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We present a method for creating a network of gene co-occur-
rences from the literature and partitioning it into communities of
related genes. The way in which our method identifies communi-
ties makes it likely that the component genes of each community
will be related by their function. The method processes a large
database of article abstracts, synthesizing information from many
sources to shed light on groups of genes that have been shown to
interact. It is a tool to be used by researchers in the biomedical
sciences to swiftly search for known interactions and to provide
insight into unexplored connections. The partitioning procedure is
designed to be particularly applicable to large networks in which
individual nodes may play a role in more than one community. In
this paper, we explain the details of the method, in particular the
partitioning process. We also apply the method to produce com-
munities of genes related to colon cancer and show that the results
are useful.

The automated analysis of biomedical text is useful in any form,
because knowledge in the biomedical sciences is predominantly

disseminated in the form of journal articles. However, when applied
to the subject of human gene function, automated text analysis is
critically important. There are �15,000 currently known human
genes and �1 million related articles in the Medline databaseb

alone. Moreover, genes act in a complex interrelated way, so
information from many experiments is necessary to explain the
function of a typical gene. A comprehensive study of even a simple
cellular process involving several genes might require a researcher
to be familiar with hundreds of articles. Merely locating all relevant
articles in a database by using a simple search utility would be time
consuming, not to mention inefficient and difficult, because of
shortcomings of the human gene nomenclature system. In contrast,
our method indexes gene symbol occurrences in all articles of large
database such as Medline in �1 dayc and then can produce a list of
communities of functionally related genes in another half day.d

In this article, we present a method to find communities of
related genes. The method creates a network of gene symbol
co-occurrences from Medline article abstracts and partitions this
network into communities. The genes in each community are
likely to be functionally related because of the way in which the
communities are identified, and because most recent research on
genes and proteins has been devoted to their function. This
method can thus be a valuable tool that both summarizes
available information and indicates possible directions of re-
search. The format of the results is designed to make them easy
to use. The results can easily include a list of the Medline
PubMed identification numbers (PMID) for articles containing
each gene and pair of genes to facilitate research. Varying the
user-selected key words (see Method Overview) allows the
method to be applied repeatedly and focused on particular topics
of interest.

We apply our method to the Medline database to identify
communities of genes related to colon cancer. We show that genes
placed together in a community that are not explicitly connected in
any Medline article or in the Online Mendelian Inheritance in Man
(OMIM)e listing for either gene can nevertheless be related by their
function. The communities thereby imply connections among genes

that may otherwise be overlooked or that would require much time
and effort to be found manually. We also show that our method
separates genes that co-occur but are not functionally related into
different communities. Finally, we demonstrate cases in which a
node common to two communities indicates a link between two
groups of related genes.

It is important to note that the gene communities in the results
are not meant to perfectly reproduce biological reality. The
communities are simply interesting artifacts within the network
that provide a powerful method for organizing and presenting
information from the literature.

Method Overview
Gene symbol mentions are first extracted from almost allf 12.5
million Medline article titles and abstracts. We then select sets
of genes found to be statistically correlated to a set of user-
selected (related) key words. These two steps are performed
following the procedure of ref. 1. This procedure includes steps
to account for alias symbols and to distinguish gene symbol
abbreviations from identical abbreviations referring to other
conceptsg (2). Selecting genes correlated to certain key words
ensures continuity of biological function of the genes considered
and reduces the number of genes considered so the results can
be readable and useful.

Networks are then created from these sets of genes. In the
networks, each node represents a gene, and an edge connects two
genes if they co-occur in at least one article. The degree
distribution of the networks follows a power law, as we show, so
their clustering structure is scale-free and there is no typical
community size. Therefore, to find communities, we partition
the graph using a nonlocal process exploiting the concept of
betweenness centrality (3).

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Mapping Knowledge Domains,’’ held May 9–11, 2003, at the Arnold and Mabel
Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA.

Abbreviations: COX-2, cyclooxygenase 2; PTGS2, prostaglandin-endoperoxide synthase 2;
GN, Girvan–Newman; PMID, PubMed identification number.

aTo whom correspondence should be addressed. E-mail: huberman@hpl.hp.com.

bMedline is the foremost English-language database of biomedical articles. The search
utility for Medline is PubMed (www.ncbi.nlm.nih.gov�entrez�query.fcgi).

cThe machine we used is a standard 1-GHz machine with an Intel Pentium 3 processor
running RED HAT LINUX.

dThe time to perform this step increases as nm2, where n is the number of genes in the
network and m is the number of pairs of genes that co-occur. As we explain later, genes
are selected to create a network, and if the network is too large, this step could be very
slow. We found that a size of �1,000 genes is generally tractable for our method.

ehttp:��www3.ncbi.nlm.nih.gov�omim. This web site provides detailed information about
many genes, proteins, and other biological objects as well as references to related articles.

fWe omitted the small fraction of abstracts published before 1990, because they very rarely
discuss gene function and tend to use outmoded nomenclature. In addition, we neglect
abstracts that mention more than four genes, because they are typically abstracts of
survey-type articles that impair the community identification process. These two types of
articles form a very small fraction of the Medline database.

gAn example is DCC, which may be used to refer to the gene ‘‘deleted in colon cancer’’ or
the cancer assay method ‘‘dextran-coated charcoal.’’ Such ambiguous symbols are very
common because of the frequent use of abbreviations in biological texts.
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The partitioning process may be applied to any network, but
it is particularly applicable to networks of several hundred to
1,000 nodes in which nodes may play a role in more than one
community. It is based on the process of Girvan and Newman
(GN) (ref. 4; for a faster algorithm for finding communities, see
ref. 5), which was shown to give very good results for a variety
of small graphs. The general idea of our process is the same as
that of GN, but the details are significantly different. Our
modifications allow nodes to be placed in several communities if
the structure of the network indicates that the nodes belong
there, and they provide a quantitative estimate of how strongly
each node belongs to each community. This is important when
single nodes play a role in several communities or when the
source information is incomplete or flawed. It can also indicate
a link between two communities that have one or more nodes in
common, and it ‘‘smooths’’ the process of partitioning, which for
any large network is somewhat arbitrary. The modifications also
allow communities to be identified as discrete units. Identifying
discrete communities is particularly useful when community
sizes are not known in advance and makes the results easier to
use if the network is large (6).

Motivation and Previous Work
For the most part, biologists now understand the rules by which
the system of genes, proteins, RNAs, and other cellular constit-
uents operates; what remains is to determine the exact details of
this system. A worldwide effort is underway in the biomedical
community to identify and understand the cellular interactions
at the root of human health. Given the enormous number of
human genes and the complex interrelated nature of gene and
protein interaction, this task is more than a little daunting, and
accomplishing it will involve an unprecedented level of collab-
oration and information exchange. However, the current con-
dition of knowledge organization in the field makes extensive
collaboration and complete information exchange difficult.

As mentioned above, information pertinent to human gene
function exists largely in the form of an astoundingly large
number of journal articles. Medline yields 1.5 million hits when
queried for ‘‘gene’’ or ‘‘protein’’ with ‘‘human,’’ �150,000 of
which were published in 2002 alone. Our results, taking into
account co-occurrences within the set of 682 genes we identified
as correlated to colon cancer, were created from the 7,985 article
abstracts from an astonishing 904h different journals. Given
these numbers, it is easy to see that an expert, although familiar
with many hundreds of articles, could nonetheless be unaware of
developments related to his or her area of interest. And, whereas
online biomedical databases provide easy access to abstracts, a
manual literature survey would encounter difficulties beyond the
large number of results, due to the nomenclature system for
human genes. Both the existence of multiple alias symbols for
many genes and the frequent occurrence of unrelated abbrevi-
ations equivalent to gene symbols interfere with any simple
search utility.

Despite the impracticality of an exhaustive manual search,
online databases of journal abstracts present a gold mine of
available information. In fact, the ability to sift through millions
of abstracts, extract pertinent information, and present it in a
useful format is arguably essential to the understanding of
human gene function. Accordingly, automated text analysis has
been an area of focus in the field of bioinformatics.

One approach has been to extract detailed information by
using natural language-processing techniques (7–17). Our
method follows a different line of attack: only simple informa-

tion, such as gene and protein names, is extracted from each
article, and more detailed conclusions are then inferred from this
information. Gene and protein term identification in particular
has been simplified by the recent appearance of online libraries
of gene and protein symbols (refs. 18–20 show this can otherwise
be a major task). However, data obtained by simple term
matching will be highly error-prone due to false positive iden-
tifications of human gene symbols, unless carefully treated.

A reasonable conclusion that can be drawn from gene occur-
rence data is that genes mentioned in the same article are related
in some way. This has been shown to be true both on large (21)
and small (22, 23) scales. It is also possible to connect genes to
key words found in articles and thus to biological processes, as
in refs. 1 and 24. These results have been applied in conjunction
with natural language-processing techniques to find related
groups of genes, from among a restricted set of genes mentioned
in a restricted set of articles, in refs. 25 and 26. Our method, while
similar, has a very different way of finding communities that
requires neither the preprocessing step of selecting genes or
articles nor natural language processing.

Obtaining Co-occurrence Data
As stated above, the first step of the method is to identify literature
co-occurrences of genes relevant to a disease by using the procedure
of ref. 1. This section is simply a brief summary of this procedure;
for more detail, please see the referenced article.

Using a list of all official and alias symbols for human genes
compiled from the Human Genome Organisation (HUGO)
(www.gene.ucl.ac.uk�nomenclature), OMIM, and Locuslink
(www.ncbi.nlm.nih.gov�LocusLink) web sites, we automatically
extracted the gene name symbols and disease mentions from all
Medline article titles and abstracts. Where possible, we replaced
alias symbols with official ones. We also extracted key words
related to a certain disease and used them to determine which
genes were statistically correlated with this disease.

To test a gene for statistical relevance to a disease, we simply
compared the observed number of gene–disease co-occurrences
to the number we would expect given no correlation. Because the
distribution of co-occurrences of two uncorrelated terms follows
a binomial distribution, a value of observed gene–disease co-
occurrences more than one SD greater than the binomial
expected value indicates correlation. This statistical method is
preferable to the ‘‘term frequency, inverse document frequency’’
metric, because it accurately handles infrequently mentioned
genes, which are very common.

The final step in obtaining data was to remove false positives,
which occur frequently because gene symbols generally coincide
with other abbreviations having nothing to do with genes. For
example, the symbol HDC, representing the gene histidine
decarboxylase, was commonly used in the literature as an
abbreviation for high dose chemotherapy. We disambiguated the
data, using a method shown in ref. 2, which yielded unambiguous
symbol identifications with a low error rate.

Gene Graph
The creation of gene graphs from the co-occurrence data was
performed following a well known procedure (21, 23). Each
vertex in the graph represents a gene, and an edge exists between
two vertices if the genes they represent co-occur at least once.
We did not use weighted edges. In creating the graph, we
neglected articles published before 1990 and articles that listed
more than five genes, as mentioned in the Introduction.

The resulting graph has a power law distribution in its degree.
That is, the number of vertices of degree x is given by Ax��,
where � � 0. This is shown in Fig. 1, where we plot the data on
a log–log scale for gene graphs corresponding to several diseases.

The properties of such power law graphs have been extensively
studied (27–29). It has been shown that random graphs with

hThis number was determined by comparing the International Standard Serial Numbers of
the journals in the Medline listings of the 7,985 abstracts involved in creating the network
of genes related to colon cancer.
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2���3.5 consist of one giant connected component and other
small components of size O(ln(N)) (28). Here N is the size of the
graph, and � is the power law exponent. The component
structure of the gene graphs agrees with the predictions of ref.
28 for random graphs, as shown in Table 1.

Because the smaller components contain few genes with few
neighbors, they are of limited interest. They usually consist of
little-known genes that have not been related to other genes. In
what follows, we focus exclusively on identifying communities
within the giant component.

Partitioning the Graph into Communities
There is no formal definition for a community of vertices within
a graph. A graph can be said to have community structure if it
consists of subsets of genes, with many edges connecting vertices
of the same subset but few edges lying between subsets (4).
Finding communities within a graph is an efficient way to
identify groups of related vertices.

As mentioned in the Introduction, the community discovery
process we use is based on that of GN (the GN process or
method), which has been shown to identify communities in
graphs with known community structure to a high degree of
accuracy (4). Our modifications were necessary to make the
method applicable to gene graphs, which are large and are
created from source information that may by nature be incom-
plete or flawed. In particular, we identify many possible com-
munity structures and average them into a final list of commu-
nities. The statistical character of this step provides a more
accurate picture of the complicated nature of community struc-
ture of a gene graph, without undermining the effectiveness of
the basic principle of the algorithm.

A concept central to the community discovery process is the
betweenness centrality (hereafter betweenness) of a vertex or
edge. The betweenness of an edge AB (or a vertex A) is defined
as the number of shortest paths between pairs of other vertices
that contain AB (or A). As mentioned before, this concept was
introduced (3) as a measure of influence of an individual, with
respect to information flow, within a social network., However,
it was noticed (4) that betweenness may also be used to identify
communities within a graph, because intercommunity edges
(those that lie between different communities) are much more
likely to have a higher betweenness than intracommunity edges
(edges that lie within one community).

To explain the community discovery process, we consider as
a first example the small graph shown in Fig. 2. This graph
consists of two well defined communities: the four vertices
denoted by squares, including vertex A, and the nine denoted by
circles, including vertex B.

In the graph of Fig. 2, edge AB has the highest betweenness.
If we were to remove it, the graph would split into two connected
components, the square and circle communities. This illustrates
the idea behind the GN method of imposing community struc-
ture on a graph. One repeatedly identifies intercommunity edges
by the criterion that they have higher betweenness than intra-
community edges and removes them. This procedure splits the
giant component into many separate components, which coin-
cide with the communities of the original graph.

It is important to note that the removal of an edge strongly
affects the betweenness of many others, so that one must
repeatedly recalculate the betweenness of all edges. To do this
quickly, we used the fast algorithm of ref. 29 or 30.

At a certain point in our procedure, as opposed to the GN
method, we stop removing edges from a component when we
cannot further meaningfully subdivide it into communities; for
example, as in Fig. 2, after removing edge AB. This allows us to
obtain distinct communities of nodes, such as the circles and
squares of Fig. 2. What criterion tells us when to stop?

Structurally, a component of five or fewer vertices cannot
consist of two viable communities. The smallest possible such
component is size 6, consisting of two triangles linked by one
edge (Fig. 3).

Fig. 2. A graph consisting of two communities.

Fig. 1. The number of vertices (y axis) is plotted against the degree of the vertex (x axis) for several diseases on a log–log scale. We followed the usual binning
procedure in plotting the data. The deviation from the power law for low vertex degree is typical. AML, acute myelogenous leukemia.

Table 1. Sizes of connected components in several gene graphs

Disease (no. of statistically relevant genes)

Components

Size No.

Acute myelogenous leukemia (488) 460 1
4 1
3 4
2 6

Breast cancer (816) 686 1
6 2
5 1
4 5
3 9
3 33

Colon cancer (682) 561 1
4 4
3 15
2 30

Wilkinson and Huberman PNAS � April 6, 2004 � vol. 101 � suppl. 1 � 5243
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Components of size �6 can also be individual communities,
like the group of nine in Fig. 2. The criterion we used to identify
this type of component as a community was that the largest
betweenness of any edge in the component did not exceed N �
1, where N is the number of vertices in the component.

This threshold is based on the betweenness of an edge connecting
a leaf vertex, or vertex of degree one, to the rest of the graph.
Consider the graph of Fig. 4 below. It is clear that it consists of just
one community. Applying the Brandes algorithm, we find that edge
XY has the highest betweenness, indicating that the size of the
largest distinct community within the graph has size 1. That is, there
are no distinct communities within the graph. In general, the single
edge connecting a leaf vertex (such as X in Fig. 4) to the rest of a
component of N vertices has a betweenness of N � 1, because it
contains the shortest path from X to all N � 1 other vertices. If no
edge’s betweenness exceeds N � 1, therefore, we can identify the
component as a community.i

We can now explain the need to neglect survey-type articles
that list many genes in creating our graph. The genes listed in
these articles will all be linked to one another, forming a
complete subgraph Kn. Such a grouping is very tightly knit and
will likely not be split into different communities. This situation,
due only to the survey article, may not accurately reflect the
interactions between the genes. It is possible that a few articles
mention many genes that are in fact functionally related, but in
this case it is likely that the genes will be linked by other articles
that discuss them three or four at a time.

Communities Consist of Functionally Related Genes. The communi-
ties thus created consist of genes that were strongly interrelated
in the literature. Most, but not all, gene co-occurrences imply a
functional relation; genes may also co-occur in an article abstract
because of physical proximity, similarity of nomenclature or
structure, historical association, or other reasons. However,
because such nonfunctional edges are a minority, they are highly
likely to be intercommunity, because the neighbors of two
nonfunctionally related genes are unlikely to be linked.

For example, genes S100A4 and S100A6 are members of the
S100 family and co-occur twice in articles related to colon
cancer, but they are not functionally related (Medline PMIDs
10389988 and 10952782). In our results, S100A4 and S100A6 do
not occur in a community together. The neighbors of one are not
linked to the neighbors of the other, which causes them to be
placed in separate communities. Further examples are given
in Results.

Multiple Community Structures. The process of assigning the nodes
of a graph to communities may be called identifying a commu-
nity structure on the graph. In the small examples given thus far
in Figs. 2–4, there was only one reasonable community structure
on each graph, because each node clearly belonged to only one
community. In contrast, complex real-world graphs contain
many ‘‘ambiguous’’ nodes that can be said to belong to two or
more different communities due to their placement in the graph.
An example, described in detail later, is the subgraph in Fig. 5,
in which node B is ambiguous. Gene graphs include many
ambiguous genes that belong to several communities, both in the
context of the graph and in the context of biological function.

Therefore, if we identify only one community structure on a
real-world graph, such as a gene graph, we could only hope to be
somewhat accurate in classifying the nodes. A large amount of
information concerning ambiguous genes and communities re-
lated through ambiguous genes would be lost.

Our resolution to this problem is to identify many plausible
community structures on the graph and compare them. To do
this, we make a modification to the GN process that introduces
an element of randomness into which edges of very high be-
tweenness are removed early in the process. Tightly knit com-
munities are not affected by the order of edge removal and will
eventually be identified no matter which high-betweenness edges
are removed first. However, the eventual placement of ambig-
uous genes is strongly affected by which high-betweenness edges
are removed first. By varying which high-betweenness edges are
removed early in the process, we may therefore identify many
community structures on a graph. By then comparing the
structures, we can easily identify tightly knit communities, which
do not vary from structure to structure, and ambiguous genes,
which migrate from group to group.j

The subgraph of Fig. 5 illustrates why the order of edge
removal affects the placement of ambiguous genes and the need
for multiple community structures. This subgraph consists of two
communities, one on the left including vertex A and another on
the right including C. Among its edges, BC initially has the
highest betweenness, and AB’s betweenness is also high. Once
we remove BC, however, AB becomes an intracommunity edge
with low betweenness, and it will never be removed. Gene B will
eventually be placed in a community with gene A. Had we
removed AB first, BC would be rendered intracommunity, and
gene B would end up in the community with C. Moreover, in
considering Fig. 5, it is not clear where B should end up. B is

iIt is not in general true that an intercommunity edge must have betweenness greater than
N�1, although such a situation is extremely unlikely in a power law graph. For a community
of size m within a graph of size N, there is a total betweenness of m(N�m) divided among
the edges connecting the community to the graph. So, if there are more than m such edges,
it is possible that none of them will have betweenness greater than N. However, remember
that few of these edges, or the extracommunity vertices they connect, should be adjacent,
because otherwise m would not be a community. Even in GN�s highly nonpower law
college football graph, the criterion only occasionally fails when an intercommunity edge
has a betweenness slightly less than N�1.

jThis process is essentially a form of soft clustering, although it differs significantly from
existing methods of soft clustering. These methods (see ref. 34 for an example) are
essentially restricted to clustering objects such as documents that comprise many individual
elements (e.g., words). The words of one document are compared to the words of another,
and a relative closeness can be established. The soft clustering presented here is affected
only by a node’s placement in the graph, not by a comparison of elements comprising
neighboring nodes.

Fig. 4. A partitioning algorithm should not separate this graph into two
communities.

Fig. 3. The smallest possible graph consisting of two communities.

5244 � www.pnas.org�cgi�doi�10.1073�pnas.0307740100 Wilkinson and Huberman
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ambiguous and could rightfully be considered to be a part of both
communities. If we considered multiple community structures
on this subgraph, we would see that B ended up in the commu-
nity with A in some structures (the ones in which BC was
removed early) and in the community with C in others (those
where AB was removed). By comparing the structures, we could
see that B really plays a role in both communities and (depending
on the meaning of the links in the graph) possibly ties the
communities together.

To describe in detail our method of identifying multiple
community structures, we briefly describe how the Brandes
algorithm (31) computes the betweenness for all edges in a
graph, and how the GN process decides which edge to remove
at each step. We then explain our modification, which allows for
the identification of multiple community structures.

The first step of the Brandes algorithm is to find the shortest
paths from all vertices to one ‘‘center’’ vertex using a breadth first
search. In the second step, the contributions of these paths to the
betweenness of each vertex or edge are added to a running total.
The center is then switched and the above steps repeated. After
every vertex in the component has been the center, we will have
considered every shortest path twice, and the running totals for
each vertex or edge will equal twice the betweenness of that
vertex or edge. At this point in the GN procedure, one simply
chooses the edge of highest betweenness and removes it. How-
ever, this choice is somewhat arbitrary, because there are likely
to be many intercommunity edges in the graph.

Our modification is as follows. Instead of using every vertex as
the ‘‘center’’ once in the Brandes algorithm, we cycle randomly
through at least m centers (where m is some cutoffk) until the
betweenness of at least one edge exceeds a threshold, again
based on the betweenness of a ‘‘leaf’’ vertex.l We then remove the
edge whose betweenness is highest at that point and repeat.
Because the betweenness of the edge we remove exceeds the
threshold, it is very likely to be intercommunity. We continue
removing edges from each component in this way, until all of the
components become small.m We then perform the full Brandes

algorithm and remove the edge of highest betweenness from
each component until it is resolved into communities.

The random nature of the modification allows us to change the
order in which edges are removed, because the edge with highest
betweenness after m centers have been considered will vary
depending on which centers are considered. Our modified
process can therefore be applied repeatedly to identify different
plausible community structures on the graph.

This process may erroneously remove an intracommunity edges,
which can happen if a large percentage of the centers considered
lies in one community. In a large graph with many small commu-
nities, this probability is small, especially because we perform only
the modified removal step in large components. Additionally, when
we compare many different community structures, anomalous
placements due to errors will be suppressed.

Applying this modified process n times, we obtain n commu-
nity structures imposed on the graph. We can then compare the
different structures and identify communities, as well as the
strength of each gene within the community. For example, after
imposing 45 structures on our graph, we might find: a community
of genes A, B, C, and D in 20 of the 45 structures; a community
of genes A, B, C, D, and E in another 20; and one of genes A,
B, C, D, E, and F in the remaining 5. We report this result in the
following way: A(45) B(45) C(45) D(45) E(25) F(5), which
signifies that A, B, C, and D form a well defined community, E
is related to this community but also to some other(s), and F is
only slightly, possibly erroneously, related to it.

Aggregating Communities from Different Structures. To aggregate
communities from different structures and obtain a final list of
communities in the form {A(45) B(45) C(45) D(45) E(25) F(5)},
we use a procedure that is straightforward but rather tedious to
explain because of the terminology. To summarize briefly, we
create an initial ‘‘master list’’ M1 of communities by choosing one
structure at random from among our set of N (in our experi-
ments, n � 50). We then perform N � 1 steps, each consisting
of comparing one of the remaining N � 1 structures S to the
master list, and based on the results of the comparison, aggre-
gating S into the list. The final master list, obtained by aggre-
gating all N structures, is the final result of the entire algorithm.

Let us introduce the notation Mt to denote the state of the
master list created from aggregating the first t structures (chosen
in arbitrary order from the set of structures we found). At step
t � 1, we select a structure S from among those we have not yet
considered and compare its communities to the communities of
Mt. S is aggregated into Mt based on the results of the compar-
ison, creating an updated master list Mt�1.

Mt is a list of communities, and we will denote the kth
community of Mt by Mk

t . The numbering system of communities
in the list is arbitrary and serves only to distinguish them. Each
community Mk

t of Mt is a collection of genes and associated
weights {(�j, �j)}. The weight �j associated with gene �j in a
community Mk

t indicates how strongly it ‘‘belongs’’ to Mk
t . To be

precise, �j is the number of structures, out of the t we have
aggregated to form Mt, in which �j has been associated with the
community that evolved (because structures were aggregated)
into Mk

t . This will be clearer when we explain the aggregation
step. The communities evolve very little as the structures are
aggregated, because the structures are on the whole quite
similar. Thus the weight as defined is an accurate indication of
how strongly a gene belonged to a community. One might expect
that, because the communities in the master list evolve, the final
result would depend on the order of aggregation. To the
contrary, we found the order of aggregation had little effect on
the final result due to the similarity of the different structures.

The details of the matching of communities S to the commu-
nities of Mt�1, and of the aggregation of S into Mt�1 to form Mt,
are as follows. A basic metric to compare two communities A and

kThe cutoff we used was m(N) � 10log(N)�25, where N is the size of the component. This
function has m(50) � 15, and m(800) � 41. We found that 15 was a reasonable number of
centers to consider for a component of size 50, whereas 40 centers is more than enough
for any component, however large. Basically, an intracommunity edge will be erroneously
removed if we repeatedly choose centers from the same community. For a component of
50 vertices and 4 communities, the probability of choosing 8 of 15 centers from one
community is �1%. For a large component with many communities, the probability of
error is very low for a cutoff of 40 centers.

lThe value of the threshold in this case is (N � 1)�2�1, where N is the size of the component,
and i is the number of centers that have been considered up to that point in the process.

mWe never attempted to precisely define ‘‘small.’’ We used values in the 35–50 node range
and, as one might expect, it made little or no difference in the final result. An exact
definition would depend on the community size, the graph size, and a desired probability
of error (see discussion on this page). However, even when we used a number as large as
50, the randomness of the method was sufficient to produce a slightly different commu-
nity structure every time.

Fig. 5. In this graph, it is unclear to which community node B belongs.
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B of genes �1, �2, . . . , �n, and �1, �2, . . . , �m, respectively, the
traditional union�intersection metric

d(A, B) �
A � B
A � B

�

�
i, j

��i, �j

n � m � �
i, j

��i, �j

Here n and m are the number of genes in communities A and B,
so the sums run over i � 1,. . . , n and j � 1,. . . , m. This notation
is overcomplicated but useful for comparison to the weighted
metric below. The sum over � functions just means we are
counting how many of the genes in A and B are the same. The
metric d(A, B) has a value between 0 and 1 and will be larger for
a closer match. To compare a community A of S to a weighted
community Mk

t�1 of Mt�1, we modify the traditional union�
intersection metric to include the weight:

dM	A, Mk
t�1
 �

�
i, j

�j

t � 1
��i, �j

n � �
j

�j

t � 1
� �

i, j

�j

t � 1
��i, �j

By comparing each community in one structure to all of the
communities in the other using the weighted metric, we can find
the closest match for each one.

Once a closest match for each community of S is found from
among the Mt�1, the communities of S are aggregated into Mt�1.
If community A of S is matched to community Mk

t�1, we combine
A and Mk

t�1 by incrementing the weights of the genes common
to A and Mk

t�1 and appending the genes in A that were not in
Mk

t�1. For example, suppose that community {C, D, F} in S is
matched to {B(5)C(5)D(3)E(5)} in Mt�1. We would update this
community to become {B(5)C(6)D(4)E(5)F(1)} in Mt; that is, C
and D would be incremented, and F would be appended.

Occasionally, two or more communities in the structure were
matched to one in M and vice versa. In this case, we assumed that
the intracommunity edge had been erroneously removed to
divide one community into two or more, either in the structure
or the master list (in that case, it would have been in one of the
previous structures aggregated into the master list). We thus
melded the divided communities into one, altering M if need be,
and then updated M as described above. This step could create
a problem if one ended up with huge communities at the end, but
we found that in general the largest communities in the final
result had only 10 or 15 more genes than the largest communities
in each individual structure, which incidentally indicates that our
edge removal algorithm had a low error rate.

The entire process of determining community structure is
displayed in Table 2.

Results
We applied the above technique using key words related to colon
cancer. We considered articles that mentioned at least one of colon,
colorectal, colonic, or gastrointestinal, and at least one of cancer or
carcinoma. We identified 682 genes that were statistically corre-
lated with colon cancer and that co-occurred in these articles with
at least one other correlated gene. The graph of this co-occurrence
network consisted of a giant component of 561 genes and other
uninteresting smaller components (Table 1). The community
discovery algorithm split the giant component into 79 different
communities, with sizes ranging from 2 to 50 genes.

To present the usefulness of our results, we discuss features of
these communities that demonstrate the utility of our method.
Used in conjunction with the Medline and OMIM web sites,
these communities allow us to suggest undocumented connec-

tions between genes of one community and between genes in
different communities. They also demonstrate that our method
tends to separate genes that co-occurred but were not function-
ally related into different communities, as discussed in Gene
Graph. Genes that occur in two or more communities can
indicate a link between the genes of each community.

We have published a full list of communities related to colon
cancer and other diseases on our web site. Here we simply present
one community to demonstrate the format of the results, discuss its
features, and briefly mention similar features of other communities.

Table 3 shows one community of genes related to colon cancer
from our results. Genes in this community are related to the
overexpression of prostaglandin-endoperoxide synthase 2
(PTGS2), in colon cancer. Although PTGS2 is the official
HUGO symbol, this gene is very commonly called cyclooxygen-
ase 2 (COX-2), and we will use this term.

The features of this community suggest the following possi-
bilities: connections between some of the genes that co-occur
with COX-2, but not each other; good reasons why many of the
neighbors of COX-2 are not in this community; and possible
connections to other communities via progesterone E synthase
(PGES) and lymphoid enhancer-binding factor 1 (LEF1). We
investigated these possibilities and present the results below.

Implied Connections. This community suggests a possible connec-
tion between the phospholipase A2 genes in this group and the gene
FACL4. A Medline search for FACL4 or its alias ACS4 with each
of PLA2, SPLA2, PLA2G4, and PLA2G2A turned up no result, and
the OMIM entry for FACL4 has no mention of phospholipase A2.
Nevertheless, by examining the abstracts of articles in which these
genes were found, we see that these genes are related by their
function, via COX-2 and arachidonic acid. COX enzymes convert
arachidonic acid to prostaglandins (Medline PMID 11274413, for
example). The three phospholipase A2 genes in the group {SPLA2,
PLA2G4 [also known as cPLA (2)], PLA2GA2} are all sources of
arachidonic acid (PMID 10706128, for example) and are thus
related to COX-2. However, we found that the FACL4 enzyme also
uses arachidonic acid, and that ‘‘the cellular level of unesterified
arachidonic acid is a general mechanism by which apoptosis is
regulated and that COX-2 and FACL4 promote carcinogenesis by
lowering this level’’ (PMID 11005842). This indicates a clear link
between the phospholipase A2 family of genes and FACL4 in
carcinogenesis. It would have been time consuming for a researcher
to ascertain this connection manually from Medline; even a search
for arachidonic acid and colon cancer together produces 119
abstracts to sift through. Additionally, during this brief literature
search, we discovered that nonsteroidal antiinflammatory drugs
(NSAIDs) function by suppressing cPLA2 (PLA2G4) mRNA ex-
pression and thus depriving COX-2 of arachidonic acid.k Our
method therefore suggests that these drugs may possibly affect

Table 2. Algorithm for determining community structure

A. For n iterations, repeat {
1. Break the graph into connected components.
2. For each component, check to see whether component is a

community.
a. If so, remove it from the graph and output it.
b. If not, remove edges of highest betweenness, using the

modified Brandes algorithm for large components and the
normal algorithm for small ones. Continue removing edges
until the community splits in two.

3. Repeat step 2 until all vertices have been removed from the
graph in communities.

}
B. Aggregate the i structures into a final list of communities.

5246 � www.pnas.org�cgi�doi�10.1073�pnas.0307740100 Wilkinson and Huberman

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
ta

at
s-

 u
nd

 U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

re
m

en
 o

n 
A

ug
us

t 3
1,

 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
13

4.
10

2.
10

7.
18

4.



FACL4 expression, although a Medline search of NSAID and
FACL4 turned up no results.

Absent Neighbors. In examining neighbors of PTGS2 (COX-2) not
present in this community, we noticed in particular the similarly
named gene PTGS1 (also known as COX-1). These two genes are
isoforms of cyclooxygenases (PMID 9099957, for example); they
co-occurred in 70 articles related to colon cancer and 1,500
articles overall. However, they have been shown to regulate
colon carcinoma-induced angiogenesis by two different mecha-
nisms (Medline PMID 9630216). COX-2 has also been shown to
be expressed much more frequently than COX-1 in tumors and
less frequently in normal tissue (PMID 7780968, for example;
note the use of the alias PGHS-1 or -2 for COX-1 or -2 in this
article) The separation of COX-1 and -2 into different commu-
nities thus accurately reflects our current knowledge about how
these genes function in relation to colon cancer. Although the
enzymes they code for are structurally very similar, COX-2 plays
a strong role in colon cancer, whereas COX-1’s role is weaker and
by a different mechanism.

Several other neighbors of PTGS2, such as MLH1, BRCA1,
BRCA2, and MSH2, also proved to be weakly or nonfunctionally
related. However, a few of PTGS2’s noncommunity neighbors
have been tentatively identified as functionally related, such as
GRP and GRPR (GRP receptor; PMID 11292836) and EGFR
(PMID 9012840). For this reason, we include a list of all
neighbors of each gene in the results as a secondary list of
possible connections to explore.

Links to Other Communities. We also looked for links to other
communities through the genes PGES and LEF1, both of which
show a weak connection to the COX-2 community and were
often placed in other communities.

Both searches yielded good results. PGES co-occurs with
other genes only once, in an abstract with COX-2, ERBB2, and
ERBB3. Examining this abstract, we find a link between the
COX-2 pathway and autocrine�panacrine activation of HER2�
HER3 (also known as ERBB2 and ERBB3; 9927187). The ERBB
genes are present in another community of 25 genes. In con-
junction with the previous discussions about arachidonic acid,
there is a possible link between not only COX-2 but all of the
genes related to arachidonic acid (most of which never co-occur
with ERBB2 or -3) to any gene related to the autocrine�
panacrine activation of ERBB2�ERBB3. This conclusion de-
pends on knowledge of many articles, in particular PMID
9927187, and could easily escape notice in a manual search.

LEF1 was found with COX-2 in only one article (PMID

10834941). It states that ‘‘NO (nitric oxide) may be involved in
PGHS-2 (COX-2) overexpression in conditionally immortalized
mouse colonic epithelial cells. Although the molecular mechanism
of the link is still under investigation, this effect of NO appears
directly or indirectly to be a result of the increase in free soluble
�-catenin and the formation of nuclear �-catenin�LEF-1 DNA
complex.’’ This article indicates a possible connection between
COX-2, NOS2A (nitric oxide synthase, responsible for the produc-
tion of NO) and the very important colon cancer gene �-catenin.

Importance of Alias Symbols. As a last note, this community
demonstrates the crucial importance of considering alias sym-
bols when extracting gene names. The aliases COX-2, PGHS-2,
NOX2, and cPLA (2) were very commonly used in articles that
tied this community together

Other Results. Here we present similar results from two other
communities: A connection between PXR (pregnane X receptor)
and GP170 (P-glycoprotein) is indicated because they are placed
together in a community. PXR is implicated in the induction of the
MDR1 gene (PMID 11297522), whereas MDR1 expression has been
associated with the expression of functional P-glycoprotein (PMID
10334913). A Medline search turns up no results for GP170 or
GP-170 with PXR or its aliases PAR, SXR, and NR1i2.

Another probable undocumented connection between GP200-
MR6 and STAT6, via IL-4 and its receptor IL-4R is suggested by
their placement together in a community. IL-4 induces STAT6,
which is involved in mediating activation of IL-4R gene expression
(PMID 8810328), whereas GP200-MR6 has been shown to be
functionally associated with IL-4R (PMID 9178815). This example
demonstrates the power of an automated method to bring together
information from disparate, old sources (cited articles from J. Biol.
Chem., Oct 11, 1996 and Int. J. Cancer, May 16, 1997).

Although large communities are more difficult to analyze for
the nonexpert, we were nevertheless able to draw some conclu-
sions. For example, we considered a 30-gene community largely
concerned with apoptosis and genes related to BCL-2, contain-
ing in particular the gene TRAIL. TRAIL has been shown to
induce procaspase-8 activation, triggering caspase-dependent
apoptosis in colon cancer cells (PMID 11245478). It could thus
be related to the function of genes such as BCLX, BCLXS, etc.,
which we find in this community but which do not co-occur with
TRAIL via the genes BCL-2 and CASP8.

A good example of nonfunctionally related genes with similar
names that are placed in different communities is MMP11 and
MMP9 (PMID 8645587). Often nonfunctionally related neigh-
boring genes do appear together in one community in a small

Table 3. A sample community of nine genes from our results for colon cancer

Gene
symbol

Weight in
community

Overall mentions
with colon cancer Neighbors with colon cancer

PTGS2 50 263 PTGS1* DLD* MLH1* BCL2* PLA2G2A PLA2G4 APC* ERBB2* PGES ERBB3*
PLA2 ACL4 WNT1* GRP* GRPR* LEF DLR* TCF4* TCF* MYB* VEGF* NOS2A
TP53* MADH4* EGFR* S11* PDCD4 BRCA1* BRCA2* MSH2* ERBB4

PLA2G2A 50 12 APC* PTGS2 PLA2G4 TP53* NF2* DCC* MLH1* SPLA2
PLA2G4 50 1 PLA2G2A PTGS2
SPLA2 50 4 PTGS2 PLA2G2A
FACL4 50 1 PTGS2
NOS2A 50 7 PTGS2
PDCD4 50 1 PTGS2
PGES 18 2 ERBB2* PTGS2 ERBB3*
LEF1 5 18 WNT1* TCF* PTGS2 TCF4* APC* FRA1* PLAUR* MYC* MMP7* TCF7*

Here score in community denotes the number of community structures, out of 50, in which each gene was placed in this community
(Partitioning the Graph into Communities). Genes with a score of 50 were members of this community only; genes with a lower score
were members of this community and others.
*Neighbor not in community.
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number of structures (see Partitioning the Graph into Commu-
nities) but appear in different communities in the majority of
structures. Examples of this include CYP3A4 or CYP3A5 and
CYP1A2 (PMID 9202751) as well as SMAD3 and SMAD5
(PMID 10446110 and 11196171, for example; SMAD2 and
SMAD4 are aliases for MADH2 and MADH4, respectively).

Conclusion
We have presented a data-mining technique for biological
literature that produces detailed results while extracting only
very simple data from each article abstract and title. The method
produces a list of communities of functionally related genes that
are designed to summarize available information and indicate
genes that are likely to be complementary in their function. The
genes within a community are weighted, indicating how strongly
they belong to the community. We show that the communities
produced in the case of colon cancer have interesting features
that give one insight into the function of the component genes.

The identification of many similar community structures on
each gene graph allows us to recognize those genes that belong
in two or more different communities. In this sense, our method
produces a richer result than previous methods that impose one
rigid structure on the graph. This idea could be applied to social
and other networks where individuals play a role in more than
one community.

We introduce two statistical components into the process,
which lessen the inevitable errors of text mining in the biological
literature, particularly severe in our case because of the complex
young nomenclature system for genes. However, our method
retains the ability to detect relations among rarely mentioned
genes, one of its strongest features.

To reiterate an important point from the Introduction, our
results are not meant to perfectly model biological reality, only
to function as a tool for biologists. It was not possible to compare
our communities to a database or list of groups of related human
genes, because such a list does not exist. The only justification we
can provide that our communities were ‘‘accurate’’ is to cite ref.
4, in which the GN method was shown to be very effective in
identifying communities. In fact, because genes within a com-
munity are linked by edges from a co-occurrence, it is almost
certain that they are related somehow. A much more interesting
measure of the effectiveness of the method is whether it sepa-
rates genes that should be separated.

The factor that most limits our results is the absence of many
gene symbols from HUGO and other online databases. Hope-
fully, these databases will soon be more complete. Related
problems are the unorganized nomenclature system for human
genes (see discussion in ref. 31) and small modifications to
recognized symbols introduced by many authors, such as the
addition of hyphens, parentheses, or spaces, which make the
symbols difficult to detect. Efforts are being made to standardize
the gene nomenclature system (33).

A less acute limiting factor was the placement of many genes in
either large and very small communities in our results. Although
still a step forward from raw co-occurrence data, such communities
are of limited usefulness; they often did not provide much insight
into the function of their component genes, other than that the
genes were rarely related to others in the context of colon cancer.
If such genes were more commonly mentioned in other contexts, a
search using other diseases or key words would likely turn up more
interesting communities with these genes. Large communities were
difficult for us to analyze but nevertheless yielded some interesting
results. These communities contained many of the most commonly
mentioned genes in connection with colon cancer, such as APC and
TP53. Strangely, a search for colon cancer genes is probably not the
most efficient way to study these genes, which are simply too highly
linked in this context. Instead, one could perform other searches
with other key words, hoping to focus on particular aspects of these
genes’ function by confining them to smaller more informative
communities.

We believe that large communities are a product of graph
topology, not of the threshold we use to stop subdividing a
community or of the aggregation process. To further subdivide
large communities, one could consider a weighted graph, where the
weight corresponds to the (normalized) number of times the two
genes co-occur. This could increase the ‘‘distance’’ between, for
example, two commonly studied distantly related co-occurring
genes. They would then not end up in the same community and,
more importantly, would not glue a false community together. The
simplest such weighting would be to neglect all links below some
(normalized) threshold weight. Another resolution to the problem
of large communities would be to refine the step that aggregates the
community structures into one result.

We thank Lada Adamic, Eytan Adar, and Melissa Wilkinson for many
useful discussions.
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