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Community detection methods attempt to divide a network into groups of nodes that share similar
properties, thus revealing its large-scale structure. A major challenge when employing such methods is that
they are often degenerate, typically yielding a complex landscape of competing answers. As an attempt to
extract understanding from a population of alternative solutions, many methods exist to establish a
consensus among them in the form of a single partition “point estimate” that summarizes the whole
distribution. Here, we show that it is, in general, not possible to obtain a consistent answer from such point
estimates when the underlying distribution is too heterogeneous. As an alternative, we provide a
comprehensive set of methods designed to characterize and summarize complex populations of partitions
in a manner that captures not only the existing consensus but also the dissensus between elements of the
population. Our approach is able to model mixed populations of partitions, where multiple consensuses can
coexist, representing different competing hypotheses for the network structure. We also show how our
methods can be used to compare pairs of partitions, how they can be generalized to hierarchical divisions,
and how they can be used to perform statistical model selection between competing hypotheses.
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I. INTRODUCTION

One of the most important tools in network analysis is
the algorithmic division of an unannotated network into
groups of similar nodes—a task broadly known as network
clustering or community detection [1]. Such divisions
allow researchers to provide a summary of the large-scale
structure of a network and, in this way, obtain fundamental
insight about its function and underlying mechanism of
formation. Within this broad umbrella, many community
detection methods have been developed, based on different
mathematical definitions of the overall task [2]. What most
methods share in common is that they are based on some
objective function defined over all possible partitions of
the network, which, if optimized, yields the most adequate
partition for that particular network. Another universal
property of community detection methods is that when they
are applied to empirical networks, they exhibit at least some
degree of degeneracy, in that even if there exists a single

partition with the largest score among all others, there is
usually an abundance of other solutions that possess a very
similar score, making a strict optimization among them
somewhat arbitrary [3]. This issue is compounded with the
fact that instances of the community detection problem
are generically computationally intractable, such that no
known algorithm that guarantees the correct solution can
perform substantially better than an exhaustive search over
all answers [4,5], which is not feasible for networks with
more than very few nodes. As a consequence, most
available methods rely on stochastic heuristics that give
only approximations of the optimum and end up being
especially susceptible to the degenerate landscape, yielding
different answers whenever they are employed.
In response to this inherent degeneracy, many authors

have emphasized the need to collectively analyze many
outputs of any given community detection method, not only
the best scoring result [6–9]. In this direction, one particu-
larly interesting proposition is to recover the task of
detecting a single partition but doing so in a manner that
incorporates the consensus over many different alternatives
[7,9–15]. If most results are aligned with the same general
solution, the consensus among them allows us, in fact, to
profit from the degeneracy since small distortions due to
irrelevant details or statistical fluctuations are averaged out,
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leading to a more robust answer than any of the individual
solutions. However, consensus clustering cannot provide a
full answer to the community detection problem because
any kind of approach based on point estimates possesses an
Achilles’ heel in situations where the competing answers
do not all point in a cohesive direction and instead amount
to incompatible results. A consensus between diverging
answers is inconsistent in the same manner as the mean of a
bimodal distribution is not a meaningful representation of
the corresponding population. Therefore, extracting under-
standing from community detection methods requires
more than simply finding a consensus, as we also need
to characterize the dissensus among the competing parti-
tions. In fact, we need robust methods that give us a
complete picture of the entire population of partitions.
Some authors have previously considered the problem of

fully characterizing the landscape of possible partitions.
Good et al. [3] have used nonlinear dimensionality reduc-
tion to project the space of partitions in two dimensions,
thereby revealing degeneracies. Closer to what is proposed
in this work, Calatayud et al. [8] have used an ad hoc
algorithm to cluster partitions, in order to determine how
many samples are necessary to better characterize a
distribution. Although these previous works effectively
demonstrate the role of partition heterogeneity in empiri-
cally relevant situations, the approaches developed so far
are implemented outside of a well-defined theoretical
framework and rely on many seemingly arbitrary choices,
such as projection dimension, similarity function used,
cluster forming criterion, etc. Thus, it is difficult to
interpret, in simple terms, the structures found by those
methods and also to evaluate if they are meaningful and
statistically significant or are merely artifacts of the provi-
sional choices made.
In this work, we develop a round set of methods to

comprehensively characterize a population of network
partitions, in a manner that reveals both the consensus
and dissensus between them. Our methods start from the
formulation of interpretable probabilistic generative models
for arbitrary collections of partitions that are based on
explicit definitions of the notion of unique group labelings
and clusters of partitions. From these models, we are able to
derive principled Bayesian inference algorithms that are
efficient and effective at characterizing heterogeneous sets
of partitions, according to their statistical significance.
Importantly, our methods are nonparametric and do not
require a priori choices to be made, such as distance
thresholds or even the number of existing clusters, with the
latter being uncovered by our method from the data alone.
Our method also bypasses dimensionality reduction
[16,17], as required by some data clustering techniques,
and operates directly on a collection of partitions. Since it is
grounded in a broader statistical framework, our method
also allows potential generalizations and principled com-
parison with alternative modeling assumptions.

We approach our characterization task by first providing
a solution to the community label identification problem,
which allows us to unambiguously identify groups of nodes
between partitions even when their node compositions are
not identical. This approach allows us to perform the basic
(but, until now, not fully solved) task of computing
marginal distributions of group memberships for each node
in the network, and it also naturally leads to a way of
comparing partitions based on the maximum overlap
distance, which has a series of useful properties that we
demonstrate. Our method yields a simple way to character-
ize the consensus between a set of partitions, acting in a
way analogous to a maximum a posteriori (MAP) estima-
tion of a categorical distribution. We also highlight the
pitfalls of consensus estimation in community detection,
which fails when the ensemble of solutions is hetero-
geneous. Finally, we provide a more powerful alternative,
consisting of the generalization of our method to the
situation where multiple consensuses are possible, such
that groups of partitions can align in different directions.
The identification of these partition “modes” yields a
compact and understandable description of the hetero-
geneous landscape of community detection results,
allowing us to assess their consistency and weigh the
alternative explanations they offer to the network data.
This work is divided as follows. We begin in Sec. II with

a description of the label identification problem, which
serves as a motivation for our approach on consensus
clustering developed in Sec. III, based on the inference of
what we call the random label model. In Sec. IV, we discuss
how we can extract consensus from network partitions via
“point estimates” and how this leads to inconsistencies in
situations when the different partitions disagree. We then
show how we can find both consensus and dissensus in
Sec. V, by generalizing the random label model, thus
obtaining a comprehensive description of multimodal
populations of partitions, including how partitions may
agree and disagree with each other. In Sec. VI, we show
how our ideas can be easily generalized to ensembles of
hierarchical partitions, and finally, in Sec. VII, we show
how our methods allow us to perform more accurate
Bayesian model selection, which requires a detailed depic-
tion of the space of solutions that our approach is able to
provide. We end in Sec. VIII with a conclusion.

II. GROUP IDENTIFICATION PROBLEM
IN COMMUNITY DETECTION

In this work, we focus on the approach to community
detection that is based on the statistical inference of
generative models [18]. Although our techniques can be
used with arbitrary community detection methods (or, in
fact, for any data clustering algorithm), those based on
inference lend themselves more naturally to our analysis
since they formally define a probability distribution over
partitions. More specifically, if we consider a generative
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model for a network conditioned on a node partition
b ¼ fbig, where bi is the group label of node i, such that
each networkA occurs with a probability PðAjbÞ, we obtain
the posterior distribution of network partitions by employ-
ing Bayes’ rule,

PðbjAÞ ¼ PðAjbÞPðbÞ
PðAÞ ; ð1Þ

where PðbÞ is the prior probability of partitions and
PðAÞ ¼ P

b PðAjbÞPðbÞ is the model evidence. There
are many ways to compute this probability, typically
according to one of the many possible parametrizations
of the stochastic block model (SBM) [19] and the corre-
sponding choice of prior probabilities for their parameters.
Since our analysis does not depend on any particular
choice, we omit their derivations and instead point the
reader to Ref. [18] for a summary of the most typical
alternatives. For our present goal, it is sufficient to establish
that such a posterior distribution can be defined, and we
have mechanisms to either approximately maximize or
sample partitions from it.
The first central issue we seek to address is that, for

this class of problems, the actual numeric values of the
group labels have no particular significance, as we are
simply interested in the division of the nodes into groups,
not in their particular placement in named categories. Thus,
the posterior probability above is invariant to label permu-
tations. More specifically, if we consider a bijective
mapping of the labels μðrÞ ¼ s, such that its inverse
μ−1ðsÞ ¼ r recovers the original labels, then a label
permutation c ¼ fcig, where ci ¼ μðbiÞ, has the same
posterior probability,

PðbjAÞ ¼ PðcjAÞ; ð2Þ

for any choice of μ. Very often, this detail is considered to
be unimportant since many inference methods break this
label permutation symmetry intrinsically. For example, if
we try to find a partition that maximizes the posterior
distribution with a stochastic algorithm, we will invariably
find one of the many possible label permutations, in an
arbitrary manner that usually depends on the initial con-
ditions, and we can usually move on with the analysis from
there. Methods like belief propagation [5], which can be
employed in the special case where the model parameters
other than the partition b are known, yield marginal
distributions over partitions that, due to random initializa-
tion, also break the overall label permutation symmetry and
yield a distribution centered around one particular group
labeling. The same occurs also for some Markov chain
Monte Carlo (MCMC) algorithms, for example, those
based on the movement of a single node at a time
[20,21], which will often get trapped inside one particular
choice of labels. This happens because the swap of two

labels can only occur if the respective groups exchange all
their nodes one by one, a procedure that invariably moves
the Markov chain through low probability states and thus is
never observed in practice. Although this spontaneous label
symmetry breaking can be seen as a helpful property in
these cases, strictly speaking, it is a failure of the inference
procedure in faithfully representing the overall label sym-
metry that exists in the posterior distribution. In fact, this
symmetry guarantees that the marginal posterior group
membership probability of any node must be the same for
all N nodes, i.e.,

πiðrÞ ¼
X
b

δbi;rPðbjAÞ ¼
XN
B¼r

PðBÞ
B

; ð3Þ

where PðBÞ is the marginal distribution of the number of
labels (nonempty groups), and we assume that the labels
always lie in a contiguous range from 1 to B. Therefore, the
true answer to the question “what is the probability of a
node belonging to a given group?” is always an unhelpful
one since it is the same one for every node and carries
no information about the network structure. Far from
being a pedantic observation, we encounter this problem
directly when employing more robust inference methods
such as the merge-split MCMC of Ref. [22]. In that
algorithm, the merge and split of groups are employed
as direct move proposals, which significantly improve the
mixing time and the tendency of the Markov chain to get
trapped in metastable states, when compared to single-node
moves. However, as a consequence, the merge and split of
groups result in the frequent sampling of the same partition
where two group labels have been swapped, after a merge
and split. In fact, the algorithm of Ref. [22] also includes a
joint merge-split move, where the memberships of the
nodes belonging to two groups are redistributed in a single
move, which often results in the same exact partition but
with the labels swapped. Such an algorithm will rapidly
cycle through all possible label permutations, leading to the
correct, albeit trivial, uniform marginal probabilities given
by Eq. (3).
In Fig. 1, we show how the label permutation invariance

can affect community detection for a network of co-
purchases of political books [23], for which we used the
Poisson degree-corrected SBM (DC-SBM) [24], with the
parametrization of Ref. [25] and the merge-split MCMC
of Ref. [22]. Although the individual partitions yield
seemingly meaningful divisions, they are observed with
a random permutation of the labels, preventing an aggre-
gate statistics at the level of single nodes to yield useful
information.
At first, we might think of a few simple strategies

that can alleviate the problem. For example, instead of
marginal distributions, we can consider the pairwise co-
occurrence probabilities cij ¼

P
b δbi;bjPðbjAÞ ∈ ½0; 1�,

which quantify how often two nodes belong to the same
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group and thus are invariant with respect to label permu-
tations. However, this approach gives us a large, dense
matrix of size N2, which is harder to interpret and
manipulate than marginal distributions—indeed, the usual
approach is to try to cluster this matrix [10] by finding
groups of nodes that have similar co-occurrences with other
nodes, but this method just brings us back to the same kind
of problem. Another potential option is to choose a
canonical naming scheme for the group labels, for example,
by indexing groups according to their size, such that r < s
if nr < ns, where nr is the number of nodes with group
label r. However, this idea quickly breaks down if we
have groups of the same size or if the group sizes vary
significantly in the posterior distribution. An alternative
canonical naming is one based on an arbitrary ordering of
the nodes, forcing the labels to be confined to a contiguous
range so that bj > bi for j > i whenever bj corresponds to
a group label previously unseen for nodes k ≤ i. In this
way, every partition corresponds to a single canonical
labeling, which we can generate before collecting statistics
on the posterior distribution. Unfortunately, this approach is
not straightforward to implement since the marginal dis-
tributions will depend strongly on the chosen ordering of
the nodes. For example, if the first node happens to be one
that can belong to two groups with equal probability,
whenever this node changes membership, it will incur
the relabeling of every other group, thus spuriously causing
the marginal distribution of every other node to be broader,
even if they always belong to the “same” group. It seems
intuitive, therefore, to order the nodes according to the
broadness of their marginal distribution, with the most
stable nodes first, but since determining the marginal

distribution depends on the ordering itself, it leads to a
circular problem.
In the following, we provide a different solution to this

problem, based on a generative model of labeled partitions,
which is both satisfying and easy to implement; in the end,
it allows us to obtain marginal distributions in an unam-
biguous manner.

III. ESTABLISHING CONSENSUS:
THE RANDOM LABEL MODEL

If we have, as an objective, the estimation of the marginal
probability πiðrÞ of node i belonging to group r, given M
partitions fbg ¼ fbð1Þ;…; bðMÞg sampled from a posterior
distribution, this is done by computing the mean

πiðrÞ ¼
1

M

XM
m¼1

δbmi ;r: ð4Þ

This approach is fully equivalent to fitting a factorized
“mean-field” model on the same samples, given by

PMFðbjp; BÞ ¼
Y
i

piðbiÞ; ð5Þ

where piðrÞ is the probability of node i belonging to group
r ∈ f1;…; Bg. Given the same partitions, the maximum
likelihood estimate of the above model corresponds exactly
to how we estimate marginal distributions, i.e.,

p̂iðrÞ ¼ argmax
piðrÞ

YM
m¼1

PMFðbðmÞjp; BÞ ¼ πiðrÞ: ð6Þ

Although this computation is common practice, it is
important to note that this model is inconsistent with our
posterior distribution in Eq. (1) since it is, in general, not
invariant to label permutations; i.e., if we swap two labels r
and s, we have the same distribution only if piðrÞ ¼ piðsÞ
for every node i. Therefore, in order to tackle the label
symmetry problem, we may modify this inference pro-
cedure by making it also label symmetric. We do so by
assuming that our partitions are initially sampled from the
above model, but then the labels are randomly permuted.
In other words, we have

Pðbjp; BÞ ¼
X
c

PðbjcÞPMFðcjp; BÞ; ð7Þ

where the intermediary partition c is relabeled into b with a
uniform probability

PðbjcÞ ¼ ½b ∼ c�
qðcÞ! ; ð8Þ

where we make use of the symmetric indicator function

(a)

(b)

FIG. 1. (a) Five sampled partitions from the posterior distri-
bution of a network of political books, with the group labels
represented as colors, using the Poisson DC-SBM and the
MCMC algorithm of Ref. [22] (b) Marginal posterior distribution
of the group memberships of the nodes highlighted in red in (a),
obtained for 105 samples from the posterior distribution. The
same asymptotic distribution is obtained for every single node in
the network.
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½b ∼ c� ¼
�
1 if b is a label permutation of c

0 otherwise;
ð9Þ

and where qðcÞ is the number of labels actually present in
partition c [not to be confused with the total number of
group labels B in the underlying model since some groups
may end up empty, so that qðcÞ ≤ B], and qðcÞ! in the total
number of label permutations of c. Now, inferring the
probabilities p from the model above involves finding a
single underlying canonical labeling that is erased at each
sample but, after it is identified, allows us to obtain
marginal distributions. This canonical labeling itself is
not unique since every permutation of its labels is equiv-
alent, but we do not care about the identity of the labels,
just an overall alignment, which is what the inference
will achieve.
We proceed with the inference of the above model in the

following way. Suppose we observe M partitions fbg ¼
fbð1Þ;…; bðMÞg sampled from the posterior distribution as
before. Our first step is to infer the hidden labels fcg ¼
fcð1Þ;…; cðMÞg from the posterior

Pðfcg; BjfbgÞ ¼ PðfbgjfcgÞPðfcgjBÞPðBÞ
PðfbgÞ ; ð10Þ

with the marginal likelihood integrated over all possible
probabilities p, and given by

PðfcgjBÞ ¼
Z

PMFðfcgjpÞPðpjBÞdp ð11Þ

¼
Y
i

ðB − 1Þ!
ðM þ B − 1Þ!

Y
r

niðrÞ!; ð12Þ

where

niðrÞ ¼
XM
m¼1

δcmi ;r ð13Þ

is the number of relabeled partitions where node i has
hidden label r, and we have used an uninformative prior

PðpjBÞ ¼
Y
i

ðB − 1Þ!; ð14Þ

corresponding to a constant probability density for every
node over a B-dimensional simplex, each with volume
1=ðB − 1Þ!, which is also equivalent to a Dirichlet prior
with unit hyperparameters. Therefore, up to an unimportant
multiplicative constant, we have that the posterior distri-
bution of hidden relabelings is given by

Pðfcg;BjfbgÞ

∝
�YM

m¼1

½bðmÞ∼cðmÞ�
�Y

i

ðB−1Þ!
ðMþB−1Þ!

Y
r

niðrÞ!; ð15Þ

where have assumed a uniform prior PðBÞ ¼ 1=N, which
does not contribute to the above. We proceed by consid-
ering the conditional posterior distribution of a single
partition cðmÞ,

PðcðmÞjfbg; fcðm0≠mÞg; BÞ
∝
Y
i

Y
r

½n0iðrÞ þ δcmi ;r�!

∝
Y
i

Y
r

f½n0iðrÞ þ 1�!gδcmi ;rf½n0iðrÞ�!g1−δcmi ;r

∝
Y
i

Y
r

½n0iðrÞ þ 1�δcmi ;r ; ð16Þ

where n0iðrÞ ¼
P

m0≠m δ
cðm

0Þ
i ;r

is the label count excluding

cðmÞ, and we have dropped the indicator function for
conciseness, but without forgetting that ½cðmÞ ∼ bðmÞ� ¼ 1
must always hold. If we seek to find the most likely hidden
labeling cðmÞ, we need to maximize the above probability,
or equivalently its logarithm, which is given by

lnPðcðmÞjfbg; fcm0≠mg; BÞ ¼
X
i;r

δcmi ;r ln ½n0iðrÞ þ 1�; ð17Þ

up to an unimportant additive constant. The maximization
involves searching through all qðbðmÞÞ! possible relabelings
of bðmÞ. Unfortunately, this number grows too fast for an
exhaustive search to be feasible, unless the number of
labels is very small. Luckily, as we now show, it is possible
to reframe the optimization in a manner that exposes its
feasibility. We begin by representing the mapping between
the labels of bðmÞ and cðmÞ via the bijective function μðrÞ,
chosen so that

μðbmi Þ ¼ cmi ; ∀ i: ð18Þ

Now, by introducing the matrix

wrs ¼
X
i

δbi;r ln ½n0iðsÞ þ 1�; ð19Þ

we can express the log-likelihood as

lnPðcðmÞjfbg; fcm0≠mg; BÞ ¼
X
r

wr;μðrÞ: ð20Þ

Therefore, if we consider the matrix wrs as the weighted
adjacency matrix of a bipartite graph, where the group
labels of bðmÞ and cðmÞ form the nodes on each partition (see
Fig. 2), the above log-likelihood corresponds to the sum of
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the weights of the edges selected by μ. Finding such a
bijection is an instance of a very well-known combinatorial
optimization problem called maximum bipartite weighted
matching, also known as the assignment problem, which
corresponds to finding a “matching” on a bipartite graph,
defined as a subset of the edges that share no common
nodes, such that the sum of the weights of the edges
belonging to the matching is maximized. This case corre-
sponds precisely to the sum given in Eq. (20), where a
given choice of μ corresponds to a particular matching. In
particular, we are interested in the unbalanced and imper-
fect version of the matching problem, where the number
of groups on both sides might be different, and groups on
either side might be left unmatched [26]—in which case,
for each unmatched group, we give it a label of a new
group. Luckily, fast polynomial algorithms for this problem
have been long known. For example, using the
“Hungarian” or Kuhn-Munkres algorithm [27,28], this
problem can be solved with a worst-case running time
of O(qðbÞ3), which is substantially better than an exhaus-
tive search, rendering our approach not only feasible but
also efficient.
Having found the maximum of Eq. (20), we are still left

with maximizing the value of B according to Eq. (15). But,
as it is easy to verify, the likelihood is a monotonically
decreasing function of B. Therefore, since qðcÞ ≤ B, this
step simply amounts to choosing B so that

B ¼ max
m

qðcðmÞÞ: ð21Þ

Equipped with the above information, we can summarize
our whole inference algorithm as follows:
(1) We sample M partitions bð1Þ;…; bðMÞ from the

posterior distribution PðbjAÞ.
(2) We initialize cðmÞ ¼ bðmÞ for every sample m.
(3) For each sample m, in random order, we obtain a

new relabeling cðmÞ such that Eq. (20) is maximized.
(4) If any value of cðmÞ is changed during the last step,

we repeat it; otherwise, we stop and return fcg.

(5) We update the inferred value of B according
to Eq. (21).

By the end of this algorithm, we are guaranteed to find a
local maximum of Eq. (15), but not a global one; hence,
we need to run it multiple times and obtain the result with
the largest posterior probability. However, we find that
repeated runs of the algorithm give the same result in the
vast majority of cases we tried [29].
Computationally, step 3 is the heart of the above

algorithm, as it corresponds to the alignment of each
partition with the rest. It takes time O½MðN þ B3Þ� in
the worst case, where B is the total number of labels used,
since for each partition we need time OðNÞ to compute the
weightswrs and timeOðB3Þ to solve the maximum bipartite
weighted matching problem. We can then use the final
values of fcg to easily obtain the marginal probabilities via

p̂iðrÞ ¼ argmax
piðrÞ

PðpjfcgÞ ¼ 1

M

XM
m¼1

δcmi ;r: ð22Þ

Note that the above procedure is not much more computa-
tionally intensive than obtaining the marginals in the naive
way, i.e., directly from the originally labeled partitions b,
which requires a time OðMNÞ to record the label counts. It
does, however, require more memory, with a total OðMNÞ
storage requirement, as we need to keep allM partitions for
the whole duration of the algorithm. In practice, however,
we do not need to perform the whole procedure above for
all M partitions, as it is often sufficient to choose a
relatively small subset of them, provided they give a good
representation of the ensemble; then, we run steps 1 to 4
only on this subset. Thus, we can simply process each
remaining partition by simply finding its relabeling cðmÞ,
updating the global label counts niðrÞ, and then discarding
the partition. Although this process gives only an approxi-
mation of the optimization procedure, we find it works very
well in practice, yielding results that are often indistin-
guishable from what is obtained with the full algorithm
while requiring less memory.
In Fig. 3, we show the partitions of the political books

network considered in Fig. 1 but now relabeled according
to the algorithm above. Despite groups changing size
and composition, and the appearance and disappearance
of groups, the unique labeling allows us to identify them
clearly across partitions. In Fig. 4, these relabelings are
used to obtain marginal distributions on the nodes, where
we can say unambiguously, with each frequency, a node
belongs to a given group.

A. Maximum overlap distance

The method described in this section serves as a
principled way to disambiguate group labels in an ensem-
ble of partitions, but the ideas articulated in its derivation
also lead us to a way of comparing two partitions with each

FIG. 2. Relabeling a partition corresponds to finding the
solution of a maximum bipartite weighted matching problem,
where the partition labels are the nodes of a bipartite graph with
weights wrs on the edges. The matching is a bijection μðrÞ that
needs to be chosen so that the total sum

P
r wr;μðrÞ is maximized.

In this illustration, the edge thickness corresponds to the weight
wrs, and the edges in green correspond to the maximum
matching.
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other in a general and meaningful way. Consider the
situation where we employ the model above, but we
have only M ¼ 2 partitions. In this case, without loss
of generality, we can set one of them arbitrarily to

correspond to the canonical labeling, and we seek to
relabel the second one, by maximizing Eq. (20), which, in
this case, simplifies to

X
r

mr;μðrÞ ln 2; ð23Þ

where

mrs ¼
X
i

δ
bð1Þi ;r

δ
bð2Þi ;s

ð24Þ

is the so-called contingency table between partitions bð1Þ

and bð2Þ, which quantifies how many nodes in group r of
bð1Þ belong to group s of bð2Þ. Therefore, maximizing
Eq. (23) is equivalent to finding the bijection μ so that x

with xi ¼ μðbð1Þi Þ and y ¼ bð2Þ maximize the partition
overlap

ωðx; yÞ ¼
X
i

δxi;yi ; ð25Þ

which counts how many nodes share the same label in
both partitions. Therefore, incorporating our inference
procedure leads to the maximum overlap distance

dðx; yÞ ¼ N −max
μ

X
i

δμðxiÞ;yi : ð26Þ

This quantity has a simple interpretation as the minimal
classification error, i.e., the smallest possible number of
nodes with an incorrect group placement in one partition
if the other is assumed to be the correct one. This measure
has been considered before in Refs. [31–33], but here, we
see its derivation based on a probabilistic generative
model. In the Appendix A, we review some of its useful
properties.

FIG. 3. Five sampled partitions from Fig. 1, in the top panel, with their relabeled counterparts on the bottom panel, using the algorithm
described in the text, where it becomes possible to identify groups consistently according to their label (color).

(a)

(b)

FIG. 4. (a) Marginal posterior group membership distribution
on the nodes obtained from relabeled partitions for a network of
political books, the same as in Fig. 1, obtained with the algorithm
described in the text with M ¼ 105 samples, represented as pie
diagrams on the nodes. (b) Same distributions for the nodes
highlighted in red in panel (a).
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IV. CONSENSUS AS POINT ESTIMATES

The explicit objective of community detection, like any
data clustering method, is to find a partition of the nodes of
a network in a manner that captures its structure in a
meaningful way. However, instead of a single partition, the
inference approach gives us a distribution of partitions,
which ascribes to every possible division of the network a
plausibility, reflecting both our modeling assumptions and
the actual structure of the network. In order to convert this
information into a single partition “point estimate,”we have
to be more specific about what we would consider a
successful outcome or, more precisely, how we define
the error of our estimate. A consistent scenario is to assume
that our observed network is indeed generated from our
model PðAjb�Þ, where b� is the true partition we are trying
to find. In order to quantify the quality of our inference, we
need to specify an error function ϵðx; yÞ that satisfies

b� ¼ argmin
b

ϵðb; b�Þ: ð27Þ

Based on a choice for this function, and since we do not
really have access to the true partition b�, our best possible
estimate b̂ from the posterior distribution is the one that
minimizes the average error over all possible answers,
weighted according to their plausibility, i.e.,

b̂ ¼ argmin
b

X
b0

ϵðb; b0ÞPðb0jAÞ: ð28Þ

Therefore, it is clear that our final estimate will depend on
our choice of error function ϵðx; yÞ, and hence, it is not a
property of the posterior distribution alone. In statistics and
optimization literature, the function ϵðx; yÞ is called a “loss
function,” and it determines the ultimate objective of the
inference procedure.
In addition to producing a point estimate b̂, it is also

useful for our inference procedure to yield an uncertainty
value σb̂, which quantifies how sure we are about the result,
with σb̂ ¼ 0 indicating perfect certainty. Such choices are
not unique, as there are often multiple ways to characterize
the uncertainty or how broad a distribution is. But as we
will see, the choice of the error function allows us to
identify what are arguably the simplest and most direct
options.
In the following, we consider simple choices of the error

function and investigate how they compare to each other in
the inference results they produce.

A. MAP estimation

Arguably the simplest error function we can use is the
indicator function (also called the “zero-one” or “all-or-
nothing” loss)

ϵðx; yÞ ¼ 1 −
Y
i

δxi;yi ; ð29Þ

which would completely separate the true partition from
any other, without differentiating among wrong ones.
Inserting this in Eq. (28), we obtain the MAP estimator

b̂ ¼ argmax
b

PðbjAÞ; ð30Þ

which is simply the most plausible partition according to
the posterior distribution. The corresponding uncertainty
for this estimate is simply σb̂ ¼ 1 − PðbjAÞ, such that if
σb̂ ¼ 0, we are maximally certain about the result. Despite
its simplicity, there are several problems with this kind of
estimation. Namely, the drastic nature of the error function
completely ignores partitions that may be almost correct,
with virtually all nodes correctly classified, except very few
or, in fact, even one node placed in the incorrect group. We
therefore rely on a very strong signal in the data, where the
true partition is given a plausibility that is larger than any
small perturbation around it in order to be able to make an
accurate estimation. This approach puts us in a precarious
position in realistic situations where our data are noisy and
complex, and it does not perfectly match our modeling
assumptions. Furthermore, the uncertainty σb̂ is, in most
cases, difficult to compute, as it involves determining the
intractable sum PðAÞ ¼ P

b PðA; bÞ, which serves as a
normalization constant for PðbjAÞ (although we will
consider approximations for this in Sec. VII). Even if
computed exactly, typically, σb̂ approaches the maximum
value of one since very few networks have a single partition
with a dominating posterior probability.

B. Maximum overlap consensus (MOC) estimation

As an alternative to the MAP estimation, we may
consider a more relaxed error function given by the overlap
distance

ϵðx; yÞ ¼ N −
X
i

δxi;yi ; ð31Þ

which counts the number of nodes correctly classified when
compared to the true partition. With this function, from
Eq. (28), we obtain the maximum marginal estimator

b̂i ¼ argmax
r

πiðrÞ; ð32Þ

with

πiðrÞ ¼
X
b

δbi;rPðbjAÞ ð33Þ

being the marginal posterior distribution for node i. The
uncertainty, in this case, is then simply the average of the
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uncertainty for each node, σb̂ ¼ 1 −
P

i πiðb̂iÞ=N. Since
this estimator considers the average over all partitions
instead of simply its maximum, it incorporates more
information from the posterior distribution. Nevertheless,
we again encounter the same problem we described before,
namely, that because of label permutation invariance, the
marginal distribution will be identical for every node, and
this estimator will, in fact, yield useless results. We can fix
this problem by instead employing the maximum overlap
distance of Eq. (26) as an error function ϵðx; yÞ ¼ dðx; yÞ,
leading to the estimator

b̂ ¼ argmax
b

X
b

max
μ

X
i

δb̂i;μðbiÞPðbjAÞ: ð34Þ

Performing the maximization now yields a set of self-
consistent equations,

b̂i ¼ argmax
r

π0iðrjfμbgÞ; ð35Þ

with the marginal distributions obtained over the relabeled
partitions,

π0iðrjfμbgÞ ¼
X
b

δμbðbiÞ;rPðbjAÞ; ð36Þ

where the relabeling is done in order to maximize the
overlap with b̂,

μb ¼ argmax
μ

X
i

δb̂i;μðbiÞ: ð37Þ

Like before, the uncertainty is given by σb̂ ¼
1 −

P
i π

0
iðb̂ijfμbgÞ. In practice, we implement this esti-

mator by sampling a set of M partitions fbg from the
posterior distribution and then performing the double
maximization

b̂i ¼ argmax
r

X
m

δμmðbmi Þ;r; ð38Þ

μm ¼ argmax
μ

X
r

m̂ðmÞ
r;μðrÞ; ð39Þ

where, in the last equation, we have that m̂ðmÞ
rs ¼P

i δbmi ;rδb̂i;s is the contingency table between bðmÞ and

b̂. The solution of Eq. (38) is obtained by simply counting
how often each label appears for each node and then
extracting the label with the largest count, and Eq. (39) is,
once more, an instance of the maximum bipartite weighted
matching problem. The overall solution can be obtained by
simple iteration, starting from an arbitrary choice of b̂,
and then alternating between the solution of Eq. (39) and
using its result to solve Eq. (38) until b̂ no longer changes.

This process guarantees a local optimum of the optimiza-
tion problem but not necessarily a global one; therefore,
this algorithm needs to be repeated multiple times with
different initial conditions, and the best result is kept.
Since it involves relabeling over all M partitions, the
overall algorithmic complexity of a single iteration is
OðMNBþMB3Þ.
Note that the marginal distributions obtained via Eq. (36)

with the MOC estimator are not necessarily the same as
those obtained by inferring the random label model
considered previously. This is because, while the MOC
calculation attempts to find a single partition with a
maximum overlap to all samples, inferring the random
label model amounts to finding the most likely marginal
distribution compatible with all samples, irrespective of its
maximum. Although, in many cases, these two calculations
will give similar answers, they are not equivalent.

C. Error functions based on the contingency table

In principle, we can make a variety of other choices for
error functions. A particular class of them are those based
on the contingency table between partitions, using concepts
from information theory. These error functions are not
based on an explicit labeling or alignment of partitions but
instead focus on the joint probability of labels in both
partitions being compared. A popular function of this kind
is the variation of information (VI) [34], which is defined as

VIðx; yÞ ¼ −
1

N

X
rs

mrs

�
ln
mrs

nr
þ ln

mrs

n0s

�
; ð40Þ

with mrs ¼
P

i δxi;rδyi;s being the contingency table
between x and y, and nr ¼

P
s mrs and n0s ¼

P
r mrs are

the group sizes in both partitions. We can use VI as an error
function by setting

ϵðx; yÞ ¼ VIðx; yÞ: ð41Þ

As detailed in Ref. [34], VI is a dissimilarity function that
fulfills many desirable formal properties, including triangle
inequality, making it a proper metric distance (like the
maximum overlap distance). Another possible alternative
consists of using the reduced mutual information (RMI)
[35], as done by Riolo and Newman [9], with

ϵðx; yÞ ¼ −RMIðx; yÞ; ð42Þ

where

RMIðx; yÞ ¼ 1

N

�
ln

N!
Q

rsmrs!Q
rnr!

Q
sn

0
s!
− lnΩðn;n0Þ

�
; ð43Þ

with Ωðn; n0Þ being the total number of contingency tables
with fixed row and column sums, which we omit here
for brevity (see Ref. [35] for asymptotic approximations).
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The negative sign used in the definition of ϵðx; yÞ is because
RMI is a similarity function, which takes its maximum
value when x and y are identical, unlike VI, which is a
dissimilarity that takes its minimum value of zero in the
same case. RMI can be seen as a correction to mutual
information, which fails as an appropriate similarity func-
tion in key cases. It is based on a nonparametric minimum
description length (MDL) encoding of both partitions,
which quantifies the amount of information required to
describe them if the contingency table is known, together
with the necessary information required to describe the
contingency table itself.
In either of the above cases, our point estimate b̂ consists

of minimizing the sum of the error function overM samples
from the posterior distribution, according to Eq. (28).
Unlike the indicator and the maximum overlap distance,
the above loss functions are more cumbersome to optimize,
with the overall optimization itself amounting to a non-
convex clustering problem of its own. Therefore, we can
use some of the same algorithms we use to perform
community detection in the first place, with a good choice
being the merge-split MCMC of Ref. [22], which we have
used in our analysis.

D. Consensus point estimates are inconsistent for
heterogeneous distributions

Our aim is not to list or perform an exhaustive com-
parison between all possible error functions but instead to
focus on the fact that they do not always yield the same
answer. Although there is only one way with which all
partitions in an ensemble can be identical, there are many
ways in which they can be different. While the various error
functions allow us to extract a form of consensus between
differing partitions, they each achieve this based on differ-
ent features of the population. Therefore, for partition
ensembles with sufficiently strong heterogeneity, the differ-
ent estimators may give conflicting answers. Such a
disagreement can signal an arbitrariness in the inference
procedure and our inability to summarize the population in
a simple manner. We illustrate this problem with a few
simple examples.
First, we consider a simple artificial scenario with

strong heterogeneity, composed of M independently
sampled partitions of N nodes, where, to each node, a
group label is sampled uniformly at random from the
interval ½1; B�. Indeed, in this example, there is no real
consensus between partitions. Intuitively, we might expect
the estimated consensus between such fully random par-
titions to be a sort of “neutral” partition, in the same way
that the average of a fully isotropic set of points in Cartesian
space will tend towards the origin. However, all consensus
estimators considered previously behave very differently
from each other in this example. In Fig. 5, we compare the
effective number of groups Beðb̂Þ ¼ eS obtained for each
point estimate, with

S ¼ −
X
r

nr
N
ln
nr
N

ð44Þ

being the group label entropy. Arguably, the estimator that
behaves the closest to the intuitive expectation just men-
tioned is VI, which for M > 2 yields a consensus partition
composed of a single group, Beðb̂Þ ¼ 1. The MOC esti-
mator yields instead a partition into Beðb̂Þ ¼ 4 groups,
which itself is hard to distinguish from a random partition
sampled from the original ensemble. This is because the
marginal distributions obtained by Eq. (36) will be close to
uniform, even after the label alignments of Eq. (39) are
achieved, such that the maximum chosen by Eq. (38) will
be determined by small quenched fluctuations in the
partition ensemble. Finally, the RMI estimate yields con-
sensus partitions with a number of groups that increases
with the number of samples M. This is because the RMI
estimate tends to find the overlaps between partitions, i.e.,
sets of nodes that tend to occur together in the same group
across many partitions [9]. In our random case, two nodes
belong to the same group because of pure coincidence;
therefore, the probability of this happening for a large set of
nodes decreases for larger M, thus making the overlapping
sets progressively smaller and leading to a larger number of
groups in the consensus. Inspecting any of the obtained
point estimates in isolation, it would be difficult to get a
coherent picture of the underlying ensemble since none of
them allows us to distinguish between an ensemble con-
centrated on the point estimate or the maximally hetero-
geneous situation we have just considered. If we consider,
instead, the uncertainty of the MOC estimate (which yields
σb̂ ≈ 0.69 for M → ∞) or even, more explicitly, the
marginal distributions of Eq. (36) (or those of the inferred
random label model of Sec. III), we would see that they are
very broad, closely matching the true random distribution.
Nevertheless, none of the point estimates can reveal this
information by themselves.

FIG. 5. Effective number of groups Beðb̂Þ for the consensus
estimate b̂ obtained for M random partitions of N ¼ 100 nodes
into B ¼ 4 groups, according to the different error functions as
indicated in the legend. The results were obtained by averaging
over 50 realizations.
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We further illustrate the discrepancy issue with a more
realistic example where we can see both agreements and
disagreements between the different estimates. In Fig. 6, we
show the estimates obtained for the same political books
network considered previously, again using the DC-SBM
to obtain a posterior distribution of partitions. We observe,
rather curiously, that the MAP estimate coincides perfectly

with the VI estimate but gives a different result from the
MOC and RMI estimates. The MAP/VI estimates separate
the network into three groups, which, in this context, can be
understood as types of books describing “liberal” and
“conservative” politics, and “neutral” books not taking
any side. The MOC estimate further divides the “liberal”
category into a new subgroup and, somewhat strangely at
first, singles out two “neutral” books into their own
category. As can be seen in Fig. 4, the reason for this is
that the posterior distribution exhibits a possible subdivi-
sion of the neutral group into two; however, it is only these
two nodes that happen to belong to this subdivision with the
highest probability. The RMI estimate also yields a division
into five groups, but the two extra groups have a larger size
when compared to the MOC result. In view of the behavior
seen for the fully random example considered earlier, the
discrepancies raise some doubts about what is the most
faithful division. Are the MOC and RMI arbitrary divisions
due to the randomness of the posterior distribution, or do
they point to a meaningful summary? Are the MAP/VI
estimates being too conservative about the structure of the
posterior distribution?
With some other networks, the discrepancy between

estimators can be even stronger, making such questions
even harder to answer. In Fig. 7, we show the results for
Zachary’s karate club network [36], again using the
DC-SBM. In this case, the MAP, MOC, and VI estimators
yield the same division of the network into a single group,
whereas the RMI estimate yields a partition into five
groups, following no clear pattern. None of the estimates
resembles the putative division for this network in two
assortative communities.
Despite the partial agreement between some of the

estimates in the examples above, the disagreements still
raise obvious interpretation questions. Here, we argue that
this discrepancy cannot be resolved simply by trying
alternative ways to form a consensus since trying to
summarize a whole distribution with a point estimate is,
in general, an impossible task; therefore, we need, instead,
a way to also characterize the dissensus between partitions
by exposing the existing heterogeneity of the posterior
distribution.

FIG. 6. Inference of the community structure of the political
books network, according to the DC-SBM and using the different
estimators as shown in the legend. For the VI/MAP estimate (top
panel), the three groups can be interpreted, from left to right, as
“liberal,” “neutral,” and “conservative.”

FIG. 7. Inference of the community structure of Zachary’s
karate club network, according to the DC-SBM and using the
different estimators as shown in the legend.
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To some extent, the characterization of dissensus is
already achieved by the random label model of Sec. III
since it attempts to describe the posterior distribution via
marginal probabilities rather than just a point estimate and
therefore can convey how concentrated it is. However,
because this model assumes the group membership of each
node to be independent, it still hides a significant fraction
of the potential heterogeneity in the ensemble, which can
come from the correlation between these memberships. In
the next section, we generalize this approach to the
situation where the posterior distribution is multimodal,
so multiple consensuses are simultaneously possible. We
see how this allows us to extract a more complete and
coherent picture of distributions of partitions.

V. EXTRACTING DISSENSUS BETWEEN
PARTITIONS

We aim to characterize the discrepancy between parti-
tions by considering the possibility of several consensuses
that only exist between a subset of the partitions. This
corresponds to the situation where the inference procedure
can yield substantially different explanations for the same
network. We achieve this goal by modeling the posterior
distribution of partitions with a mixture model, where each
partition can belong to one of the K clusters—which we
call “modes” to differentiate from the groups of nodes in
the network. Inside each mode, the partitions are generated
according to the same random label model considered
before but with different parameters. More specifically, a
partition b is sampled according to

Pðbjp;wÞ ¼
X
k

Pðbjp; kÞPðkjwÞ; ð45Þ

where

PðkjwÞ ¼ wk ð46Þ

is the relative size of mode k, with
P

k wk ¼ 1, and inside a
mode k, the partitions are sampled according to the random
label model,

Pðbjp; kÞ ¼
X
c

PðbjcÞPMFðcjp; kÞ; ð47Þ

with the hidden labels generated according to

PMFðcjp; kÞ ¼
Y
i

pðkÞ
i ðciÞ; ð48Þ

where pðkÞ
i ðrÞ is the probability that a node i has group label

r in mode k, and finally a random label permutation chosen
uniformly at random,

PðbjcÞ ¼ ½b ∼ c�
qðbÞ! : ð49Þ

Naturally, we recover the original random label model
for K ¼ 1.
We perform the inference of the above model by

considering the mode label k as a latent variable, which
yields a joint probability together with the original and
relabeled partitions,

Pðb; c; kjp;wÞ ¼ PðbjcÞPðcjp; kÞPðkjwÞ: ð50Þ

If we now observe M partitions fbg ¼ fbð1Þ;…; bðMÞg
sampled from the SBM posterior distribution, we assume
that each one has been sampled from one of the K modes,
so for each observed partition bm, we want to infer its
relabeled counterpart, together with its originating mode,
i.e., ðcðmÞ; kÞ. The joint posterior distribution for these pairs,
together with the total number of modes K and the number
of groups B ¼ fBkg in each mode, is given by

Pðfc; kmg;B; KjfbgÞ

¼ PðfbgjfcgÞPðfcgjk;BÞPðBÞPðkjKÞPðKÞ
PðfbgÞ ; ð51Þ

where the relabeling probability is given by

PðfbgjfcgÞ ¼
Y
m

PðbðmÞjcðmÞÞ; ð52Þ

and with the marginal likelihood obtained by integrating
over all possible probabilities p for each mode,

Pðfcgjk;BÞ¼
Y
k

Z �Y
m

PðcðmÞjp;kmÞδkm;k

�
PðpÞdp ð53Þ

¼
Y
k

Y
i

ðBk − 1Þ!
ðMk þ Bk − 1Þ!

Y
r

nðkÞi ðrÞ!; ð54Þ

with Mk ¼
P

m δkm;k being the number of samples that
belong to mode k, Bk the total number of group labels in

mode k, and nðkÞi ðrÞ ¼ P
m δcmi ;rδkm;k the marginal label

counts in mode k; finally, the prior mode distribution is
obtained by integrating over all possible mode mixtures w,

PðkjKÞ ¼
Z �Y

m

PðkmjwÞ
�
PðwjKÞdw ð55Þ

¼ ðK − 1Þ!
ðM þ K − 1Þ!

Y
k

Mk!: ð56Þ

where we used, once more, an uninformative prior
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PðwjKÞ ¼ ðK − 1Þ!: ð57Þ

For the total number of modes K, we use a uniform prior
PðKÞ ∝ 1, which has no effect on the resulting inference.
With this posterior in place, we can find the most likely
mode distribution with a clustering algorithm that attempts
to maximize it. We do so by starting with an arbitrary initial
placement of the M partitions into modes and by imple-
menting a greedy version of the merge-split algorithm of
Ref. [22] that chooses at random between the following
steps and accepting it only if it increases the posterior
probability:
(1) A random partition bðmÞ is moved from its current

mode to a randomly chosen one, including a
new mode.

(2) Two randomly chosen modes are merged into one,
reducing the total number of modes.

(3) A randomly chosen mode is split into two, increas-
ing the total number of modes. The division itself is
chosen by a surrogate greedy algorithm, which tries
one of the following strategies at random:
(a) Start with a random split of the modes into two;

attempt to move each sample in random se-
quence between the two modes if the move
increases the posterior probability, and stop
when no improvement is possible.

(b) Start with each of the samples in their own
modes, with a single sample each, and place
them in sequence in two new modes that are
initially empty, according to the choice with the
largest posterior probability.

(c) Start with all samples in a single mode, and
proceed like in strategy (b).

(4) Two randomly chosen modes are merged into one
and then split like in option 3, preserving the total
number of modes.

The algorithm stops whenever further improvements to
the posterior cannot be made. In the above, whenever a
sample m is placed into a mode k, its hidden labeling cðmÞ
is obtained by maximizing the conditional posterior
probability,

PðcðmÞjfbg; fcðm0≠mÞg; Bk; kÞ ∝
Y
i

Y
r

½n0iðrjkÞ þ 1�δcmi ;r ;

ð58Þ

where n0iðrjkÞ ¼
P

m0≠m δk0m;kδcm0
i ;r is the label count of

node i considering all samples belonging to mode k,
excluding cðmÞ. Like in the original random label model,
this maximization is performed by solving the correspond-
ing maximum bipartite weighted matching problem with
the Kuhn-Munkres algorithm in time OðN þ B3Þ, where B
is the number of partition labels involved. Overall, a single
“sweep” of the above algorithm, where each sample has

been moved once, is achieved in time O½MðN þ B3Þ�. For
the choice ofM itself, this result will, in general, depend on
the structure of the data. The general guideline is that M
should be large enough so that if it is increased, the
inference results (i.e., number of modes and their compo-
sition) no longer change. A good strategy is to make M as
large as the initial computational budget allows and then
compare the results with a smaller choice ofM and evaluate
if the results are the same. In terms of practical speed, when
compared, e.g., to sampling partitions from the SBM
posterior via MCMC, we find that performing the overall
clustering algorithm is most often substantially faster than
generating the partitions in the first place.
After we find the mode memberships k, the mode

fractions can be estimated as

wk ¼
Mk

M
; ð59Þ

which is interpreted as the relative posterior plausibility
of each mode serving as an alternative explanation for
the data.
In the following, we consider a simple example that

illustrates how the method above can characterize the
structure of a distribution of partitions, and we proceed
to investigate how the multimodal nature of the posterior
distribution can be used to assess the quality of fit of the
network model being used.

A. Simple example

In Fig. 8, we show the result of the above algorithm
for the posterior distribution obtained for the same political
books network considered previously, where, in total,
K ¼ 11 modes are identified. For each mode, we show
the corresponding marginal distribution of the relabeled
partitions and the uncertainty σb̂ ¼ 1 −

P
i piðb̂iÞ of its

maximum b̂, which serves as a quantification of how
broadly distributed the individual modes are. As a means
of illustration, in Fig. 8, we also show a two-dimensional
projection of the distribution of partitions, obtained using
the UMAP dimensionality reduction algorithm [17] with
the maximum overlap distance as the dissimilarity metric
(similar results can also be found with other dissimilarity
functions, as shown in Appendix D). This algorithm
attempts to project the distribution of partitions in two
dimensions while preserving the relative distances between
partitions in the projection. As a result, we see that each
mode is clearly discernible as a local concentration of
partitions, much like we would expect of a heterogeneous
mixture of continuous variables. We note here that we have
not informed the UMAP algorithm of the modes we have
found with the algorithm above, and therefore, this serves
as additional evidence for the existence of the uncovered
heterogeneity in the posterior distribution. The most
important result of this analysis is that no single mode
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has a dominating fraction of the distribution, with the
largest mode corresponding only to around 23% of the
posterior distribution and with the second largest mode
being very close to it. Thus, there is no single cohesive
picture that emerges from the distribution, and therefore,
our attempt at summarizing it with a single partition seems
particularly ill suited.
In view of this more detailed picture of the ensemble of

partitions, it is worth revisiting the consensus results
obtained previously with the various error functions. As
shown in Fig. 8, the MAP/VI estimates correspond to the
most likely partition of mode (c), which is, overall, only the
third most plausible mode with w3 ¼ 0.134. From the point
of view of the MAP estimator, this serves to illustrate how
choosing the most likely partition may, in fact, run counter
to intuition: Although the single-most-likely partition
belongs to mode (c), collectively, the partitions in modes
(a) and (b) have a larger plausibility. Thus, if we are forced

to choose a single explanation for the data, it would make
more sense to choose mode (a), despite the fact that it does
not contain the single-most-likely partition. More con-
cretely, when comparing modes (a)–(c), we see that the
network does, in fact, contain more evidence for a division
of either the “neutral” or the “liberal” groups into sub-
groups than the MAP estimate implies; however, it does not
contain evidence for both, as mode (d), corresponding to
the simultaneous subdivisions, has a smaller plausibility
than the other options. The VI estimate also points to
mode (c), but it is unclear why. This is indeed a problem
with using VI since, despite its strong formal properties, it
lacks a clear interpretability.
Differently from MAP and VI, the MOC estimation

combines the properties of all modes into a “Frankenstein’s
monster,” where local portions of the final inferred partition
correspond to different modes. Thus, the resulting point
estimate has a very low posterior probability and hence is a

FIG. 8. Inferred partition modes fromM ¼ 105 samples of the DC-SBM posterior distribution for the political books network. Panels
(a)–(j) show the marginal distributions for each identified mode as pie diagrams on the nodes of the network, with the legend specifying
the relative mode fraction wk and the uncertainty σb̂ of the maximum for each mode. The bottom-right panel shows the projection of the
partition distribution in two dimensions according to the UMAP dimensionality reduction algorithm [17], where the different modes can
be identified as local peaks of the distribution. The star symbol shows the location of the MOC estimate, the diamond symbol the
position of the MAP/VI estimate, and the triangle the position of the RMI estimate.
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misleading representation of the population—a classic
estimation failure of multimodal distributions.
The RMI estimate behaves differently and corresponds

to a typical partition of mode (d), which has an overall
plausibility of w4 ¼ 0.132. We can understand this choice
by inspecting its composition and noticing that the more
plausible modes (a)–(c) correspond to partitions where
groups of (d) are merged together. Therefore, the RMI
similarity sees this partition as the “center” composed of the
building blocks required to obtain the other ones via simple
operations. But by no means is it the most likely explan-
ation of the data according to the model, and given that
it is a division into a larger number of groups, it is more
likely to be an overfit, in view of the existence of simpler
modes (a)–(c).

B. Evaluating model consistency

The full characterization of the posterior distribution
with our approach gives us the opportunity to assess the
quality of fit between the model and data. Indeed, if the
model is an excellent fit, e.g., if the data are, in fact,
generated by the SBM, we should expect a single mode in
the posterior distribution that is centered in the true
partition [5] (although the broadness of the mode, repre-
sented by the variance of the marginal distribution on the
nodes, will depend on how easily detectable the true
partition is). Therefore, the fact that we observe multiple
modes is an indication of some degree of mismatch, with
the model offering multiple explanations for the data. Since
our analysis allows us to inspect each individual explan-
ation and ascribe to it a plausibility, it can be used to make a
more precise evaluation of the fit.
Inspecting the modes observed for the political

books network in Fig. 8, we notice that the four largest
modes approximately amount to different combinations
of the same five groups that appear in the fourth mode
[Fig. 8(d)]—although the remaining modes deviate from
this pattern. This case is reminiscent of a situation con-
sidered by Riolo and Newman [9], who applied RMI
estimation to artificial networks where none of the posterior
samples matches the true division, which is only uncovered
by the RMI consensus. In particular, in their scenario, the
consensus exposed “building blocks,” i.e., groups of nodes
that tend to be clustered together, although the building
blocks themselves always appear merged together into
bigger groups. The situation where the partitions exhibit
clear shared building blocks that always appear merged
together, but in different combinations, begs the question as
to why the posterior distribution fails to concentrate on the
isolated building blocks in the first place. One possibility is
that the building blocks do not correspond to the same kind
of communities that the inference approach is trying to
uncover; e.g., in the case of the SBM, these should be nodes
that have the same probability of connection to the rest of
the network, which would be a case of model mismatch;

hence, it would be difficult to interpret what the building
blocks actually mean. Another option, which we can address
more directly, is that the model being used underfits the data;
i.e., the model formulation fails to recognize the available
statistical evidence, resulting in the choice of simpler SBMs
with fewer groups, such that some “true” groups are merged
together. A common cause of underfitting is the use of
noninformative priors that overly penalize larger numbers of
groups, as was shown in Ref. [37]. The use of hierarchical
priors solves this particular underfitting problem, as dis-
cussed in Refs. [25,38]. Another potential cause of under-
fitting is the use of Poisson formulations for the SBM for
networks with heterogeneous density, which assumes that
the observed simple graph is a possible realization of a
multigraph model that generates simple graphs with a very
small probability. Reference [39] introduced an alternative
SBM variation based on a simple but consequential modi-
fication of the Poisson SBMs, where multigraphs are
generated at a first stage and the multiedges are converted
into simple edges, resulting in a Bernoulli distribution
obtained from the cumulative Poisson distribution. These
“latent Poisson” SBMs also prevent underfitting and, in fact,
make the posterior distribution concentrate on the correct
answer for the examples considered by Riolo and Newman
[9], as shown in Ref. [39].
In Fig. 9, we show our method employed on the posterior

distribution of the political books network using the latent
Poisson DC-SBM with nested priors, which should be able
to correct the kinds of underfitting mentioned above.
Indeed, the most likely mode shows a more elaborate
division of the network into B ¼ 8 groups, corresponding
to particular subdivisions of the same liberal-neutral-
conservative groups seen previously. However, these sub-
divisions are not quite the same as those seen in Fig. 8 for
the Poisson SBM. Therefore, in this example, it would be
futile to search for these uncovered groups in the posterior
distribution of the Poisson DC-SBM, even if we search for
overlaps between partitions. However, despite the more
detailed division of the network, the latent Poisson SBM is
far from being a perfect fit for this network, as we still
observe K ¼ 11 modes, corresponding mostly to different
divisions of the “conservative” books. When comparing the
structure of the different modes, we see that these are not
simple combinations of the same subdivisions but rather
different rearrangements. This case seems to point to a
kind of structure in the network that is not fully captured
by the strict division of the nodes in discrete categories,
at least not in the manner assumed by the SBM.
In Fig. 10, we also compare the inferences obtained with

both SBM models for the karate club network considered
previously. The posterior distribution obtained with the
Poisson DC-SBM is very heterogeneous, with K ¼ 30
modes. It has, as the most plausible mode, one composed of
a single partition into a single group (implying that the
degree sequence alone is enough to explain the network,
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and no community structure is needed). The second most
likely mode corresponds to leader-follower partitions,
largely dividing the nodes according to degree (despite
the degree correction). The putative division of this net-
work into two assortative communities is only the ninth
most likely mode. With such an extreme heterogeneity
between partitions, finding a consensus between them
seems particularly futile, thus explaining the obtained point
estimates in Fig. 7, in particular, the odd behavior of the
RMI estimate that tries to assemble all diverging modes
into a single partition. On the other hand, with the latent
Poisson SBM, the posterior distribution changes drasti-
cally, as is shown in the right panel of Fig. 10. In this case,
the dominating mode corresponds to partitions that, while
not fully identical to the accepted division, are more
compatible with it, as they only further divide one of the

communities into two extra groups. The commonly
accepted division itself comes as a typical partition of
the second most likely mode. Overall, the posterior dis-
tribution becomes more homogeneous, with only K ¼ 9
modes identified and with most of the posterior probability
assigned to the first few.
It is important to observe that the heterogeneity of the

posterior distribution by itself cannot be used as a criterion
in the decision of which model is a better fit. Indeed,
a typical behavior encountered in statistical inference is
the “bias-variance trade-off” [40], where a more accurate
representation of the data comes at the cost of increased
variance in the set of answers. We illustrate this with a
network of American football games [41] shown in Fig. 11.
The Poisson DC-SBM yields a very simple posterior
distribution, strongly concentrated on a typical partition

FIG. 10. Inferred partition modes fromM ¼ 105 samples of the posterior distribution obtained with the Poisson DC-SBM (left panel)
and latent Poisson DC-SBM (right panel) for the karate club network. The insets show the modes as indicated by the arrows, with the
marginal distributions shown as pie diagrams on the nodes of the network.

(a) (b)

(c) (d)

FIG. 9. Inferred partition modes from M ¼ 105 samples of the latent Poisson DC-SBM posterior distribution for the political books
network. The left panel shows the mode fractions wk, and the right panel the four largest modes (a)–(d), with the marginal distributions
shown as pie diagrams on the nodes of the network.
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into B ¼ 10 groups. On the other hand, as seen in Fig. 12,
the latent Poisson DC-SBM yields a more heterogeneous
posterior distribution with K ¼ 7 modes, typically uncov-
ering a larger number of groups. It would be wrong to
conclude that the Poisson SBM provides a better fit only
because it concentrates on a single answer, if that single
answer happens to be underfitting. But from this analysis
alone, it is not possible to say if the latent Poisson SBM is
not overfitting either. To make the final decision, we need to
compute the total evidence for each model, as we consider
in Sec. VII. This computation takes the heterogeneity of the
posterior distribution into consideration, but it is combined
with the model plausibility.
Before we proceed with model selection, we first

show how the methods constructed so far can be gener-
alized for hierarchical partitions, which form the basis of

generically better-fitting models of community structure
in networks [25].

VI. HIERARCHICAL PARTITIONS

An important extension of SBM formulations is one
where the choice of priors is replaced by a nested sequence
of priors and hyperpriors, where groups of nodes are also
clustered in their own metagroups, associated with a
coarse-grained version of the network described via its
own smaller SBM, and so on recursively, resulting in a
nested version of the model [25,38]. This hierarchical
formulation recovers the usual SBMs when the hierarchy
has only a single level, and it also introduces many useful
properties, including a dramatically reduced tendency to
underfit large networks [25,38], as well as a simultaneous
description of the network structure at several scales of
resolution. This model variant takes as a parameter a

hierarchical partition b̄ ¼ fb1;…; bLg, where bðlÞi is the
group membership of node i in level l, and each group label
in level l is a node in the above level lþ 1, which results in
the number of nodes in level l being the number of groups
in the level below, Nl ¼ Bl−1, except for the first level,
N1 ¼ N. For this model, we have a posterior distribution
over hierarchical partitions given by

πðb̄Þ ¼ PðAjb̄ÞPðb̄Þ
PðAÞ : ð60Þ

Like in the nonhierarchical case, this posterior distribution
is invariant to label permutations, i.e.,

πðb̄Þ ¼ πðc̄Þ; ð61Þ

if b̄ and c̄ are identical up to a relabeling of the groups.
However, in the hierarchical scenario, the group relabel-
ings that keep the posterior distribution invariant must

FIG. 11. Inferred partition modes fromM ¼ 105 samples of the
posterior distribution obtained with the Poisson DC-SBM for the
American college football network. The insets show the modes as
indicated by the arrows, with the marginal distributions shown as
pie diagrams on the nodes of the network.

(a) (b)

FIG. 12. Inferred partition modes from M ¼ 105 samples of the latent Poisson DC-SBM posterior distribution for the American
college football network. The left panel shows the mode fractions wk, and the right panel shows the two largest modes (a) and (b), with
the marginal distributions shown as pie diagrams on the nodes of the network.
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keep the same partitions when projected at the lower
levels. In other words, the invariant permutation of the
labels in level l affects the nodes in level lþ 1. More
specifically, if we consider a bijection μðrÞ for labels at
level l, such that bliðrÞ ¼ μðcliðrÞÞ, then we must change
the membership in level lþ 1 to blþ1

μðiÞ ¼ clþ1
i . If two

hierarchical partitions b̄ and c̄ are identical up to this kind
of transformation, we denote this with the indicator
function

½b̄ ∼ c̄� ¼ 1; ð62Þ

or ½b̄ ∼ c̄� ¼ 0 otherwise. Based on this approach, we can
generalize the random label model considered before to
model hierarchical partitions sampled from the posterior
distribution. We first assume that the labels at all levels
are sampled independently as

PMFðc̄jp̄Þ ¼
YL
l¼1

PMFðcljplÞ; ð63Þ

with

PMFðcljplÞ ¼
Y
i

pl
iðcliÞ; ð64Þ

where pl
iðrÞ is the probability that node i in level l belongs

to group r. After sampling a partition c̄, we then obtain a
final partition b̄ by choosing uniformly among all label
permutations, yielding

Pðb̄jp̄Þ ¼
X
c̄

Pðb̄jc̄ÞPMFðc̄jp̄Þ; ð65Þ

where

Pðb̄jc̄Þ ¼ ½b̄ ∼ c̄�Q
lqðclÞ!

: ð66Þ

If we now consider M sampled hierarchical partitions
fb̄g ¼ fb̄ð1Þ;…; b̄ðMÞg, the posterior distribution of the
hidden relabeled hierarchical partitions fc̄g is given by

Pðfc̄gjfb̄g; BlÞ ∝
�YM

m¼1

½b̄ðmÞ ∼ c̄ðmÞ�
�

×
Y
l

Y
i

ðBl − 1Þ!
ðM þ Bl − 1Þ!

Y
r

nðlÞi ðrÞ!;

ð67Þ

where nðlÞi ðrÞ ¼ P
M
m¼1 δbli;r is how often node i in level l

has group label r in all samples. Similarly to before, if we
consider the conditional probability of a single partition

relabeling cðmÞ
l , but marginalized over the upper levels

l0 > l, we obtain

PðcðmÞ
l jfb̄g; fc̄ðm0≠mÞg; fcðmÞ

l0<lgÞ
∝

X
cðmÞ
lþ1

;…;cðmÞ
L

Pðfc̄gjfb̄gÞ

∝
Y
i

Y
r

½n0ilðrÞ þ 1�δcl;mi ;r ; ð68Þ

where n0liðrÞ are the label counts excluding cðmÞ
l . Just like

in the nonhierarchical case, we can write

lnPðcðmÞ
l jfb̄g; fc̄ðm0≠mÞg; fcðmÞ

l0<lgÞ ¼
X
r

wr;μðrÞ; ð69Þ

up to an unimportant additive constant, where

wrs ¼
X
i

δbli;r ln ½n0liðsÞ þ 1�; ð70Þ

and μðrÞ is the bijection that matches the group labels

between cðmÞ
l and bðmÞ

l . Therefore, we can find the
maximum of Eq. (69) once more by solving the maxi-
mum-weight bipartite matching problem, with weights
given by wrs. This method leads to an overall algorithm
entirely analogous to the nonhierarchical case, where,
starting from some configuration, we remove a sample m
from the ensemble and add it again, choosing its labels
according to the maximization of Eq. (69), starting
from level l ¼ 1 and going up to l ¼ L, and stopping
if such moves no longer increase the posterior
probability. Relabeling every sample once takes time
O½MP

lðNl þ B3
l Þ�, where Nl and Bl are the typical

number of nodes and groups at level l. Typically,
the number of groups decreases exponentially with the
hierarchical level, Nl ¼ OðN=σl−1Þ with σ > 1, so we
have L ¼ OðlogNÞ and thus

P
l Nl ¼ OðNÞ; the entire

running time for a single “sweep” over all samples is then
simply O½MðN þ B3Þ�, where B is the number of labels in
the first hierarchical level.
The mixed random label model of Sec. V can also be

generalized in a straightforward manner for hierarchical
partitions, i.e.,

Pðb̄jp̄;wÞ ¼
X
k

Pðb̄jp̄; kÞPðkjwÞ; ð71Þ

where, inside a mode k, the partitions are sampled
according to the hierarchical random label model given
by Eq. (65). The inference algorithm from this point
onward is exactly the same as in the nonhierarchical case,
where we only need to relabel the hierarchical partitions
according to Eq. (69) when we move them between modes.
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In Fig. 13, we show the inferred modes for hierarchical
partitions sampled from the posterior distribution using the
nested latent Poisson DC-SBM for a co-occurrence net-
work of characters from the Les Misérables novel [42].
As this example shows, this algorithm allows us to
summarize a multimodal distribution of hierarchical par-
titions in a rather compact manner. In this particular
example, we see that the distribution is fairly dominated
by one of the modes [shown in Fig. 13(a)], followed by less
probable alternatives.

A. Comparing and finding consensus between
hierarchical partitions

If we infer the hierarchical random label model above for
two hierarchical partitions x̄ and ȳ, it amounts to solving a
recursive maximum bipartite weighted matching problem
on every level, starting from l ¼ 1 to l ¼ L, using as
weights the contingency table at each level l,

mðlÞ
rs ¼

X
i∈N xl∩N yl

δxli;rδyli;s; ð72Þ

where N x is the set of nodes in partition x (as upper-level
partitions might have a disjoint set of nodes), and propa-
gating the matched labels to the upper levels. This approach
is equivalent to maximizing the recursive overlap across
all levels,

wðx̄; ȳÞ ¼
X
l

X
i

δxli;μlðŷliÞ; ð73Þ

where, at each level, we need to incorporate the relabeling
at the lower levels via

ŷli ¼ ylμl−1ðiÞ; ð74Þ

where μl is a label bijection at level l, with the boundary
condition μ0ðiÞ ¼ i. This process leads us to the hierar-
chical maximum overlap distance, defined as

dðx̄; ȳÞ ¼
X
l

Nl − argmax
μl

X
i

δxli;μlðŷliÞ; ð75Þ

where Nl ¼ maxðjN xl j; jN yl jÞ. A version of this distance
that is normalized in the range [0, 1] can be obtained by
dividing it by the largest possible value,

dðx̄; ȳÞP
lNl − 1

: ð76Þ

It is important to note here that hierarchy levels with a
single node, Nl ¼ 1, always have a contribution of zero to
the distance; therefore, this measure can be applied to
infinite hierarchies with L → ∞, as long as any level is
eventually grouped into a single group. For hierarchies with
a single level, L ¼ 1, we recover the maximum overlap
distance considered previously, except for the normalized
version, which is slightly different, with dðx; yÞ=ðN − 1Þ.
This normalization is also valid for the nonhierarchical
distance since we must always have dðx; yÞ < N. The label
matching at level l of the hierarchy can be done in time
O½ðqðxlÞ þ qðylÞÞEl

m þ Nl�, using the sparse version of the
Kuhn-Munkres algorithm [26–28], where El

m ≤ qðxlÞqðylÞ
is the number of nonzero entries in the contingency matrix
mrs. If we assume, once more, the typical case with Nl ¼
OðN=σl−1Þ and L ¼ OðlogNÞ, so that

P
l Nl ¼ OðNÞ,

the overall computation can then be done in time
O½ðqðx1Þ þ qðy1ÞÞE1

m þ N�.
Following the same steps as before, we can use the

hierarchical maximum overlap distance as an error function
ϵðx̄; ȳÞ ¼ dðx̄; ȳÞ to define a MOC estimator over hierar-
chical partitions based on the minimization of the mean
posterior loss,

ˆ̄b ¼ argmin
b̄

X
b̄0

ϵðb̄; b̄0ÞPðb̄0jAÞ: ð77Þ

Substituting its definition leads us to a set of self-consistent
equations at each level l,

(a) (b) (c)

FIG. 13. Inferred hierarchical partition modes from M ¼ 105 samples of the hierarchical latent Poisson DC-SBM posterior
distribution for the co-occurrence network of characters in the Les Misérables novel. The left panel shows the mode fractions wk, and the
right panel shows the three largest modes (a)–(c), with the marginal distributions shown as pie diagrams on the nodes of the network.
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b̂li ¼ argmax
r

π̂liðrjfμlbgÞ; ð78Þ

with the marginal distributions obtained over the relabeled
partitions,

π̂liðrjfμlbgÞ ¼
X
b̄

δμlbðb̃liÞ;rPðb̄jAÞ; ð79Þ

where the relabeling is done in order to maximize the

overlap with ˆ̄b,

μlb ¼ argmax
μ

X
i

δb̂i;μðb̃iÞ ð80Þ

and where, once again, we need to recursively incorporate
the relabelings at the lower levels,

b̃li ¼ blμl−1ðiÞ: ð81Þ

We can define an uncertainty σ ˆ̄b
∈ ½0; 1� for this estimator

by inspecting the marginal distributions computed along
the way,

σ ˆ̄b
¼ 1 −

1

N − L

X
l

Nl − 1

Nl

X
i

π̂iðb̂lijfμlbgÞ: ð82Þ

In the above sum, we omit levels with Nl ¼ 1 since those
always have a trivial marginal distribution concentrated on
a single group. In practice, we implement this estimator by
sampling a set of M hierarchical partitions fb̄g from the
posterior distribution and then performing the sequential
maximizations starting from l ¼ 1 to l ¼ L,

b̂li ¼ argmax
r

X
m

δμmðb̃l;mi Þ;r; ð83Þ

μlm ¼ argmax
μ

X
r

m̂ðl;mÞ
r;μðrÞ; ð84Þ

where mðl;mÞ
r;s is the contingency table of level l of sample m

with b̂l. The final solution is obtained when repeating the
above maximization no longer changes the result. Like in
the nonhierarchical case, this algorithm yields a local
optimum of the optimization problem but not necessarily
a global one; therefore, it needs to be repeated multiple
times with different initial conditions, and the best result is
kept. Since it involves the relabeling over allM hierarchical
partitions, the overall algorithmic complexity of a single
iteration is OðMNBþMB3Þ, assuming, once more, the
typical case with Nl ¼ OðN=σl−1Þ and L ¼ OðlogNÞ.

VII. MODEL SELECTION AND EVIDENCE
APPROXIMATION

If we are interested in comparing two models M1 and
M2 in their plausibility for generating some network A,
we can do so by computing the ratio of their posterior
probability given the data,

PðM1jAÞ
PðM2jAÞ

¼ PðAjM1ÞPðM1Þ
PðAjM2ÞPðM2Þ

: ð85Þ

Therefore, if we are a priori agnostic about either model
with PðM1Þ ¼ PðM2Þ, this ratio will be determined by the
total probability of the data PðAjMÞ according to that
model. This quantity is called the evidence, and it appears
as a normalization constant in the posterior distribution of
Eq. (1). For any particular choice of model, it is obtained by
summing the joint probability of data and partitions over all
possible partitions (we drop the explicit dependence on M
from now on, to unclutter the expressions),

PðAÞ ¼
X
b

PðA; bÞ: ð86Þ

Unfortunately, the exact computation of this sum is
intractable since the number of partitions is too large in
most cases of interest. It also cannot be obtained directly
from samples of the posterior distribution, which makes its
estimation fromMCMC also very challenging. To illustrate
this, it is useful to write the logarithm of the evidence in the
following manner,

lnPðAÞ ¼
X
b

πðbÞ lnPðA; bÞ −
X
b

πðbÞ ln πðbÞ ð87Þ

¼ hlnPðA; bÞi þHðbÞ; ð88Þ

where

πðbÞ ¼ PðA; bÞP
b0PðA; b0Þ

¼ PðA; bÞ
PðAÞ ð89Þ

is the posterior distribution of Eq. (1), and

hlnPðA; bÞi ¼
X
b

πðbÞ lnPðA; bÞ ð90Þ

is the mean joint log-probability computed over the
posterior distribution; finally,

HðbÞ ¼ −
X
b

πðbÞ ln πðbÞ ð91Þ

is the entropy of the posterior distribution. Equation (87)
has the shape of a negative Gibbs free energy of a physical
ensemble, if we interpret hlnPðA; bÞi as the mean negative
“energy” over the ensemble of partitions. It tells us that
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what contributes to the evidence is not only the mean joint
probability but also the multiplicity of solutions with
similar probabilities, which is captured by the posterior
entropy. In this formulation, we see that while it is possible
to estimate hlnPðA; bÞi from MCMC simply be averaging
lnPðA; bÞ for sufficiently many samples, the same
approach does not work for the entropy term HðbÞ since
it would require the computation of the log-posterior
ln πðbÞ for every sample, something that cannot be done
without knowing the normalization constant PðAÞ, which is
what we want to find in the first place. However, the mixed
random label model of Sec. V can be used to fit the
posterior distribution, allowing us to compute the entropy
term via the inferred model, and we use the rich informa-
tion gained on its structure to perform model selection.
Let us recall that the mixed random label model, when
inferred from partitions sampled from πðbÞ, amounts to an
approximation given by

πðbÞ ≈
X
k;c

PðbjcÞPðcjkÞPðkÞ; ð92Þ

where PðkÞ ¼ wk determines the mode mixture and

PðcjkÞ ¼
Y
i

pðkÞ
i ðciÞ ð93Þ

are the independent marginal distributions of mode k;
finally,

PðbjcÞ ¼ ½b ∼ c�
qðbÞ! ð94Þ

is the random relabeling of groups. In most cases we have
investigated, the inferred modes tend to be very well
separated (otherwise, they would get merged together into
a larger mode), such that we can assume

πðbÞ ≈ max
k;c

PðbjcÞPðcjkÞPðkÞ: ð95Þ

This means we can write the entropy as

HðbÞ ≈Hðb; c; kÞ ¼ HðbjcÞ þHðcjkÞ þHðkÞ; ð96Þ

where

HðkÞ ¼ −
X
k

wk lnwk ð97Þ

is the entropy of the mode mixture distribution,

HðcjkÞ ¼ −
X
k

wk

X
c

PðcjkÞ lnPðcjkÞ ð98Þ

¼ −
X
k

wk

X
i

X
r

pðkÞ
i ðrÞ lnpðkÞ

i ðrÞ ð99Þ

is the entropy of mode k, and

HðbjcÞ ¼ −
X
c

PðcÞ
X
b

PðbjcÞ lnPðbjcÞ ð100Þ

¼
X
c

PðcÞ ln qðcÞ! ¼
X
b

PðbÞ ln qðbÞ! ð101Þ

is the relabeling entropy. Putting it all together, we have the
following approximation for the evidence according to the
mixed random label model,

lnPðAÞ ≈ hlnPðA; bÞi þ hln qðbÞ!i −
X
k

wk lnwk

−
X
k

wk

X
i

X
r

pðkÞ
i ðrÞ lnpðkÞ

i ðrÞ: ð102Þ

We can extend this for hierarchical partitions in an entirely
analogous way, which leads to

lnPðAÞ ≈ hlnPðA; b̄Þi þ
X
l

hln qðblÞ!i −
X
k

wk lnwk

−
X
k

wk

X
l

X
i

X
r

pðl;kÞ
i ðrÞ lnpðl;kÞ

i ðrÞ: ð103Þ

The above quantities are then computed by sampling M
partitions from the posterior distribution, using them
(or a superset thereof) to compute the first two means
hlnPðA; bÞi and hln qðbÞ!i, and then fitting the mixed
random label model, from which the parameters w and p
are obtained; we then compute the remaining terms.
In Table I, we show the evidence obtained for several

SBM variants and data sets, including latent Poisson
versions (which require special considerations; see
Appendix E). Overall, we find that when considering the
Poisson SBMs, degree correction is only favored for
larger networks, corroborating a similar, previous analysis
based on a less-accurate calculation [25]. This case changes
for latent Poisson models, where, for some networks, the
balance tips in favor of degree correction. Overall, we find
more evidence for the latent Poisson models for all net-
works considered, which is unsurprising given that they are
all simple graphs. Likewise, we always find more evidence
for the hierarchical SBMs, which further demonstrates their
more flexible nature.

A. Bayesian evidence and the MDL criterion

In this section, we briefly explore some direct connec-
tions between Bayesian model selection and the MDL
criterion based on information theory [49]. We begin by
pointing out the simple fact that the MAP point estimate
given by the single-most-likely partition yields a lower
bound for the evidence, i.e.,
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PðAÞ ¼
X
b

PðA; bÞ ≥ max
b

PðA; bÞ: ð104Þ

Thus, taking into account the full posterior distribution,
rather than only its maximum, almost always can be used to
compress the data, as we now show. We can see this by first
inspecting the usual “two-part” description length,

Σ1ðA; bÞ ¼ − lnPðA; bÞ ð105Þ

¼ − lnPðAjbÞ − lnPðbÞ; ð106Þ

which corresponds to the amount of information necessary
to describe the data if one first describes the partition b and
then, conditioned on it, the network A. Therefore, finding
the most likely partition b means finding the one that most
compresses the network, according to this particular two-
part encoding. However, the full posterior distribution gives
us a more efficient “one-part” encoding, where no explicit
description of the partition is necessary. Simply defining
the joint distribution PðA; bÞ means we can compute the
marginal probability PðAÞ ¼ P

b PðA; bÞ, which directly
yields a description length

Σ2ðAÞ ¼ − lnPðAÞ: ð107Þ

According to Eq. (104), we have

Σ2ðAÞ ≤ min
b

Σ1ðA; bÞ; ð108Þ

which means that considering all possible partitions can
only increase the overall compression achievable. In
Table I, we can verify that this holds for all results obtained.

In a slightly more concrete setting, let us consider a
transmitter that wants to convey the networkA to a receiver,
which both know the joint distribution PðA; bÞ. According
to the two-part code, the transmitter first sends the partition
b, for that using − log2 PðbÞ bits, and then sends the
final network using − log2 PðAjbÞ bits, using in total
Σ1ðA; bÞ=ln 2 bits. In practice, this process is achieved,
for example, by both the sender and receiver sharing the
same two tables of optimal prefix codes derived from PðbÞ
and PðAjbÞ. On the other hand, using the second one-part
code, both the transmitter and receiver share only a single
table of optimal prefix codes derived directly from the
marginal distribution PðAÞ, which means that only
Σ2ðAÞ=ln 2 ¼ − log2 PðAÞ bits need to be transmitted.
In practice, it will be more difficult to construct the one-
part code since it involves marginalizing over a high-
dimensional distribution, which is intractable via brute
force—although our mixed random label model can be
used as the basis of an analytical approximation. However,
what is important in our model selection context is only that
such a code exists; we are not concerned with its computa-
tional tractability.

VIII. CONCLUSION

We have shown how the random label model can be
used to solve the group identification problem in commu-
nity detection, allowing us to compute marginal distribu-
tions of group membership on the nodes in an unambiguous
way. This process led us to the notion of maximum overlap
distance as a general way of comparing two network
partitions, which we then used as a loss function to obtain
the consensus of a population of network partitions.

TABLE I. Description length (negative log-evidence) Σ ¼ − lnPðAÞ for several networks and SBM variations, with DC and NDC
indicating degree correction and no degree correction, respectively. The italic fonts indicate the smallest value for each model class, with
the bold fonts indicating the best-fitting model overall. The “single partition” columns correspond to the two-part description length
Σ ¼ − lnPðA; bÞ obtained with the best-fitting partition of the Poisson model.

Poisson Latent Poisson Single partition

Non-nested Nested Non-nested Nested Non-nested Nested

Data NDC DC NDC DC NDC DC NDC DC NDC DC NDC DC

Karate club [36] 213.1 220.3 212.6 221.7 174.0 172.4 170.6 171.6 215.3 222.7 215.3 222.7
Dolphins [43] 522.4 539.3 522.1 540.1 480.9 483.6 477.6 478.7 529.6 544.1 529.6 544.1
Les Misérables [42] 674.1 680.1 667.5 672.4 513.7 471.0 454.6 402.7 688.7 697.6 688.7 697.6
Political books [23] 1305.2 1334.4 1288.8 1330.8 1188.2 1178.6 1136.7 1137.4 1321.9 1343.4 1317.4 1343.4
American
football [41]

1722.4 1769.2 1709.7 1755.7 1427.7 1505.8 1319.8 1373.1 1738.9 1785.9 1733.5 1780.6

Network
scientist [44]

3871.5 3869.5 3592.6 3645.1 3728.4 3611.5 3059.9 3043.6 4007.8 3982.2 3813.4 3826.2

High school [45] 4530.5 4620.6 4482.8 4592.3 4378.1 4421.7 4257.4 4307.6 4599.9 4676.8 4585.9 4668.2
C. elegans
neurons [46]

6968.2 7040.3 6812.7 6943.0 6492.3 6485.7 6048.3 6411.3 7043.7 7144.4 6959.5 7091.3

E-mail [47] 25 020.5 24 845.5 24 145.3 24 264.8 24 577.1 24 047.4 23 544.7 23 002.0 25 617.1 25 311.2 25 163.8 25 094.7
Political blogs [48] 51 389.1 50 638.2 50 528.9 50 138.0 47 787.8 46 380.7 46 065.2 45 006.4 51 639.1 51 084.1 51 195.2 50 892.7
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By investigating the behavior of different loss functions on
artificial and empirical ensembles of heterogeneous parti-
tions, we have demonstrated that they can yield inconsistent
results due precisely to a lack of uniformity between
divisions. We then developed a more comprehensive
characterization of the posterior distribution, based on a
mixed version of the random label model that is capable of
describing multimodal populations of partitions, where
multiple consensuses exist at the same time. This kind
of structure corresponds to a “multiple truths” phenome-
non, where a model can yield diverging hypotheses for the
same data. We showed how our method provides a compact
representation for structured populations of network par-
titions and allows us to assess the quality of fit and perform
model selection. The latter was achieved by using the
multimodal fit of the posterior distribution as a proxy for
the computation of its entropy, which is a key, but often
elusive ingredient in Bayesian model selection.
Although we have focused on community detection, the

methods developed here are applicable for any kind of
clustering problem from which a population of answers can
be produced. They allowed us to be more detailed in our
assessment of the consistency of results when applied to
real or artificial data. In particular, we no longer need to rely
on “point estimates” that can give a very misleading picture
of high-dimensional and structured populations of parti-
tions, even if they attempt to assemble a consensus among
them. We achieve this without losing interpretability, as our
method yields groupings of partitions that share a local
consensus, each telling a different version of how the data
might have been generated and weighted according to the
statistical evidence available.

APPENDIX A: PROPERTIES OF MAXIMUM
OVERLAP DISTANCE

In Sec. III A of the main text, we considered the
maximum overlap distance, which corresponds to the
minimal classification error, i.e., the smallest possible
number of nodes with an incorrect group placement in a
partition y if another partition x is assumed to be the correct
one. It is defined as

dðx; yÞ ¼ N −max
μ

X
i

δμðxiÞ;yi : ðA1Þ

This measure has been considered before in Refs. [31–33],
and here we review some of its useful properties.
(1) Simple interpretation. Since it quantifies the classi-

fication error, it is easy to intuitively understand
what the distance is conveying. In particular, its
normalized version dðx; yÞ=N yields values in the
range [0, 1], which can be interpreted as fractions of
differing nodes and hence allows the direct com-
parison between results obtained for partitions of
different sizes and numbers of groups.

(2) Behaves well for unbalanced partitions. The dis-
tance dðx; yÞ behaves as one would expect even
when the partitions have very different numbers of
groups or the number of groups approaches N for
either x or y, unlike alternatives such as mutual
information [50]. More specifically, if we simply
increase the number of groups of either partition
being compared, this does not spuriously introduce
small values of dðx; yÞ. We see this by noticing that
if qðxÞ ¼ B and qðyÞ ¼ N, the maximum overlap is
always ωðx; yÞ ¼ B since each group in x can be
trivially matched with any of the single-node groups
in y, yielding

dðx; yÞ ¼ N − B; ðA2Þ

which leads to the maximum normalized distance
dðx; yÞ=N → 1 as N ≫ B.

(3) Simple asymptotic behavior for uncorrelated
partitions. Suppose partitions x and y are sampled
independently and uniformly from the set of all
possible partitions into qðxÞ and qðyÞ labeled
groups, respectively. In this case, as N ≫ 1, the
contingency table will tend to the uniform one with
mrs ¼ N=½qðxÞqðyÞ�, which results in the asymptotic
normalized distance given by

lim
N→∞

dðx; yÞ
N

¼ 1

maxðqðxÞ; qðyÞÞ : ðA3Þ

Although it is not a substitute for a proper
hypothesis test (which would need to account
for finite values of N), this asymptotic value gives
a rule of thumb of how to interpret the distance
between two partitions as a strength of statistical
correlation.

(4) Defines a metric space. The distance dðx; yÞ is a
proper metric since it fulfills the properties of
identity dðx; xÞ ¼ 0, non-negativity dðx; yÞ ≥ 0,
symmetry dðx; yÞ ¼ dðy; xÞ, and most notably, tri-
angle inequality dðx; zÞ ≤ dðx; yÞ þ dðy; zÞ (we offer
a simple proof of this in Appendix B). Thus, this
notion of distance is well defined and unambiguous,
and conforms to intuition.

(5) Information-theoretic interpretation. The maximum
overlap has a direct information-theoretic interpre-
tation, due to its connection to the random label
generative model exposed earlier. According to the
model of Eq. (12), the joint probability of observing
two partitions fcg ¼ fx; yg, up to an arbitrary
relabeling of the groups, is given by

Pðx; yÞ ¼ 2ωðx;yÞ

½BðBþ 1Þ�N ; ðA4Þ
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which means that any two partitions have a joint
description length

Σðx; yÞ ¼ − log2 Pðx; yÞ ðA5Þ

¼ N log2½BðBþ 1Þ� − ωðx; yÞ; ðA6Þ

which measures the amount of information (in bits)
necessary to describe both partitions. The above
quantity is proportional to the negative value of the
maximum overlap ωðx; yÞ and hence is proportional
to dðx; yÞ. (Note that this is not the most efficient
encoding scheme based on the maximum overlap;
we consider an alternative in Appendix C.)

(6) Efficient computation. As discussed previously,
computing the maximum overlap involves solving
an instance of the maximum bipartite weighted
matching problem, with weights given by the con-
tingency table, wrs ¼ mrs (see Fig. 2), which can be
done using the Kuhn-Munkres algorithm [27,28]. In
its sparse version, the running time is bound by
O½ðqðxÞ þ qðyÞÞEm�, with Em ≤ qðxÞqðyÞ being the
number of nonzero entries in the contingency matrix
mrs [26]. Combining this with the work required to
build the contingency table itself, the computation
of dðx; yÞ is bound by O½ðqðxÞ þ qðyÞÞEm þ N�.
Therefore, the running time will depend on whether
we expect the number of labels and the density of the
contingency table to be much smaller than or
comparable to N. In the former case, the maximum
matching algorithm takes a comparatively negligible
time, and the linear term dominates, yielding a
running time OðNÞ. Otherwise, if we have qðxÞ ¼
OðNÞ or qðyÞ ¼ OðNÞ, then Em ¼ OðNÞ, and hence
the running time will be quadratic,OðN2Þ. However,
the latter scenario is atypical when N is very large;
therefore, we most often encounter the linear regime,
allowing for very fast computations (see Fig. 14).

The maximum overlap distance has been used before in
situations where the labeling is unambiguous or the number
of labels is so small that exhaustive iteration over label
permutations is feasible (e.g., Refs. [5,51]), but, to the best
of our knowledge, it is rarely in combination with the
maximum bipartite weighted matching algorithm as out-
lined above (with an exception being Ref. [52], which
employed it when comparing with other metrics), which
makes it usable in general settings. Instead, more focus has
been given to measures such as mutual information (and its
several variants) [53] or variation of information (VI) [34],
which are based on the contingency table without requiring
us to obtain a label matching. As pointed out by Meilă [34],
it is not meaningful to talk about the “best” way of
comparing partitions without any context since such a task
must be unavoidably tied with our ultimate objective.
Therefore, a different set of axiomatic conditions might

prefer another dissimilarity function, and indeed, it can be
proven that no single function can simultaneously fulfil
some elementary set of axioms [32]. In particular, since the
maximum overlap distance is based only on the number of
nodes correctly classified, it ignores the nodes that do not
match and hence does not exploit any potential regularity
with which the labels are mismatched. Other functions,
such as variation of information, might provide alternatives
that can be used to highlight different properties of partition
ensembles. Nevertheless, few other dissimilarity functions
share the same ease of interpretation with the maximum
overlap distance while possessing its other useful formal
properties, such as natural normalization, information-
theoretical interpretation, and the fact that it defines a
metric space.
Among the alternative partition similarities and dissimi-

larities, the recently introduced reduced mutual information
(RMI) [35] deserves particular mention because, like the
maximum overlap distance, it is related to a joint descrip-
tion length of two partitions, which, in the case of RMI,
involves encoding the full contingency table. Thus, both
similarities can be compared to each other in their own
terms, and the most appropriate measure must yield the
shortest description length. We perform a succinct com-
parison between RMI and an overlap-based encoding in
Appendix C. We also consider both RMI and VI more
closely in the following Appendix.

APPENDIX B: MAXIMUM OVERLAP DISTANCE
OBEYS TRIANGLE INEQUALITY

Here, we show that the maximum overlap distance of
Eq. (26) obeys triangle inequality, i.e.,

dðx; zÞ ≤ dðx; yÞ þ dðy; zÞ; ðB1Þ

for any set of labeled partitions x, y, and z. Let us consider
the maximum overlap

FIG. 14. Time required to compute dðx; yÞ for x and y both
randomly sampled with qðxÞ ¼ qðyÞ ¼ B groups, as shown in the
legend, as a function of N, averaged over 100 samples, using an
Intel i9-9980HK CPU. The solid line shows an OðNÞ slope.
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ωðx; yÞ ¼ N − dðx; yÞ ¼ max
μ

X
i

δμðxiÞ;yi : ðB2Þ

Now, for an arbitrary choice of x, y, and z, let us consider
the sum

ωðx; yÞ þ ωðy; zÞ: ðB3Þ

The maximum value either term in the above sum can take
is N, corresponding to partitions that are identical up to
relabeling, i.e., ½x ∼ y� ¼ 1 or ½y ∼ z� ¼ 1. If we condition
on one of the terms taking its maximum value N, the
remaining term can take a value of at most ωðx; zÞ, either
via the first term with ωðx; yÞ ¼ ωðx; zÞ if ½y ∼ z� ¼ 1 or via
the second term with ωðy; zÞ ¼ ωðx; zÞ if ½x ∼ y� ¼ 1. Thus,
we can write

ωðx; yÞ þ ωðy; zÞ ≤ N þ ωðx; zÞ: ðB4Þ

Substituting ωðx; yÞ ¼ N − dðx; yÞ and rearranging gives
us Eq. (B1).

APPENDIX C: ENCODING PARTITIONS
BASED ON OVERLAP

As described in the main text, the random label model
yields a description length for a pair of partitions given by

Σðx; yÞ ¼ − lnPðx; yÞ ðC1Þ

¼ N ln½BðBþ 1Þ� − ωðx; yÞ ln 2: ðC2Þ

Likewise, if we observe y and use it to describe partition x,
the additional amount of information we need to convey is

ΣðxjyÞ ¼ − lnPðxjyÞ ðC3Þ

¼ − lnPðx; yÞ=PðyÞ ðC4Þ

¼ N lnðBþ 1Þ − ωðx; yÞ ln 2; ðC5Þ

where we have used PðyÞ ¼ 1=BN from Eq. (12). From this
information, we note that this encoding is suboptimal in the
sense that, even when the overlapping is maximal with
ωðx; yÞ ¼ N, the additional information needed to encode x
is ΣðxjyÞ ¼ N ln½ðBþ 1Þ=2�, which scales as OðNÞ
when B > 1.
Nevertheless, we can develop a different encoding that is

more efficient at using the overlap information. We do so
by incorporating it as an explicit parameter as follows:
(1) We sample an overlap value ω uniformly in the

range ½1; N�, such that

PðωÞ ¼ 1

N
: ðC6Þ

(2) We choose a subset Vω of the N nodes of size ω,
uniformly with probability

PðVωjωÞ ¼
�
N

ω

�−1
: ðC7Þ

(3) For the nodes in Vω, we sample a partition z with
probability

PðzjVω; γÞ ¼
Y
i∈Vω

γzi ; ðC8Þ

which leads to a marginal distribution

PðzjVωÞ ¼
Z

PðzjVω; γÞPðγÞdγ ðC9Þ

¼
�
ωþ B − 1

ω

�
−1 ω!Q

rnzðrÞ!
; ðC10Þ

where nzðrÞ ¼
P

i∈Vω
δzi;r, assuming a uniform

prior PðγÞ ¼ ðB − 1Þ!.
(4) For the remaining N − ω nodes not in Vω, we

sample the values of partitions x and y analogously,
i.e.,

PðxjVωÞ ¼
�
N − ωþ B − 1

N − ω

�
−1 ðN − ωÞ!Q

rnxðrÞ!
;

PðyjVωÞ ¼
�
N − ωþ B − 1

N − ω

�
−1 ðN − ωÞ!Q

rnyðrÞ!
;

with nxðrÞ ¼
P

i∉Vω
δxi;r and nyðrÞ ¼

P
i∉Vω

δyi;r.
(5) For the nodes i ∈ Vω, we set xi ¼ yi ¼ zi, and we

choose a label bijection μ uniformly at random from
the set of size B! and use it to relabel either x or y
arbitrarily.

In the end, this model generates partitions x and y that have
an overlap of at least ω, although the actual overlap can be
larger by chance. The scheme above allows groups to be
unpopulated in the final partition, which is suboptimal, but
this can be neglected for our current purpose. The final joint
probability of this scheme is

Pðx; y; z; Vω;ω; μÞ ¼ PðxjVωÞPðyjVωÞPðzjVωÞ
× PðVωjωÞPðωÞPðμÞ; ðC11Þ

which leads to a description length
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Σðx; y; z; Vω;ω; μÞ
¼ − lnPðx; y; z; Vω;ω; μÞ

¼ 2 ln

�
N − ωþ B − 1

N − ω

�
þ ln

�
ωþ B − 1

ω

�

þ ln
ðN − ωÞ!Q

rnxðrÞ!
þ ln

ðN − ωÞ!Q
rnyðrÞ!

þ ln
ω!Q

rnzðrÞ!

þ ln

�
N
ω

�
þ lnN þ lnB!: ðC12Þ

The minimum description length for x and y is given by

Σðx; yÞ ¼ min
z;Vω;ω;μ

Σðx; y; z; Vω;ω; μÞ; ðC13Þ

which corresponds simply to finding the maximum overlap
ωðx; yÞ and the corresponding label matching between
x and y from which Vω, z, and μ can be derived. It is
easy to see now that if the overlap is maximal with ω ¼ N,
the description length amounts to

Σðx; yÞ ¼ ln

�
N þ B − 1

N

�
þ lnN! −

X
r

ln nyðrÞ!

þ lnN þ lnB!; ðC14Þ

where we have arbitrarily chosen y as the reference partition
but without loss of generality. Hence, if we subtract the
necessary information required to describe y, given by

− lnPðyÞ ¼ ln

�
N þ B − 1

N

�
þ lnN! −

X
r

ln nyðrÞ!;

ðC15Þ

we are left with negligible logarithmic terms

ΣðxjyÞ ¼ lnN þ lnB!; ðC16Þ

meaning that the additional information needed to describe
x given y is vanishingly small with respect to N, and hence
the code is efficient in this case.
It is instructive to compare the above scheme with the

RMI encoding recently proposed in Ref. [35]. It corre-
sponds to a three-part scheme, where one first encodes
partition y, then the full contingency table between both
partitionsmrs, and finally the remaining partition x, leading
to a description length

Σ0
RMIðx; yÞ ¼ ln

�
N − 1

By þ 1

�
þ ln

�
N − 1

Bx þ 1

�
þ ln

N!Q
rnyðrÞ!

þ
X
r

ln
nxðrÞ!Q

smrs
þ lnΩðnx; nyÞ; ðC17Þ

where Bx and By are the number of labels in partitions x and
y and Ωðnx; nyÞ is the number of possible contingency
tables, with row and column sums given by nx and ny,
which cannot be computed in closed form but for which
approximations are available (see Ref. [35]). Note that
the encoding above is not symmetric; i.e., in general,
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FIG. 15. (Top panel) Average relative description length differ-
ence ðΣ − ΣRMIÞ=maxðΣ;ΣRMIÞ between maximum overlap and
RMI encodings for empirical networks with N nodes, averaged
over pairs of partitions independently sampled from the Poisson
DC-SBM posterior distribution. The point size and color indicate
the size of the network. (Middle panel) Like the top panel, but
with the mean normalized overlap distance computed for each
network. (Bottom panel) Histogram of average relative descrip-
tion length differences over all empirical networks.
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ΣRMIðx; yÞ ≠ ΣRMIðy; xÞ, as the overall description length
will depend on which partition is encoded first [although
the relative description length ΣRMIðxÞ − ΣRMIðx; yÞ is
always symmetric]. Therefore, the minimum description
length amounts to choosing the optimal partition to first
encode

ΣRMIðx; yÞ ¼ min ½Σ0
RMIðx; yÞ;Σ0

RMIðy; xÞ�: ðC18Þ

In Fig. 15, we compare the compression of two partitions
sampled independently from the DC-SBM posterior dis-
tribution of 571 empirical networks selected from the
Konect [54] and CommunityFitNet [55] repositories.
Overall, we observe somewhat mixed results, with the
overlap encoding providing a better compression for
around 61% of the networks. As we might expect, the
overlap encoding tends to provide a better description if the
overlap between partitions is very high, such that a full
description of the nonmatching nodes becomes superflu-
ous. Otherwise, for highly differing partitions, the RMI
encoding is able to capture similarities more efficiently.

APPENDIX D: COMPARISON WITH
DIMENSIONALITY REDUCTION

The clustering algorithm presented in Sec. Vof the main
text is based on a particular definition of what a mode is,
according to the random label model presented in Sec. III.
As has been shown in Fig. 9, there is an intimate relation-
ship between the clusters founds and the metric space of
partitions as defined by the maximum overlap distance,
such that dimensionality reduction algorithms like UMAP
tend to identify the same clusters. One may wonder,
however, if this picture changes if we consider another
underlying metric space defined by a different distance
function. To give a glimpse into this question, in Fig. 16, we
show the results of dimensionality reduction using both the
variation and information and reduced mutual information
[56] functions, both of which make use of the entire
contingency table when comparing partitions. As we can
see, not only is the overall multimodal structure preserved,
but also the composition of the modes is compatible with
what was obtained in Fig. 9, showing that the existence of
the clusters is not intrinsically tied to the modeling choices
made but is, in fact, a property of the data that can be
probed in different ways. Naturally, the local shapes and
relative positions of the modes vary according to the
distance used—and, in fact, even across different runs of
the UMAP algorithm since it is nondeterministic.
We stress that the approach we present in the main text

offers some advantages over dimensionality reduction:
(1) From the beginning, we know what the identified
modes mean, and this is not something that needs to be
interpreted a posteriori. (2) Clustering is performed in a
nonparametric manner, without having to decide on an
embedding dimension or even the number of clusters that

need to be found. Dimensionality reduction, on the other
hand, comprises only an intermediary step that yields an
input to a surrogate clustering algorithm, like k-means,
which is often parametric.

APPENDIX E: EVIDENCE FOR LATENT
POISSON SBMs

The latent Poisson SBMs of Ref. [39] are generative
models for simple graphs, where, at first, a multigraph G is
generated with probability

PðGjbÞ ðE1Þ

(a)

(b)

FIG. 16. Projection of the partition distribution in two dimen-
sions according to the UMAP dimensionality reduction algorithm
[17], for the same data of Fig. 9, using (a) the variation of
information and (b) the (negative) reduced mutual information as
dissimilarity functions. The labels indicate a correspondence of
the modes with those found in Fig. 9 according to the majority of
partitions.
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from a Poisson SBM, and then a simple graph is obtained
by collapsing the multiedges to simple edges with

PðAijjGÞ ¼
�
1 if i ≠ j and Gij > 0

0 otherwise:
ðE2Þ

The joint posterior distribution of partitions and latent
multiedges is then

Pðb;GjAÞ ¼ PðAjGÞPðGjbÞPðbÞ
PðAÞ ; ðE3Þ

with evidence given by

PðAÞ ¼
X
b;G

PðA;G; bÞ: ðE4Þ

Because of the latent multiedges, we need to approximate
the evidence in a similar, but different manner. We write the
log evidence as

lnPðAÞ ¼
X
b;G

πðb;GÞ lnPðA;G; bÞ −
X
b;G

πðb;GÞ ln πðG; bÞ

ðE5Þ

¼ hlnPðA;G; bÞi þHðb;GÞ; ðE6Þ

where

πðG; bÞ ¼ PðA;G; bÞP
G0;b0PðA;G0; b0Þ ðE7Þ

is the joint posterior distribution. For our approximation,
we assume the factorization

πðG; bÞ ≈ πðGÞπðbÞ; ðE8Þ

together with the “mean field” over the latent multiedges,

πðGÞ ¼
Y
i≤j

qijðGijÞ; ðE9Þ

with the marginals estimated via MCMC,

qijðxÞ ¼
X
G;b

δGij;xπðG; bÞ; ðE10Þ

so that the latent edge entropy can be computed as

HðGÞ ¼ −
X
i≤j

X
x

qijðxÞ ln qijðxÞ: ðE11Þ

From this calculation, we obtain the final approximation,

lnPðAÞ ¼ hlnPðA;G; bÞi þHðbÞ þHðGÞ; ðE12Þ

where HðbÞ is computed using the mixed random label
models as done in the main text. The approximation for the
hierarchical model follows analogously.
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[6] R. Guimerà and M. Sales-Pardo, Missing and Spurious
Interactions and the Reconstruction of Complex Networks,
Proc. Natl. Acad. Sci. U.S.A. 106, 22073 (2009).

[7] A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical
Structure and the Prediction of Missing Links in Networks,
Nature (London) 453, 98 (2008).

[8] J. Calatayud, R. Bernardo-Madrid, M. Neuman, A. Rojas,
and M. Rosvall, Exploring the Solution Landscape Enables
More Reliable Network Community Detection, Phys. Rev. E
100, 052308 (2019).

[9] M. A. Riolo and M. E. J. Newman, Consistency of Com-
munity Structure in Complex Networks, Phys. Rev. E 101,
052306 (2020).

[10] A. Strehl and J. Ghosh, Cluster Ensembles—A Knowledge
Reuse Framework for Combining Multiple Partitions, J.
Mach. Learn. Res. 3, 583 (2002).

[11] A. Topchy, A. K. Jain, and W. Punch, Clustering
Ensembles: Models of Consensus and Weak Partitions,
IEEE Trans. Pattern Analysis Machine Intelligence 27, 1866
(2005).

[12] A. Goder and V. Filkov, Consensus Clustering Algorithms:
Comparison and Refinement, in 2008 Proceedings of the
Workshop on Algorithm Engineering and Experiments
(ALENEX) (Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 2008), pp. 109–117, https://doi.org/
10.1137/1.9781611972887.11.

[13] A. Lancichinetti and S. Fortunato, Consensus Clustering in
Complex Networks, Sci. Rep. 2, 336 (2012).

[14] P. Zhang and C. Moore, Scalable Detection of Statistically
Significant Communities and Hierarchies, Using Message
Passing for Modularity, Proc. Natl. Acad. Sci. U.S.A. 111,
18144 (2014).

[15] A. Tandon, A. Albeshri, V. Thayananthan, W. Alhalabi, and
S. Fortunato, Fast Consensus Clustering in Complex Net-
works, Phys. Rev. E 99, 042301 (2019).

TIAGO P. PEIXOTO PHYS. REV. X 11, 021003 (2021)

021003-28

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1038/nature06830
https://doi.org/10.1103/PhysRevE.100.052308
https://doi.org/10.1103/PhysRevE.100.052308
https://doi.org/10.1103/PhysRevE.101.052306
https://doi.org/10.1103/PhysRevE.101.052306
https://doi.org/10.1109/TPAMI.2005.237
https://doi.org/10.1109/TPAMI.2005.237
https://doi.org/10.1137/1.9781611972887.11
https://doi.org/10.1137/1.9781611972887.11
https://doi.org/10.1038/srep00336
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1073/pnas.1409770111
https://doi.org/10.1103/PhysRevE.99.042301


[16] L. van der Maaten and G. Hinton, Visualizing Data Using
t-SNE, J. Machine Learning Research 9, 2579 (2008).

[17] L. McInnes, J. Healy, and J. Melville, UMAP: Uniform
Manifold Approximation and Projection for Dimension
Reduction, arXiv:1802.03426.

[18] T. P. Peixoto, Bayesian Stochastic Blockmodeling, in
Advances in Network Clustering and Blockmodeling (John
Wiley & Sons, New York, 2019), pp. 289–332.

[19] P. W. Holland, K. Blackmond Laskey, and S. Leinhardt,
Stochastic Blockmodels: First Steps, Soc. Networks 5, 109
(1983).

[20] T. P. Peixoto, Efficient Monte Carlo and Greedy Heuristic
for the Inference of Stochastic Block Models, Phys. Rev. E
89, 012804 (2014).

[21] M. A. Riolo, G. T. Cantwell, G. Reinert, and M. E. J.
Newman, Efficient Method for Estimating the Number
of Communities in a Network, Phys. Rev. E 96, 032310
(2017).

[22] T. P. Peixoto, Merge-Split Markov Chain Monte Carlo
for Community Detection, Phys. Rev. E 102, 012305
(2020).

[23] V. Krebs, Political Books Network, http://www-personal
.umich.edu/~mejn/netdata/.

[24] B. Karrer and M. E. J. Newman, Stochastic Blockmodels
and Community Structure in Networks, Phys. Rev. E 83,
016107 (2011).

[25] T. P. Peixoto, Nonparametric Bayesian Inference of the
Microcanonical Stochastic Block Model, Phys. Rev. E
95, 012317 (2017).

[26] L. Ramshaw and R. E. Tarjan, On Minimum-Cost Assign-
ments in Unbalanced Bipartite Graphs, HP Labs, Palo Alto,
CA, Tech. Rep. HPL-2012-40R1 (2012).

[27] H.W. Kuhn, The Hungarian Method for the Assignment
Problem, Naval research logistics quarterly 2, 83 (1955).

[28] J. Munkres, Algorithms for the Assignment and Trans-
portation Problems, J. Soc. Indust. Appl. Math. 5, 32
(1957).

[29] We offer a freely available reference C++ implementation
of every algorithm described in this work as part of the
graph-tool PYTHON library [30].

[30] T. P. Peixoto, The Graph-Tool Python Library, https://
graph-tool.skewed.de.

[31] M. Meilă and D. Heckerman, An Experimental Comparison
of Model-Based Clustering Methods, Mach. Learn. 42, 9
(2001).

[32] M. Meilă, Comparing Clusterings: An Axiomatic View, in
Proceedings of the 22nd International Conference on
Machine Learning (2005), pp. 577–584, https://doi.org/
10.1145/1102351.1102424.

[33] M. Meilă, Comparing Clusterings—An Information Based
Distance, J. Multivariate Anal. 98, 873 (2007).

[34] M. Meilă, Comparing Clusterings by the Variation of
Information, in Learning Theory and Kernel Machines,
Lecture Notes in Computer Science No. 2777, edited by B.
Schölkopf and M. K. Warmuth (Springer, Berlin, Heidel-
berg, 2003), pp. 173–187.

[35] M. E. J. Newman, G. T. Cantwell, and J.-G. Young,
Improved Mutual Information Measure for Clustering,
Classification, and Community Detection, Phys. Rev. E
101, 042304 (2020).

[36] W.W. Zachary, An Information Flow Model for Conflict
and Fission in Small Groups, J. Anthropol. Res. 33, 452
(1977).

[37] T. P. Peixoto, Parsimonious Module Inference in Large
Networks, Phys. Rev. Lett. 110, 148701 (2013).

[38] T. P. Peixoto, Hierarchical Block Structures and High-
Resolution Model Selection in Large Networks, Phys.
Rev. X 4, 011047 (2014).

[39] T. P. Peixoto, Latent Poisson Models for Networks with
Heterogeneous Density, Phys. Rev. E 102, 012309
(2020).

[40] S. Geman, E. Bienenstock, and R. Doursat, Neural
Networks and the Bias/Variance Dilemma, Neural Comput.

4,1)1992 ).
[41] M. Girvan and M. E. J. Newman, Community Structure in

Social and Biological Networks, Proc. Natl. Acad. Sci.
U.S.A. 99, 7821 (2002).

[42] D. E. Knuth, The Stanford GraphBase: A Platform for
Combinatorial Computing, 1st ed. (Addison-Wesley Pro-
fessional, Reading, Mass, 1993).

[43] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E.
Slooten, and S. M. Dawson, The Bottlenose Dolphin Com-
munity of Doubtful Sound Features a Large Proportion of
Long-Lasting Associations, Behav. Ecol. Sociobiol. 54, 396
(2003).

[44] M. E. J. Newman, Finding Community Structure in Net-
works Using the Eigenvectors of Matrices, Phys. Rev. E 74,
036104 (2006).

[45] K. M. Harris, C. T. Halpern, E. Whitsel, J. Hussey, J. Tabor,
P. Entzel, and J. R. Udry, The National Longitudinal
Study of Adolescent to Adult Health: Research Design,
see http://www.cpc.unc.edu/projects/addhealth/design (ac-
cessed 9 April 2015).

[46] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner,
The Structure of the Nervous System of the Nematode
Caenorhabditis elegans, Phil. Trans. R. Soc. B 314, 1
(1986).
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