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Abstract

We study the average nearest-neighbour degree a(k) of vertices with degree k. In many
real-world networks with power-law degree distribution, a(k) falls off with k, a property
ascribed to the constraint that any two vertices are connected by at most one edge. We
show that a(k) indeed decays with k in three simple random graph models with power-
law degrees: the erased configuration model, the rank-1 inhomogeneous random graph,
and the hyperbolic random graph. We find that in the large-network limit for all three
null models, a(k) starts to decay beyond n(τ−2)/(τ−1) and then settles on a power law
a(k) ∼ kτ−3, with τ the degree exponent.
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1. Introduction

Complex networks are often studied via mathematical analysis of null models that can
match the network degree distribution. For scale-free networks, this degree distribution follows
a power law. In many real-world networks, such as the Internet, social networks, and biological
networks, the power-law exponent τ was found to be between 2 and 3 [1, 19, 30, 43]. In such
scale-free networks, high-degree vertices called hubs are likely present, and give rise to scale-
free properties such as small distances and fast information spreading. The hubs also crucially
influence local properties such as clustering [26, 41] and the occurrence of subgraphs [36].
Clustering can be measured in terms of the probability c(k) that a degree-k vertex creates
triangles. Both empirically [33, 38] and theoretically [17, 41], it has been shown that c(k) falls
off with k, and hence that hubs are less likely to take part in triangles.

Whereas triangles and even larger subgraphs require us to study the correlation between at
least three vertices, in this paper we study the degree correlation between pairs of two vertices
in terms of a(k), the average degree of a neighbour of a vertex of degree k. According to several
studies [2, 15], this degree–degree correlation is an essential local network property, because it
also falls off with k and can largely explain the fall-off of c(k) [9, 15, 40]. We provide support
for this statement by identifying an explicit relation between a(k) and c(k) for large k. But
the main goal of this paper is to explain the full spectrum k �→ a(k) for all k, and to provide
theoretical underpinning for the widely observed a(k) fall-off.

There exists a vast array of papers, empirical, non-rigorous, and rigorous, on a(k) [2, 3,
9, 10, 15, 34, 37, 38, 42, 45]. The function k �→ a(k) describes the correlation between the
degrees on the two sides of an edge, and classifies the network into one of the following
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FIGURE 1: a(k) for the YouTube friendship network [32].

three categories [35]. When a(k) increases with k, the network is said to be assortative:
vertices with high degrees mostly connect to other vertices with high degrees. When a(k)
decreases in k, the network is said to be disassortative. Then high-degree vertices typically
connect to low-degree vertices. When a(k) forms a flat curve in k, the network is said to be
uncorrelated. In this case, the degrees on the two different sides of an edge can be viewed as
independent of each other, a desirable property when studying the mathematical properties of
networks. But the fact is that the majority of real-world networks with power-law degrees and
unbounded degree fluctuations (τ ∈ (2, 3)) show a clear decay of a(k) as k grows large [33, 38].
Figure 1 illustrates this for the YouTube friendship network [32]. Hence, scale-free networks
are inherently disassortative, and hubs are predominantly connected to small-degree vertices.
In complex network theory, such a well-established empirical fact then asks for a theoretical
explanation. Typically, this explanation comes in the form of a null model that matches the
degree distribution and has the empirical observation as a property, in this case disassortivity,
or more specifically, the essential features of the curve k �→ a(k).

The popular configuration model [11] generates random networks with any prescribed
degree distribution, but only results in uncorrelated networks when including self-loops and
multi-edges. Hence, the configuration model can never explain the a(k) fall-off. We therefore
resort to different null models that, contrary to the configuration model, generate random
networks without self-loops and multi-edges. The resulting simple random networks are
therefore prone to the structural correlations that come with the presence of hubs. We study
a(k) for three widely used random graph models: the erased configuration model, the rank-1
inhomogeneous random graph (also called hidden variable model), and the hyperbolic random
graph. We show that these models display universal a(k)-behaviour: For k sufficiently small,
a(k) is independent of k. Thus, in simple scale-free networks, neighbours of small-degree
vertices are similar. We then identify the value of k for which a(k) starts decaying. An intuitive
explanation for the a(k) fall-off is that in simple networks, high-degree vertices have so many
neighbours that they must reach out to lower-degree vertices, because networks typically only
contain a small amount of high-degree vertices. This causes the average degree of a neighbour
of a high-degree vertex to be smaller. Thus, single-edge constraints may cause the decay
of a(k).
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674 C. STEGEHUIS

2. Main results

We first define the average nearest-neighbour degree a(k,G) of a graph G in more detail.
Let (Di)i∈[n] be the degree sequence of the graph, where [n] = 1, . . . , n. Furthermore, let Nk

denote the total number of degree k vertices in the graph, and let Ni denote the neighbourhood
of vertex i. The average nearest-neighbour degree of graph G is then defined as

a( k,G ) = 1

kNk

∑
i:Di=k

∑
j∈Ni

Dj. (1)

Note that it is possible that no vertex of degree k exists in the graph, and in this situation we
set a(k,G) = 0. We therefore analyse

aε( k,G ) = 1

k|Mε(k)|
∑

i∈Mε(k)

∑
j∈Ni

Dj, (2)

where
Mε(k) = {i ∈ [n] : Di ∈ [k(1 − ε), k(1 + ε)]}.

When Mε(k) =∅, we set aε(k,G) = 0. We will show that in the models we analyse, Mε(k) is
non-empty with high probability, so that aε(k,G) is well-defined with high probability. Note
that a(k,G) = a0(k,G). We now analyse aε(k,G), first for the erased configuration model in
Section 2.1 and then for the rank-1 inhomogeneous random graph and the hyperbolic random
graph in Sections 2.3 and 2.4.

2.1. The erased configuration model

Given a positive integer n and a degree sequence (D1,D2, . . . ,Dn) such that the sum of the
degrees is even, the configuration model is a (multi)graph where vertex i has degree Di [11].
We start with Dj free half-edges adjacent to vertex j, for j = 1, . . . , n. The configuration model
is then constructed by pairing free half-edges uniformly at random into edges, until no free
half-edges remain. Conditionally on obtaining a simple graph, the resulting graph is a uniform
graph with the prescribed degrees. This is why the configuration model is often used as a null
model for real-world networks with given degrees. When the degree distribution has an infinite
second moment, however, the probability of obtaining a simple graph tends to zero as n grows
large (see e.g. [23, Chapter 7]). In this setting the configuration model can no longer be used
as a null model for simple real-world networks. The erased configuration model is the model
where all multiple edges are merged and all self-loops are removed [13]. We take the original
degree sequence to be an i.i.d. sample from the distribution

P(D = k) = ck−τ , (3)

where τ ∈ (2, 3) so that E[D2] = ∞. We denote E[D] =μ. When this sample constructs a
degree sequence such that the sum of the degrees is odd, we add an extra half-edge to the
last vertex. This does not affect our computations. We denote the actual degree sequence of
the graph after merging the multiple edges and removing self-loops by (D(er))i∈[n], and we call
these the resulting degrees.

2.1.1. Stable random variables. The limit theorem of a(k,Gn) for the erased configuration
model contains stable random variables. A random variable X follows a stable distribution if,
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FIGURE 2: Illustration of the behaviour of a(k,Gn) in the erased configuration model.

for any positive numbers a1 and a2, there exists a real number b1 = b1(a1, a2) and a positive
number b2 = b2(a1, a2) such that

a1X1 + a2X2
d= b1 + b2X, (4)

where X1 and X2 are independent copies of X. Stable random variables can be parametrized by
four parameters, and are usually denoted by Sα(σ, β, μ) (see e.g. [44, Chapter 4]). Throughout
this paper, we will only use stable distributions with σ = 1, β = 1, μ= 0 and we denote Sα =
Sα(1, 1, 0) to ease notation.

We now state the main result for the erased configuration model.

Theorem 1. (a(k,G) in the erased configuration model.) Let (Gn)n≥1 be a sequence of erased
configuration models on n vertices, where the degrees are an i.i.d. sample from (3). Take εn =
1/( log ( log (n))) and let � denote the gamma function.

(i) For k 	 n(τ−2)/(τ−1)/ log (n),

aεn (k,Gn)

n(3−τ )/(τ−1)
d−→ 1

μ

(
2c�( 5

2 − 1
2τ )

(τ − 1)(3 − τ )
cos

(
π (τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (5)

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) 	 k 	 n1/(τ−1)/ log (n),

aεn (k,Gn)

n3−τ kτ−3
P−→ − cμ2−τ�(2 − τ ). (6)

Remark 1. The convergence in (5) also holds jointly in k and n, so that for fixed m ≥ 1 and
1 ≤ k1 < k2 < · · ·< km 	 n(τ−2)/(τ−1)/ log (n),

(aεn (ki,Gn))i∈[m]

n(3−τ )/(τ−1)
d−→ 1

μ

(
2c�( 5

2 − 1
2τ )

(τ − 1)(3 − τ )
cos

(
π (τ − 1)

4

))2/(τ−1)

S(τ−1)/21,

where 1 ∈R
m is a vector with m entries equal to 1. Thus, aεn (ki,Gn) and aεn (kj,Gn) converge

to the same realization of the random variable S(τ−1)/2. We will prove this remark at the end
of the proof of Theorem 1.
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676 C. STEGEHUIS

Figure 2 illustrates the behaviour of aεn (k,Gn). First, it stays flat and does not depend
on k. After that, a(k,Gn) starts decreasing in k, which shows that the erased configuration
model indeed is a disassortative random graph. Theorem 1 shows that n(τ−2)/(τ−1) serves as a
threshold. Thus, the negative degree–degree correlations due to the single-edge constraint only
affect vertices of degrees at least n(τ−2)/(τ−1). This can be understood as follows. In the erased
configuration model the maximum contribution to aεn (k,G) (see Propositions 1 and 2) comes
from vertices with degrees proportional to n/k. The maximal degree in an observation of n i.i.d.
power-law distributed samples is proportional to n1/(τ−1) w.h.p. Therefore, if k 	 n(τ−2)/(τ−1),
such vertices with degree proportional to n/k do not exist w.h.p. This explains the two regimes.

For k small, aεn (k,Gn) converges to a stable random variable, as was also shown in [45]
for k fixed. Thus, for k small, different instances of the erased configuration model show wild
fluctuations. The joint convergence in k of Remark 1 shows that a(k,Gn) still forms a flat curve
in k for one realization of an erased configuration model when k is small. In contrast, aεn (k,Gn)
converges to a constant for large k-values, so that different realizations of erased configuration
models result in similar aεn (k,Gn)-values.

2.2. Sketch of the proof

We now give a heuristic proof of Theorem 1. Conditionally on the degrees, the probability
that vertices with degrees Di and Dj are connected in the erased configuration model can be
approximated by [24] 1 − e−DiDj/μn. Let v ∈ Mεn (k), and let Xiv denote the indicator that vertex
i is connected to v. The expected degree of a neighbour of v can then be approximated by

aεn (k,Gn) ≈ k−1
∑
i∈[n]

DiP(Xiv = 1) ≈ k−1
∑
i∈[n]

Di(1 − e−Dik/(μn)). (7)

The maximum degree in an i.i.d. sample from (3) scales as n1/(τ−1) w.h.p. Thus, as long as
k 	 n(τ−2)/(τ−1), we can Taylor-expand the exponential so that

aεn (k,Gn) ≈ 1

μn

∑
i∈[n]

D2
i .

Because (Di)i∈[n] are samples from a power-law distribution with infinite second moment, the
Stable Law Central Limit Theorem gives Theorem 1(i).

When k � n(τ−2)/(τ−1), we approximate the sum in (7) by the integral

aεn (k,Gn) ≈ cnk−1
∫ ∞

1
x1−τ (1 − e−xk/(μn)) dx

= cμ2−τ
(

n

k

)3−τ ∫ ∞

k/(μn)
y1−τ (1 − e−y) dy,

using the degree distribution (3) and the change of variables y = xk/(μn). When k 	 n, we can
approximate this by

aεn (k,Gn) ≈ cμ2−τ
(

n

k

)3−τ ∫ ∞

0
y1−τ (1 − e−y) dy = −cμ2−τ

(
n

k

)3−τ
�(2 − τ ).

The proof of Theorem 1(ii) then consists of showing that the above approximations are indeed
valid. We prove Theorem 1 in detail in Sections 3.2 and 3.3.
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2.3. Rank-1 inhomogeneous random graphs

We now turn to the rank-1 inhomogeneous random graph (or hidden variable model). This
model constructs simple graphs with soft constraints on the degree sequence [9, 16]. The graph
consists of n vertices with weights (hi)i∈[n]. These weights are an i.i.d. sample from the power-
law distribution (3). We denote the average value of the weights by μ. Then, every pair of
vertices with weights (h, h′) is connected with probability p(h, h′). In this paper, we take

p(h, h′) = min (hh′/(μn), 1),

which is the Chung–Lu version of the rank-1 inhomogeneous random graph [16]. This
connection probability ensures that the degree of a vertex with weight h will be close to h
[9]. We show the following result.

Theorem 2. (a(k,Gn) in the rank-1 inhomogeneous random graph.) Let (Gn)n≥1 be a sequence
of rank-1 inhomogeneous random graphs on n vertices, where the weights are an i.i.d. sample
from (3). Take εn = 1/( log ( log (n))) and let � denote the gamma function.

(i) For 1 	 k 	 n(τ−2)/(τ−1)/ log (n),

aεn (k,Gn)

n(3−τ )/(τ−1)
d−→ 1

μ

(
2c�( 5

2 − 1
2τ )

(τ − 1)(3 − τ )
cos

(
π (τ − 1)

4

))2/(τ−1)

S(τ−1)/2,

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) 	 k 	 n1/(τ−1)/ log (n),

aεn (k,Gn)

n3−τ kτ−3
P−→ cμ2−τ

(3 − τ )(τ − 2)
. (8)

Theorem 2 is almost identical to Theorem 1. The proof of Theorem 2 exploits the deep
connection between the two models, and essentially carries over the results for the erased
configuration model to the rank-1 inhomogeneous random graph. The similarity can be
understood by noticing that in the erased configuration model the probability that vertices i
and j with degrees Di and Dj are connected can be approximated by 1 − exp ( − DiDj/Ln)
which is close to

min

(
1,

DiDj

μn

)
,

the connection probability in the rank-1 inhomogeneous random graph. Arguments similar to
those that led to (7) show that aεn (k,Gn) can be approximated by

aεn (k,Gn) ≈ k−1
∑
i∈[n]

hi min (hik/μn, 1).

This sum behaves very similarly to the sum in (7), so that the only difference between
Theorem 1 and 2 is the limiting constants in (6) and (8). The main difference between the
two models is that in the rank-1 inhomogeneous random graph the presence of all edges is
independent as soon as the weights are sampled. This is not true in the erased configuration
model, because we know that a vertex with sampled degree Di cannot have more than Di

neighbours, creating dependence between the presence of edges incident to vertex i. We show
that these correlations between the presence of different edges in the erased configuration
model are small enough for aεn (k,Gn) to behave similarly in the erased configuration model
and the rank-1 inhomogeneous random graph.
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2.4. Hyperbolic random graphs

The third random graph model we consider is the hyperbolic random graph. This model
was introduced in [31] and samples n vertices on a disk of radius R = 2 log (n/ν), where the
density of the radial coordinate r a vertex p = (r, φ) is

ρ(r) = α
sinh (αr)

cosh (αR) − 1

with α= (τ − 1)/2. The angle of p is sampled uniformly from [0, 2π ]. Then, two vertices
are connected if their hyperbolic distance is at most R. The hyperbolic distance of points u =
(ru, φu) and v = (rv, φv) is defined by

cosh (d(u, v)) = cosh (ru) cosh (rv) − sinh (ru) sinh (rv) cos (θuv), (9)

where θuv denotes the relative angle between φu and φv. This creates a simple random graph
with power-law degrees with exponent τ [31]. The parameter ν fixes the average degree of the
graph.

The hyperbolic random graph creates simple sparse random graphs with power-law degrees,
but in contrast to the erased configuration model and the rank-1 inhomogeneous random graph,
can at the same time create many triangles due to its geometric nature [14, 31]. In both
the rank-1 inhomogeneous random graph and the erased configuration model, the connection
probabilities of different pairs of vertices are (almost) independent. In the hyperbolic random
graph, this is not true. When u is connected to v and u is connected to w, then v and w should
also be close to one another by the triangle inequality. However, if we define the type of a
vertex as

t(u) = e(R−ru)/2,

then we show that we can approximate the probability that vertices u and v are connected by

P(Xuv = 1 | t(u), t(v)) =

⎧⎪⎨
⎪⎩

2

π
sin−1 (νt(u)t(v)/n) νt(u)t(v)/n< 1,

1 νt(u)t(v)/n ≥ 1,

which behaves similarly to the connection probability in the rank-1 inhomogeneous random
graph. Furthermore, by [7, Lemma 1.3], the density of 2 ln (t(u)) can be written as

f2 ln (t(u))(x) =
(
τ − 1

2

)
e−(τ−1)x/2(1 + o(1)),

where the o(1) term is with respect to the network size n. Therefore,

P(t(u)> x) = P(2 ln (t(u))> 2 ln (x)) = x−τ+1(1 + o(1)), (10)

so that on a high level the hyperbolic random graph can be interpreted as a rank-1 inhomo-
geneous random graph with (t(u))u∈[n] as weights (see [7, Section 1.1.1] for a more elaborate
discussion).

The next theorem shows that indeed the behaviour of aεn (k,Gn) in the hyperbolic random
graph is similar to the rank-1 inhomogeneous random graph.
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Degree correlations in scale-free random graph models 679

Theorem 3. (a(k,Gn) in the hyperbolic random graph.) Let (Gn)n≥1 be a sequence of hyper-
bolic random graphs on n vertices with power-law degrees with exponent τ and parameter ν.
Take εn = 1/ log ( log (n)) and let � denote the gamma function.

(i) For 1 	 k 	 n(τ−2)/(τ−1)/ log (n),

aεn (k,Gn)

n(3−τ )/(τ−1)
d−→2ν

π

(
2

3 − τ
�

(
5

2
− 1

2
τ

)
cos

(
π (τ − 1)

4

))2/(τ−1)

S(τ−1)/2,

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) 	 k 	 n1/(τ−1)/ log (n),

aεn (k,Gn)

n3−τ kτ−3
P−→ (τ − 1)ν

√
π�( 3

2 − τ
2 )

2(τ − 2)�(2 − τ
2 )

(
2(τ − 1)

π (τ − 2)

)3−τ
.

2.5. Discussion

2.5.1. Universality. The behaviour of aεn (k,Gn) is universal across the three null models we
consider. The erased configuration model and the rank-1 inhomogeneous random graph are
closely related. They are known to behave similarly, for example, under critical percolation
[4, 6], in terms of distances [18] when τ > 3, and in terms of clustering when τ ∈ (2, 3)
[41]. The hyperbolic random graph typically shows different behaviour, for example in terms
of clustering [14, 22], or connectivity [7, 8]. Still, the behaviour of aεn (k,Gn) is similar in
the hyperbolic random graph and the other two null models. In all three null models, the
main contribution for k � n(τ−2)/(τ−1) comes from vertices with degrees proportional to n/k
(see Propositions 1 and 2). In the hyperbolic random graph, we can relate this maximum
contribution to the geometry of the hyperbolic sphere. A vertex i of degree k has radius
ri ≈ R − 2 log (k). Similarly, a vertex j of degree n/(νk) has radius rj ≈ R − 2 log (n/(kν)) =
2 log (k). Then, rj ≈ R − ri, so that the major contributing vertices have radial coordinate
proportional to R − ri.

2.5.2. Expected average nearest-neighbour degree. In Theorems 1–3 we show that aεn (k,Gn)
converges in probability to a stable random variable when k is small. Thus, when we generate
many samples of random graphs, for fixed k, the distribution of the values of aεn (k,Gn) across
the different samples will look like a stable random variable. We can also study the expected
value of a(k,Gn) across the different samples. For the erased configuration model for example,
we can show that (see Section 3.4)

lim
n→∞

E[a(k,Gn)]

(n/k)3−τ = −cμ2−τ�(2 − τ ). (11)

The difference between the scaling of the expected value of a(k,Gn) and the typical behaviour
of a(k,Gn) in Theorem 1(i) is caused by high-degree vertices. In typical degree sequences, the
maximum degree is proportional to n1/(τ−1). It is unlikely that vertices with higher degrees are
present, but if they are, they have a high impact on the average nearest-neighbour degree of
low-degree vertices, causing the difference between the expected average nearest-neighbour
degree and the typical average nearest-neighbour degree. Thus, the expected value of a(k,Gn)
is not very informative when k is small, since Theorem 1 shows that a(k,Gn) will almost
always be smaller than its expected value when k is small.

Figure 3 illustrates this difference in terms of the mean and median value of a(k,Gn) over
many realizations of the erased configuration model, the rank-1 inhomogeneous random graph,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2019.45
Downloaded from https://www.cambridge.org/core. University of Bath, on 09 Feb 2020 at 11:24:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2019.45
https://www.cambridge.org/core


680 C. STEGEHUIS

(a) Erased configuration model
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(b) Inhomogeneous random graph
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(c) Hyperbolic random graph
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FIGURE 3: a(k,Gn) for different random graph models with n = 106. The solid line is the median
of a(k,Gn) over 104 realizations of the random graph, and the dashed line is the average over these

realizations. The dotted line is the asymptotic slope kτ−3.

and the hyperbolic random graph. Here indeed we see that the expected average neighbour
degree scales as a power of k over the entire range of k, where the median shows the straight
part of the curve from Theorem 1. Thus, it is important to distinguish between mean and
median of a(k,Gn) when simulating random graphs.

2.5.3. Vertices of degree k. Definition (1) assumes that a vertex of degree k is present. For large
values of k, this is a rare event, by (3). Indeed, vertices of degree at most n1/τ are present with
high probability in the erased configuration model, whereas the probability that a vertex of
degree k � n1/τ is present tends to zero in the large network limit [45]. We avoid this problem
by averaging a(k,Gn) over a small range of degrees. Another option is to condition on the event
that a vertex of degree k is present. Our proofs for k 	 n(τ−2)/(τ−1) for the erased configuration
model can easily be adjusted to condition on this event. For k larger, we leave the behaviour of
a(k,Gn) conditionally on a vertex of degree k being present open for further research.

2.5.4. Fixed degrees. In the proof of Theorem 1 we show that the fluctuations that come
with the stable laws for small k are not present when we condition on the degree sequence.
Thus, the large fluctuations in aεn (k,Gn) for small k are caused by fluctuations of the i.i.d.
degrees, weights, or radii. For a given real-world network, its degrees are often preserved, and
many erased configuration models or inhomogeneous random graphs with the same observed
degree sequence are created. In this fixed-degree setting, the sample-to-sample fluctuations of
aεn (k,Gn) are relatively small.

2.5.5. Relation with local clustering. The local clustering coefficient c(k) of vertices of degree
k measures the probability that two randomly chosen neighbours af a randomly chosen vertex
of degree k are connected. In many real-world networks as well as simple null models, c(k)
decreases as a function of k [9, 26, 39, 41, 43]. The relation between the decay rate of c(k) and
the decay rate of a(k) has been investigated for the rank-1 inhomogeneous random graph, where
it was shown that c(k)< a(k)/k [40]. Using recent results for c(k) on the erased configuration
model and the rank-1 inhomogeneous random graph, we can make the relation between c(k)
and a(k) more precise. When k � √

n, c(k) in the erased configuration model satisfies [26]

c(k) = c2�(2 − τ )2μ3−2τn5−2τ k2τ−6(1 + oP(1)).

Then, by Theorem 1, when k � √
n,

c(k) = a(k)2

μn
(1 + oP(1)). (12)
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k

a(k)a(k)

FIGURE 4: The neighbours of a vertex of degree k have average degree a(k).

Intuitively, we can see this relationship in the following way. Pick two neighbours of a vertex
of degree k. By definition, these vertices have degree a(k) on average. See Figure 4. Since
k � √

n, by Theorem 2, a(k) 	 √
n. Therefore, the probability of two vertices with weight a(k)

being connected is approximately 1 − e−a(k)2/μn ≈ a(k)2/μn. Since the clustering coefficient
can be interpreted as the probability that two randomly chosen neighbours are connected, the
clustering coefficient should satisfy c(k) ∼ a(k)2/μn when k � √

n. In particular, the decay of
the clustering coefficient should be twice as fast as the decay of the average neighbour degree.
Analytical results on c(k) on the rank-1 inhomogeneous random graph show that (12) is also
the correct relation between clustering and degree correlations in the rank-1 inhomogeneous
random graph [41]. Future research might explore the relation between c(k) and a(k) in other
null models, such as the hyperbolic random graph or the preferential attachment model. It
would also be interesting to see if the difference between expectation and typical behaviour
that is present in a(k) also occurs for the local clustering coefficient c(k).

2.5.6. Correlations in the hyperbolic random graph. The relation in (12) is based on the
fact that in the erased configuration model and the rank-1 inhomogeneous random graph the
connection probabilities of pairs of vertices (i, j), (i, k), and (j, k) are (almost) independent.
In the hyperbolic random graph, the geometry causes a strong dependence between these
connection probabilities. If vertices j and k are neighbours of i, they are likely to be
geometrically close to one another due to the triangle inequality. This makes the probability
that j and k are connected larger than in the rank-1 inhomogeneous random graph or the erased
configuration model. These correlations do not play a role when computing a(k,Gn), since it
only involves the connection probability of two different vertices. When computing statistics
of the hyperbolic random graph that include three-point correlations, the equivalence between
the hyperbolic random graph and the rank-1 inhomogeneous random graph may fail to hold,
as in the example of c(k).

Interestingly, the number of cliques was also shown to be similar in the hyperbolic random
graph, the rank-1 inhomogeneous random graph and the erased configuration model [20],
even though cliques clearly involve three-point correlations. Cliques in the hyperbolic random
graph are typically formed between vertices at radius proportional to R/2 [20], so that their
degrees are proportional to

√
n [7]. These vertices form a dense core, which is very similar to

what happens in the erased configuration model and the rank-1 inhomogeneous random graph
[29]. In the erased configuration model, many other small subgraphs typically occur between
vertices of degrees proportional to

√
n [27]. It would be interesting to see if the number of

these small subgraphs behaves similarly in the hyperbolic random graph.

3. Average nearest-neighbour degree in the ECM

In this section, we prove Theorem 1. For k 	 n(τ−2)/(τ−1)/ log (n), we couple the degrees of
neighbours of a uniformly chosen vertex of degree k to i.i.d. samples of the size-biased degree
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distribution in Section 3.2. When k � n(τ−2)/(τ−1), this coupling is no longer valid. We then
show in Section 3.3 that a specific range of degrees contributes most to aεn (k,Gn).

3.1. Preliminaries

We say that Xn = OP(bn) for a sequence of random variables (Xn)n≥1 if |Xn|/bn is a tight

sequence of random variables, and Xn = oP(bn) if Xn/bn
P−→0. Let Ln denote the total number

of half-edges, so that Ln = ∑
i Di. We define the events

Jn = {|Ln −μn| ≤ n2/τ },
An = {|Mεn (k)| ≥ nk1−τ / log (n)},
Bn = {max

i
Di ≤ n1/(τ−1) log (n)}. (13)

By [25, Lemma 2.3], P(Jn) → 1 as n → ∞. Furthermore, since the degree sequence is an
i.i.d. sample from (3), also P(Bn) → 1. Note that An implies that |Mεn(k)| ≥ 1 as long as k 	
n1/(τ−1)/ log (n). Below, we will show that P(An) → 1 for k 	 n1/(τ−1)/ log (n). Throughout
the rest of the paper, we will often condition on the event


n = Jn ∩An ∩Bn. (14)

Note that P(
n) → 1.
In the rest of this paper, we will often condition on the degree sequence. For some event

E , we use the notation Pn(E) = P(E | (Di)i∈[n]), and we define En and Varn similarly, where
we often assume that the event 
n holds. In this notation Pn(E1 | E2) = P(E1 | E2, (Di)i∈[n]).
In this notation, we often work on the event 
n. That is, we assume that the degree sequence
satisfies the event 
n, and we compute P(E | (Di)i∈[n] ∈
n).

We often want to interchange the sampled degree of a vertex i, Di and its resulting degree
D(er)

i. The next lemma shows that Di and D(er)
i are close.

Leema 1. Let G be an erased configuration model where the degrees are i.i.d. samples from a
power-law distribution with τ ∈ (2, 3). Assume the event Jn ∩Bn ∩Dn(Di), where

Dn(Di) =
{ ∑

j∈[n]

ψ

(
DiDj

μn

)
≤ Dτ−1

i n1−τ log (n)

}
,

and ψ(x) = x − 1 + e−x. Then,

Pn(Di − D(er)
i > εDi) ≤ O(ε−1(Di/n)τ−2 log (n)) + O(ε−1Di/n). (15)

Note that by [28, Theorem 3(ii)], for D distributed as in (3), E[ψ(D/t)] = O(t−(τ−1)) so that

E[ψ(DiDj/(μn)) | Di] = O(Dτ−1
i n1−τ ).

This shows that for all Di, P(Dn(Di)) → 1.

Proof. We use [24, (4.9)], which calculates p(n,m, L), the probability that a set of n half-
edges does not connect to another set of m half-edges, when the total number of half-edges
equals L. Then, choosing n = Di,m = Dj yields p(Di,Dj, Ln) = Pn(Xij = 0), so that by [24,
(4.9)]

Pn(Xij = 0) ≤
Di−1∏
s=0

(
1 − Di

Ln − 2Di − 1

)
+ D2

i Dj

(Ln − 2Di)2
≤ e−DiDj/Ln + D2

i Dj

(Ln − 2Di)2
.
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Let ψ(x) = x − 1 + e−x. The expected number of erased edges at vertex i satisfies

En[Di − D(er)
i] = Di −

∑
j∈[n]

(1 − Pn(Xij = 0))

≤
∑
j∈[n]

(
DiDj

Ln
− 1 + e−DiDj/Ln + D2

i Dj

(Ln − 2Di)2

)

=
∑
j∈[n]

ψ

(
DiDj

Ln

)
+ O

(
D2

i

Ln

)

=
∑
j∈[n]

ψ

(
DiDj

μn

)
(1 + o(1)) + O

(
D2

i

n

)
.

Thus, on the event Dn,

En[Di − D(er)
i] = O(n−τ+2Dτ−1

i log (n)) + O(D2
i /n). (16)

Using the Markov inequality, we obtain

Pn(Di − D(er)
i > εDi) ≤ O(ε−1(Di/n)τ−2 log (n)) + O(ε−1Di/n).

�

We now use Lemma 1 to show that P(An) → 1, with An as in (13). Let v be a uniformly
chosen vertex and denote I(k, εn) = [k(1 − εn), k(1 + εn)]. Then,

E[|Mεn (k)|] = nP(D(er)
v ∈ I(k, εn))

≥ nP(Dv ∈ I(k, εn/2))P(D(er)
v ∈ I(k, εn) | Dv ∈ I(k, εn/2))

≥ nP(Dv ∈ I(k, εn/2))P(Dv − D(er)
v ≤ kεn/2 | Dv = k(1 − εn/2), Jn,Dn(k))

× P(Jn ∩Dn(k)). (17)

Furthermore, for some C̃1 > 0,

P(Dv ∈ I(k, εn/2)) =
k(1+εn)∑

i=k(1−εn)

i−τ ≥ C̃1

∫ k(1+εn)

k(1−εn)
x−τ dx.

Therefore, using (17), for some C̃2 > 0,

E[|Mεn (k)|] ≥ C̃1n
∫ k(1+εn/2)

k(1−εn/2)
x−τ dx(1 − O(ε−1

n (k/n)τ−2 log (n)))

= C̃2nk1−τ εn(1 + o(1)),

where we used (15) combined with the choice of εn in Theorem 1. Thus, P(An) → 1 for k 	
n1/(τ−1)/ log (n) by the choice of εn in Theorem 1.
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684 C. STEGEHUIS

3.2. Small k: coupling to i.i.d. random variables

In this section we investigate the behaviour of aεn (k,Gn) when k 	 n(τ−2)/(τ−1)/ log (n).
We first pick a random vertex v ∈ Mεn (k). We couple the degrees of the neighbours of v to i.i.d.
copies of the size-biased degree distribution D∗

n, where

Pn(D∗
n = j) = j

Ln

∑
i∈[n]

1{Di=j}.

We then use this coupling to compute aεn (k,Gn).

Proof of Theorem 1(i). We first condition on the degree sequence (Di)i∈[n] ∈
n of (14),
since P(
n) → 1. Let v be a vertex of degree d. In the configuration model, neighbours of v
are constructed by pairing the half-edges of v uniformly to other half-edges. The distribution
of the degree of a vertex attached to a uniformly chosen half-edge is given by D∗

n. However,
the degrees of the neighbours of v in the erased configuration model are not an i.i.d. sample
of D∗

n due to the fact that the half-edges should attach to distinct vertices that are different
from v. We now couple the degrees of the neighbours of v by an i.i.d. sample of D∗

n. Denote
degrees of neighbours of v by B1, . . . , Bd. Let Y1, . . . , Yd be i.i.d. samples of D∗

n. We use a
similar coupling as in [5, Construction 4.2] to couple Bi to Yi. Set V0 = v. Then, for i ∈ [d] the
coupling is defined in the following way.

• Take a uniformly chosen half-edge (with replacement), let v′
i be the vertex attached to it,

and set Yi = Dv′
i
.

• Sample a uniformly chosen half-edge from the set of half-edges not incident to Vi−1. Let
wi denote the vertex incident to the chosen half-edge.

• If v′
i /∈ Vi−1, then set Bi = Yi. and Vi = Vi−1 ∪ v′

i.

• If v′
i ∈ Vi−1, set Bi = Dwi and Vi = Vi−1 ∪ wi.

Summarizing,

(Yi, Bi) =
{

(Dv′
i
,Dv′

i
) when v′

i /∈ Vi−1,

(Dv′
i
,Dwi) when v′

i ∈ Vi−1,

where (v′
i)i∈[d] are vertices attached to uniformly chosen half-edges (with replacement), and

wi are vertices attached to uniformly chosen half-edges from the set of half-edges not incident
to Vi−1.

Informally, at every step i we sample a uniformly chosen half-edge from all half-edges, and
select the vertex v′

i incident to it. If this vertex is different from all previously selected vertices
and unequal to v, we declare the vertex to be a neighbour of v, and Bi = Yi = Dv′

i
. If not, we

redraw the selected half-edge to ensure that all neighbours of v are distinct and unequal to v,
and declare the vertex attached to this half-edge, wi to be a neighbour of v and set Bi = Dwi .
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When Bs �= Ys, Bs is drawn in a size-biased manner from the vertices that are not chosen
yet. Then, because Di ≥ 0 for all i,

En[Bs | Vs, Bs �= Ys] =
∑

i/∈Vs
D2

i∑
i/∈Vs

Di

≤
∑

i∈[n] D2
i∑

i∈[n] Di − ∑
i∈Vs

Di

=
∑

i∈[n] D2
i∑

i∈[n] Di

(
1 +

∑
i∈Vs

Di∑
i∈[n] Di − ∑

i∈Vs
Di

)
.

On the event Bn, Dmax ≤ n1/(τ−1) log (n), so that
∑

i∈Vs
Di ≤ sDmax = O(sn1/(τ−1) log (n)) for

all possible Vs, so that for s = o(n(τ−2)/(τ−1)/ log (n))

En[Bs | Bs �= Ys] =
∑

i∈[n] D2
i

Ln
(1 + o(1)) =E[D∗

n](1 + o(1)). (18)

Let Nv(U) denote a uniformly chosen neighbour of vertex v of degree o(n(τ−2)/(τ−1)/ log (n)).
Then, by (18) and the fact that En[Ys] =En[D∗

n],

En[DNv(U)] =E[D∗
n](1 + o(1)).

When i ∈ Mεn (k), D(er)
i = k(1 + o(1)). Let En denote the total number of erased edges in the

erased configuration model. By [28, Theorem 1],

En = OP(min (n1/(τ−1), n4/(τ−1)−2)). (19)

Then, conditionally on the degree sequence

aεn (k,Gn) = 1

k|Mεn (k)|
∑

i∈Mεn (k)

∑
j∈Ni

D(er)
j

= 1

k|Mεn (k)|
∑

i∈Mεn (k)

∑
j∈Ni

Dj − 1

k|Mεn (k)|
∑

i∈Mεn (k)

∑
j∈Ni

(Dj − D(er)
j)

= (1 + o(1))En[DNVk (U)] + O(Enk−1|Mεn(k)−1|)
= (1 + o(1))En[DNVk (U)] + OP(kτ−2n−1 log (n) min (n1/(τ−1), n4/(τ−1)−2)),

where Vk denotes a uniformly chosen vertex in Mεn (k), and NVk (U) is a uniformly chosen
neighbour of vertex Vk. Here the third equality holds because the average nearest-neighbour
degree averages over all neighbours of vertex j and over all vertices in Mεn (k), together with the
fact that DVk = k(1 + o(1)). The fourth equality follows from (19) and on the event An. Note
that for k 	 n(τ−2)/(τ−1)/ log (n) and τ ∈ (2, 3), the last term is oP(1). Then, conditionally on
the degree sequence, on the event 
n,

aεn (k,Gn) = (1 + o(1))En[DNVk (U)] + oP(1) = (1 + o(1))(μn)−1
∑
i∈[n]

D2
i + oP(1). (20)

For t large, we obtain from (3) that

P(D2 > t) = P(D>
√

t) = c

τ − 1
t(1−τ )/2(1 + o(1)).
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We then use the Stable Law Central Limit Theorem (see e.g. [44, Theorem 4.5.2]) to conclude
that

∑
i∈[n]

D2
i

/(
n2/(τ−1)

(
2c

(τ − 1)(3 − τ )
�

(
5

2
− 1

2
τ

)
cos

(
π (τ − 1)

4

))2/(τ−1))
d−→S(τ−1)/2,

where S(τ−1)/2 is a stable random variable. Combining this with (20) results in

aεn (k,Gn)

n(3−τ )/(τ−1)
d−→ 1

μ

(
2c�( 5

2 − 1
2τ )

(τ − 1)(3 − τ )
cos

(
π (τ − 1)

4

))2/(τ−1)

S(τ−1)/2.

To prove the joint convergence of Remark 1, note that, for fixed m, the probability
that Mεn (ki) satisfies the condition in (13) for all i ∈ [m] tends to 1, by a proof similar
to the proof that An defined in (13) satisfies P(An) → 1. Thus, we may condition on the
event that Mεn (ki) ≥ nk1−τ / log (n) for all i ∈ [m]. Then, the fact that (20) is the same for
all ki 	 n(τ−2)/(τ−1)/ log (n) and it only depends on the degree sequence proves the joint
convergence. �

3.3. Large k

Now we study the value of aεn (k,Gn) when k � n(τ−2)/(τ−1). We show that there exists a
range of degrees Wk

n(δ) which gives the largest contribution to aεn (k,Gn). For ease of notation,
we write aεn (k) for aεn (k,Gn) in this section. We define

Wk
n(δ) = {u : Du ∈ [δμn/k, μn/(δk)]}, (21)

and we write

aεn (k) = 1

k|Mεn (k)|
∑

i∈Mεn (k)

∑
j∈Wk

n (δ)

D(er)
j + 1

k|Mεn (k)|
∑

i∈Mεn (k)

∑
j/∈Wk

n (δ)

D(er)
j

=: aεn (k,Wk
n(δ)) + aεn (k, W̄k

n(δ)), (22)

where aεn (k,Wk
n(δ)) gives the contribution to aεn (k) from vertices in Wk

n(δ) and aεn (k, W̄n(ε))
denotes the contribution from vertices not in Wk

n(δ). In the rest of this section, we prove the
following two propositions, which together show that the largest contribution to aεn (k) indeed
comes from vertices in Wk

n(δ).

Proposition 1. (Minor contributions.) There exists κ > 0 such that, for k 	 n1/(τ−1),

lim sup
n→∞

E[aεn (k, W̄k
n(δ))]

(n/k)3−τ = O(δκ ).

Proposition 2. (Major contributions.) For n(τ−2)/(τ−1) 	 k 	 n1/(τ−1)/ log (n),

aεn (k,Wk
n(δ))

(n/k)3−τ
P−→cμ2−τ

∫ 1/δ

δ

x1−τ (1 − e−x) dx

We now show how these propositions prove part (ii) of Theorem 1.
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Proof of Theorem 1(ii). By the Markov inequality and Proposition 1,

aεn (k, W̄k
n(δ))

(n/k)3−τ = OP(δκ ).

Combining this with Proposition 2 results in

aεn (k)

(n/k)3−τ
P−→cμ2−τ

∫ 1/δ

δ

x1−τ (1 − e−x) dx + OP(δκ ). (23)

Taking the limit of δ→ 0 then proves the theorem. �

The rest of this section is devoted to proving Propositions 1 and 2.

3.3.1. Conditional expectation. We first compute the expectation of aεn (k,Wk
n(δ)) condi-

tionally on the degree sequence and on the event (Di)i∈[n] ∈
n ∩Dn(μn/k). Define the
event

Wn =
{ ∑

u∈Wk
n (δ)

Du − D(er)
u ≤ |Wk

n(δ)|nk1−τ log (n)

}
.

Using (16), we obtain

En

[ ∑
u∈Wk

n (δ)

D(er)
u − Du

]
=

∑
u∈Wk

n (δ)

O(Dτ−1
u n2−τ ) = |Wk

n(δ)|O(nk1−τ ),

so that P(Wn) → 1 by the Markov inequality.

Leema 2. When k � n(τ−2)/(τ−1), on the event (Di)i∈[n] ∈
n ∩Wn ∩Dn(μn/k),

En[aεn (k,Wk
n(δ))] = (1 + o(1))

1

k

∑
u∈Wk

n (δ)

Du(1 − e−Duk/Ln).

Proof. Let Xij denote the indicator that i and j are connected. By (22),

En[aεn (k,Wk
n(δ))] = 1

k|Mεn (k)|
∑

v∈Mεn (k)

∑
u∈Wk

n (δ)

D(er)
uPn(Xuv = 1).

By [24, (4.6) and (4.9)]

Pn(Xuv = 1) =
Di−1∏
s=0

(
1 − Di

Ln − 2Di − 1

)
+ O

(
D2

vDu + D2
uDv

L2
n

)

= 1 − e−DuDv/Ln + O

(
D2

vDu + D2
uDv

L2
n

)
, (24)

since Di,Dj = o(n) and Ln =μn(1 + o(1)) on 
n. Thus, when Du ∈μn/k[δ, 1/δ] and v ∈
Mεn (k),

Pn(Xuv = 1) = (1 − e−Duk/Ln )(1 + o(1)).
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Since
∑

u∈Wk
n (δ) Du = |Wk

n(δ)|�(n/k) and n/k � nk1−τ log (n) for k � n(τ−2)/(τ−1), on the
event Wn, ∑

u∈Wk
n (δ)

D(er)
u =

∑
u∈Wk

n (δ)

(D(er)
u − Du) +

∑
u∈Wk

n (δ)

Du = (1 + o(1))
∑

u∈Wk
n (δ)

Du

Because 1 − e−Duk/Ln ∈ [1 − e−δ, 1 − eδ] when u ∈ Wk
n(δ), this also shows that∑

u∈Wk
n (δ)

D(er)
u(1 − e−Duk/Ln ) = (1 + o(1))

∑
u∈Wk

n (δ)

Du(1 − e−Duk/Ln). (25)

Thus, we obtain

En[aεn (k,Wk
n(δ))] = (1 + o(1))

1

k

∑
u∈Wk

n (δ)

D(er)
u(1 − e−Duk/Ln)

= (1 + o(1))
1

k

∑
u∈Wk

n (δ)

Du(1 − e−Duk/Ln ).

�
3.3.2. Convergence of conditional expectation. We shall now show that En[aεn (k,Wk

n(δ))] of
Lemma 2 converges to a constant when we take the i.i.d. degrees into account.

Leema 3. When k � n(τ−2)/(τ−1), on the event (Di)i∈[n] ∈
n ∩Wn ∩Dn(μn/k),

En[aεn (k,Wk
n(δ))]

n3−τ kτ−3
P−→cμ2−τ

∫ 1/δ

δ

x1−τ (1 − e−x) dx.

Proof. First of all, notice that for k � n(τ−2)/(τ−1)

P(D ∈ [a, b]μn/k) = (1 + o(1))
�bμn/k�∑

t=�aμn/k�
ct−τ ≤ (1 + o(1))

∫ bμn/k

aμn/k−1
cx−τ dx

= (1 + o(1))
c

τ − 1

(
(bμn/k)1−τ − (aμn/k − 1)1−τ )

= (1 + o(1))
c

τ − 1

(
(bμn/k)1−τ − (aμn/k)1−τ )

= (1 + o(1))
∫ bμn/k

aμn/k
cx−τ dx.

Similarly,

P(D ∈ [a, b]μn/k) ≥ (1 + o(1))
∫ �bμn/k�+1

�aμn/k�
cx−τ dx

≥ (1 + o(1))
∫ bμn/k

aμn/k+1
cx−τ dx

= (1 + o(1))
∫ bμn/k

aμn/k
cx−τ dx,
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so that

P(D ∈ [a, b]μn/k) = (1 + o(1))
∫ bμn/k

aμn/k
cx−τ dx when k � n(τ−2)/(τ−1).

Define the random measure

M(n)[a, b] = 1

μ1−τn2−τ kτ−1

∑
u∈[n]

1{Du∈[a,b]μn/k}. (26)

Since the degrees are i.i.d. samples from (3), the number of vertices with degrees in interval
[a, b] is binomially distributed. Then,

M(n)[a, b] = 1

μ1−τn2−τ kτ−1
|{u : Du ∈ [a, b]μn/k}|

= (1 + oP(1))
P(D ∈ [a, b]μn/k)

μ1−τn2−τ kτ−1

= 1 + oP(1)

(μn)1−τ kτ−1

∫ bμn/k

aμn/k
cx−τ dx

P−→
∫ b

a
cy−τ dy

=: λ[a, b],

where we used the change of variables y = xk/(μn). By Lemma 2,

En[aεn (k,Wk
n(δ))] =

∑
u∈Wk

n (δ) Du(1 − e−Duk/Ln )

k
(1 + o(1))

= μn

k

∑
u∈Wk

n (δ) (Duk/(μn))(1 − e−Duk/(μn))

k
(1 + o(1))

= μ2−τn3−τ

k3−τ

∫ 1/δ

δ

t(1 − e−t) dM(n)(t)(1 + o(1)). (27)

Fix η > 0. Since t(1 − e−t) is bounded and continuous on [δ, 1/δ], we can find m<∞, disjoint
intervals (Bi)i∈[m] and constants (bi)i∈[m] such that ∪Bi = [δ, 1/δ] and

∣∣∣∣t(1 − e−t) −
m∑

i=1

bi1{t∈Bi}
∣∣∣∣<η/λ([δ, 1/δ]),

for all t ∈ [δ, 1/δ]. Because M(n)(Bi)
P−→λ(Bi) for all i,

lim
n→∞ P(|M(n)(Bi) − λ(Bi)|>η/(mbi)) = 0.

Furthermore, ∣∣∣∣
∫ 1/δ

δ

t(1 − e−t) dM(n)(t) −
∫ 1/δ

δ

t(1 − e−t) dλ(t)

∣∣∣∣
≤

∣∣∣∣
∫ 1/δ

δ

t(1 − e−t) −
m∑

i=1

bi1{t∈Bi} dM(n)(t)

∣∣∣∣
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+
∣∣∣∣
∫ 1/δ

δ

t(1 − e−t) −
m∑

i=1

bi1{t∈Bi} dλ(t)

∣∣∣∣
+

∣∣∣∣
∫ 1/δ

δ

m∑
i=1

bi1{t∈Bi} dM(n)(t) −
∫ 1/δ

δ

m∑
i=1

bi1{t∈Bi} dλ(t)

∣∣∣∣. (28)

Using the fact that ∫ 1/δ

δ

1{t∈Bi} dM(n)(t) = M(n)(Bi)

yields ∣∣∣∣
∫ 1/δ

δ

m∑
i=1

bi1{t∈Bi} dM(n)(t) −
∫ 1/δ

δ

m∑
i=1

bi1{t∈Bi} dλ(t)

∣∣∣∣
=

∣∣∣∣
m∑

i=1

bi(M
(n)(Bi) − λ(Bi))

∣∣∣∣
=

∣∣∣∣
m∑

i=1

oP(η/m)

∣∣∣∣ = oP(η).

Thus, (3.3.2) results in

∣∣∣∣
∫ 1/δ

δ

t(1 − e−t) dM(n)(t) −
∫ 1/δ

δ

t(1 − e−t) dλ(t)

∣∣∣∣ ≤ ηM(n)([δ, 1/δ])

λ([δ, 1/δ])
+ η+ oP(η).

Using the fact that M(n)([δ, 1/δ]) = OP(λ([δ, 1/δ])) proves that

∫ 1/δ

δ

t(1 − e−t) dM(n)(t)
P−→

∫ 1/δ

δ

t(1 − e−t) dλ(t) = c
∫ 1/δ

δ

x1−τ (1 − e−x) dx, (29)

which together with (27) proves the lemma. �

3.3.3. Conditional variance of a(k). We now show that the variance of aεn (k,Wk
n(δ)) is small

when conditioning on the degree sequence, so that aεn (k,Wk
n(δ)) concentrates around its

expected value computed in Lemma 2. Define the event

Kn = {|Wk
n(δ)| ≤ n(n/k)1−τ log (n)}.

Since the degrees are i.i.d. samples from (3), |Wk
n(δ)| is distributed as a binomial with

parameters (n,C(n/k)1−τ ) for some constant C. Therefore, P(Kn) → 1.

Leema 4. When n(τ−2)/(τ−1) 	 k 	 n1/(τ−1)/ log (n), on the event

(Di)i∈[n] ∈
n ∩Dn(μn/k) ∩Wn ∩Kn,

we have
Varn(aεn (k,Wk

n(δ)))

En[aεn (k,Wk
n(δ))]2

→ 0.
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Proof. We write the variance of aεn (k,Wk
n(δ)) as

Varn(aεn (k,Wk
n(δ))) = 1

k2|Mεn (k)|2
∑

i,j∈Mεn (k)

∑
u,v∈Wk

n (δ)

D(er)
uD(er)

w

× (Pn(Xiu = Xjv = 1) − Pn(Xiu = 1)Pn(Xjv = 1)) (30)

Equation (30) splits into various cases, depending on the size of {i, j, u, v}. We denote the
contribution of |{i, j, u, v}| = r to the variance by V (r)(k). We first consider V (4)(k). We can
write

Pn(Xiu = Xjv = 0) = Pn(Xiu = 0)Pn(Xjv = 0 | Xiu = 0).

For the second term, we first pair all half-edges adjacent to vertex i, conditionally on not pairing
to vertex u. Then the second term can be interpreted as the probability that vertex j does not pair
to vertex v in a new configuration model with L̂n = Ln − Di = Ln(1 + O(n−(τ−2)/(τ−1) log (n)))
half-edges, where the new degree of vertex j is reduced by the number of half-edges from
vertex i that paired to j, X̂ij. Similarly, the new degree of vertex v is reduced by the amount of
half-edges from vertex i that paired to v, X̂iv. Since X̂ij can be dominated by a binomial random
variable with parameters Di,Dj/Ln,

P(X̂ij >Djn
−(τ−2)/(τ−1)) ≤ e−Djn−(τ−2)/(τ−1)/3,

and a similar statement holds for X̂iv. Let Tn denote the event that X̂ij ≤ Djn−(τ−2)/(τ−1) and
X̂iv ≥ Dvn−(τ−2)/(τ−1).

Pn(Xjv = 0 | Xiu = 0) = Pn(Xjv = 0 | Xiu = 0, Tn)Pn(Tn) + O(Pn(T c
n )).

On the event Tn the new degree of vertex j is D̂j = Dj(1 + O(n−(τ−2)/(τ−1))), and a similar
statement holds for vertex v. Furthermore, since i, j ∈ Mεn (k), n(τ−2)/(τ−1) 	 Di,Dj 	 n1/(τ−1)

and since u, v ∈ Wk
n(δ), n(τ−2)/(τ−1) 	 Du,Dv 	 n1/(τ−1) as well. Thus,

Pn(T c
n ) = O(e−Djn−(τ−2)/(τ−1) + e−Dvn−(τ−2)/(τ−1)

) = o(e−DjDv/Ln )

Furthermore, by (24),

Pn(Xjv = 0 | Xiu = 0, Tn) = e−D̂jD̂v/L̂n + O(n−(τ−2)/(τ−1) log (n))

= e−DjDv/Ln (1 + o(1)),

so that

Pn(Xiu = Xjv = 0) = e−DiDu/Ln e−DjDv/Ln (1 + o(1)),

using the fact that DiDu,DjDv = O(n). This results in

Pn(Xiu = Xjv = 1) = 1 − Pn(Xiu = 0) − Pn(Xjv = 0) + Pn(Xiu = Xjv = 0)

= 1 + ( − e−Duk/Ln − e−Dvk/Ln + e−Duk/Ln−Dvk/Ln )(1 + o(1))

= (1 − e−Duk/Ln )(1 − e−Dvk/Ln )(1 + o(1)),
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where the last equality holds because Duk =�(n) and Dvk =�(n) for u, v ∈ Wk
n(δ). Since

(1 − e−Duk/Ln )(1 − e−Dvk/Ln ) ∈ [δf (n), f (n)/δ] for some f (n) when Du,Dv ∈ Wk
n(δ), these error

terms are uniform in i, j ∈ Mεn (k) as well as u, v ∈ Wk
n(ε). Therefore

V (4)(k) = 1

|Mεn(k)|2k2

∑
i,j∈Mεn (k)

∑
u,v∈Wk

n (δ)

D(er)
uD(er)

v(1 − e−Duk/Ln )(1 − e−Dvk/Ln )(1 + o(1))

− D(er)
uD(er)

v(1 − e−Duk/Ln )(1 − e−Duk/Ln )(1 + o(1))

=
∑

u,v∈Wk
n (δ)

o(k−2DuDv(1 − e−Duk/Ln)(1 − e−Dvk/Ln ))

= o(En[aεn (k,Wk
n(δ))]

2
),

where we replaced D(er) with D as in (25) and the last equality follows from Lemma 2. Since
there are no overlapping edges when {i, j, u, v} = 3, V (3)(k) can be bounded similarly.

We then consider the contribution from V (2), which is the contribution where the two edges
are the same. By Lemma 3, we have to show that this contribution is small compared to
n6−2τ k2τ−6. We bound the summand in (30) as

D2
u(Pn(Xiu = 1) − Pn(Xiu = 1)2) ≤ D2

u.

Thus, using the fact that on An, |Mεn(k)| ≥ 1, V (2) can be bounded as

V (2) ≤ 1

k2|Mεn (k)|2
∑

i∈Mεn (k)

∑
u∈Wk

n (δ)

D2
u = 1

k2|Mεn (k)|
∑

u∈Wk
n (δ)

D2
u = O(n2k−4)|Wk

n(δ)|.

Thus, on the event Kn,
V (2) = OP(n4−τ kτ−5),

which is smaller than n6−2τ k2τ−6 when k � n(τ−2)/(τ−1), as required. �
Proof of Proposition 2. Since P(
n ∩Dn(μn/k) ∩Wn ∩Kn) → 1, Lemma 4 together with

the Chebyshev inequality shows that

aεn (k,Wk
n(δ))

En[aεn (k,Wk
n(δ))]

P−→1.

Combining this with Lemmas 2 and 3 yields

aεn (k,Wk
n(δ))

n3−τ kτ−3
P−→cμ2−τ

∫ 1/δ

δ

x1−τ (1 − e−x) dx.

�
3.3.4. Contributions outside Wk

n(δ). In this section, we prove Proposition 1 and show that
the contribution to aεn (k) outside of the major contributing regimes as described in (21) is
negligible.

Proof of Proposition 1. We use the fact that

Pn(Xij = 1) ≤ min

(
1,

DiDl

Ln

)
.
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This yields

E[aεn (k, W̄k
n(δ))] =E[En[aεn (k, W̄k

n(δ))]]

≤ n

k
E

[
D min

(
1,

kD

Ln

)
1{D∈W̄k

n (δ)}
]

≤ K
n

k

∫ δμn/k

0
x1−τ min

(
1,

kx

μn

)
dx + K

n

k

∫ ∞

μn/(δk)
x1−τ min

(
1,

kx

μn

)
dx, (31)

for some K > 0. For ease of notation, we assume that μ= 1. We have to show that the
contribution to (31) from vertices u such that Du < δn/k or Du > n/(δk) is small. First, we
study the contribution to (31) for Du < δn/k. We can bound this contribution by taking the
second term of the minimum, which bounds the contribution as∫ δn/k

0
x2−τ dx = δ3−τ

τ − 3
(k/n)τ−3.

Then, we study the contribution for Du > n/(kε). This contribution can be bounded by taking
1 for the minimum in (31):

n

k

∫ ∞

n/(δk)
x1−τ dx = δτ−2

τ − 2
(k/n)τ−3.

Taking κ = min (τ − 2, 3 − τ )> 0 then proves the proposition. �

3.4. Expected average nearest-neighbour degree

As in (22), we can write

E[a(k,Gn)] =E[a(k,Wk
n(δ))] +E[a(k, W̄k

n(δ))]. (32)

By Proposition 1,
E[a(k, W̄k

n(δ))]/(n/k)τ−3 = O(δκ ).

We now focus on the first term. The expected degree of a neighbour of a randomly chosen
vertex of degree k can be written as

E[a(k,Wk
n(δ))] =E[D(er)NVk (U)1{DNVk

(U)∈[δ,1/δ]μn/k}]

=E[DNVk (U)1{DNVk
(U)∈[δ,1/δ]μn/k}](1 + o(1)),

where NVk (U) denotes a uniformly chosen neighbour of a vertex of degree k. By (24), we
can write the connection probability between a vertex of degree k and a neighbour of degree
d ∈ [δ, 1/δ]μn/k as 1 − e−kd/(μn)(1 + o(1)). Therefore

E[a(k,Wk
n(δ))] = (1 + o(1))

∫ μn/(δk)

δμn/k
cx1−τ (1 − e−xk/(μn)) dx

= (1 + o(1))(n/k)3−τ cμ2−τ
∫ 1/δ

δ

x1−τ (1 − e−x) dx.

Combining this with (32) and Proposition 1, and letting first n → ∞ and then δ→ 0,
proves (11).
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4. Proofs of Theorem 2 and 3

We now briefly show how the proof of Theorem 1 can be adapted for the rank-1
inhomogeneous random graph and the hyperbolic random graph to prove Theorems 2 and 3.
We let Pn denote the probability conditioned on the weights in the rank-1 inhomogeneous
random graph or conditioned on the radial coordinates in the hyperbolic model.

4.1. Inhomogeneous random graph

First, we show how to prove Theorem 2(i). In the rank-1 inhomogeneous random graph, the
degree of vertex i with weight hi satisfies Di = hi(1 + oP(1)) when hi � 1 [41]. We condition
on the event that the largest weight is smaller than n1/(τ−1) log (n), which happens with high
probability. Then, when h 	 n(τ−2)/(τ−1)/ log (n), p(h, h′) = hh′/(μn) for all vertices. When
u ∈ Mεn (k), hu = k(1 + oP(1)), so that conditionally on the weight sequence

aεn (k) = 1

k|Mεn (k)|
∑

u∈Mεn (k)

∑
i∈[n]

DiPn(Xiu = 1)

= (1 + oP(1))
1

k

∑
i∈[n]

hi
hik

μn

= (1 + oP(1))
∑
i∈[n]

h2
i

μn
,

which is equivalent to (20) because the weights are also sampled from (3). This proves
Theorem 2(i).

Similarly to (21), we define for the rank-1 inhomogeneous random graph

Wk,HVM
n (δ) = {u : hu ∈ [δμn/k, μn/(δk)]}. (33)

Then it is easy to show that Proposition 1 also holds for the rank-1 inhomogeneous random
graph with (33) instead of Wk

n(δ). Because the weights are sampled from (3) and Pn(Xij = 1) =
min (hihj/(μn), 1), (31) and therefore also Proposition 1 hold for the rank-1 inhomogeneous
random graph as well.

We now sketch how to adjust the proof of Proposition 2 to prove an analogous version for
the rank-1 inhomogeneous random graph, which states that

aεn (k,WkHVM
n (δ))

(n/k)3−τ
P−→cμ2−τ

∫ 1/δ

δ

x1−τ min (x, 1) dx. (34)

Following the proofs of Lemmas 2–4, we see that these lemmas also hold for the rank-1
inhomogeneous random graph if we replace the connection probability of the erased configu-
ration model of 1 − e−DiDj/Ln with min (hihj/μn, 1). Note that for the rank-1 inhomogeneous
random graph the contribution to (30) from three or four different vertices is 0, because the
edge probabilities in the rank-1 inhomogeneous random graph conditioned on the weights are
independent. From these lemmas, (34) follows. This then shows similarly to (23) that

aεn (k)

(n/k)3−τ
P−→cμ2−τ

∫ ∞

0
x1−τ min (x, 1) dx = cμ2−τ

(3 − τ )(τ − 2)
,

which proves Theorem 2(ii).
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4.2. Hyperbolic random graph

We first provide a lemma that gives the connection probabilities conditioned on the radial
coordinates in the hyperbolic random graph. Similarly to (13), let An denote the event that the
maximal type is smaller than n1/(τ−1) log (n). Because t(u) is distributed as (10), P(An) → 1.

Leema 5. Denote

g(x) =

⎧⎪⎨
⎪⎩

2

π
sin−1 (x) x< 1,

1 x ≥ 1.

Then the probability that u and v are connected in a hyperbolic random graph conditionally
on the radial coordinates and on the event An, equals

Pn(Xuv = 1) = g(νt(u)t(v)/n)(1 + o(1)), (35)

where the o(1) term is uniform in u and v.

Proof. Suppose νt(u)t(v)/n ≥ 1. Then,

1 ≤ νt(u)t(v)

n
= ν eR e−(ru+rv)/2

n
= n

ν
e−(ru+rv)/2,

so that ru + rv ≤ 2 log (n/ν) = R. Thus, by (9),

cosh (d(u, v)) = cosh (ru) cosh (rv) − sinh (ru) sinh (rv) cos (θuv)

≤ cosh (ru + rv) ≤ cosh (R),

so that the distance between u and v is less than R and u and v are connected.
Now suppose that νt(u)t(v)/n< 1, so that ru + rv > R. We calculate the maximal value of

θuv such that u and v are connected, which we denote by θ∗
uv. When the angle between u and v

equals θ∗
uv, the hyperbolic distance between u and v is precisely R. Thus, using the definition

of the hyperbolic sine and cosine, we obtain

eR − e−R

2
= eru − e−ru

2

erv − e−rv

2
− eru + e−ru

2

erv + e−rv

2
cos (θ∗

uv). (36)

Since, on the event An, the maximal type is at most n1/(τ−1) log (n),

eru−rv = (t(v)/t(u))2 = O(n2/(τ−1) log2 (n))

uniformly in u and v. Similarly,

erv−ru = O(n2/(τ−1) log2 (n)) and e−ru−rv ≤ eru−rv = O(n2/(τ−1) log2 (n))

uniformly in u and v. Furthermore, e−R = O(n−2), so that (36) becomes

1

2
eR + O(n−2) = 1

4
eru+rv (1 − cos (θ∗

uv)) + O(n2/(τ−1) log2 (n)). (37)

By the definitions of t(u), t(v) and R

eru+rv = eR(e(ru+rv−R)/2)2 = eR
(

n

νt(u)t(v)

)2

.
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This yields for (37) that, uniformly in u and v,

1 − cos (θ∗
uv) = 2

(
νt(u)t(v)

n

)2

+ O

(
n2/(τ−1)−2 log2 (n)

ν2t(u)2t(v)2

n2

)

= 2

(
νt(u)t(v)

n

)2

(1 + O(n−2(τ−2)/(τ−1) log2 (n))),

so that

θ∗
uv = cos−1 (1 − 2(νt(u)t(v)/n)2)(1 + o(1)).

Because u and v are connected if their relative angle is at most θ∗
uv and the angular coordinates

of u and v are sampled uniformly, we obtain that

Pn(Xuv = 1) = 1

π
cos−1 (1 − 2(νt(u)t(v)/n)2)(1 + o(1))

= 2

π
sin−1 (νt(u)t(v)/n)(1 + o(1)).

�
Using this lemma, we now prove Theorem 3.

Proof of Theorem 2. We first focus on k 	 n(τ−2)/(τ−1)/ log (n) and condition on the event
An. By [22, Section 4.3], for vertex u with radial coordinate ru,

En[Du] = (n − 1)
2αe−ru/2

π (α− 1/2)
(1 + O(e−ru )) = 2ν(τ − 1)

π (τ − 2)
t(u)(1 + O((t(u)/n)2)), (38)

where we used that α = (τ − 1)/2, t(u) = e−(R−ru)/2 and R = log (n/ν). By [12, Theorem 2.7],
for every τ and ν, we can interpret the hyperbolic random graph as a variant of the geometric
inhomogeneous random graph, defined in [12], where every vertex u has weight wu = t(u).
By [12, Lemma 3.5(ii)], Du =En[Du](1 + oP(1)) in geometric inhomogeneous random graphs
when wu = t(u) � 1. Combining this with (38) we obtain that, in the hyperbolic random graph,

Du = 2ν(τ − 1)

π (τ − 2)
t(u)(1 + oP(1)) (39)

when 1 	 t(u) 	 n. When u ∈ Mεn (k), Du = k(1 + o(1)). Using (39) then shows that

t(u) = π (τ − 2)

2ν(τ − 1)
k(1 + oP(1))

when k � 1 and u ∈ Mεn (k). On the event An, the largest type is O(n1/(τ−1) log (n)). Therefore,
if u ∈ Mεn (k), then t(u)t(v)/n = o(1) for all v. Applying that sin−1 (x) = x + O(x2) to (35) then
shows that, for u ∈ Mεn (k),

Pn(Xuv = 1) = 2νt(u)t(v)

πn
(1 + o(1)) = τ − 2

τ − 1

kt(v)

n
(1 + oP(1)).
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Thus, conditionally on the types,

aεn (k) = 1

k|Mεn (k)|
∑

u∈Mεn (k)

∑
v∈[n]

DvPn(Xuv = 1)

= (1 + oP(1))
2ν(τ − 1)

π (τ − 2)k

∑
v∈[n]

t(v)
t(v)k(τ − 2)

(τ − 1)n

= (1 + oP(1))
∑
v∈[n]

2νt(v)2

πn
.

Combining this with the power-law distribution of the types (10) proves Theorem 3(i), which
is the same as Theorem 2(i) where μ is replaced with π/(2ν) and c/(τ − 1) with 1.

We now investigate the case k � n(τ−2)/(τ−1). Similarly to (21), we define for the hyperbolic
random graph

Wk,HRG
n (δ) = {u : t(u) ∈ [δζn/k, ζn/(δk)]}

with ζ = 2(τ − 1)/(π (τ − 2)). Using the fact that 2 sin−1 (x)/π ≤ x combined with Lemma 5,
we obtain

Pn(Xuv = 1) ≤ min (2νt(u)t(v)/(πn), 1).

Combining this with the fact that the t(u)s are sampled from a distribution similar to (3) shows
that (31) also holds for the hyperbolic random graph, apart from a multiplicative constant.
From there we can follow the same lines as the proof of Proposition 1, so that Proposition 1
also holds for the hyperbolic random graph.

We follow the lines of the proof of Lemma 2, replacing 1 − e−DuDv/Ln with g(νt(u)t(v)/n)
and using (39) to show that

En[aεn (k,Wk
n(δ))] = (1 + o(1))

k|Mεn (k)|
∑

v∈Mεn (k)

∑
u∈Wk

n (δ)

Dug(νt(u)t(v)/n)

= 2ν(τ − 1)

kπ (τ − 2)

∑
u∈Wk

n (δ)

t(u)g

(
t(u)kπ (τ − 2)

2n(τ − 1)

)
(1 + oP(1))

= (1 + oP(1))
νζ

k

∑
u∈Wk

n (δ)

t(u)g

(
t(u)k

ζn

)
, (40)

where the error term may be placed in front of the summation since the summand is in
n/k[f1(δ), f2(δ)] for some 0< f1(δ), f2(δ)<∞ not depending on n. We analyse this expression
following the lines of the proof of Lemma 3. We define

M(n)[a, b] = 1

ζ 1−τn2−τ kτ−1

∑
u∈[n]

1{Du∈[a,b]ζn/k}

similarly to (26). From there, we follow the lines of the proof of Lemma 3, again replacing the
connection probability 1 − e−DiDj/(μn) of the erased configuration model with g(νt(u)t(v)/n)
and replacing the constant c from (3) with its equivalent constant for the hyperbolic model of
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τ − 1 (see (10)) and μ by ζ . Then (40) results in

En[aεn (k,Wk,HRG
n (δ))] = (1 + oP(1))

νnζ 2

k2

∑
u∈Wk

n (δ)

t(u)k

nζ
g

(
t(u)k

ζn

)

= (1 + oP(1))ν

(
nζ

k

)3−τ ∫ 1/δ

δ

tg(t) dM(n)(t).

Similar steps that prove (29) then show that

En[aεn (k,Wk,HRG
n (δ))]

(n/k)3−τ
P−→(τ − 1)νζ 3−τ

∫ 1/δ

δ

x1−τg(x) dx.

Furthermore, because conditionally on the radial coordinates, the probabilities that two distinct
edges are present are independent, Lemma 4 also holds for the hyperbolic random graph. This
proves an analogous proposition to Proposition 2, which states that

aεn (k,Wk,HRG
n (δ))

(n/k)3−τ
P−→(τ − 1)νζ 3−τ

∫ 1/δ

δ

x1−τg(x) dx.

Therefore, steps similar to those that led to (23) then show that

aεn (k)

(n/k)3−τ
P−→(τ − 1)νζ 3−τ

∫ ∞

0
x1−τg(x) dx.

Finally, ∫ ∞

0
x1−τg(x) dx = 2

π

∫ 1

0
x1−τ sin−1 (x) dx +

∫ ∞

1
x1−τ dx

= 2

π

[
x2−τ sin−1 (x)

2 − τ

]1

0
+ 1

τ − 2

∫ 1

0

x2−τ
√

1 − x2
dx + 1

τ − 2

= 1

τ − 2

∫ 1/(2π )

0
sin (t)2−τ dt,

where the last equation uses the substitution t = sin (x). By [21, equation 3.621.5]

1

τ − 2

∫ 1/(2π )

0
sin (t)2−τ dt = �((3 − τ )/2)�(1/2)

2(τ − 2)�((4 − τ )/2)
=

√
π�((3 − τ )/2)

2(τ − 2)�((4 − τ )/2)
,

where � denotes the gamma function, which finishes the proof of Theorem 3(ii). �
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