-W,<l>)Gj(de) 

Q~~DP(aDP(?H)) 

G?(-) 
= E, <(?)% U with e'* ~ W 

G;(-)~? 

^ ( |0) = /0P(-|0.0)Gj(?/0) 

Figure 1. Contrasting the HDP and NDP paradigms. 
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Another obvious avenue is to extend the work here to the set 

ting of censored survival data, where the analysis of multicen 

ter data has focused primarily on frailty models (e.g., Clayton 
1978; Lee, Wei, and Amato 1992; Gustafson 1997) and mar 

ginal models (e.g., Lin and Wei 1989; Wei, Lin, and Weiss 
feld 1989). There are many recent Bayesian semiparametric 

approaches to survival analysis, including those of Kuo and 

Mallick (1997), Kottas and Gelfand (2001), and Hanson and 
Johnson (2002), to name only a few. Extensions of this work 
that allow for NDP priors will make it possible to cluster hos 

pitals and patients within clusters of hospitals based on their 

survivability. Clusters of hospitals with notably better survival 

prospects can be identified and studied, as can clusters of pa 

tients within clusters that are found to have appreciably better 
or worse survival. This would greatly enhance the flexibility 
of current methods for analyzing multivariate failure time data, 

and we look forward with excitement to the extensions of the 
NDP as presented by RDG. 
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Peter M?ller and Luis Nieto-Barajas 

Rodriguez, Dunson, and Gelfand (RDG) propose a proba 
bility model for a family of random probability models. The 

motivating application is inference for quality of care measure 

ments in hospitals nested within states in the United States. Let 

Gj denote the distribution of quality of care measurements, Oij, 
for hospitals, / = 1,..., n?-, in state j (ignoring for the moment 

an additional smoothing kernel and regression used in the arti 

cle). States are clustered by defining a random partition of the 
state indices {1,..., 50). For the kth cluster of states a random 

distribution G?(0) is generated by a DP prior, and Gj 
= 

G*k for 
all states in the cluster. The random partition of states into clus 

ters is defined by the P?lya urn scheme implied by another DP 
with total mass a. 

We congratulate the authors for introducing an interesting 
new nonparametric Bayesian probability model. The authors 

correctly cite several recent articles that propose probabil 

ity models for dependent random probability distributions by 
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Comment 

defining dependence on the locations or the weights in the stick 

breaking representation of the DP. In contrast, RDG use cluster 

ing of the G j (i.e., the members of the family of random distri 

bution) to induce the desired correlation of (Gj(A), G y (A)). 
The underlying structure of related random distributions is 
common in many biom?dical problems and often is ignored or 

simplified for technical convenience. We agree with RDG on 
the need for more flexible models to address such inference 

problems and feel that the proposed approach addresses this 
need. We have a few points to add. 

RDG present their approach as a distribution on the space 
of distributions on distributions. But we see a distribution only 
on distributions, that is, an element in the space of distributions 
on distributions. This is easily verified by noting that the argu 
ment of G j in eq. (2) is 0, not a random distribution. In other 

words, if the location of the parentheses in eq. (2) were changed 
to Gj(m) 

? 
J2nk^G*Xm)^ then the argument would stand for 

a set of random measures and G y in fact would be a distrib 

ution on the space of distributions on distributions, as stated. 
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Such a super-process has been defined by, for example, Nieto 

Barajas and Walker (2007). Details of notation apart, we also 
feel that from a data analysis perspective, the model is better 
described as random clustering of a set of random distributions. 

This notion is supported by the illustrative examples in the ar 
ticle. In both examples RDG report inference for each random 

Gj, but not for the joint distribution of the random probabil 
ity measures. In the latter case, they report summaries of co 

clustering probabilities. The nature of the proposed model as 
a random partition model is further highlighted by the follow 

ing observation. In the example, the conjugate choice of the 

kernel p(- \ 0,(f)) and base measure H allow us to analytically 
integrate out 0 conditional on given values of the membership 
indicators ? and ?, leaving a probability model on the random 

partitions only. 
We appreciate the comments about limitations of sharing in 

formation across related random measures by a regression on 

the level of hyperparameters that index the random measures 

only. For example, in the case of DP priors for random measures 

G j 
^ 

DP(aGjo), linking the random measures by, for exam 

ple, assuming that Gjq 
= N(a + bxj, a2) restricts the nature of 

the possible borrowing of strength. But some of the early work 
on dependent DP models based on such constructions should 
be credited, perhaps to Cifarelli and Regazzini (1978), Muliere 
and P?trone (1993), or Mira and P?trone (1996). 

Finally, we cannot see why posterior simulation requires the 

use of truncations and the implied approximations. Consider 
the two sets of latent cluster membership indicators, ?^ and ?j, 
defined in section 4. Let Sk = {(/, j) with ?j 

= k}. The condi 
tional prior p(?ij, (i, j) ? Sk \ ?) is the usual Poly a urn scheme 
that describes the random partition induced by a DP with to 
tal mass parameter ?, and similarly for p(?j , j 

= 1,..., J) for 

total mass parameter a. Conditional on ?, updating ? reduces 

to the usual inference for a DP random measure, as RDG com 

ment in the supplemental materials. As RDG point out, eval 

uating the marginal p(0 \ ?) involves a prohibitive computa 
tional effort. But this would not seem to be necessary. Using 
the simple closed-form expressions for p(?) and p(? \ ?), we 
can evaluate the joint prior of any proposed set of parameters 

(0 is marginalized out analytically). This allows construction of 
a Metropolis-Hastings proposal to update ?, proceeding sim 

ilarly to the approach proposed by Jain and Neal (2004). The 

proposal must be a joint proposal for (?, ?). For example, one 
could consider split and merge moves of the following type. Let 
jfik = | {j : ?j 

= k}\ denote the size of the kth cluster of states, 
and let x denote the value of the quantity x in the proposed 

move. Select an index, J e {1,...,/}. If j is a singleton (i.e., 

mt- = 
1), then randomly select another cluster k ̂  ?j 

and pro 

pose ?j 
? k, and add the distinct point masses in {0; j} to the set 

of unique point masses generated from 
G~k. 

The latter is done 

by setting Sk 
? 

Sk U {(/, j), j = /}. If J is not a singleton, then 

propose the opposite move. The prior, the likelihood (marginal 
izing with respect to 0) and the proposal probability can all be 

easily evaluated, thus facilitating the practical implementation 
of such a transition probability. The many housekeeping details 
make it sound more difficult than it actually is. Even with a 
different top-level sampling model that might preclude analytic 
marginalization with respect to 0, one could implement such 
moves without any complications beyond what a traditional DP 
mixture would require. In particular, the described Metropolis 

Hastings move for ?j would not require reversible jump. 
In summary, we congratulate RDG on a stimulating and very 

interesting discussion that highlights the flexibility of nonpara 
metric Bayesian inference. We welcome the NDP as a happy 
new member in the rapidly growing jtyz-DP family. 
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interesting article. The article provides a novel and important 
contribution to the nonparametric Bayesian literature, and the 

methodology presented therein will prove useful in many dis 

ciplines. In our discussion of the article, we first emphasize its 
usefulness by providing an application of the NDP to prediction 
of cancer mortality. We then comment on some other aspects of 

the model. 
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1. APPLICATION TO PREDICTION OF 
CANCER MORTALITY 

Ghosh and Tiwari (2007) used a semiparametric Bayesian 
method to predict U.S. cancer mortality counts at the national 

level. The method used aggregated mortality data available 
from the previous years to obtain a 3-year-ahead prediction 

for the current year. One natural question to ask is how one 

would proceed when more detailed data (e.g., state-level mor 

tality data) are available. It would seem that a better job could 
be done by using the state-specific data to obtain predictions 
for the individual states and then aggregating them to get the 
overall prediction for the United States, instead of predicting 
the United States as a whole by ignoring state information. In 

doing so, it would be natural to combine the information from 
"similar" states to get a better prediction; however, the selec 

tion of those states needs to be data-driven. A nice application 

of NDP to address this problem is described below: 
Let dSj denote the number of deaths from a common can 

cer in state s at time j (s 
= 1,..., S; j 

= 1,..., J). Following 

Ghosh and Tiwari (2007), we assume the local quadratic model, 

dSJ + l \(dSJ,?SJ, ysj,a2) 
m~p' 

N(dsj + ?sj + Ysj,cj2), (1) 

?s.j+\\(?sj, 7sj) 
md-' N(Avy + 2ysj, kg2), (2) 

Ysj 
- 

Gs, (3) 

G\,...,GS 
~ 

nD?(a,ri,H), (4) 

H - 
N(?,p2), (5) 

where ysj is the instantaneous "acceleration" of mortality 
counts in state s at time j and d^ 

= 
(ds\,..., dsj)! 

is the vec 

tor of mortality counts in state s up to time j. The vectors 

?Sj and ysj are defined similarly. This approach to modeling 
amounts to having states with the same acceleration distribu 

tion cluster together. We also follow Ghosh and Tiwari (2007) 
in assigning prior distributions. In particular, /3sn 

^ 
N(0, 100), 

k~IG(1 1.0, 10.0), ? -N(0, 1), and p2-IG(10.2, 10.1). Fi 
indep. 

nally, a, rj 
~ 

gamma(.l, .1). 

The model was easily implemented in WinBUGS using the 
finite truncation approximation of NDP suggested in the article. 
Table 1 presents the results of 3-year-ahead predictions of lung 
cancer mortality of males for the years 2002-2004, for five se 

lected states. Thus the 2002 predictions are based on mortality 
data from 1969-1999, the 2003 predictions are based on data 

Table 2. Clustering of the 50 states and the District of Columbia 

based on lung cancer mortality in males, 1969-2001 

Cluster Members 

1 AL, AR, DC, KS, ME, OH, OR, SC, VT, VA 

2 AK, CA, IL, KY, NC 

3 AZ, CT, IA, NY, WV 

4 CO, ND, OK 

5 DE, MI 
6 FL, NV, WI 

7 GA, MD, MN, TX 

8 HI, MS 
9 ID, MO, NM 
10 IN, NH, PA, SD, TN, WA 

11 LA, MT, NE, RI 

12 MA, UT 
13 NJ, WY 

from 1969-2000, and so on. The predictions are based on mor 

tality data obtained from the National Center for Health Statis 
tics (NCHS), which is also available from the National Cancer 
Institute's Surveillance, Epidemiology and End Results (SEER) 
program. The two sets of numbers in the "predicted" column 

were obtained using NDP for the unparenthesized version and 
standard DP for the parenthesized version. 

Using the NDP has resulted in sharing of information among 
states with similar mortality profiles, thereby improving the re 

sulting predictions. The logarithm of mean predicted squared 
error is 14.79 using NDP and 18.18 using standard DP. Clearly, 
using NDP results in better predictions, most likely due to shar 

ing of information among states that have clustered together. 
In fact, for prediction of the 2004 figures, the 51 states (in 

cluding the District of Columbia) clustered into 13 groups, as 
shown in Table 2. The cluster structure was obtained using the 

method of Dahl (2006). An in-depth analysis of the prediction 
of cancer mortality counts and rates for the current calendar 

year using NDP described here will be presented in a separate 
article. 

2. OTHER COMMENTS 

2.1 Precision Parameters 

The clustering of the groups (states) is governed by the pre 
cision parameter a and within-group clustering is governed by 
the precision parameter n in NDP(a, rj, H). In many cases this 

is too strong a restriction to impose, because each group need 

not have the same n for within-group clustering. For example, 
in the analysis presented here, we would have liked to assign 

Table 1. Three-year-ahead predictions for lung cancer mortality in U.S. males, 2002-2004 

States 

2002 2003 

Observed Predicted Observed Predicted 

2004 

Observed Predicted 

California 

Utah 

Michigan 

Georgia 
New York 

7,451 

233 
3,218 

2,639 

5,180 

8,129(9j30) 
225.3(202) 

3,154(3,37!) 

2,674(2,891) 

5,214(5?293) 

7,259 

253 
3,195 

2,521 

5,093 

^732(8,71 d 
229(198.7) 

3,179(3,220) 

2,619(2,832) 

5,191(5.276) 

7,150 

278 
3,290 

2,672 

4,980 

7,531(8,413) 

249(210) 
3,324(3,490) 

2>741(2,806) 

5,061(5,208) 

NOTE: The numbers in parentheses were obtained using the standard DP. 
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different n's to the different states. We feel that this aspect of 

generalization of NDP will be quite useful for practical pur 
poses and merits further study. 

2.2 Clustering 

As RDG point out, NDP provides a methodology to clus 
ter groups and observations within groups simultaneously. This 

is done under the a priori assumption that the distributions (of 
the groups) are exchangeable, however. For example, the clus 

ters given in Table 2 were obtained based on the distributions 
of the "acceleration" parameters of the year-to-year mortality 

counts, assuming exchangeability between states. This may not 

be realistic, when, for instance, one has additional information 

that must be incorporated into the prior structure. For example, 
California and Oregon are geographically and demographically 
closer than, say, California and Kentucky, but the latter are clus 

tered together based on the observed data. The proposed NDP 
framework does not allow us to incorporate such information a 

priori. 

2.3 Computations 

The current NDP implementation is based on a finite trunca 
tion approach to the stick-breaking representation of DPs first 

presented by Sethuraman and Tiwari (1982). The advantage of 
this representation is that it can be easily implemented using 

Standard software like WinBUGS, even in the presence of non 

conjugate priors. The procedure has been shown to closely ap 

proximate the true distribution when K and L are large. It is 

interesting to note that K = 35 and L ? 55 provide a good ap 
proximation as long as n < 500 and J < 50. (The truncation 

points do not depend on the number of groups and the number 
of observations per group.) 

2.4 Convergence 

Suppose that we have a sequence of NDP's given by 
NDP(?fr, rjs, H), where otr ?> 0 as r -> oo and rjs ?> 0 as 

s -> oo. Using the results of Sethuraman and Tiwari (1982), we 

can examine the convergence of the process NDP(ar, rjs, H), 

its posterior, and Bayes estimators of functionals of the poste 
rior. 
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Steven N. MacEachern 

Rodriguez, Dunson, and Gelfand have written an interest 

ing article that provides a neat answer to a recurring question: 
Given a set of observations from each of a number of distrib 

utions, can the distributions be clustered in some flexible, sen 

sible, data-based, and non-ad hoc fashion? The authors answer 

in the affirmative, constructing a coherent model and address 

ing clustering inferentially. Because the model is coherent, the 

full range of Bayesian inferences can be made. 

The coherent model, the nested Dirichlet process (NDP), 
fits nicely in the array of nonparametric (or semiparametric) 
Bayesian procedures being energetically developed. Like many 
processes, the NDP is perhaps most naturally constructed as a 

Dirichlet process (DP) or dependent Dirichlet process (DDP). 
To do so, one merely notes that the distribution Gf is de 
fined by a countable collection of random variables (ufk, 0*k, 
/ = 1, 2,...) and applies the usual Dirichlet methods to a count 

able, rather than a finite, vector. It is through the lens of the DDP 
that I look at the NDP. 

The DDP and its extension to more general forms (e.g., 

MacEachern, Kottas, and Gelfand 2001) were developed to pro 
vide a latent structure for the hierarchical Bayesian model with 

greater support than the DP. The latent structure replaces a sim 

pler structure, such as a DP, with a collection of (dependent) 

Steven N. MacEachern is Professor, Department of Statistics, Ohio State 

University, Columbus, OH 43210-1247 (E-mail: snm@stat.ohio-state.edu). 

Comment 

nonparametric distributions. These distributions are indexed by 
what we call a covariate and formally comprise a distribution 

valued stochastic process. This allows one to incorporate co 

variates in a direct fashion, specifying the marginal prior dis 
tribution at each value of the covariate and also the joint prior 
distribution as a function of the covariate. In many instances, 

the latent DDP is a DP (depending on which definition of the 
DP is used); however, its use for modeling tends to be quite 
different. 

Like any latent modeling, DDP modeling requires a connec 

tion between the latent structure and the observed data. The key 
is how this connection is made. A direct, general recipe (con 

nected to the DDP in MacEachern 2007) is to use a selector sur 
face that is an integer-valued stochastic process with index set 

equal to the covariate space. Marginally, at a specific covariate 

value, the distribution over the integers matches the distribution 
over components of the countable mixture given by the DDP at 
that covariate value. 

The selector surface determines a range of joint behaviors 

for the observable data. Assume that the observations can be 

partitioned into conditionally independent groups. Each group 
of observations is associated with a selector surface. Focus on 
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a single group. Evaluating the selector surface determines the 

components of the mixture with which individual observations 
are associated; the integer value of the selector surface at a co 

variate value gives the component of the mixture for the ob 

servation with that covariate value. At one extreme, the group 

may consist of a single observation and so be connected to only 
one value of the covariate. In this case the marginal distribu 

tion of the selector surface at the (single) covariate value de 

termines the distribution of the observation and the joint behav 
ior of the selector surface is unimportant. Traditional regression 

modeling (MacEachern 2001) is an example of this case. Alter 

natively, the group may consist of more than one observation, 

with different observations associated with different covariate 
values. With a single-/? DDP, the dependence in the group can 

be as simple as selecting a single mixture component for all 

observations. (In the single-/? DDP, the mixture weights do not 

vary with covariate value.) To achieve this, the realization of the 

selector surface must be constant across all values of the covari 

ate. Gelfand, Kottas, and MacEachern (2005) described this use 

of the DDP as a spatial Dirichlet process. There are many pos 

sibilities between the extremes of a constant selector surface 

and an arbitrarily jointly defined selector surface. The proper 
ties of the selector surface play important roles in determining 
properties of the observable vectors. 

The NDP model gives rise to distributions that are either 
identical or are conditionally independent. If distribution Gj is 
drawn from atom / of the process and distribution Gj' is drawn 
from atom I', with / ̂ I', then the distributions are conditionally 
independent draws from a Dirichlet process with base measure 

?H.lf instead, / = V', then Gj 
= 

Gj'. 
This is a strong assump 

tion, because in many contexts we believe that all of the Fy's 
(and thus all of the G/s) differ. In such settings, the primary 
question may be whether a pair of distributions differ greatly or 
differ only slightly. 
We are all comfortable with approximations in modeling. As 

such, an important question becomes: "Under what conditions 

is the difference between similarity and identity likely to be 
have an impact on clustering?" One would expect this prob 

lem to become greater with large sample sizes (large nj), where 

the data have the ability to distinguish relatively minor differ 
ences in distributions. In a similar vein, dimensionality of the 

response also is important. High-dimensional distributions are 

nearly guaranteed to differ, and individual observations are un 

likely to be close to one another. 

The inferential approach to clustering, with use of the tun 

ing parameter, has scope for remediating this problem to some 

extent; however, in many applications there will be substantial 
variation among the nj. In my experience with the National 

Marrow Donor Program, the number of patients treated varies 

considerably by hospital. My impression is that such variation 
is common in the patients within centers setting. Where there is 

substantial variation among the nj's, and thus differing amounts 

of information about identity/nonidentity of pairs of distribu 

tions, I suspect that tuning cannot fully adjust the inference. To 

me, it seems more natural to adjust the model. 

DDP modeling suggests that the model be adjusted by break 

ing the "deterministic" dependence across levels of the covari 

ate and replacing it with a weaker dependence. The covariate in 

the NDP is j, assuming values in the set {1,..., J}. In the DDP 

modification, the "atoms" 
6fk 

are replaced with processes 0*k-, 
where j indexes the covariate. In this context, j lives in a dis 
crete space with no suggestion that particular pairs of j's should 

be treated differently than other pairs of j's. Thus 
0*kl,..., 6*kJ 

naturally would be treated as exchangeable. For scalar, nor 

mally distributed 0/?'s, a natural replacement would be multi 
variate normal vectors with a common off-diagonal covariance. 

In other contexts, j might live in a covariate space for which 
the strength of relationship between distributions decays as dis 
tance increases. In such cases closer covariate values would be 

modeled as having stronger dependence between their 
0*k- 

val 

ues. This modification also allows one to embed the J distrib 
utions in a continuous covariate space. The values of 

9*k 
at an 

unobserved covariate value would have distributions depending 
on their position in the covariate space. 

Modification of the NDP by changing the 0*k leads to re 

placement of the latent distributions in (3) with Gf-(-) ? 

YaL\ w?k?e*. (O- As in the NDP, if the distributions Gj and G y 
are from different atoms, then they are conditionally indepen 
dent draws from a DP. But if they are from the same atom, then 

the distributions are not identical, but merely similar, sharing 
the same mixing weights w*k. 

The atoms in the mixture will be 

similar, with 0,*, . % 
Of, .,, and so the distributions of observables ikj iky 

also will be similar. If desired, the mixing weights also can be 
allowed to vary with j. The similarity or difference in the G^y 's 
feeds through to the distributions {F\, ..., Fj} through the con 
volution in (1). 

There is a long tradition in our discipline of assessing 
whether distributions are identical or different. Old-style, heav 

ily assumptionized ANOVA, where equal means implies equal 
distributions, falls under this heading. The authors focus on this 

problem, but with much more sophisticated models that capture 
important features of the distributions. 

Traditionally, and with enough assumptions, the identity of 
distributions hinges on whether or not a particular parameter 

(say an additive effect for a treatment mean) is 0. With multi 
variate observables, such parameters also may represent condi 

tional independence between subsets of variables. Interest then 

focuses on whether the same conditional independence holds 

across different centers or whether the conditional indepen 
dences differ. Conditional independence plays an important role 
in our understanding of collections of vari?tes, and much of 

the work on causal inference focuses on a description of con 

ditional independence. Starting from this point, the NDP can 
be adjusted to address this sort of inferential question in a fully 
nonparametric context. 

To impose conditional independence between components 
of the observable vector, replace DP(?H) in the NDP model 
with the product of two independent DPs, as is done in, for 

example, Bush's (1994) development of the nonparametric 
Bayesian mixed model and used by Bush, Lee, and MacEach 
ern (2007) in the context of multiple comparisons. Thus, ex 

tending the authors' notation, we may replace DP(?H) with 

DP(?i//i)DP(?2#2)> where the vector 0 is partitioned into 
two components, 6\ and 62. A distribution G*k is determined by 
the pair of component distributions, G*k(-) 

= 
J2hL\ wuk^0* (') 

and G^(-) 
= 

X?/?^i w2lk^o* .(') The mass assigned by G? to a 
vector 6 is the product of the masses assigned to its components 
by G*k and G^. The resulting distribution enforces conditional 
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independence of 0\ and Q_. If similarity rather than identity is 

desired, then 6*lk and 0^ can be indexed by the covariate, as 
described earlier. The distribution is determined by a countable 
collection of random vectors with the iid structure that makes 
the DP/DDP so appealing. Conditional independence of 6\ and 
Oo is easily extended to conditional independence of a pair of 
observable components of a vector by enforcing dependence 
on 0\ alone and 62 alone on the respective components. 

To address the question of whether a particular split of 0 
has or does not have conditional independence, the NDP can 
be tweaked. The DP(/3/7) is replaced by a structure that draws 
two distributions for each Gf, one coming from the DP(?H) 
and the other coming from the product DP(/3jH[)T>?(?2H_). 
Thus G*k is replaced by a pair of distributions: The first will 
result in dependent components 0\ and O2, whereas the sec 

ond will result in independent components. Data at a particular 
center will be attached to only one of these distributions. The 
choice can be formalized either as an unobserved covariate or 

in terms of a selector. Clustering would then focus on this co 

variate/selector. The resulting analysis would identify groups of 
distributions (groups of centers) for which the same conditional 

independences hold. Clearly, the notion of conditional indepen 
dence given earlier extends to more than two conditionally in 

dependent components of 0 ; it also extends to cases where the 

portions of 0 that go into 0\ and 62 are unknown. 

Variations on this theme allow one to align the models with 
core modeling concepts. For example, the traditional distinc 

tion between explanatory and response vari?tes might lead one 

to match portions of the two types of distributions. 
G*k, 

the ex 

planatory portion, could be identical for both the dependent and 

independent versions of 
Gf, 

whereas 
G*^k, 

the response portion, 
would either allow dependence of 62 on 0\ or enforce indepen 
dence. Data from a particular center would be tied to either the 

first version of 
G*k 

or the second version of 
Gf. 
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Lancelot E James 

It is my pleasure to comment on this article by Abel Ro 

driguez, David Dunson, and Alan Gelfand. The authors present 
an interesting application of random probability measures on 

quite abstract spaces. As one who is often asked why discuss 

Polish spaces and the like, I am happy that the authors have 

provided a concrete and practically useful set of examples. I am 

most pleased to see yet another interesting and creative applica 

tion of somewhat nonstandard Bayesian nonparametric ideas. 

I take the path here of expanding on the basic idea of the 
authors. First, I offer an equivalent (albeit slightly more gen 
eral) description of the NDP. Then I discuss, and pose a ques 
tion on, the usage of a finite-dimensional Dirichlet process. Fi 

nally, I discuss generalizations of the NDP that still embodies 
the idea of the article under discussion. In particular, I end with 
a description of a hybrid NDP-HDP model showing that these 
two relatively new ideas can be combined. I also want to note 

that although can one obtain some nice simplification by using 
stick-breaking representations, doing so is not a necessity. One 

can do other things that allow for the use of wider classes of 

processes. I refrain from elaborating on this last point, however. 

Lancelot F. James is Professor, Department of Informations Systems, Busi 
ness Statistics and Operations Management, Hong Kong University of Sci 
ence and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (E-mail: 
lancelot@ust.hk). This work was supported by HKSAR grants RGC-HKUST 

600907, SBI06/07.BM14, and RGC-HKUST 6159/02P. 

Comment 

1. THE NESTED DIRICHLET PROCESS 
IN TWO STAGES 

The procedure considered by the authors is in fact quite sim 

ple to describe. Following the authors' exposition, let us con 

sider j 
? 

1,..., J objects or classes, each associated with sam 

ples of size nj, j 
= I, ..., J. The NDP can be viewed as a repe 

tition of a two-stage procedure where in stage I these J objects 
are randomly assigned to, say, N(J) nonempty classes out of 

a possible N < oo classes. Once these classes are created, one 

is left with N(J) independent DP hierarchical mixture mod 
els where in stage II, standard MCMC or other computational 
procedures can be applied (see, e.g., Ishwaran and James 2004, 

sec. 5). 

The NDP rests on the introduction of the random probability 
measures 

N 

k=\ 

where Gk(-) are iid Dirichlet processes with total mass parame 
ter ? and such that 

E[G*(0] = //( ) 

? 2008 American Statistical Association 
Journal of the American Statistical Association 

September 2008, Vol. 103, No. 483, Theory and Methods 
DOI 10.1198/016214508000000580 

This content downloaded from 130.233.86.179 on Wed, 22 Apr 2015 09:06:13 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1152 Journal of the American Statistical Association, September 2008 

The sequence (nk) corresponds to the stick-breaking weights 
for a DP with total mass parameter a as described by the au 

thors. Here I allow N to be possibly less that oo, whereas the 
authors are concerned primarily with A^ 

? 
oo, which would al 

low applications to many interesting finite mixture models and 
also agrees with the process used in the MCMC procedure de 
scribed in the article. 

I use an equivalent description, which can be deduced from 
the discussion of Ishwaran and James (2001), where 

G;(-) 
= 

G?.(.) 

and (?],..., ?j) are the classification variables such that, con 

ditional on the sequence (jrk), 

k=\ 

2. FINITE-DIMENSIONAL DIRICHLET 
VERSUS STICKBREAKING 

In previous work, it has been suggested that one could use a 

finite-dimensional Dirichlet vector (D\,... ,Dn) with parame 
ters (a/N,..., ot/N) in place of the truncated stick-breaking 

weights (jtf,..., Jt^j). 
I wonder whether the authors have at 

tempted to use these variables as substitutes in their MCMC 

procedures? In general, I am quite curious as to how this proce 

dure might perform. It is indeed unfortunate that for the weights 
(D\,..., Dm), we do not have the precise error bounds that we 

can get from the stick-breaking representation. But in practice, 
Ishwaran and James (2001) noted very little difference between 
the two choices of weights for a rather moderate choice of 

N. Furthermore, Ishwaran and Zarepour (2002) and Ishwaran, 

James, and Sun (2001) have provided some interesting analyses 
related to sieve models and model selection problems involv 

ing finite-dimensional Dirichlet vectors. An interesting compar 

ison of the usage of finite-dimensional Dirichlet vectors and the 

stick-breaking weights has been given by Kurihara, Welling, 
and Teh (2007). 

3. A FIRST EXTENSION: MORE GENERAL 
RANDOM ATOMS 

In previous work (Ishwaran and James 2003), we discussed 
the idea of constructing stick-breaking type processes that 
would assign non-iid distributions to each class and explored 
how this might be relevant in classification problems. The 
framework of the NDP can be easily modified to achieve this. In 

fact, the NDP can be viewed as a special case of a class of nested 

random probability measures where the (rck) could be replaced 
by another sequence of consistent random probabilities and the 

(G?(-)) could be replaced by independent random probability 
measures with various laws. For concreteness, one can imagine 

constructing each G|(-) to be an independent two-parameter 
Poisson Dirichlet process, otherwise known as a Pitman-Yor 

process (so named in Ishwaran and James 2001), with parame 
ters 0 < yk < 1 and 0k > ?yk, for k = 1,..., N, and otherwise 

depending on H in the usual way. Let us say that the law of 

G*k(.)isVy(yk,0k,H),thcitis, 

G*k(-)-Vy(yk,0k,H). 

When yk 
= 0, the random probability measures 

G?(-) 
re 

duce to independent DPs with total mass parameter Ok. As is 
now quite well known, the general Pitman-Yor class of ran 

dom probability measures has many desirable features that lend 
themselves easily to practical usage. But perhaps the most inter 

esting aspect is that it creates classes with possibly quite differ 
ent clustering behavior than the DP. Similar to the DP, this clus 

tering behavior is produced by drawing, say, ?? exchangeable 
values that, conditional on G*(-), are iid G*(-), and clustering 
their indexes according to the ties in the sample. 

To be specific, suppose that indexes / and k were picked 
through the (?\, ..., ?j), forming classes with respective sizes 

J j 

hi = ^2njl(?j 
= /) and hk = ^njl(?j =k), 

;=i y=i 

where !( ) denotes the indicator function. Then if yk and y? 
were positive, we could sample exchangeable random vectors 

of size ?? and ?k obtained from conditionally iid samples from 

Gf(-) and Gk(-). These samples would be such that the number 
of distinct clusters would exhibit power law behavior of order 

hYk and hf. Specifically, the powers are y\ and yk. If, on the 
other hand, yk 

= 0, then the number of distinct clusters would 

be Ok log(?fc), which is the known logarithmic behavior of sam 

ples drawn from a DP. Naturally, in the nested scheme this be 

havior holds for a given sequence of (?\, ..., ?j). 
The ability to produce quite different clustering behavior 

(particularly power law behavior) is an important aspect of the 
Pitman-Yor process that has not been exploited much in the 

applied literature. But recently Goldwater, Griffiths, and John 
son (2006) and Teh (2006) have argued that the power law 

behavior, in terms of numbers of distinct words, induced by 
general Pitman-Yor processes is appropriate when applied to 

various natural language models. In addition, they have argued 
that the logarithmic behavior produced by the DP appears to be 

quite inappropriate for such models. 

Incidentally, the co vari anee structure for these Gj(-) is given 
by 

cov(G*.(A)G*(A)) 

= I 
?E[(tt*)2]|^)//(A)[1 

- H (A)]. 

4. HYBRID NESTED DIRICHLET 
PROCESS-HIERARCHICAL DIRICHLET 

PROCESS PROCESSES 

As I mentioned earlier, the NDP can be considered a two 

stage procedure in which stage I is a classification procedure 
through random variables (?\,..., ?j) and stage II can be prac 

tically any procedure involving analysis on the given classes 

involving Dirichlet or more general random probability mea 

sures. This suggests that stage II can even consist of the HDP 
of Teh, Jordan, Beal, and Blei (2006) or in fact the hierarchical 
Pitman-Yor processes used by Teh (2006) in a quite interesting 
application to language modeling (as mentioned in the previous 
section). Without worrying too much about details, here I de 
scribe a (rough) variation of Teh's (2006) formulation. Imagine 
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that after stage I, one has randomly picked 1, ..., N(J) dis 

tinct classes that are associated with the N(J) unique values 

among (G* (-),..., G*(-)). Each of the G*.(:) can produce 

an exchangeable sequence of size, say, ?c., which would, un 

der a general Pitman-Yor process, exhibit power law behavior 

as described in the previous setting and furthermore is of the 

type exploited by Teh (2006). To get a hierarchical structure 
closer to that of Teh (2006) or the simpler HDP, one would 

simply choose H to have a Vy(yo, Oo, Ho) law, where Ho is 
some probability measure. Note that in Teh's (2006) applica 
tion, Ho is a discrete distribution on words, in which case it 

makes sense to allow Ho to depend on N(J). Alternatively, 
more generally, if there are (w\,... ,wj) objects, this distribu 

tion would be over the N(J) distinct values in (wrx,..., w?j), 
call this distribution Ho,n(J)- So within the HDP-type steps, we 
have distributions 

(Gl.(-)\?j.H)^Py(nj,0?j,H) 
and 

(H\N(J))-Vy(yo,Oo,Ho,N(j)). 

Furthermore, although I did say that for a fixed configuration 
of (?\,... ,?j), this procedure is similar to that of Teh (2006), 
I am not claiming that they are exactly the same. Teh's proce 

dure involves using a hierarchical Pitman-Yor process within 

each class, which can be naturally implemented here as well. 

On the other hand, without going into details, if 0k is set to zero 

for all k, then the foregoing scheme is equivalent in distribu 
tion to Teh's scheme if we choose yk based on knowledge of 
the lengths of the contexts in each class. But the NDP idea dic 
tates that every sampling of (?\,..., ?j) would result in a new 

configuration of the HDP-type models just described. 

5. CONCLUDING REMARKS 

The sketch here represents only a few possibilities for using 
the two-stage type procedure suggested by the NDP. I thank 
the authors for stimulating my interest along these lines. I look 
forward to any comments from the authors, as well as more 

innovative concrete applications by others using these and other 

ideas from Bayesian nonparametrics. 
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Rejoinder 
Abel Rodr?guez, David B. Dunson, and Alan E. Gelfand 

We are very grateful to the editors and all of the discussants 
for their valuable suggestions and positive comments. Most of 

these comments were focused on generalizations and additional 

applications of the NDP, with some helpful suggestions on com 

putational approaches. We are delighted that there are so many 

possibilities for additional work in this area. 

1. APPLICATIONS 

The application of the NDP to the problem of prediction of 

lung cancer mortality presented by Ghosh, Ghosh, and Tiwari 
is quite interesting, and we are thrilled that the NDP can be 

implemented so easily in WinBUGS. Perhaps the WinBUGS 
code can be made publicly accessible. We agree that it would 
be useful in certain settings to allow for a different precision 
parameter ?k for each Gk, providing more flexibility in charac 

terizing variability across groups in the number of clusters. One 

Abel Rodriguez is Assistant Professor, Department of Applied Mathemat 
ics and Statistics, University of California, Santa Cruz, CA 95064 (E-mail: 
abel@soe.ucsc.edu). David B. Dunson is Senior Investigator, Biostatistics 
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Park, NC 27709 (E-mail: dunsonI@niehs.nih.gov). Alan E. Gelfand is James B. 
Duke Professor, Institute of Statistics and Decision Sciences, Duke University, 
Durham, NC 27708 (E-mail: alan@isds.duke.edu). 

can then assume that the ?k 's are drawn from a common hyper 

prior, such as a gamma, to allow borrowing of information. 

Gillen and Johnson make an important point that the NDP 
can be used not only for random intercepts, but also, much more 

broadly, for borrowing of information and multilevel cluster 

ing of random intercepts and slopes. They mention GEE ap 
proaches as a potential competitor. But in our own experience, 
GEE approaches can have poor performance in small to mod 

erate samples when the covariance structure is badly misspec 
ified. In addition, our motivation in developing the NDP was 
not to obtain an approach for flexibly characterizing nuisance 

dependence in multilevel studies, but instead to carefully study 
differences among groups in the distribution of the response 
variables without imposing parametric assumptions. The NDP 
also can be used much more broadly as a component within 

hierarchical models for borrowing information and clustering 
in complex data. For example, Ni, Paisley, Carin, and Dunson 

(2008) used the NDP within a model for analyzing and sorting 
large sequential databases, with variational Bayes methods used 

for inference. In other work (Rodriguez, Dunson, and Gelfand 

2008), we instead used the NDP for functional data. 
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2. MODIFICATIONS AND GENERALIZATIONS 

There are a number of generalizations of the NDP formu 

lation that are well motivated by applications. Ghosh, Ghosh, 
and Tiwari mentioned that in the cancer mortality application, 
it would be appealing to include information on spatial location 
in the clustering process. In fact, the NDP could be combined 
with the kernel stick-breaking process (KSBP) of Dunson and 
Park (2008) to allow clustering to depend on spatial location, 
time, or predictors. To clarify, this would involve modifying ex 

pression (2) to let 

oo 

Gj(')-J2nk(xj)8G?(.), 
k=l 

where Xj are features of the jth group (e.g., spatial location), 
and the weights 7ik (x) are defined as functions of the features 

through the KSBP, which generalizes the stick-breaking formu 
lation of the DP to include feature dependence through kernels 

placed at random locations. 

James and MacEachern proposed various alternative gener 

alizations. James suggested replacing the DP components with 
more flexible two-parameter Poisson-Dirichlet processes in or 

der to induce a more flexible prior on the clustering process. 

One advantage of the DP formulation is that clusters are intro 

duced slowly as the number of observations increases, with al 

location to existing clustering increasingly favored. This tends 
to lead to a sparse formulation that is conservative in adding 
new clusters. However, in certain applications, such as natural 

language modeling, it may be necessary to allow a more rapid 
introduction clusters to avoid problems with underfitting. An 
other interesting variation is to replace the iid realizations {G^} 
with dependent distributions, for example, arising from an HDP. 
This leads to a more parsimonious representation of the data. 

In addition, a formulation of this type has the advantage of al 

lowing clusters of hospitals to be comparable across groups of 

states. 

MacEachern notes that it may be unrealistic in most appli 
cations to assume that two distributions, G j and 

Gy, 
can be 

exactly equal, so one may expect less clustering as the sample 
size per group increases. We agree that exact clustering in dis 

tributions serves as an approximation, but expect that two dis 

tributions that are very close but not strictly identical will tend 
to be clustered unless the sample size is extremely large. We 

note that the standard DP also induces global clustering, mo 

tivating a new literature on local partition processes (Dunson, 

Xue, and Carin 2008; P?trone, Guindani, and Gelfand 2008; 
Dunson 2008). One simple approach to relax the assumption 
of Fj 

? 
Fj> 

for two groups in the same cluster is to incorpo 
rate a small contamination so that probability is allocated to 

group-specific atoms. MacEachern provides a number of useful 

alternative strategies. 
We conclude this section by noting that our application con 

siders clustering of states and hospitals within states. Suppose 
that we were to add another level, say patients within hospi 
tals. Retaining our generic notation, we would now have 0?jk 
with patients, indexed by i, within hospitals, indexed by j, 
within states, indexed by k. Suppose that we drew 0ijk from 

Gjk, where the Gjk 
~ 

D?(8Gk) with the Gk from an NDP, 
that is, Gk iid from Q with Q 

- 
DP(aDP(?#)). This spec 

ification would allow clustering of patients within hospitals 
and clustering of states but not of hospitals. Suppose that in 
stead we assumed that the Gjk's came from NDPs indexed by 
k (i.e., Gjk 

- 
Qk), where we had iid Qk 

- 
DP(aDP(/3#)). 

Now we could cluster patients and hospitals, but not states. In 

both cases we would be subject to the limitations of the HDP as 
described in section 3.3. To enable clustering at all three levels, 
we need iid Qk 

- A, where A - DP(<5DP(aDP(?H))). We 
have a NDP nested within an NDP. 

3. COMPUTATION 

Our proposed approach relies on truncations of a stick 

breaking formulation, but certainly other possibilities ex 
ist. James suggests exploring an alternative based on finite 

dimensional Dirichlet distributions. We agree that the two 

approximations should offer similar performance when the 

truncation bound is chosen conservatively; however, it can be 

shown that for the standard DP, the truncated stick-breaking 
approximation converges faster to the DP compared with the 
finite-dimensional Dirichlet approximation (Paisley, Carin, and 

Dunson, manuscript in preparation). We would expect this re 

sult to hold for the NDP as well. Potentially, a finite approxi 
mation can be avoided by relying on a slice sampler that gen 
eralizes the algorithm of Walker (2007), although we have not 

yet implemented this approach. M?ller and Nieto-Barajas note 
that although marginal samplers cannot be efficiently imple 

mented for the NDP, the Polya urn representation still can be 
used to construct reversible-jump MCMC samplers, which typ 

ically have better mixing properties than collapsed samplers. 
This is certainly a direction that we plan to explore in the near 
future. A major advantage of the truncation approach is simplic 

ity, allowing for straightforward implementation in WinBUGS, 
as noted by Ghosh, Ghosh, and Tiwari. 

4. CONCLUSION 

The use of nonparametric Bayes methods in applications has 

dramatically increased over the past several years, particularly 
in biom?dical and machine learning applications. We are cur 

rently exploring the use of the NDP for multitask learning prob 
lems where interest focuses on flexible borrowing of informa 

tion across data from different sources. In this fast-moving area, 

we anticipate many other possibilities, stimulated by the need 
for flexible models to tease out structure in large, complex data 

sets. 
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