The Enron Corpus: A New Dataset for Email Classification Research

Download Book (9,202 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests.
Download Chapter (358 KB)

Abstract

Automated classification of email messages into user-specific folders and information extraction from chronologically ordered email streams have become interesting areas in text learning research. However, the lack of large benchmark collections has been an obstacle for studying the problems and evaluating the solutions. In this paper, we introduce the Enron corpus as a new test bed. We analyze its suitability with respect to email folder prediction, and provide the baseline results of a state-of-the-art classifier (Support Vector Machines) under various conditions, including the cases of using individual sections (From, To, Subject and body) alone as the input to the classifier, and using all the sections in combination with regression weights.