
Mathematical Proceedings of the Cambridge
Philosophical Society
http://journals.cambridge.org/PSP

Additional services for Mathematical Proceedings of the
Cambridge Philosophical Society:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Asymptotic formulae in the theory of partitions

C. B. Haselgrove and H. N. V. Temperley

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 50 / Issue 02 / April 1954, pp 225
- 241
DOI: 10.1017/S0305004100029273, Published online: 24 October 2008

Link to this article: http://journals.cambridge.org/abstract_S0305004100029273

How to cite this article:
C. B. Haselgrove and H. N. V. Temperley (1954). Asymptotic formulae in the theory of partitions.
Mathematical Proceedings of the Cambridge Philosophical Society, 50, pp 225-241 doi:10.1017/
S0305004100029273

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/PSP, IP address: 169.230.243.252 on 13 Mar 2015



[ 225 ]

ASYMPTOTIC FORMULAE IN THE THEORY OF PARTITIONS

By C. B. HASELGROVE AND H. N. V. TEMPERLEY

Received 10 September 1953

1. Introduction. I t is the object of this paper to obtain an asymptotic formula for
the number of partitions pm(n) of a large positive integer n into m parts A,, where the
number m becomes large with n and the numbers Ax, A2,... form a sequence of positive
integers. The formula is proved by using the classical method of contour integration
due to Hardy, Ramanujan and Littlewood. It will be necessary to assume certain
conditions on the sequence A,, but these conditions are satisfied in most of the cases of
interest. In particular, we shall be able to prove the asymptotic formula in the cases
of partitions into positive integers, primes and fcth powers for any positive integer k.

By considering the differences of the function pm(n) with respect to the integral
variables m and n we shall prove (at any rate for sufficiently large n) a conjecture of
Auluck, Chowla and Gupta(l), who predicted that, in the case of partitions into the
positive integers, the function pm(n), when regarded as a function of m, would attain
its maximum value for at most two consecutive values of m. We shall deduce from our
asymptotic formulae that in a certain range of m (depending on n) the function pm(n)
increases monotonically with m until it reaches its maximum value and then decreases
monotonically, and that this maximum is not attained for any m outside the range.

The asymptotic formulae that we prove have some applications to the theory of
Bose-Einstein assemblies in statistical mechanics; it is hoped to publish an account
of these applications in due course.

Ingham (5) has developed a method of Tauberian analysis which enables us to obtain
an asymptotic formula for the total number of partitions p(n) of n into parts A,,
assuming only some rather weak conditions on the A,. Ingham shows how asymptotic
formulae may be obtained for the number of numbers in a given range which can be
partitioned into integral or non-integral parts A,, weighted according to the number of
partitions. If the number of solutions of the inequality

r1A1 + r2A.2 + ...<u (1)

in integers ri > 0 is denoted by P{u), Ingham obtains an asymptotic formula for

itM-*""-?-*'•
which in the case of partitions into integers reduces to the number of partitions of the
largest integer less than u, when h = 1. The results of several recent papers may be
obtained immediately by using Ingham's Theorem 1, or more simply in some of the
easier cases by using Theorem 2. Auluck and Haselgrove (2) have shown how some of
Ingham's conditions may be relaxed. For the sake of simplicity we shall not extend
our results to partitions into non-integral parts in the present paper, but it is fairly
simple to carry through the necessary analysis, and the results would be very similar
to those of this paper.
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226 C. B. HASELGEOVE AND H. N. V. TEMPERLEY

We do not use Ingham's Theorem in the theory below as we have assumed different
conditions on the Ar in order to prove the asymptotic formulae for the number of
partitions of n into m parts. As the formulae for the total number of partitions follow
from our results, there is no need to use Ingham's method, which would make it neces-
sary to prove further properties of the A, (although these can probably be deduced
from our assumptions).

We shall use the symbols O, o and ~ ; the constants involved in the O symbol will
be independent of the variables, but may depend on certain quantities which we may
regard temporarily as fixed. Similarly, the symbols o and ~ will hold uniformly in
the variables.

2. The generating function. We see that pm(n) is the number of solutions in non-
negative integers rt of the equations

r1A1+r2A2+... = n,

The generating function of pm(n) is

1 (2)
= m.\

= fi (l-aa**)-1, (3)
r = l

where 0 < Ax ^ A2 < A3 ^ ... is an infinite sequence of positive integers. We shall assume
that the series SAr2 (4)

r

converges. If this series diverges it is possible, as we shall indicate at the end of § 3,
to apply the saddle-point method to both of the variables x and z (as is often done in
works on statistical mechanics), provided only that suitable conditions on the A, are
satisfied. But when the series (4) converges the saddle-point method cannot be used
for the x variable (a formal application leads to an incorrect asymptotic formula for
pm(n)), and a different method such as that introduced in this paper must be used.

It is convenient to make some changes of variable. We write x = e~v, z = e~<" and
then v = aoj. Then if G(x,z) = g(a,o))

g{a,<o)= n{l-e-^+a>*}-i. (5)

If SRw > 0 the product for g(a, &>) is absolutely convergent. Hence g(cc, a>) is an analytic
function of a with poles at the points a. = —AT= 2sni(o~1 for any fixed value of o>.
We shall be concerned, in the first instance, with the behaviour of g(a, co) for small o).
We construct a function with similar behaviour.

Let

( ^ J (6)
Since ZA72 converges, the infinite product for K(a) converges, and^T(a) is an analytic
function with poles at the points a. = — A,. Thus we see that g(a, u))jK(a) is a regular
function of a for | a \ < 2n^ioj-1. Further, this function has no zeros. Hence

is regular for | a | < 2n'Sio)-1.
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We shall now prove the

LEMMA. / /w-> 0 in a fixed Stolz angle A (i.e. «->0 in such a way that
and if \ a \ <|TT/| <u | V(l + A2),

I _ e-<Ar+«)w

227

< ASRw),

(7)

To prove this lemma we observe that

a, (o) = 2 l°g

Now for | a j = 8n | to \~x and A, < 4?r | w |
1 _g-<Ar+a)w

•Ple-*/^

By the maximum modulus principle applied to the complex variable a the above
inequality holds for (ot | < STT | &> j — 1 and A, < 4n | <o | - 1 .

Now for | a | ̂  2n \ (o |~x,
If also A, > 4TT I a) \~x we have

Hence for | a | =g 2n) w |-x,

Since 2Ar2 converges,

and
Xr>4"l<»\-'

Hence for | a | < 2n | w |-*,

I t should be noted that we have not proved that 9ftx(a>w) cannot take arbitrarily
large negative values. In fact it will take such values in the neighbourhood of the poles
of g(cc, a) which are not poles of K(jx).

Now a>

-«s^o(^)+

But x(a, w) is regular for j a \ < 2TT91W~1, and so for | a | < 2nj\ o> \ ^/(l + A2), so that we
deduce, using Caratheodory's theorem, that for ) a) ^ ftf/ j <o\J(l + A2)

X ( , ) ( ( M ) ,
which is the required result.

We may now apply Cauchy's integral formula to deduce an estimate for
92
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Integrating round a circle of radius f n\ | w | ̂ /( 1 + A2) and centre T = 0, we deduce that

(8)

Hence ;y;(a, w) = -4(w) + aJ5(w) + o(a2)

for | a | ^ 77/1 a) | ̂ /(l + A2). Putting a = 0 we deduce that

A(CJ) =-loggr(0,w).

Differentiating ^(a, w) with respect to a at a = 0 we deduce that

We write for convenience

where m0{(o) = £ -r^—T •
r = l e x

Hence g(a, w) = ^T(a) ^(0, w) exp { — awmo(w) + o(a2)} (9)

uniformly for |a |<7r/ |w|^/(l + A2)asw->OinA. I t should be noted that the existence
of poles of K(a) and g(a, w) does not affect this result.

The equation (9) separates the behaviour of g(a, w) between the variables a and a>.
I t will be shown that the variation of mo(&») can be neglected in our estimation of the
integrals.

For shortness we write g(0, oi) = gr(&>) and then

= - 2 log (1 -

Then T»=-S?

00 0

Alternatively we see that ^'(w) = - S S

55Thus T"'(w) = - 5 5
r=lt=l

Hence if we split <y into its real and imaginary parts so that w = £ + ir/, we have

| Y"(«w) | < - ¥ • ( £ ) . (10)

We shall suppose that the \. are such that

for g-*0. (11)

Then | T» -

We then obtain the formula

(|V) (12)
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Further we see that £2Y"(£)-*oo as £->0. (13)

Now

for any integer v such that A,, < l/£. Thus by Cauchy's inequality

AT8)*}•
Now since £2tF"(£)->oo and SA72 converges, the right-hand side may be made
o{g-lCP'(§))*} by making v^oo in such a way that 1/ = o{£(Y"(£))*} and A, < 1/g.
Thus we obtain, since | m'0((o) | < — m'^E,),

and ann0((o) = amo(£) + o(y{Y" (£)}*), (14)

as w->0 in A. Substituting these results in our formula (9) for g(a., (0), we obtain

g(a, o>) = K(a) exp fF(£) + »9Y'(£) - ^«Y'(g) - awmo(g)}
exp {o(7a(T'(£))») + O(^VW(£)) + o(a% (15)

provided that | rj | < A£ and | a | < TT/£(1 + A2) (since this last implies that
| a |<7r /HV(l+A 2 ) ) .

3. The contour integration. The result (15) will enable us to estimate certain integrals
involving g(a, (o). Suppose, in the first instance, that we are dealing with the problem
of partitions of an integer n into m integral parts of the type A,. To estimate this
number, which we denote by pm(ri), we use the relation

1

(16)

We carry out the integration over the ranges — in + £, in + £ for w, and — injo>, in/0
for a. If n is sufficiently large we may choose £ so that n + Y'(£) = 0. We see that
£-+0 as n-»-oo. Then we split the ranges of integration into the parts

(-4) \r)\<fiE,8, \cc\<fi,
(B) 1171 </«£*,
(0) fi£S^\ri

where S = £~1{tF"(£)}~i. We notice that £-»• 0 as n -> 00. We shall make /i -> 00 as n ->• CXD,
but later assume that /t -> 00 sufficiently slowly for certain conditions to be satisfied.
We shall denote the contributions to pm(n) of the integrals over the ranges (̂ 4), (B)
and (C) by J4, JB and Jc respectively.

Consider the range (A) first. We have to evaluate the integral

= 79=vri\ g(oc,(o)e^+^ojdccdV. (17)
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Substituting for g(a, w) we see that

x K(a) exp {(TO - mo(£)) wa} exp {Oi^-W^)) + O(T)/I(W(£))*) + o(/i2)} <odadi}, (18)
since if /i ->• oo sufficiently slowly there exists A such that 1171 < A£ and | a | < 7r/£( 1 + A2)
throughout the range of integration. We easily see by the results above that all the error
terms O(i;3^~1T"(^)), o(^/t(T"(^))i) and o(fi2) may be replaced by o(l) throughout the
range of integration provided that fi->co sufficiently slowly.

We now observe that
K(u) = O(|a|-Ai) foranyA 1 >0, (19)

as I a I ->oo with | fHa. | < J; for
K{*)

Z(SRa) = n
r=l

and

We shall consider separately the cases

(i)
(ii)

In case (i) (TO — mo(g)) £<J/t2 -> 0 if /*4£ -> 0,

which we may suppose to be the case, and then

Thus (18) becomes

K(a
J -(i/»|w|)/«

Now

since /i*S = o(l). By (19) and (21)
f(i/iM)/«

\K(a)exv{(m-mott))fr}da\ =0(1),
J -(i/<|u|)/w

and f |^(a)exp{(m-TO0(g))^a}da| =o( l ) .
J (i/.|u|)/w

Further | K(a) exp {(m- mo(E,)) got) da \ = o( 1).

Hence
/•(i/j|u|)/u

Z(a
J —«/t|o>|)/o>

(^))ga}da= #(a
J - ia>

(20)

(22)

In the case (ii) we see that | m — rao(£) | | w | -*oo. Hence since the argument of the
exponential is imaginary it can be proved by integration by parts that

K(a)exp{(m-tn0(£))ao>}da. = (23)
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for any fixed ft, using (19) and the fact, which can be deduced from (19) by Cauchy's
integral formula, that K'(a) = O(\ a |~Ai) in the strip | 3da | < £. The result (23) also
holds if /*-* oo sufficiently slowly. Also in this case by the Riemann-Lebesgue theorem

1 - i o o

since

= °(l)> (24)
fioo

\ K(a) da \< co. (25)
J —ioo

Thus in both the cases (i) and (ii) we have

K(a)exj>{(m — mo(£)) aa)} dec = if(a) exp {(m — m0(£))a£,}da + o(l).
J -dii\a\)la J -ioo

(26)
By straightforward integration we obtain

^ (27)

Thus

(28)
We notice further that

1 f A!* 1
— g(O,u)e™dV~1-—{V"(£)}-lexVmZ)+m£]. (29)
•"™ J -Pit Vv^77^

To deal with the ranges of integration (JB) and (C) it is necessary to introduce some
conditions on the numbers A,. These conditions are essential to the nature of the
problem; for suppose that numbers A, were all even, then it would be impossible to
partition an odd number into even parts and no smooth asymptotic formula would
describe the behaviour of pm(n). Our proof of the asymptotic formula would then
break down because the integrals over the range (C) could not be neglected.

We split the range (C) into the two parts

(Ct) £A<|7?|<77.

A will be supposed fixed but will ultimately be made sufficiently small. We write

£e-A^ (30)
l

and suppose that, in the range (C2),

for all sufficiently small values of f, where 6 is a positive number depending only on A
and 6 < 1 for all A.

We further suppose that, as £-> 0,

S rV>£) = 0{f{i)}. (32)
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Now the same order relation holds for £-• oo so that it holds uniformly for all £. Hence
by integration <»

r = l

r = l

and

Thus, for small £,

and

(33)

f{i)>A (34)

It is convenient to state the above conditions in terms of the function ^"(a»), as they
then take their simplest forms. The second condition (32) is usually satisfied trivially,
but (31) may be difficult to prove.

To deal with the range of integration (B) we observe that

G(X,Z)=
r = l

00

= n
r = l

_ g—(Ar+a)tt>

and

Now

since aw is pure imaginary. Hence

largzz^l 3J \a.\t,-Kni,6 = ( | a | - ,

If we suppose that A,. < | a | we obtain

\argxzxr\>$\a\£

for sufficiently small £, since /«?-> 0. Also | a | < nE,-1 so that | xzx* \ ^ c~" and

I y$xz r > A a g.

But

and

This suffices to prove that for A, < | a | we have

1

1 —
for some A > 0, provided that £ is sufficiently small. But

always. Suppose N(X) is the number of A,. < A; then we have

\G(x,z)\<e~ANa*»G(\x\,\z\).
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Then the integral over the range (B) is
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1 x |, | z) PJB =

It follows from (4) and (34) that

N(u) flogu^-ao as u -»-oo,

which implies that JB = o(g{*"(g)}-» exp [Y(£) + ng]),
since /i-^-co as £-»-0.

For the range (C2) we have

(35)

(36)

log G(x,z) = 2 -af^(rw),
r = l *"

| log G(z, z) | < | ^(w) | + S - | ^(w) |
2 *"

so that

by (31). (It is necessary to split the sum as (31) holds only for sufficiently small £.)
Then using (33) we obtain

|lQg<?(a:,z)|<0T(£), where 6'<l.

Further T(g) > ^(g) > A log21

for some positive constant A. Thus in the range (C2)

Then it follows that

, z) | =

G(x,z)
dxdz

To deal with the range (Cj) we use the relation

(37)

r = l

r = l 1 —
exp g S i

By the argument above we have
CO

n
provided that A is sufficiently small. Now | xjr{rw) \

| G(x,z) | «;e-fc"N«Dexpi[| i/r(co) \

for all <o, so that

(38)



234 C. B. HASELGROVE AND H. N. V. T E M P E R L E Y

We shall assume that as £->0, gy^g) = 0(^"(g)), which by using (32) implies (11).
Now we have

= [̂ "(g)]2 + ?/

Hence

We shall assume that [^'(£)]2 < 0^(g) ^"(£) (39)
for sufficiently small £, where 6 < 1. Then it follows that

if o) is in a sufficiently small Stolz angle A. This implies, using (33) and (38), that
G(x,z)

xm+lzn+l dxdz exp [Y(£) + n£|). (40)

Writing F{y) = ^-.\ K{a)eavda (41)

we deduce finally that

Pm(n) = ^

{ } » (42)
provided only that the conditions stated above are satisfied. Under these conditions
it also follows that i

() {¥'(£)}* pF(£) g (43)
Further, it follows similarly, by considering the integral

that Km&°npm(n) = S _ JW((m- ^ g ) {¥*(£)}-• exp [T(g) + ng]

g]), (44)
where Am and An denote difference operators with respect to the variables m and n
(e.g. Anpm{n) =pm(n)-pm{n-l)).

The above results may be stated in the form of the
THEOBBM. Let 0 < Ax < A2 < ... be a sequence of positive integers such that

(i) SA72 converges.
Then let ^(w) be the function of the complex variable (o = £ + iv defined in the region
£ > 0 by °°

f(a>) = 2 e-V*,
r=l

and suppose that

(ii) £ *¥*(£) = O(iT(l))««^^o,
(iii) { -̂'(g)}2 < <?̂ (g) f(i)for some fixed d<\ and for g sufficiently small,
(iv) £^"(g) = 0(jHg))<wg-*O,
(v) /or sufficiently small £, | ̂ "(w) | < ̂ ^(g) in the region £ A < | v \ ^ 7r /or

A arwi some 6 < 1 depending only on A.
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Then writing ^ M = E -
r=l r

ZniJ _joo

it follows that as n->co the number of partitions pm(n) of n into m parts A, satisfies

A^A^p^n) = £,r+s+1F(r\(m — m0)El)p(n) + o(£l''
+a+1p(n)), (45)

where £ is the root of the equation T'(£) + n = 0 and Am and An denote difference operators
with respect to the variables m and n, so that Anpm(n) = pm(n) —pm(n — 1), etc.

Also the total number p(n) of partitions of n into parts A, satisfies

PW ~ TO {^'(S)}"* e xP WS) + nfl. (43)

In particular pm(n) = £,F{(m-m0)E,)p{ri) + o(£,p{n)). (42)
.F(y) is a distribution function in the usual statistical sense. It is indefinitely differ-

entiable and satisfies /•»
F(y)dy=l.

J - 0 0

It follows from our results that it is non-negative, although we have not constructed
a direct proof of this result. As we have seen the moment-generating function of
F(y) is oo / ,v\-i

K(a) = n ( l + £ )
This implies that the mean of the distribution occurs at y = 0 or m = ra0, and that the
second semi-invariant with respect to the y variable is SA^2, which we have assumed
to be finite.

In most of the cases that we shall consider F(y) will have a maximum at ylt where
the second derivative F'tyJ is different from zero and will be such that F(y1)>F(y)
for all y 4= yv Since F"(y) is continuous, and since Fn(y^) =j= 0, we must have

F"(y)<-c, \y-yx\<2h

for some strictly positive constants c and h. I t then follows from our result (45) that
the difference i^p^n) is negative for sufficiently large n, in the corresponding range
of m. Also F'(y)>ch for y1 — 2h<y<y1 — h and F'(y)< —ch for y1 + h<y<y1 + 2h,
and it follows from (45) that, for sufficiently large n, Ampm(n) is positive and negative
respectively in the corresponding ranges of m. But since A^pm(n) is negative, Ampm(n)
is monotonic and strictly decreasing for values of m corresponding to | y — yx \ < 2h.
Hence there exists mx in this range such that for m < mlt Ampm(n) is positive and for
m > ?%, Ampm(n) is negative, for m in the range. Now for y outside the range | y — yx \ < h,
F(y) < F(yj) — S for some positive S, since F(y) is continuous and F{y) -=• 0 as y -> + oo.
Thus, using (42), pm(n) <pmi(n) for values of m corresponding to values of y outside
the range | y — yx \ < h.
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Thus there are at most two consecutive values of m for which pm(n) attains its
maximum value for a fixed but sufficiently large value of n. We shall later use this to
prove the conjecture of Auluck, Chowla and Gupta (1), in the case of partitions into the
natural numbers.

I t will be seen that the value oim at which the maximum occurs will be asymptotic
to the value of TO at which the mean of the distribution occurs, unless SA71 converges.

I t is often useful to know something of the asymptotic behaviour oiF(y) &sy->±co.
To determine this behaviour as y-> + 00 we proceed as follows:

F(y) = — P K{a) eav da.

K(<x) has poles at the points a = — A,. Shifting the contour across these poles we
obtain the expansion F(y) ~ V, C e~x*v (46)

r

which is asymptotic in the sense of Poincare. The Cr are constants for those A, which
are not repeated, but, if A, is repeated vr times, Cr is a polynomial of degree vT — 1 in y.

I t is more difficult to obtain general results for the behaviour of F(y) as y becomes
negative. If the series ZA71 is convergent we observe that

as 3ta -> 00 uniformly in $a. Hence if y < —

=LJa'
Making c -> + 00 we deduce

F(y) = 0 for y^ -SA71. (47)
This result may be explained by the fact that

when the series is convergent. Thus

only for negative TO, in which case the number of partitions is naturally zero.
It will be shown later, by studying various special cases, that the distribution

function F{y) is highly asymmetric if A, increases rapidly with r, but if A, does not
increase very rapidly with r the distribution becomes nearly normal.

If the series SA^1 is divergent the following rough argument shows that we may use
the saddle-point method for both variables of integration, provided only that certain
conditions, of the same nature as we have imposed above, are satisfied. For we have

92

Now as (o ->• 0 for a 4= — A,,

32

Thus if SA, 2 diverges -^—2 log g(a, w) -> 00.
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This is a necessary condition for it to be possible to expand the integrand in (16) as
a Taylor series over a sufficient length of the path of integration for us to be able to
apply the saddle-point method to the x variable (see p. 226 above). It is still necessary
to impose some conditions on the A ,̂ but we shall not study this problem in detail as
we must use methods slightly different from those of this paper.

I t then follows, under the assumption of suitable conditions, that the orthodox

results of statistical mechanics are correct. I t also follows that the distribution func-

tion F(y) represents a normal distribution (i.e. it is the function , e"*"* when an

appropriate scale factor has been introduced and a change of origin has been made.)

4. A special class of cases. In this section we shall make the assumption that
N{\)~A\P where A is a positive constant, 0<ft < 2 and y?=t= 1. This will enable us to
obtain asymptotic formulae for some of the quantities involved in the above analysis
and to deduce that some of our conditions are satisfied. We notice that SA^2 is con-
vergent since ft < 2.

I t is first necessary to obtain an asymptotic formula for \jr(E,) which may be done
by a generalization of the well-known theorem of Abel on power series:

f{g)~AY{p+\)Z-l>. (48)

Similarly, f'(£,) ~ - AftT(ft + 1) g-P-\ (49)

Vi&~Ap(P+\)Y(P+\)g-fi-*, (50)

etc. Hence the conditions (ii), (iii) and (iv) are satisfied and

{AftT(ft +1) aP+ l)}W+i)n-W+i), (51)

g-iSAr1 for p<\, (52)

and »»»(£)= S W ~ 4 r ( / ? + 1 ) £(/?)£-/» for p>\. (53)

Also Y(g) = | i ^ r ( r£ )

Thus Y(£) + ng~il&»+l)rOff+l)SO?+l)g-*. (54)

Then if the condition (v) is satisfied, we can conclude that

y . (55)

We can obtain some additional information about the behaviour of F(y) as y
decreases. We have 1 rio°
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In the case /? < 1 we make a change of origin

where ^ ( a ) =

By a theorem on integral functions with real negative zeros (see Titchmarsh (9), p. 271)
Tiro fi€*U.UC6

log K-^a) irAafi cosec nfi (56)
as | a | -> oo with | arg a | < n — S. We may use this result to prove the asymptotic
formula for

log F(y - SA71) ~ (/?&-» - fifia-fi) (nA cosec nfiyto-»yrfila-fi>, (57)

as y-> + 0, by using the saddle-point method.
We may extend the range of validity of this formula to the case fi > 1 (but not the

case fi = 1) if we allow for the change of sign of some of the terms. Then

log F(y) ~ (fiW-ft - pm-P>) (_ nA cosec 7ryff)W-« ( - y)/W-«, (58)

as y -*• — 00. In order to prove this result it is necessary to use the result analogous to
(56) for integral functions of order ft > 1, which may be proved similarly.

5. Particular types of partition. We shall now consider the application of the above
theory to particular types of partition function.

(a) The case \ = r. This case has been dealt with'by Erdos and Lehner (4) and later
by Auluck, Chowla and Gupta (1). Their results are easily verified. I t has also been
studied by Szekeres (7). It is trivial that our conditions are satisfied.

We have
K(*)= n (l + f)

r=l \

where C is Euler's constant.
We may easily obtain approximate formulae for i/r(g), £, mo(g) and then for

F((m — mo)£). This gives the results that have previously been obtained by Auluck,
Chowla and Gupta (1). Also

F(y) = exp { - (C + y) - er<a^.

Thus the distribution function of pm(n) has a unique maximum, and so, by our
remarks on the partial differences of pm(n), we deduce that pm(n) attains its maximum
value for at most two consecutive values of m for sufficiently large fixed n. This proves
the conjecture of Auluck, Chowla and Gupta (1).

(b) The case A, = r", where K is an integer and K>\. Here the conditions (i), (ii), (iii)
and (iv) are satisfied trivially. The condition (v) is also satisfied; the proof of this fact
is rather difficult, but it follows from various results on the function ^(w) which is used
in work on Waring's problem (see, for example, Landau (6), equations (273) and (274)).
Since SA71 is convergent, we see that the distribution is very asymmetric, having mean
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and standard deviation of the same order. The distribution has a finite cut-off as shown
by (47). We see that ^(A) ~ AV/C and obtain the results

and
1\ W(K+U

Thus the value of m for which the maximum of pm(n) occurs is of order A(K) n"l(-K+1\
We again suspect that there is a unique maximum, but in order to prove this we

should have to examine the distribution function in detail. We shall not carry out the
analysis here for general K, but we shall obtain a simpler form of F(y) in the case of
partitions into squares.

We can determine asymptotic formulae forp(n) from Ingham's Theorem 2, but these
results have previously been obtained by Wright (10). In the case of partitions into
squares the function K(a) is an elementary function. We have

r i i \ r2/ sm (ma*)

From this we deduce that for y > 0

in the notation of Tannery and Molk. It is easily proved by direct computation that
the maximum of »

- 2 £ (-I)rr2e-r '«'
r=l

occurs at«/=0-9054.... Since the mean of the distribution occurs at y = \TT2 = 1 • 6449...
it follows that the mean and the maximum are different in this case. Asymptotic
formulae for pm(n) follow from those for p(n) if we use (42).

(c) Prime numbers. Here we take ^ to be the rth prime which, by the prime number
theorem, is asymptotic to r log r. This case is of some interest, in that it demonstrates
the power of the above methods; however, it is necessary to use some additional
arguments to prove the results. The distribution function shows some remarkable
properties; this is due to the fact that the series Sl/p is 'only just' divergent.

The conditions (i), (ii), (iii) and (iv) are satisfied trivially. The condition (v) is not
satisfied, but in view of some work of Vinogradoff and Linnik on Goldbach's con-
jecture, an account of which is given by Tchudakoff (8), we are able to state some results
which are sufficient for our purpose. The difficulty arises from the fact that there is
only one even prime number (namely 2) and therefore the generating function F(x, z)
has a singularity at the point x = — l,z = —1 which gives rise to a contribution to the
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contour integral which is almost of the same order of magnitude as the contribution
from the singularity at the point x = 1, z = 1.

If none of the numbers /^ are even we see that the function F(x, z) satisfies the
functional equation Fl — x -z) = Fix, z),

so that the singularities at a; = — 1, z = — 1 and at x = 1, z = 1 have equal weight.
This reflects the fact that in this case it is not possible to partition an even number
into an odd number of odd parts. In the case of prime numbers, however, the function
F(x, z) satisfies the functional equation

which shows that the contribution to the integral from the singularity at (— 1, — 1)
is of a strictly smaller order of magnitude than that from the singularity at (1,1).
This means that we can prove the asymptotic formula for pm(n) if we use the results of
Vin ogradoff and Linnik. These state that if we exclude a region in a Stoltz angle about
the point z = 1 (w = in) the condition (v) is then satisfied.

We may not, however, obtain a similar result for the differences of pm(n). In the
case of the first differences (with respect to either variable) the contributions from the
singularities are of the same order of magnitude. Thus we cannot expect to prove any
analogue of the Auluck, Chowla and Gupta conjecture. Computation leads us to
believe that such an analogue is not true.

In the case of partitions into prime numbers we have

S K1- log log X.

Hence mo(£) = £ -^j— ~ ? log log -=.

S~re

and log«(7i)~-r- h 1 •

The above asymptotic formula for \og]){ri) is well known. If we refer back to the
formulae of our theorem we obtain an asymptotic formula for p(n) itself. This formula,
however, involves transcendental sums over the primes. It is possible to express
these transcendental sums in terms of the zeros of the Riemann zeta function. We may
also state asymptotic formulae for pm(n) in this case. It should be noticed that the
above results have been obtained without any recourse to the Riemann hypothesis
on the zeros of the zeta function, though it may be necessary to use the Riemann
hypothesis to express the sums explicitly in terms of the zeros of £(s). BrighamO)
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has obtained an asymptotic formula for a certain weighted partition function corre-
sponding to partitions into prime powers, in terms of the zeros of the zeta function,
on the assumption of the Riemann hypothesis.

It may be verified that F(y) lies between the orders

as y-^-co for any fixed positive e. Also F(y) ~ A e~2» a&y-++co. The maximum of
pm(n) occurs for /3

m ~ — (n log n)* log log n.

The mean of the distribution is of the same order as the value corresponding to the
maximum, but may differ from this value by

Thus in this case the ratio mnujm,,^, only tends to unity very slowly as n^-oo. We
have asymptotic equality because Sl/p diverges.

We may apply the above methods to partitions of other similar types. For example,
our conditions are generally satisfied in the following cases:

(d) Numbers A, which are representable as the sum of s /cth powers provided that
S<2K.

(e) Numbers /^ of the form [Ar^ilog r)T], provided that cr > £.
In particular we may deal with partitions into numbers represented as the sum of

two or three squares, counted according to the number of representations, which have
applications in physics to the two- and three-dimensional Bose-Einstein gases.

We wish to thank Mr A. E. Ingham and Dr F. C. Auluck for many helpful discussions
and for advice on the preparation of the manuscript.
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