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Abstract

The number partitioning problem consists of partitioning a sequence of positive numbers
{a1; a2; : : : ; aN} into two disjoint sets, A and B, such that the absolute value of the di�erence
of the sums of aj over the two sets is minimized. We use statistical mechanics tools to study
analytically the linear programming relaxation of this NP-complete integer programming. In par-
ticular, we calculate the probability distribution of the di�erence between the cardinalities of A
and B and show that this di�erence is not self-averaging. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Although most of the statistical mechanics analyses of stochastic versions of combi-
natorial optimization problems have focused mainly on the calculation of the average
cost of the global optima [1], the tools of equilibrium statistical mechanics can also
be used to evaluate the average performance of simple heuristics as well as that of
relaxed versions of the original problem [2]. In this paper we study both numerically
and analytically the linear programming (LP) relaxation of a classical NP-complete
integer programming problem, namely, the number partitioning problem [3,4].
The number partitioning problem (NPP) is stated as follows [4]. Given a sequence

of positive numbers {a1; a2; : : : ; aN}, the NPP consists of partitioning them into two
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disjoint sets A and B such that the di�erence∣∣∣∣∣∣
∑
aj∈A

aj −
∑
aj∈B

aj

∣∣∣∣∣∣ (1)

is minimized. Alternatively, we can search for the Ising spin con�gurations s=
(s1; : : : ; sN ) that minimize the energy or cost function

E(s) =

∣∣∣∣∣∣
N∑
j=1

ajsj

∣∣∣∣∣∣ ; (2)

where sj = 1 if aj ∈ A and sj = −1 if aj ∈ B. Also of interest is the problem of
constrained partitions, in which the di�erence between the cardinalities of sets A and
B is �xed, i.e.,

m=
1
N

∣∣∣∣∣∣
N∑
j=1

sj

∣∣∣∣∣∣ ; (3)

so that the cardinality of the largest set is N (1 + m)=2. Henceforth, we will restrict
our analysis to the case where the aj’s are statistically independent random variables
uniformly distributed in the unit interval.
The interest in the NPP stems mainly from the remarkable failure of the stochastic

heuristic simulated annealing to �nd good solutions to it, as compared with the solutions
found by deterministic heuristics [5]. The reason for that failure is probably due to the
existence of order of 2N local minima whose energies are of order of 1=N [8], which
undermines the usual strategy of exploring the space of con�gurations {s} through
single spin ips. It is interesting to note that a very simple deterministic heuristic, the
di�erencing method of Karmarkar and Karp, can �nd with high probability solutions
whose energies are of order of 1=N� log N for some �¿ 0 [6,7]. For large N , however,
the energies of the solutions found by the di�erencing method are orders of magnitude
higher than those predicted by theoretical analyses, which indicate that the average
global optimal energy E0 is of order of

√
N2−N for unconstrained partitions [4,8].

A recent exact calculation of this quantity yielded E0 =
√
2�N=32−N [9]. It must be

noted that, in contrast with combinatorial problems for which the global optimal energy
is extensive [1], for the NPP this energy is not self-averaging [8,9] and hence E0 cannot
be viewed as a realization independent minimal energy.
In the LP relaxation we relax the integrality requirement on the Ising variables si so

that they become real variables, i.e., si ∈ (−∞;∞). In order to keep these variables
�nite we impose a spherical constraint on the norm of the solutions,

N∑
i

s2i = N : (4)

Obviously, minimizing the square of the cost (2) with si real but constrained to obey
the condition (4) yields a lower bound to the optimal (square) cost of the corresponding
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integer programming problem. Moreover, a simple gradient descent dynamics su�ces
to attain those bounds numerically. In fact, using a Lagrangian multiplier to handle the
constraint (4) we �nd that the following dynamics minimizes the NPP energy,

@si
@t
=−��

(
ai − �

N
si

)
; i = 1; : : : ; N ; (5)

where �=
∑

j ajsj and � is an arbitrarily small parameter that determines the step-size
of the descent.
The remainder of this paper is organized as follows. In Section 2 we show that the

LP relaxation yields a trivial lower bound (i.e. the LP cost is zero) for unconstrained
partitions. That analysis yields, nonetheless, some interesting pieces of information as,
for instance, the average energy Ec obtained by clipping (i.e. taking the sign of) the
spins of the global optimal con�gurations of the LP relaxation. The average perfor-
mance of the clipping heuristic is studied in Section 3, where it is shown that Ec tends
to the average energy of a randomly chosen Ising spin con�guration, Ec →

√
2N=3�.

In Section 4 we calculate the probability distribution of the di�erence between the car-
dinalities of A and B for the LP global optimal con�gurations, Pc(m), and show that
m is not self-averaging. Finally, in Section 5 we present some concluding remarks.

2. Linear programming relaxation

In the canonical ensemble formalism of the statistical mechanics the average value
of the optimal energy for unconstrained partitions is given by

Eu =− lim
T→0

T 〈ln Zu〉a ; (6)

where Zu(T ) is the partition function

Zu(T ) =
∏
i

∫ ∞

−∞
dsi �

(
N −

∑
j

s 2j

)
exp

[
−E(s)
T

]
(7)

with E(s) given by Eq. (2). Here �(x) is the Dirac delta and T is the temperature. The
notation 〈: : :〉a stands for the average over the random variables ai. The limit T → 0 in
Eq. (6) ensures that only the states that minimize E(s) will contribute to Zu. We now
proceed with the explicit evaluation of the partition function (7). Using the integral
representation of the Dirac delta function we write

Zu(T ) =
∫ ∞

−∞

∫ ∞

−∞

d� d�̃
2�

∫ ∞

−∞

dx
2� e

i��̃+ixN−|�|=T∏
j

∫ ∞

−∞
dsj e−ixs

2
j−i�̃sjaj : (8)

The integrals over sj and �̃ can easily be performed yielding

Zu(T ) =

√
�N−3
4M2

∫ ∞

−∞
dx eixN (ix)(1−N )=2

∫ ∞

−∞
d� e−|�|=T−ix�2=M2 ; (9)
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where M2 =
∑

j a
2
j . At this stage the integral over � can be readily carried out by

assuming T → 0. The result is simply

Zu(T ) = T

√
�N−3
4M2

∫ ∞

−∞
dx (ix)1=2 eNGu(x) ; (10)

where

Gu(x) = ix − 1
2 ln(ix) : (11)

In the limit of large N , the integral over x can be evaluated using the saddle-point
method. Noting that the saddle point is the imaginary xs = 1=2i, the unconstrained
partition function is �nally written as

Zu(T ) = T

√
1

2�2NM2
(1 + ln 2�)N=2 : (12)

Since Zu decreases linearly with decreasing T , Eq. (6) yields Eu = 0. This result was
veri�ed numerically using the gradient descent dynamics (5) together with an adaptive
prescription to decrease the step-size � during the descent.

3. Clipping heuristic

An easy-to-implement procedure to generate Ising solutions from the LP relaxation
solutions is to take the sign of the relaxed spins. The average cost associated to this
clipping procedure is given by

Ec = lim
T→0

〈〈∣∣∣∣∣
∑
j

aj sign(sj)

∣∣∣∣∣
〉
T

〉
a

(13)

where 〈: : :〉T stands for a thermal average taken with the Gibbs probability distribution,
i.e., exp[−E(s)=T ]=Zu. The zero-temperature limit ensures that only con�gurations that
minimize the relaxed cost (2) will contribute to this average. To evaluate Eq. (13) we
introduce the auxiliary energy

Eclip(s) = E(s) + h

∣∣∣∣∣
∑
j

aj sign(sj)

∣∣∣∣∣ (14)

with E(s) given by Eq. (2). Hence

Ec =− lim
T→0

T
∣∣∣∣@〈ln Zclip〉a@h

∣∣∣∣
h=0

; (15)

where Zclip is the partition function (7) with E replaced by Eclip. Introducing the
auxiliary parameter v =

∑
j aj sign(sj) through a Dirac delta function, the calculation

of Zclip becomes analogous to that presented before, and so we will present the �nal



58 F.F. Ferreira, J.F. Fontanari / Physica A 269 (1999) 54 – 60

results only. We �nd

Ec =
1
2�

∫ ∞

−∞
dv|v|

∫ ∞

−∞
dṽ eivṽ

〈∏
j

cos(ṽaj)

〉
a

=
1
2�

∫ ∞

−∞
dv|v|

∫ ∞

−∞
dṽ eivṽ

(
sin ṽ
ṽ

)N
: (16)

Assuming that Ec does not increase linearly with N , in the thermodynamic limit only
the regions close to the origin (ṽ=0) will contribute to the integral over ṽ in Eq. (16).
Hence using sin ṽ=ṽ ≈ −ṽ2=6 yields

Ec =

√
2N
3� : (17)

We have found a remarkably good agreement between this theoretical prediction and
the properly averaged cost obtained by clipping the spherical spins in LP minima
generated by the gradient descent dynamics (5). Interestingly, for large N the cost
(17) is identical to the average energy of a randomly chosen Ising con�guration s,
de�ned by

Er = 2−N
∏
i

∫ 1

0
dai

∑
si=±1

∣∣∣∣∣
∑
i

aisi

∣∣∣∣∣ ; (18)

which thus demonstrate the complete failure of the clipping heuristic.

4. Probability distribution of cardinalities

As the distinct LP global minima will have, in general, di�erent cardinalities, in
this section we calculate analytically the probability distribution of the cardinalities
di�erence de�ned by

Pc(m) = lim
T→0

N

〈〈
�

(
Nm−

∣∣∣∣∣
∑
j

sj

∣∣∣∣∣
)〉

T

〉
a

: (19)

Using the de�nition of the thermal average this equation is rewritten as

Pc(m) = lim
T→0

N
〈
Zm
Zu

〉
a
; (20)

where

Zm =
∏
i

∫ ∞

−∞
dsi �

(
N −

∑
j

s2j

)
exp

[
−E (s)

T

]
�

(
Nm−

∣∣∣∣∣
∑
j

sj

∣∣∣∣∣
)

(21)

and Zu is given by Eq. (7). The calculation of Zm is a little more complicated than
that of Zu, as it involves the evaluation of an additional integral due to the extra delta



F.F. Ferreira, J.F. Fontanari / Physica A 269 (1999) 54 – 60 59

Fig. 1. (a) Average cardinalities di�erence as a function of 1=N 1=2 and (b) ratio between the standard
deviation and the average cardinalities di�erence as a function of N . The convention is © (LP relaxation),
5 (exhaustive search) and ∗ (di�erencing method). The solid curves are the theoretical predictions for the
LP relaxation.

function. However, since the steps are essentially the same in both calculations we will
present the �nal result only. In the limits T → 0 and N → ∞ we �nd

Zm =
T
N

√
1
�3V (1 + ln 2�)

N=2exp
(
−NM2
2V

m2
)
; (22)

where V =
∑

j a
2
j − N ((1=N )

∑
j aj)

2. In the limit N → ∞ we use the self-averaging
property,

1
N

∑
i

f(ai) =
∫ 1

0
daf(a) (23)

for any function f, to write M2=N = 1
3 and V=N =

1
12 so that Eq. (20) becomes

Pc(m) =

√
8N
� e

−2Nm2 ; m¿0 : (24)

Hence, the mean is 〈m〉=1=√2N� and the variance, �2m = (�− 2)=4�N . An important
quantity is the ratio rm =

√
�2m=〈m〉, whose vanishing determines the self-averageness

of the random variable m. In Fig. 1(a) and 1 (b) we present the results of numerical
experiments to estimate the dependence on N of 〈m〉 and rm, respectively, for three
types of con�gurations: (i) the global minima of the original NPP obtained through
the exhaustive search in the Ising con�guration space for N626; (ii) the legal, Ising
con�gurations obtained with the di�erencing method (we refer the reader to Ref. [7] for
a clear presentation of this heuristic); and (iii) the global minima of the LP relaxation
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obtained with the dynamics (5). We note the very good agreement between the latter
estimate and the analytical predictions. In all cases, the mean 〈m〉 decreases like N−1=2

as N increases, while rm tends to a nonzero value (rm =
√
�=2− 1 ≈ 0:755 for the

LP relaxation), indicating that m is not self-averaging even in the large N limit, i.e.,
the values of m associated to the con�gurations under study depend on the speci�c
realization of the set of random variables {aj}.

5. Conclusion

In this paper we have illustrated the usefulness of equilibrium statistical mechanics
tools to investigate analytically the average performance of standard relaxation pro-
cedures to generate lower bounds to integer programming problems, as well as to
characterize speci�c properties of the minima. The failures of the LP relaxation and
the clipping heuristic to produce relevant results for the NPP yield additional evidence
to the extreme di�culty of devising heuristics to �nd near-optimal solutions to that
problem.
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