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Abstract: The stochastic block model (SBM) is a mixture model for the clustering of nodes in networks.
The SBM has now been employed for more than a decade to analyze very different types of networks in
many scientific fields, including biology and the social sciences. Recently, an analytical expression based
on the collapsing of the SBM parameters has been proposed, in combination with a sampling procedure
that allows the clustering of the vertices and the estimation of the number of clusters to be performed
simultaneously. Although the corresponding algorithm can technically accommodate up to 10 000
nodes and millions of edges, the Markov chain, however, tends to exhibit poor mixing properties,
that is, low acceptance rates, for large networks. Therefore, the number of clusters tends to be highly
overestimated, even for a very large number of samples. In this article, we rely on a similar expression,
which we call the integrated complete data log likelihood, and propose a greedy inference algorithm
that focuses on maximizing this exact quantity. This algorithm incurs a smaller computational cost
than existing inference techniques for the SBM and can be employed to analyze large networks (several
tens of thousands of nodes and millions of edges) with no convergence problems. Using toy datasets,
the algorithm exhibits improvements over existing strategies, both in terms of clustering and model
selection. An application to a network of blogs related to illustrations and comics is also provided.
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1 Introduction

1.1 Context

Research on networks has a long history dating back to the earlier work of Moreno
(1934). Because networks are simple data structures that can represent complex
systems, they are used in many scientific fields (Barabási and Oltvai, 2004; Palla
et al., 2007). Networks were first applied in the social sciences (Fienberg and
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Sorbonne, 90 rue de Tolbiac, F-75634 Paris Cedex 13, France.
E-mail: pierre.latouche@univ-paris1.fr

© 2015 SAGE Publications 10.1177/1471082X15577017



Greedy inference in stochastic block models 565

Wasserman, 1981) to characterize relationships among actors (Holland et al., 1993;
Boulet et al., 2008) but they are now also used to describe neural networks (White
et al., 1986), power grids (Watts and Strogatz, 1998) and the Internet (Adamic and
Glance, 2005; Zanghi et al., 2008). Other examples of real networks can be found
in biology, in which regulatory networks are used to describe the regulation of genes
by transcriptional factors (Milo et al., 2002) and metabolic networks are used to
represent biochemical reaction pathways (Lacroix et al., 2006). As the number of
networks used in practice increases, substantial effort focuses on the development of
graph-clustering algorithms to extract knowledge from network topology. Existing
methods are typically focused on uncovering very specific patterns in the data,
namely, communities or disassortative mixing. For an exhaustive review, we refer
to Goldenberg et al. (2010).

Most graph-clustering algorithms attempt to identify communities. According to
the definition of community, two nodes of the same community are more likely to be
connected than nodes of different communities. These techniques (Newman, 2004,
2006) often maximize the modularity score proposed by Girvan and Newman (2002)
for clustering, using, for example, greedy heuristics (Blondel et al., 2008). However,
the recent work of Bickel and Chen (2009) has demonstrated that this approach is
asymptotically biased and tends to lead to the identification of an incorrect commu-
nity structure, even for large graphs. Alternative strategies (see, for instance, Krivitsky
et al. (2009)) are generally related to the probabilistic model of Handcock et al.
(2007), which generalizes the work of Hoff et al. (2002). In this approach, nodes are
first mapped into a latent space and then clustered depending on their latent positions.
Community structure algorithms are commonly used for affiliation network analysis.
As mentioned in Newman and Leicht (2007), other graph-clustering algorithms are
focused on uncovering disassortative mixing in networks; in this type of network
pattern, nodes are mostly connected to nodes of different clusters, in contrast to a
community structure. These algorithms are particularly suitable for the analysis of
bipartite or quasi-bipartite networks (Estrada and Rodriguez-Velazquez, 2005).

In contrast to these methods, graph-clustering algorithms based on the stochastic
block model (SBM) that can retrieve heterogeneous structures have been developed.
The SBM was first proposed by Nowicki and Snijders (2001) and is a probabilistic
generalization (Fienberg and Wasserman, 1981; Holland et al., 1993) of the work of
White et al. (1976). The SBM assumes that the nodes are arranged in K clusters and
uses a K × K matrix � to describe the probabilities of connection between pairs of
nodes. No assumption is imposed on �, and thus a variety of very different structures
can be considered. In particular, as shown in Latouche et al. (2009), the SBM can be
used to retrieve both communities and disassortative mixing in networks.

Although recent research has focused on the proposal of new types of SBMs to
address, for instance, valued edges (Mariadassou et al., 2010), overlapping clusters
(Airoldi et al., 2006, 2007, 2008; Latouche et al., 2011), or degree (number of
edges of each node) heterogeneity (Karrer and Newman, 2011), Mc Daid et al.
(2013) have chosen to consider the standard SBM and to focus on the inference
task. These authors have proposed a new inference procedure, which shall be
discussed in Section 1.3, that has yielded very encouraging results. Following their
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work, in this article, we consider the standard SBM, which has been widely used in
practice for network analysis for more than a decade. Our objective is to develop
a new optimization procedure to improve upon existing inference strategies. This
framework can be extended to other types of SBMs.

1.2 Inference in stochastic block models

In an SBM, the posterior distribution over the latent variables, given the parameters
and the observed data, cannot be factorized because of conditional dependency.
Therefore, optimization techniques such as the expectation maximization (EM)
algorithm cannot be used directly for clustering. In response, Daudin et al. (2008)
have proposed an approximation method based on a variational EM algorithm
available in the mixer R package written in R and C. Note that an online version of
this algorithm is also available (Zanghi et al., 2010). A Bayesian framework was also
considered by Nowicki and Snijders (2001); in this artilce, conjugate priors for the
model parameters were introduced. Again, because the posterior distribution over
the model parameters, given the data, is not tractable, approximation techniques
must be employed for inference. Thus, Nowicki and Snijders (2001) used a Gibbs
sampling procedure, whereas Latouche et al. (2012) relied on a variational Bayes EM
algorithm. Note that a similar approach has been considered by Hofman and Wiggins
(2008) for a constrained SBM, in which all terms on the diagonal of the connectivity
matrix � are set to a unique parameter � and all off-diagonal terms are set to another
parameter �. A MATLAB and C implementation of this method are available in the
software vbmod.

Two model selection criteria, the integrated classification likelihood (ICL) and the
integrated likelihood variational Bayes (ILvb), have been developed for the SBM for
the purpose of estimating the number of clusters, K, in a network. Standard crite-
ria, such as the Akaike information criterion or the Bayesian information criterion,
cannot be used because they rely on the SBM observed data log likelihood, which
is not tractable in practice (see, for instance, Latouche et al. (2009)). However, as
demonstrated in Biernacki et al. (2010), the ICL tends to miss some important struc-
tures in the data for small data samples because the ICL is based on asymptotic
approximations. To address this shortcoming, Latouche et al. (2012) proposed the
ILvb criterion, which relies on a variational Bayes approximation of the integrated
observed data log likelihood.

1.3 Contributions

An alternative inference strategy has recently been proposed for the SBM in Mc Daid
et al. (2013). The authors first derived an analytical expression based on the collaps-
ing of the SBM parameters. Then, they relied on an allocation sampler algorithm,
as in Nobile and Fearnside (2007), which allows the clustering of the vertices and
the estimation of the number of clusters to be performed simultaneously. This sam-
pling procedure, implemented in C in a software utility that we refer to as colsbm,
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represents an improvement over existing inference strategies for the SBM in terms of
both clustering and model selection. Although the algorithm can technically accom-
modate up to 10 000 nodes and millions of edges, the corresponding Markov chain
tends to exhibit poor mixing properties, that is, low acceptance rates, for such large
networks. In practice, certain procedures intended to reduce the model complexity
are rarely accepted, and the convergence of the chain is slow. Therefore, the number
of clusters tends to be highly overestimated, even for a very large number of samples.
In this article, we attempt to avoid this by relying on a similar analytical expression,
which we call the integrated complete data log likelihood. The corresponding criterion
is denoted by ICLex, where ex stands for ‘exact’. In contrast to the ICL criterion pre-
sented in Daudin et al. (2008), ICLex does not rely on any asymptotic approximations.
We then propose a greedy inference algorithm that maximizes this exact quantity.

In contrast to the clustering algorithms of Daudin et al. (2008) and Latouche
et al. (2012), our proposed algorithm maximizes an analytical criterion and does not
rely on any lower bounds for approximation. The lower bound of the variational
EM algorithm proposed by Daudin et al. (2008) approximates the observed data log
likelihood, whereas Latouche et al. (2012) introduced a lower bound to estimate the
integrated observed data log likelihood. Advantageously, our greedy search approach
can perform the clustering of the vertices and the estimation of the number of clusters
simultaneously, as in Mc Daid et al. (2013), and no model selection criterion must
be computed for various values of K. Starting from a complex model with K = Kup
clusters (where Kup is an upper bound of K), the proposed algorithm swaps labels
until ICLex reaches a local maximum. During this process, clusters may disappear,
that is, their cardinality may reach zero. Such an approach leads to a simple and
time-conserving algorithm with a complexity of O(L + NK2

up), where L is the total
number of edges in the network and N is the number of vertices. Thus, this approach
incurs a lower computational cost than existing inference techniques for the SBM and
can be employed to analyze large networks while avoiding the convergence sampling
issues of Mc Daid et al. (2013).

As will be made evident in a series of experiments, the greedy algorithm takes
advantage of computing the exact ICL and represents an improvement over existing
methods in terms of both clustering and model selection. The algorithm can also
accommodate large networks with tens of thousands of vertices and millions of edges.

2 The stochastic block model

We consider a binary network with N nodes represented by an adjacency matrix X,
such that Xij = 1 if there is an edge from node i to node j and Xij = 0 otherwise. In
this article, we focus on directed networks, that is, networks in which relations are
oriented. Therefore, X is not symmetric. Moreover, we do not consider any self-loop,
that is, an edge from a node to itself. We emphasize that all optimization equations
derived in this work can be easily adapted for application to undirected networks or
to account for self-loops.
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2.1 Model and notations

The SBM assumes that the nodes are arranged in K clusters with prior probabilities
{˛1, . . . , ˛K}, where the cluster of each node is given by its binary membership vector
Zi, such that Zik = 1 if i belongs to cluster k and Zik = 0 otherwise:

˛k = P(Zik = 1) = P(i ∈ k), with
K∑

k=1

˛k = 1.

In contrast to the work of Latouche et al. (2011), each node belongs to a single cluster,
that is,

∑K
k=1 Zik = 1, ∀i. Then, the probability that there is an edge from a node of

cluster k to a node of cluster l is denoted by �kl. Finally, given the clusters of vertices
i and j, all edges are assumed to be conditionally independent:

{
Xij|{i ∈ k, j ∈ l} ∼ B(�kl) for i /= j

Xii = 0.

Generative model
This leads to a simple yet flexible generative model for networks. First, all vectors,

Zi, are sampled independently. We denote by Z the binary N × K matrix that stores
Zis as raw vectors:

p(Z|˛) =
N∏

i=1

M(Zi; 1, ˛) =
N∏

i=1

K∏

k=1

˛
Zik

k
. (2.1)

Then, given the latent structure Z, all edges in X are drawn independently:

p(X|Z, �) =
N∏

i /= j

p(Xij|Zi, Zj, �)

=
N∏

i /= j

K∏

k,l

B(Xij; �kl)ZikZjl

=
N∏

i /= j

K∏

k,l

(
�

Xij

kl
(1 − �kl)1−Xij

)ZikZjl

.

(2.2)

2.2 Integrated classification likelihood criteria

In this article, we will consider the integrated complete data log likelihood
log p(X, Z|K), which will allow us to focus on the inference of Z and K from the
observed data X, because all SBM parameters (˛, �) are integrated out. A similar
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quantity was described in Mc Daid et al. (2013), in a different context and for a dif-
ferent purpose, when the authors derived the posterior distributions of an allocation
sampler algorithm.

We first provide a brief summary of the existing approximations and then, in
Section 2.2.2, derive the integrated complete data log likelihood.

2.2.1 Asymptotic ICL criterion
When a factorized prior distribution p(˛, �|K) = p(˛|K)p(�|K) over the model pa-
rameters is considered, as in Biernacki et al. (2000), the integrated complete data log
likelihood straightforwardly decomposes into two terms:

log p(X, Z|K) = log
(∫

˛,�

p(X, Z, �, ˛|K)d˛d�

)

= log
(∫

�

p(X|Z, �, K)p(�|K)d�

∫

˛

p(Z|˛, K)p(˛|K)d˛

)

= log p(X|Z, K) + log p(Z|K).

(2.3)

However, for an arbitrary choice of the priors p(˛|K) and p(�|K), the marginal distri-
butions p(X|Z, K) and p(Z|K) are usually not tractable and Equation(2.3) does not
have any analytical form. To address this issue, Daudin et al. (2008) have relied on
an asymptotic approximation of log p(X, Z|K), the so-called ICL. Note that the ICL
was originally proposed by Biernacki et al. (2000) for Gaussian mixture models. The
ICL was then adapted by Biernacki et al. (2010) for application to mixtures of mul-
tivariate multinomial distributions and for application to the SBM by Daudin et al.
(2008). In the case of a directed graph without self-loops, such as the one considered
here, the ICL is given by

ICL(Z, K) ≈ log p(X, Z|K)

= max
˛,�

log p(X, Z|˛, �, K) − 1
2

K2 log (N(N − 1)) − K − 1
2

log(N).
(2.4)

For an extensive description of the use of the Laplace and Stirling approximations to
derive the ICL criterion, we refer to Biernacki et al. (2000). Because it approximates
the integrated complete data log likelihood, the ICL is particularly suitable when the
focus is on the clustering task and not on the estimation of the data density. However,
as demonstrated in Biernacki et al. (2010); Mariadassou et al. (2010), analyses based
on the ICL tend to miss certain important structures present in the data because of
the use of (asymptotic) approximations.

We emphasize that the ICL is only used in the literature as a model selection
criterion. In practice, a clustering method, such as an EM-like algorithm, is generally
employed to obtain several estimates Z̃ of Z for various values of the number of classes
K. The ICL is then computed for every pair (Z̃, K), and the pair (Z̃∗, K∗) is chosen such
that the criterion is maximized. Thus, the ICL is optimized only through the results
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(Z̃, K) that are produced by the clustering algorithm. Conversely, after providing an
analytical expression ICLex for the integrated complete data log likelihood in the next
section, we will demonstrate in Section 3 how to directly optimize ICLex with respect
to Z and K. As shown in Section 3.1, such an approach reduces the computational
cost of the inference procedure.

2.2.2 Exact ICL criterion
We rely on the same Bayesian framework used in Latouche et al. (2009). Thus, we
consider non-informative conjugate priors for the model parameters ˛ and �. Because
˛, which describes the cluster proportions, parameterizes a multinomial distribution
(2.1), we rely on a Dirichlet prior distribution:

p(˛) = Dir
(
˛; n0 = (n0

1, . . . , n0
K)
)

.

The hyperparameters are frequently fixed to 1/2, that is, n0
k

= 1/2, ∀k. Such a distri-
bution corresponds to a non-informative Jeffreys prior, which is known to be proper
(Jeffreys, 1946). A uniform distribution can also be obtained by setting the hyperpa-
rameters to 1.

Moreover, because the presence or absence of an edge between nodes is sampled
from a Bernoulli distribution, we consider independent beta prior distributions to
model the connectivity matrix �:

p(�) =
K∏

k,l

Beta(�kl; �0
kl, �0

kl).

Again, if no prior information is available, then all hyperparameters �0
kl

and �0
kl

can
be set to 1/2 or 1 to obtain a Jeffreys or uniform distribution.

With these choices of conjugate prior distributions over the model parameters, the
marginal distributions p(X|Z, K) and p(Z|K) in Equation(2.3) have analytical forms,
as does the integrated complete data log likelihood, as proven in Appendix A. We
refer to the corresponding criterion as ICLex, where ex indicates ‘exact’. This criterion
is given by

ICLex(Z, K) = log p(X, Z|K)

=
K∑

k,l

log

(
�(�0

kl
+ �0

kl
)�(�kl)�(�kl)

�(�kl + �kl)�(�0
kl

)�(�0
kl

)

)
+ log

(
�(
∑K

k=1 n0
k
)
∏K

k=1 �(nk)

�(
∑K

k=1 nk)
∏K

k=1 �(n0
k
)

)
,

(2.5)
where the components nk are

nk = n0
k +

N∑

i=1

Zik, ∀k ∈ {1, . . . , K}
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and can be regarded as pseudo counters of the number of nodes in each class. More-
over, the parameters (�kl, �kl) are given by

�kl = �0
kl +

N∑

i /= j

ZikZjlXij, ∀(k, l) ∈ {1, . . . , K}2,

and

�kl = �0
kl +

N∑

i /= j

ZikZjl(1 − Xij), ∀(k, l) ∈ {1, . . . , K}2.

These parameters represent pseudo counters of the number of edges and the number
of non-edges that connect nodes of class k to nodes of class l.

Because the calculation of ICLex(Z, K) involves marginalization over the model
parameters ˛ and �, which have non-informative priors, the number of classes,
K, is automatically penalized, and the model complexity is therefore controlled.
Indeed, as highlighted by Biernacki et al. (2000), for standard Gaussian mixture
models, the penalization terms are encompassed through the use of the gamma
function. For example, replacing the gamma function �(·) with the Stirling ap-
proximation �(t + 1) ≈ tt+1/2 exp(−t)(2�)1/2 in the second term in (2.5) would
reveal the penalization (1/2)(K − 1) log N in (2.4). Similarly, replacing the first
term in (2.5) with such an asymptotic approximation would reveal the penalization
(1/2)K2 log(N(N − 1)) in (2.4).

Note that maximizing ICLex(Z, K) = log p(X, Z|K) with respect to Z is only
equivalent to maximizing log p(Z|X, K), because log p(X, Z|K) = log p(Z|X, K) +
log p(X|K). Although log(X, Z|K) has an analytical form, log p(Z|X, K) does not.
Therefore, existing algorithms for the SBM that rely on p(Z|X, K) have been
obliged to consider approximation techniques, such as Gibbs sampling or varia-
tional bounds, for inference purposes, whereas we consider an exact quantity here.
Moreover, the ICLex criterion is related to the variational Bayes approximation of
the integrated observed data log likelihood log p(X|K) proposed by Latouche et al.
(2012). The key difference is that the parameters (nk, �kl, �kl) in ICLex depend on
the hard assignment Z of nodes to classes and not on the approximated posterior
probabilities �. Moreover, the calculation of ICLex does not involve any entropy
term.

3 Greedy optimization

Because the model parameters have been marginalized out, the ICLex criterion
involves only the cluster indicator matrix Z, whose dimensionality depends on the
number of clusters K. Thus, this integrated likelihood is a function only of a partition
P, that is, an assignment of the vertices to clusters. Directly searching for a global
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maximum of ICLex is not feasible, because every possible partition of the vertices
must be tested using various values of K. However heuristics are available to obtain
local maxima for this combinatorial problem. These approaches have already been
used for graph clustering using ad hoc criteria such as modularity (Newman, 2004;
Blondel et al., 2008) and are reminiscent of the well-known iterated conditional
modes algorithm of Besag (1986) used for maximum a posteriori estimation in
Markov random fields.

The algorithm (see Algorithm 1) begins with an SBM with K = Kup clusters,
where Kup is an upper bound on the number of clusters. Kup is assumed to be
given as an input, along with an N × Kup matrix Z. In practice, Kup is set to a
large value based on user knowledge of the problem at hand, whereas Z can be
initialized using the methods described in the next section. The algorithm then
cycles randomly through all vertices of the network. At each step, a single node i
is considered, while all membership vectors Zj for j /= i are fixed. If i is currently in
cluster g, the method searches for every possible label swap, that is, removes i from
cluster g, assigns it to a cluster h /= g and then computes the corresponding change
�g→h in the ICLex criterion. Note that �g→h takes two forms (see B) depending
on whether cluster g is empty after the removal of i. If no label swap leads to an
increase in the criterion, then the vector Zi remains unchanged. Otherwise, the label
swap that yields the maximal increase is applied and Zi is modified accordingly.
During this process, clusters may disappear, that is, their cardinality may reach
zero. Each time one such modification is accepted, the model is updated and the
corresponding column is removed from the cluster indicator matrix Z. Finally, the
algorithm terminates when a complete pass over the vertices does not lead to any
increase in the ICLex criterion. Thus, the algorithm automatically infers the number
of clusters while clustering the vertices of the network. Beginning from an over-
segmented initial solution, our approach simplifies the model until a local maximum
is reached.

3.1 Complexity

To construct such an algorithm, it is sufficient to know how to compute the changes in
the ICLex criterion that are induced by the possible swaps (from cluster g to cluster h)
for a given node i while the other nodes are fixed. Such changes can be efficiently
computed (see B for details), and the complexity of identifying the best swap move-
ment for a node is, on average, O(l + K2), where l is the average number of edges per
node. Such complexity can be achieved in practice, because good approximations of
the logarithm of the gamma function are available with constant running time. The
greedy algorithm therefore has a total complexity of O(N(l + K2

up) + L), because the
cost of a swap movement is O(l + K2); the cost of the initialization of the edge coun-
ters (�kl, �kl) is L (the total number of edges in the graph), and several complete passes
over the set of nodes will be performed (typically fewer than 10). Eventually, this can
be simplified to O(NK2

up + L), because K2
up may certainly dominate l in contrast to the
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Algorithm 1: Greedy ICL
Set K = Kup ; swap = 1 ;
Initialize the N × Kup matrix Z ; Compute �,�,n ;
while swap == 1 do

V = {1, . . . , N} ; swap = 0 ;
while V not empty do

Select a node i randomly in V ; Remove i from V ;
If i is in cluster g, compute all terms �g→h, ∀h /= g ;
if at least one �g→h is positive then

swap = 1 ;
Find h such that �g→h is maximum ;
Swap labels of i: Zig = 0 and Zih = 1 ;
if g is empty then

Remove column g in Z ; Set K = K − 1 ;
end
Update rows and columns (g, h) of the matrices � and � ;
Update the components g and h of vector n;

end
end

end
Result: (Z, K)

complexity of O(LK3
up) achieved using a variational algorithm and a model selection

criterion as in Daudin et al. (2008); Latouche et al. (2012). Indeed, in contrast to our
approach, which estimates the number of clusters within a single run while clustering
the nodes, these approaches are run multiple times for various values of K, and K∗
is then chosen, such that the corresponding model selection criterion is maximized.
Because each run has a cost of O(LK2), the overall complexity is O(LK3

up).

3.2 Initialization and restarts

Several solutions are possible for the initialization of the algorithm; a simple choice is
to sample random partitions, whereas a more relevant, but more expensive, starting
point can be obtained using the k-means algorithm (using the adjacency matrix
by rows as the input and a classical Euclidean distance). One possible compromise
in terms of computational burden is to use only few iterations of k-means. We
used the latter approach in all experiments that we conducted. Moreover, because
our method is only guaranteed to reach a local optimum, a common strategy is
to conduct the optimization algorithm with multiple initializations and to retain
the best one based on the ICLex criterion. From a practical perspective, the sole
tuning parameter that the user must provide is Kup, the initial number of clusters.
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This choice may have an impact on the quality of the solution generated by
the algorithm; a larger value may help prevent the identification of a bad local
optima.

3.3 Hierarchical clustering

Thus far, we have considered simple label swaps, and the solution offered by the
greedy algorithm is the local optimum with respect to the neighbouring set of can-
didate solutions, where the labels of each node can be changed only one at a time.
Eventually, as a final step, the neighbouring set can be relaxed, thereby permitting
multiple (simultaneous) label swaps, by applying merge movements between clusters.
Such movements are applied if the increase in the value of the objective function can
be accomplished using a greedy hierarchical algorithm at a cost of O(K3) (see C for
details). Because the label-swap algorithm usually considerably reduces the number
of clusters (K << Kup), the computational cost of this final step is low.

4 Experiments using synthetic data

To assess the greedy optimization method, a simulation study was performed, and the
solution proposed by our method was compared with those generated by available
implementations of algorithms for SBM inference: vbmod, mixer and colsbm. For
a description of these methods, refer to Section 1. In these experiments, we used
the latest version of the colsbm code, which includes an additional movement type
compared with the algorithm described in the associated publication. This movement
was found to greatly enhance the results.

Our objective was to evaluate the ability of the different solutions to recover a sim-
ulated clustering without knowing the number of clusters. Only a reasonable upper
bound Kup on K was provided to the algorithms when needed. Variational methods
optimize a lower bound for various values of K and select K∗, such that the model
selection criterion is maximized: ICL for mixer and ILvb for vbmod. Conversely,
the collapsed Gibbs sampler automatically provides an estimate of K, because the
posterior of K is made available.

As a baseline, we also compared our approach with a standard spectral clustering
approach (Shi and Malik, 2000). In all simulations, we supplied this spectral approach
using the true number of clusters.

Two indexes were used to assess the algorithm performance: The normalized mu-
tual information (see Vinh and Epps, 2010 for details and a justification of this mea-
sure for partition comparison) and the adjusted Rand index (Hubert and Arabie,
1985). These two measures were used to compare the estimated cluster membership
matrix and the simulated ground truth.

The performances were evaluated on simulated clustering problems of varying
complexity and with different settings to gain insights on the influence of the number
of clusters K, the number of vertices N and the type of connectivity matrix �.
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Figure 1 Means of mutual information (left) and adjusted Rand index (right) between the estimated and true
cluster membership matrices using 20 simulated graphs for each value of ˇ in {0.45, 0.43, . . . , 0.03, 0.01} and
N = 100, K = 5, � = 0.01 for the algorithms greedy ICL, vbmod, colsbm and mixer. The spectral clustering
approach was run with the true number of clusters as a baseline.
Source: Authors’ own.

4.1 Setting 1: Small-Scale community structures

The first setting to be evaluated is a classical community simulation with
N = 100 vertices and K = 5 clusters. The cluster proportions were set to ˛ =
(1/5, 1/5, 1/5, 1/5, 1/5), and the connectivity matrix took a diagonal form with off-
diagonal elements equal to 0.01 (�kl = 0.01, ∀k /= l) and diagonal elements given by
�kk = ˇ, ∀k. ˇ is a complexity-tuning parameter that ranges from 0.45 to 0.01. When
ˇ reaches 0.01, the model is not identifiable (the connectivity matrix is constant), and
the true cluster memberships cannot be recovered. This model can therefore be used
to simulate problems of varying complexity, from problems with a clear structure
(ˇ = 0.45) to problems without any structure (ˇ = 0.01). The experiments were per-
formed 20 times for each value of ˇ, and the average values of the normalized mutual
information and the adjusted Rand index over these 20 simulated graphs are depicted
in Figure 1 for all algorithms, together with the standard deviation using ribbons. To
ensure that the results produced were as comparable as possible, the parameters of
the different algorithms were set as follows: vbmod, mixer and greedy ICL were all
initialized 10 times, and for each method, the best run was selected based on the
corresponding model selection criterion. The variational methods were run with K
values between 2 and 20, and the best clustering was adopted as the final result. For
greedy ICL, the parameters of the priors �0, �0 and n0

k
were set to 1, and Kup was fixed

at 20. Finally, the collapsed Gibbs sampler was run for 250,000 iterations (more than
twice the default value).
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The results illustrated in Figure 1 demonstrate that greedy ICL outperformed the
other methods for complex problems, that is, low values of ˇ. The simulated clustering
was recovered until ˇ reached 0.25. For larger values of ˇ, the different algorithms
performed identically, but beyond this limit, the results of greedy ICL were somewhat
superior. In the transitional regime, greedy ICL yielded slightly better results than the
other algorithms, followed by colsbm, vbmod and the spectral baseline, which yielded
comparable results. mixer deviated from the planted clustering slightly sooner. In this
simple setting, all algorithms were quite similar in terms of both normalized mutual
information and adjusted Rand index.

4.2 Setting 2: Small-Scale community structures with a hub cluster

The purpose of the second setting was to explore the performances of the methods
when the latent structure exhibits patterns other than a community structure. To this
end, graphs were generated using the SBM with an affiliation probability matrix �
with the following form:

� =

⎛

⎜⎜⎜⎜⎝

ˇ ˇ . . . . . . ˇ

ˇ ˇ � . . . �

ˇ � ˇ . . . �

ˇ � . . . ˇ �

ˇ � . . . . . . ˇ

⎞

⎟⎟⎟⎟⎠
.

The clusters, therefore, corresponded to communities, with the exception of one
cluster of hubs that was connected with probability ˇ to all other clusters. Graphs with
N = 100 vertices, K = 5 clusters and ˛ = (1/5, 1/5, 1/5, 1/5, 1/5) were generated
using this connection pattern. The parameter � was set to 0.01, and ˇ ranged from
0.45 to 0.01, as before. The other simulation parameters did not change. The results
are presented in Figure 2.

As expected, the vbmod algorithm, which searches only for communities, was
strongly affected by this change of setting and systematically missed the hub cluster;
the same was true of the spectral clustering. For the remaining methods, the best
results were obtained using greedy ICL, which still recovered the planted clustering
when ˇ > 0.25, whereas the performance of mixer began to suffer at ˇ = 0.4. The
collapsed Gibbs sampler also yielded good results in this setting, very similar to those
of greedy ICL and outperforming mixer. Eventually, the spectral clustering approach
began to suffer from the same shortcoming as vbmod and tended to miss the hub class.
Note that for difficult problems, the spectral clustering approach tends to perform
slightly better. The variances of the results were comparable for all algorithms.

4.3 Setting 3: Small-Scale community structures with a hub cluster
and unbalanced partitions

The third setting (see Figure 3) was identical to Setting 2 (community clusters plus
a hub cluster) but with unbalanced clusters. This setting was constructed to confirm
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Figure 2 Mean of mutual information (left) and adjusted Rand index (right) between the estimated and true
cluster membership matrices using 20 simulated graphs for each value of ˇ in {0.45, 0.43, . . . , 0.03, 0.01} and
N = 100, K = 5, � = 0.01 for the algorithms greedy ICL, vbmod, colsbm and mixer. The spectral clustering
approach was run with the true number of clusters as a baseline.
Source: Authors’ own.

that the proposed greedy approach would not fail under such conditions. The cluster
proportions were fixed using an exponentially decreasing scheme, such that ˛k ∝ 0.7k.
Thus, 36% of the nodes belonged to the largest cluster, whereas only 8.5% of the
nodes, on average, belonged to the smallest one. The smallest proportion was assigned
to the hub cluster to obtain a more realistic setting.

The normalized mutual information and the adjusted Rand index yielded com-
parable results in this setting. Because the hub cluster corresponded to a smaller
proportion of the network than in the previous experiment, vbmod and the spectral
approach were less strongly penalized, although they still exhibited lower perfor-
mances than the other approaches. Consistent with the previous results, the greedy
ICL and colsbm algorithms yielded better results than mixer. In the transitional re-
gion between simple and complex problems (near a ˇ value of 0.2), the performance
of greedy ICL was superior to that of colsbm.

4.4 Setting 4: Medium-Scale community structures with a hub cluster

The fourth setting was similar to Setting 2 (community clusters plus a hub cluster) but
featured additional nodes and clusters to enable the study of the effects of these two
parameters. Thus, the number of vertices was set to N = 500, and the number of clus-
ters was set to K = 10. The cluster proportions were defined as ˛ = (1/10, . . . , 1/10),
and the values of all other parameters were kept the same as before. For this fourth
experiment, the results presented in Figure 4 were very similar for greedy ICL and
colsbm, which outperformed the other approaches. Mixer also yielded very good
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Figure 3 Means of mutual information (left) and adjusted Rand index (right) between the estimated and true
cluster membership matrices using 20 simulated graphs for each value of ˇ in {0.45, 0.43, . . . , 0.03, 0.01} and
N = 100, K = 5, � = 0.01 and ˛ = (0.36, 0.25, 0.17, 0.12, 0.08) for the algorithms greedy ICL, vbmod, colsbm
and mixer. The spectral clustering approach was run with the true number of clusters as a baseline.
Source: Authors’ own.

results until ˇ reached 0.3, at which point the quality of the results began to decrease
quite rapidly. Although the spectral baseline approach and vbmod did not recover
the exact planted partitions even when the problem was simple (ˇ values near 0.4),
they outperformed mixer when the planted structure was not particularly strong.

The results obtained using the various algorithms in this scenario were better
than those obtained previously (in terms of both normalized mutual information and
adjusted Rand index). The variances in the results were lower than for Setting 2. This
result is readily explained by the increase in the number of nodes per cluster. The
transitions between high and low values of the normalized mutual information and
the adjusted Rand index were also sharper than in the previous experiments, for the
same reason.

4.5 Setting 5: Large-Scale problem with complex structure

The final tested setting involved larger graphs with N = 10 000 vertices. The planted
structure was not a pure community pattern. Some interactions between clusters
were activated randomly using a Bernoulli distribution, as described by the following
generative model:

�kl =
{

ZU + (1 − Z)�, if k /= l

U, if k = l,
(4.1)
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Figure 4 Means of mutual information (left) and adjusted Rand index (right) between the estimated and true
cluster membership matrices using 20 simulated graphs for each value of ˇ in {0.45, 0.43, . . . , 0.03, 0.01} and
N = 500, K = 10, � = 0.01 for the algorithms greedy ICL, vbmod, colsbm and mixer. The spectral clustering
approach was run with the true number of clusters as a baseline.
Source: Authors’ own.

with Z ∼ B(0.1), U ∼ U(0.45) and � = 0.01. Because of the size of the problem and
the complex nature of the underlying structure, only four algorithms were appropriate
for these graphs, namely, greedy ICL, colsbm, vbmod and spectral clustering. mixer
was not tested because it is not compatible with such large graphs. All approaches
were used to cluster 20 simulated graphs generated using this scheme. The greedy
algorithm was initialized using Kup = 100 and the same parameters used previously
for the prior distributions. The results, which are presented as boxplots in Figure 5,
reveal that greedy ICL exhibited a clear advantage over all other methods. Specifi-
cally, greedy ICL achieved an average normalized mutual information value of 0.88,
whereas colsbm achieved only a value of 0.67. In fact, the greedy solution yielded
approximately 80 clusters for all simulations, whereas the Gibbs sampler yielded
more than 240 clusters on average, and therefore produced highly over-segmented
partitions of the graphs. Although they were supplied with the true number of clus-
ters, the other two approaches, namely, vbmod and the spectral method, produced
results that were clearly inferior to those of greedy ICL, with average normalized
mutual information values of approximately 0.71 for the spectral method and 0.66
for vbmod.

In summary, the results of these experiments indicate that greedy ICL compares
favourably with the other existing solutions for SBM inference in all settings. The
results obtained in complex settings, that is, large graphs and a complex underlying
structure (Setting 5), are particularly encouraging because greedy ICL clearly outper-
formed the collapsed Gibbs sampler and the other solutions, even when these methods
were provided with the true number of clusters.
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Figure 5 Means of the mutual information between the estimated and true cluster membership matrices
based on 20 simulated graphs with N = 10 000 and K = 50. The spectral clustering approach and vbmod were
run using the true number of clusters as a baseline.
Source: Authors’ own.

5 Real dataset: Communities of blogs

Finally, the proposed algorithm was tested on a real network in which the vertices
corresponded to blogs and the edges corresponded to known hyperlinks between
blogs. All blogs included in the network were related to a common topic, that is,
illustrations and comics.

The network was constructed using a community extraction procedure (Côme
and Diemert, 2010) that begins with known seeds and expands from them to identify
a dense core of nodes surrounding the seeds. The network consisted of 1360 blogs
linked by 33,805 edges. The dataset was expected to exhibit specific patterns, namely,
communities, such that two blogs of the same community were more likely to be
connected than nodes of different communities. To test this hypothesis, we performed
a qualitative comparison of the results of the greedy ICL algorithm and the community
discovery method of Blondel et al. (2008).

Beginning with Kup = 100 clusters, the greedy ICL identified K = 37 clusters. The
corresponding clusters are illustrated in Figure 6, which presents an image of the ad-
jacency matrix with rows/columns sorted by cluster number. Thus, it appears that the
vast majority of the identified clusters correspond to small sub-communities. These
sub-communities, all correspond to known groups. For instance, a group of blogs of
illustrators for Disney was identified. Other examples include clusters of blogs of stu-
dents who attended the same illustration school, such as the ECMA in Angoulême or
‘Gobelins L’École de L’Image.’ However, some clusters had more complex connectivity

Statistical Modelling 2015; 15(6): 564–589



Greedy inference in stochastic block models 581

Figure 6 Adjacency matrix of the network of blogs; the rows/columns are sorted by cluster number based on
the clusters identified by the greedy ICL algorithm. The cluster boundaries are depicted as white lines.
Source: Authors’ own.

structures and consisted of hubs with high connectivity to blogs of different clusters.
These clusters corresponded to the blogs of famous writers, such as Boulet.

To provide a qualitative understanding of the level of interest of the identified clus-
tering, we also report the results obtained using the community discovery algorithm
of Blondel et al. (2008) in Figure 7. Using this approach, only eight clusters were
identified, all of which corresponded to sub-communities. Clusters of hubs could not
be recovered. The substantial difference between the numbers of clusters estimated
by the two methods may be explained by two factors. First, modularity is prone to a
resolution-limit problem (Fortunato and Barthélemy, 2007), which prevents such a
solution from extracting small-scale structures. This problem explains why the small
sub-communities extracted by greedy ICL were not recovered using the modularity.
The behaviour of the ICLex criterion with respect to the resolution-limit problem is
not clear and requires further investigation. However, we observed that when the
proposed criterion was applied to this dataset, finer structures than those obtained
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Figure 7 Adjacency matrix of the network of blogs; the rows/columns are sorted by cluster number based on
the clusters identified via modularity optimization. The cluster boundaries are depicted as white lines.
Source: Authors’ own.

using modularity were recovered. Second, the difference in the manner in which the
two criteria use or do not use degree correction (Karrer and Newman, 2011) may
also explain the disparity in the number of identified clusters. Whereas modularity is
a degree-corrected criterion that downscales the weights of the edges between highly
connected vertices, the ICLex criterion for the basic SBM used here is not. Whether
a degree correction is applied is a modelling choice that merits investigation and val-
idation; however, it seems that even without degree correction, the results obtained
by greedy ICL are meaningful, particularly the identification of hub clusters.

6 Conclusion

In this article, we considered an analytical expression of the integrated complete data
log likelihood. We then proposed a greedy optimization algorithm to maximize this
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exact quantity. Starting from an over-segmented partition, this approach simultane-
ously simplifies the model and clusters the vertices until a local maximum is reached.
This greedy algorithm has a competitive complexity and is capable of handling
networks with tens of thousands of vertices and millions of edges. We demonstrated
using simulated data that the method is an improvement over existing graph-
clustering algorithms in terms of both model selection and clustering of vertices.
A qualitative comparison between methods was also performed using an original
network constructed from blogs related to illustration, comics and animation.

Appendix

A Integrated complete data log likelihood

Using factorized and conjugate prior distributions over the model parameters, the
integrated complete data log likelihood is given as follows:

log p(X, Z|K) =
K∑

k,l

log

(
B(�kl, �kl)

B(�0
kl

, �0
kl

)

)
+ log

(
C(n)
C(n0)

)
,

where

• �kl = �0
kl

+∑N
i /= j ZikZjlXij for all (k, l) in {1, . . . , K}2

• �kl = �0
kl

+∑N
i /= j ZikZjl(1 − Xij) for all (k, l) in {1, . . . , K}2

• the components of the vector n are nk = n0
k
+∑N

i=1 Zik, for all k in {1, . . . , K}
• the function B(a, b) is such that B(a, b) = �(a)�(b)

�(a+b) for all (a, b) in R2

• the function C(·) is such that C(x) =
∏K

k=1 �(xk)

�(
∑K

k=1 xk)
for all x in RK.

Proof: Considering factorized prior distributions, the integrated complete data log
likelihood decomposes into two terms:

log p(X, Z|K) = log
(∫

˛,�

p(X, Z, �, ˛|K)d˛d�

)

= log
(∫

�

p(X|Z, �, K)p(�|K)d�

∫

˛

p(Z|˛, K)p(˛|K)d˛

)

= log p(X|Z, K) + log p(Z|K).

(A.1)
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The first term in (A.1) can be obtained as follows:

p(X|Z, K) =
∫

�

p(X|Z, �, K)p(�|K)d�

=
∫

�

( K∏

k,l

�
∑N

i /= j ZikZjlXij

kl
(1 − �kl)

∑N
i /= j ZikZjl(1−Xij)

)

×
K∏

k,l

1

B(�0
kl

, �0
kl

)
�

�0
kl

−1
kl

(1 − �kl)�0
kl

−1d�

=
K∏

k,l

(
B(�kl, �kl)

B(�0
kl

, �0
kl

)

∫

�kl

Beta(�kl; �kl, �kl)d�kl

)

=
K∏

k,l

B(�kl, �kl)

B(�0
kl

, �0
kl

)
.

The second term in (A.1) can be obtained as follows:

p(Z|K) =
∫

˛

p(Z|˛, K)p(˛|K)d˛

=
∫

˛

( K∏

k=1

˛
∑N

i=1 Zik

k

) 1
C(n0)

K∏

k=1

˛
n0

k
−1

k
d˛

= C(n)
C(n0)

∫

˛

Dir(˛; n)d˛

= C(n)
C(n0)

.

Finally,

log p(X, Z|K) =
K∑

k,l

log

(
B(�kl, �kl)

B(�0
kl

, �0
kl

)

)
+ log

(
C(n)
C(n0)

)
.

B Change in ICL induced by a swap movement i : g → h

In each step of the greedy ICL algorithm, a single node i is considered. If i is currently
in cluster g, the method tests every possible label swap g → h, that is, it removes
i from cluster g and assigns it to a cluster h /= g. The corresponding change in the
ICLex criterion is denoted by �g→h. To calculate each term �g→h for all h /= g, we
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consider two cluster indicator matrices, Z and Ztest. Z describes the current partition
of the vertices in the network, whereas Ztest represents the partition after the swap
g → h is applied:

⎧
⎪⎨

⎪⎩

Ztest
j = Zj, ∀j /= i

Ztest
ik

= Zik = 0, ∀k /= g, h,

while

⎧
⎨

⎩

Ztest
ig = 0, Zig = 1

Ztest
ih

= 1, Zih = 0.

Thus,

�g→h = ICLex(Ztest, Ktest) − ICLex(Z, K).

Note that �g→h takes two forms depending on whether cluster g is empty after the
removal of i. If g is empty, then the model dimensionality changes (Ktest = K − 1),
and this change in dimensionality must be taken into account when evaluating the
potential increase induced by the swap movement.

B.1 Case 1:
∑

i Ztest
ig > 0, cluster g is not empty after the removal of i

�g→h = log
(

C(ntest)
C(n)

)
+

K∑

k,l

log
(

B(�test
kl

, �test
kl

)

B(�kl, �kl)

)

= log

(
�(ntest

g )�(ntest
h

)

�(ng)�(nh)

)
+

K∑

l=1

∑

k∈{g,h}
log

(
B(�test

kl
, �test

kl
)

B(�kl, �kl)

)

+
∑

k/∈{g,h}

∑

l∈{g,h}
log

(
B(�test

kl
, �test

kl
)

B(�kl, �kl)

)

= log
(

�(ng − 1)�(nh + 1)
�(ng)�(nh)

)
+

K∑

l=1

∑

k∈{g,h}
log

(
B(�kl + ı

(i)
kl

, �kl + 	
(i)
kl

)

B(�kl, �kl)

)

Statistical Modelling 2015; 15(6): 564–589
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+
∑

k/∈{g,h}

∑

l∈{g,h}
log
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kl

, �kl + 	
(i)
kl
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= log
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nh
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)
+
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log

(
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)
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)

+
∑

k/∈{g,h}
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log

(
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(i)
kl
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(i)
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)
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)
,

where ı
(i)
kl

the change in the edge counter �kl induced by the label swap:

ı
(i)
kl

= 1{k=h}
N∑

j /= i

ZjlXij + 1{l=h}
N∑

j /= i

ZjkXji − 1{k=g}
N∑

j /= i

ZjlXij

− 1{l=g}
N∑

j /= i

ZjkXji.

Moreover, 	
(i)
kl

is defined as follows:

	
(i)
kl

= (
1{k=h} − 1{k=g}

)
(nl − n0

l − Zil) + (
1{l=h} − 1{l=g}

)
(nk − n0

k − Zik) − ı
(i)
kl

.

These updated quantities can be computed in O(li), where li is the degree of i (total
number of edges from and to i). Therefore, the average complexity of identifying the
best swap movement for a node is O(l + K2), where l is the average degree of the
network for computing ı

(i)
kl

and K2 is the complexity of computing �swap with all
possible h labels and identifying the best one.

B.2 Case 2:
∑

i Ztest
ig = 0, cluster g disappears

In this case, the dimensionality of n0 changes, and we will denote the corresponding
vector of size K − 1 by n0∗ = (n0, . . . , n0):

�g→h = log
(

C(n0)
C(n)

C(ntest)
C(n0∗)

)

+
∑

(k,l) /= g

k=h or l=h

log

(
B(�kl + ı
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kl
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(i)
kl

)
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)
+
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log

(
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kl
, �0

kl
)
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)
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= log
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nh

n0
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)
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+
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)
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The complexity in this case is the same as previously, that is, O(l + K2).

C Change in ICL induced by a merge movement

�g∪h = log
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�(ng)�(nh)

)

+
∑

(k,l) /= g

k=h or l=h

log

(
B(�kl + ı

(i)
kl

, �kl + 	
(i)
kl

)

B(�kl, �kl)

)
+

∑

k=g or l=g

log

(
B(�0

kl
, �0

kl
)

B(�kl, �kl)

)

where ı
(i)
kl

is the change in the edge counter �kl induced by the merge:

ı
(i)
kl

= 1{k=h}(�gl − �0
gl) + 1{l=h}(�kg − �0

kg) + 1{k=h and l=h}(�gg − �0
gg). (C.1)

Moreover, 	
(i)
kl

is defined as follows:

	
(i)
kl

= 1{k=h}(�gl − �0
gl) + 1{l=h}(�kg − �0

kg) + 1{k=h and l=h}(�gg − �0
gg). (C.2)
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