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Random matrix analysis of network Laplacians
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Abstract

We analyse the eigenvalue fluctuations of the Laplacian of various networks under the random matrix theory framework.
Analyses of random networks, scale-free networks and small-world networks show that the nearest neighbor spacing distribution
of the Laplacian of these networks follow Gaussian orthogonal ensemble statistics of the random matrix theory. Furthermore, we
study the nearest neighbor spacing distribution as a function of the random connections and find that the transition to the Gaussian
orthogonal ensemble statistics occurs at the small-world transition.
c© 2007 Elsevier B.V. All rights reserved.

PACS: 89.75.Hc; 64.60.Cn; 89.20.-a

Keywords: Network; Graph Laplacian; Random matrix theory

1. Introduction

In order to understand the complex world around us network theory has been getting fast recognition. The main
concept here is to define the complex systems in terms of networks of many interacting units. Few examples of such
systems are interacting molecules in a living cell, nerve cells in brain, computers in Internet communication, social
networks of interacting people, airport networks with flight connections, etc. [1–4]. To understand these networks
simple models are introduced; these model networks are based on some simple principles, and capture the essential
features of real systems. Mathematically networks are investigated under the framework of graph theory. In the graph
theoretical terminology, units are called nodes and interactions are called edges [5].

Random graph model of Erdös and Rényi (ER) assumes that the interaction between the nodes are random [6].
Recently, with the availability of large maps of real-world networks, it has been observed that the random graph model
is not appropriate for studying real-world networks. Hence many new models have been introduced. Barabási–Albert’s
scale-free (SF) model [7] and Watts–Strogatz’s small-world (SW) model [8] are the most recognized ones, and have
contributed immensely in understanding the evolution and behavior of the real systems having network structures.
SF model captures the degree distribution behavior of real-world networks and SW model deals with the clustering
coefficient and diameter. Following these two new models came an outbreak in the field of networks. These works have
focused on the following aspects: (1) direct studies of the real-world networks and measuring their various structural

∗ Corresponding author. Tel.: +49 351 871 1211.
E-mail addresses: sarika@pks.mpg.de (S. Jalan), jayendra@pks.mpg.de (J.N. Bandyopadhyay).

0378-4371/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2007.09.026

http://www.elsevier.com/locate/physa
mailto:sarika@pks.mpg.de
mailto:jayendra@pks.mpg.de
http://dx.doi.org/10.1016/j.physa.2007.09.026


668 S. Jalan, J.N. Bandyopadhyay / Physica A 387 (2008) 667–674

properties such as degree distribution, diameter, clustering coefficient, etc., (2) proposing new random graph models
motivated by these studies, and (3) computer simulations of the new models and measuring their properties [2].

Barabási et al.’s investigations on the various real-world systems show that they are scale-free, which means that
the degree distribution p(k), fraction of nodes that have k number of connections with other nodes, decays as power
law, i.e. p(k) ∝ k−γ , where γ depends on the topology of the networks. The scale-free nature of the networks suggests
that there exist few nodes with very high degree. Some other analyses, by Newman and others, of real-world networks
show that complex networks have community or module structures [9,10]. According to these studies, there exists
few nodes with very high betweenness which are responsible to connect the different communities. This direction of
looking at the networks focuses on the importance of nodes based on its position in the network. On the other hand,
ER and SW models emphasize on the random connections in the networks; in ER model any two nodes are connected
with probability p. One of the most interesting characteristics of the ER model was the sudden emergence of various
global properties; the most important one being the emergence of the giant cluster. For a p > pc, while number of
nodes in the graph remain constant, giant cluster emerges through a phase transition. Further, Watts–Strogatz model
shows the small-world transition with fine tuning of the number of random connections.

Apart from the above mentioned investigations which focus on direct measurements of structural properties
of networks, there exists a vast literature demonstrating that the properties of networks or graphs could be well-
characterized by the spectrum of associated adjacency (A) and Laplacian (L) matrix [11]. For an unweighted graph,
adjacency matrix is defined in following way : Ai j = 1, if i and j nodes are connected and zero otherwise. Laplacian
of the graph has been defined in various ways (depending upon the normalization) in the literature. We follow the
definition used in [12];

L i j = 1 for i = j and L i j = −Ai j/
√

di d j , (1)

where di denotes the degree of node i . For undirected networks, adjacency and Laplacian both are symmetric
matrices and consequently have real eigenvalues [13]. Eigenvalues of the graph are called graph spectra and they give
informations about some basic topological properties of the underlying network. During the last twenty years several
important applications of the spectral graph theory in physics and chemistry problems have been discovered [11,
14]. For example liquid flowing through a system of communicating pipes is described by a system of linear
differential equations. The corresponding matrix appears to be the Laplacian of the underlying graph. Speed of
convergence of the liquid flowing process towards an equilibrium state is measured by the second smallest eigenvalue
of L [14]. The second smallest eigenvalue of L is also called the algebraic connectivity of a graph and is used to
understand the behavior of dynamical processes on the underlying networks [15]. Particularly, Laplacian spectra of
networks have been investigated enormously to understand the synchronization of coupled dynamics on networks
[15–17], for example recently extremal eigenvalues of the Laplacian have been shown to have high influence on the
synchronizability of the network [18]. Similarly, multiplicities of the eigenvalues, particularly at 0 and 1, have direct
relations with the properties of graphs [19,20].

Following our recent works, where we used random matrix theory (RMT) to study the spectral properties of
adjacency matrix of various networks [21], in this paper we investigate the spectral properties of Laplacians of
networks under RMT framework. Particularly we study the nearest neighbor spacing distribution (NNSD) of the
Laplacian matrix of various model networks, namely scale-free, small-world and random networks. We find that in
spite of the spectral densities of different model networks being different, their eigenvalue fluctuations are the same and
follow the Gaussian orthogonal ensemble (GOE) distribution of RMT. We attribute this universality to the presence
of the similar amount of randomness in all these networks, and show that randomness in the network connections can
be quantified by the Brody parameter coming from RMT. Furthermore, there exists one-to-one correlation between
the diameter of the network and the eigenvalue fluctuations of the Laplacian matrix. By changing the number of
connections in the network we get a transition to the GOE distribution. As Erdös and Rényi observed that, with the
fine tuning of network parameter all nodes get connected with a sudden transition; under the RMT framework our
analysis suggests a transition to some kind of spreading of randomness over the whole network.

Note that in this paper we consider the normalized Laplacians, though for the RMT analysis form of the Laplacians
does not matter, because unfolding, a method to separate out the system-dependent part from the eigenvalues to study
their universal behavior, removes scaling effects caused by the normalization factor. We consider the normalized
Laplacians because the eigenvalue properties of this form of the Laplacian are extensively investigated [22–26]. They



S. Jalan, J.N. Bandyopadhyay / Physica A 387 (2008) 667–674 669

have been found to be an excellent candidate as a concise fingerprint of the internet-like graphs [24] and graphs for
the cancer cells [25]. Furthermore for some applications, such as graph partitioning, this normalized form is preferred
over other forms of the Laplacian [26,20].

The paper is organized as follows: after this introductory section, in Section 2, we describe some techniques of
RMT which we have used in our analysis. In Section 3, we analyse the NNSD of the Laplacian for various networks,
namely small-world, scale-free and random networks. In Section 4 we study the effect of random connections on the
level statistics. In this section we show the one-to-one correlation between the GOE transition and the small-world
behavior. Finally, in Section 5, we summarize and discuss about some possible future directions.

2. Random matrix statistics

RMT was proposed by Wigner to explain the statistical properties of nuclear spectra [27]. Later this theory had
successfully been applied in the study of different complex systems such as disordered systems, quantum chaotic
systems where RMT tells whether corresponding classical system is regular or chaotic or a mixture of both, spectra
of large complex atoms, etc. [28]. RMT is also shown to be of great interest in understanding the statistical structure
of the empirical cross-correlation matrices appearing in the study of multivariate time series. The classical complex
systems where RMT has been successfully applied are stock market (cross-correlation matrix is formed by using the
time series of price fluctuations of different stock) [29]; brain (matrix is constructed by using EEG data at different
locations) [30]; patterns of atmospheric variability (cross-correlations matrix is generated by using temporal variation
of various atmospheric parameters) [31], etc.

We study the eigenvalue fluctuations of the Laplacian of the networks. The eigenvalue fluctuations are generally
obtained from the nearest neighbor spacing distribution (NNSD) of the eigenvalues. The NNSD follows two universal
properties depending upon the underlying correlations among the eigenvalues. For correlated eigenvalues, the NNSD
follows Wigner–Dyson formula of Gaussian orthogonal ensemble (GOE) statistics of RMT; whereas, the NNSD
follows Poisson statistics of RMT for uncorrelated eigenvalues.

Here we briefly describe some aspects of RMT which we have used in our network analysis. We denote the
eigenvalues of network Laplacian by λi , i = 1, . . . , N , where N is the size of the network and λi+1 > λi , ∀i .
In order to get the universal properties of the fluctuations of the eigenvalues, it is customary in RMT to unfold the
eigenvalues by a transformation λi = N (λi ), where N is the averaged integrated eigenvalue density [27]. Since we
do not have any analytical form for N , we numerically unfold the spectrum by polynomial curve fitting. After the
unfolding, the average spacing will be unity, independent of the system. Using the unfolded spectra, we calculate the
spacing as si = λi+1 − λi . The NNSD P(s) is defined as the probability distribution of these si ’s. In the case of
Poisson statistics, P(s) = exp(−s); whereas for GOE

P(s) =
π

2
s exp

(
−

πs2

4

)
. (2)

For the intermediate cases, the spacing distribution is described by the Brody distribution [32]:

Pβ(s) = Asβ exp
(
−αsβ+1

)
, (3)

where

A = (1 + β)α and α =

[
Γ

(
β + 2
β + 1

)]β+1

. (4)

This is a semiempirical formula characterized by the parameter β. As β goes from 0 to 1, the Brody distribution
smoothly changes from Poisson to GOE. We fit the spacing distributions of different networks by the Brody
distribution Pβ(s). This fitting gives an estimation of β, and consequently identifies whether the spacing distribution
of a given network is Poisson or GOE or intermediate of these two.

3. Laplacian matrix spectrum of complex networks

In the following we present the ensemble averaged spectral density and spacing distribution of random, scale-free
and small-world networks.
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Fig. 1. (Color online) (a) and (b) show the spectral density (ρ(λ)) and corresponding spacing distribution (P(s)) for the random network. The
histograms are numerical results and the solid lines represent fitted Brody distribution. Figures are plotted for an average over 10 random realizations
of the networks. All networks have N = 2000 nodes and an average degree k = 20 per node.

3.1. Random network

First we consider the random network generated by the using Erdös and Rényi algorithm. We take N = 2000 nodes
and make random connections between pairs of nodes with probability p = 0.01. This method yields a connected
network with an average degree p × N = 20. Note that for a very small value of p one gets several unconnected
components. Here, the choice of p is such that it should be high enough (p > pc) to give a large connected component
typically spanning all nodes [33]; and since most of the real-world networks are very sparse [2], p is small enough to
have a sparse network. Laplacian is constructed using Eq. (1). Because of the normalized form, the eigenvalues would
always be within 0 and 2. Fig. 1(a) plots the spectral density of the Laplacian. Note that the distribution is averaged
over 10 realizations of the network. The spectral density follows Wigner–Dyson semicircular distribution [34]. To get
the spacing behaviors, first the eigenvalues are unfolded by using the technique described in Section 2. This method
yields the eigenvalues with constant spectral density on the average. These unfolded eigenvalues are used to calculate
NNSD. The same procedure is repeated for an ensemble of the networks generated for different random realizations.
Fig. 1(b) plots the ensemble average of NNSD. By fitting this ensemble averaged NNSD with the Brody formula
given in Eq. (3) we get an estimation of the Brody parameter β = 0.9786 ∼ 1. This value of Brody parameter clearly
indicates the GOE behavior of the NNSD (Eq. (2)).

3.2. Scale-free network

Fig. 2 plots the spectral density and the nearest neighbor spacing distribution of the Laplacian of scale-free network.
Scale-free network is generated by using the model of Barabási et al. [7]. Starting with a small number, m0 of the
nodes, a new node with m ≤ m0 connections is added at each time step. This new node connects node i with the
probability π(ki ) ∝ ki (preferential attachment), where ki is the degree of the node i . After τ time steps the model
leads to a network with N = τ + m0 nodes and mτ connections. This model leads to a scale-free network, i.e., the
probability P(k) that a node has degree k decays as a power law, P(k) ∼ k−λ, where λ is a constant and for the
type of probability law π(k) that we have used λ = 3. Other forms for the probability π(k) are possible which give
different values of λ and we find results similar to the ones reported here. Density distribution of the network has a
very uniform distribution for almost all eigenvalues except for few lowest and highest ones. There is a slight peak
around one which corresponds to the peak at zero for the adjacency matrix [21]. To calculate NNSD, we follow the
same procedure as described in the previous section. Fig. 2(b) shows that the spacing distribution of this scale-free
network follow GOE very closely (β = 0.9914 ' 1).
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Fig. 2. (Color online) (a) and (b) show the spectral density (ρ(λ)) and corresponding spacing distribution (P(s)) of scale-free network. The
histograms are numerical results and the solid lines represent fitted Brody distribution. Figures are plotted for an average over 10 random realizations
of the networks. All networks have N = 2000 nodes and an average degree k = 20 per node.

Fig. 3. (Color online) (a) and (b) show the spectral density (ρ(λ)) and corresponding spacing distribution (P(s)) of small-world network. The
histograms are numerical results and the solid lines represent fitted Brody distribution. Figures are plotted for an average over 10 random realizations
of the networks. All networks have N = 2000 nodes and an average degree k = 20 per node.

3.3. Small-world network

Fig. 3 is plotted for small-world network. Small-world networks are constructed using the following algorithm by
Watts and Strogatz [8]. Starting with a one-dimension ring lattice of N nodes in which every node is connected to its
k nearest neighbors, we randomly rewire each connection of the lattice with the probability p such that the self-loop
and multiple connections are excluded. Thus p = 0 gives a regular network and p = 1 gives a random network. The
typical small-world behavior is observed around p = 0.005. We take N = 2000 and average degree k = 40. Spectral
density of this network is complicated with several peaks. One peak is at λ = 1 which corresponds to the ρ(0) peak
for the spectra of the adjacency matrix. For different values of k the exact positions of other peaks may vary but
the overall form of the spectral density remains similar. Fig. 3(b) shows that the spacing distribution of small-world
network follows GOE very closely (β = 0.9584 ' 1).

Figs. 1(b), 2(b) and 3(b) show that the spacing distribution of all the three networks follow GOE very closely
(β ' 1). Since the spectral density of the random network is very close to the semicircular one, and in the RMT
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Fig. 4. Figures shows the transition from the Poisson to the GOE statistics of the eigenvalues of the Laplacian of the network as a function of the
random rewiring parameter p. We take a regular lattice of size N = 2000 and average degree k = 40. Links are rewires with probability p. Figures
are plotted for an average over 10 random realization of the networks.

literature semicircular distributions are extensively studied and are shown to give GOE statistics of the spacings, we
expected that the NNSD of random networks would follow GOE as well. But for the scale-free network and the
small-world network, density distributions have very different forms, still the NNSD of these networks follow GOE
statistics. This is a very interesting result. Following RMT these results imply that even though the spectral density
of the scale-free and small-world network differ from the spectral density of the random network, but the correlations
among the eigenvalues are strong enough to yield GOE statistics.

4. Transition to GOE statistics and small-world behavior

All the above networks have some amount of random connections in them. In this section we discuss the networks
which are regular and analyse the spectral properties as we go from regular network to the random one. Starting with a
ring lattice of nodes N = 2000 and average degree k = 40, we then randomize some connections with probability p,
and observe the change in the spectral density and NNSD of the network as a function of p. For the original ring lattice,
the underlying adjacency matrix would be a band matrix with entries one in the band, except diagonal elements which
would be zero. Corresponding Laplacian would be a band matrix as well, with off-diagonal elements −1/

√
k × k

(from Eq. (1)), where k being the degree of each node, and diagonal elements 1. As a result of rewiring, few randomly
selected pairs of nodes get connected, yielding few nonzero entries outside the band of the corresponding Laplacian,
while making few band elements zero. For a completely random network, the corresponding Laplacian would have
nonzero random entries.

In the following we discuss the spectral behavior of the Laplacian matrix as the number of random connections in
the underlying network is increased. Fig. 4(a) and (d) plot the density distribution and the NNSD for the p = 5×10−5

case. At this value of p there is as few as one random rewiring in the regular lattice. These figures shows that spectral
density of the lattice is complicated without having any known form; and its spacing distribution closely follows



S. Jalan, J.N. Bandyopadhyay / Physica A 387 (2008) 667–674 673

Table 1
Diameter, clustering coefficient, and Brody parameter for the various values of rewiring probability p

p L(p)/L(0) C(p)/C(0) 1 − β

(a) 5 × 10−5 0.83925 0.99980 0.89463
(b) 2 × 10−4 0.53680 0.99925 0.33368
(c) 5 × 10−4 0.39776 0.99857 0.20131

the Poisson statistics (β ∼ 0.1). We then increase the value of p and randomize a fraction p = 2 × 10−4 of the
edges. For this value of p, the spectral density and the spacing distribution are plotted respectively in Fig. 4(b) and
(e). These figures reveal that for this small value of p, the density distribution of the network does not show any
noticeable change, whereas the spacing distribution shows a different property (corresponding to the β ∼ 0.67). As p
is further increased to 5×10−4 the spectral density hardly shows any change but interestingly the spacing distribution
shows significantly different properties than the Poisson statistics. Now the spacing distribution looks more like the
intermediate between Poisson and GOE. By fitting the spacing distribution corresponding to this p value with the
Brody formula, we estimate the Brody parameter β as β ∼ 0.8. As a marked change in the Brody parameter for very
small change in the random connections in the network (corresponding to p = 5 × 10−5, Fig. 4(d)), we had expected
that the Brody parameter will reach asymptotically to unity as we increase p. But the surprising finding is that the
onset of transition from Poisson to GOE occurs at a very small value of p (Fig. 4(e) and (f)), and is related with the
SW properties of the networks. We calculate the network diameters and clustering coefficients for these values of p,
which are listed below:

Table 1 shows that for (b) and (c), the average length of the network is as small as the corresponding random
network (L random ∼ ln(N )/ ln(k), and clustering coefficient is as high as the regular lattice (Cregular ∼ 3/4), which
are the properties of small-world networks. Values of β reveal that the Poisson to GOE (β ∼ 0 → β ∼ 1) transition
and small-world transition takes place for the similar value of p.

5. Conclusions

In summary, we study the eigenvalue spacing distribution of the Laplacian of the model networks studied
extensively in the literature. They follow the universal GOE statistics. From the RMT analogy it tells us that there
exists correlations between the eigenvalues of the network arising from certain symmetries in the interactions. We
attribute this universality to the similar amount of randomness in the model networks, which may arise naturally, in
order to capture the real-world network properties. We study the effect of the randomness in the network connections
on the eigenvalues fluctuations of the network Laplacian, and use the Brody parameter to quantify this randomness.
These studies reveal that there is a direct relation between the random connections and the Brody parameter. For
the regular network (with the average degree greater than some value) we get the Poisson distribution, as we make
random rewiring of the connections the spacing distribution starts deviating from the Poisson statistics, first it shows
the intermediate of the Poisson and the GOE statistics and for sufficiently large number of random connections it show
almost GOE statistics (β ∼ 1). According to the interpretation of RMT, at this value of p, eigenvalues are as much
correlated as for the completely random networks. Furthermore we find that this transition to GOE statistics happens
at the onset of the small-world behavior.

Universal RMT results shown by the networks suggest that they can be modeled as a random matrix chosen from
the GOE of RMT. Eigenvalue fluctuations following GOE statistics argue that there exists some kind of spreading
over the randomness in the whole network, which may be essential for the robustness of the system. According to
many recent studies, randomness in the connections is one of the most important and desirable ingredients for the
proper functionality or the efficient performance of the system having underlying network structure. For instance,
information processing in the brain is considered to be highly influenced by random connections among different
modular structures [35]. Our analysis suggests that randomness in the complex networks can be studied under the
RMT framework. Furthermore, the Laplacian spectra have been investigated to understand the various dynamical
processes on networks [16–18] as well, hence the RMT analysis of the network Laplacians could also be important in
view of these demonstrations of the relations between spectral properties and dynamical processes.

Following the RMT analysis of the adjacency matrices of networks introduced in our previous work [21], we
investigate the random matrix properties of network Laplacians. In this paper we only concentrate on the spacing
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distribution of the eigenvalues of the Laplacian, which explains short-range correlations among the eigenvalues.
Further investigations would involve more sensitive analysis like ∆3 statistics to understand the long-range
correlations [36].
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