
18.434: Seminar in Theoretical Computer Science April 30, 2015

The Hungarian Algorithm for Weighted Bipartite Graphs

Alex Grinman agrinman@mit.edu

1 Motivation: The Assignment Problem

Suppose there are n trucks that each carry a different product and n possible stores, each willing to buy the n
different products at different prices represented by matrix W . The Assignment Problem: how can we assign each
truck xi to go to store yj , given that yi offers to buy the products from xi for $Wij dollars, such that the combined
profit is maximized over all possible assignments?

1. General problem: given X = {x1, . . . , xn}, Y = {y1, . . . , yn}, matrix W where Wij = weight(xi, yj) is the
weight of assigning xi to yi, find the matching assigning each xi to each yj such that the total weight is
maximized.

2. What is the naive algorithm: look through all n! possible assignments, pick highest scoring.

3. Assumption: ∀i, j ∈ {1, . . . , n} : Wij ≥ 0.

4. Can think of problem as a Complete Weighted Bipartite Graph G = (V,E):

• V = X ∪ Y
• E = {(xi, yj)}xi∈X,yj∈Y .

• weight(xi, yj) = Wij

5. An assignment is a perfect matching: problem is reduced to finding the perfect matching with maximum weight.

2 Basis of the Hungarian Algorithm (Kuhn-Munkres)

2.1 Definitions

1. A labeling for graph G = (V,E) is a function l : V → R, such that:

∀(u, v) ∈ E : l(u) + l(v) ≥ weight((u, v))

2. An Equality Subgraph is a subgraph Gl = (V,El) ⊆ G = (V,E), fixed on a labeling l, such that

El = {(u, v) ∈ E : l(u) + l(v) = weight((u, v))

2.2 The Kuhn-Munkres Theorem

Theorem 2.1. Given labeling l, if M is a perfect matching on Gl, then M is maximal-weight matching of G.

1. Let M ′ be any perfect matching in G. By definition of a labeling function and since M ′ is perfect,

weight(M ′) =
∑

(u,v)∈M ′

weight((u, v)) ≤
∑

(u,v)∈M ′

l(u) + l(v) =
∑
v∈V

l(v)

2. This means:
∑

v∈V l(v) is an upper bound for any perfect matching M ′ of G.

3. Now look at the weight of matching M :

weight(M) =
∑

(u,v)∈M

weight((u, v)) =
∑

(u,v)∈M

l(u) + l(v) =
∑
v∈V

l(v)

4. By equation (1) and (3), we have that for all perfect matchings M ′ of G:

weight(M) ≥ weight(M ′)

Key Point: By the Kuhn-Munkres Theorem the problem of finding a maximum weight assignment is reduced to
finding the right labeling function and any perfect matching on the corresponding equality subgraph.

1

3 The Hungarian Algorithm

Algorithm Idea: maintain both a matching M and equality graph Gl, starting with M = ∅ and a valid l. Continue
until M becomes a perfect matching on Gl. Each step: either augment M or improve the labeling l→ l′.

3.1 Augment the matching

Given labeling l, Gl = (V,El), some matching M on Gl, unmatched u ∈ V, u /∈M .

1. A path is augmenting for M on Gl if it alternates between El −M and M , and the first and last vertices of
the path are un-matched in M . Keep track of an ”almost” augmenting path starting at u

2. If we can find an unmatched vertex v, then we create augmenting path α from u to v.

3. Flip the matching by replacing the edges in M with the edges in the augmenting path that are in El −M .

4. Since we start and end unmatched, this increases the size of the matching =⇒ |M ′| > |M |

3.2 Improve the labeling

1. S ⊆ X and T ⊆ Y s.t S, T represent the current ”almost” augmenting alternating path between the matching
M and outside other edges in El −M .

2. Let Nl(S) be the neighbors to each node in S along El. Nl(S) = {v|∀u ∈ S : (u, v) ∈ El}

3. if Nl(S) = T we cannot increase the alternating path and augment, so we must improve the labeling!

4. Compute: δl = minu∈S,v/∈T {l(u) + l(v)− weight((u, v))}

5. Improve l→ l′:

l′(r) =


l(r)− δl if r ∈ S
l(r) + δl if r ∈ T
l(r) otherwise.

6. Claim: l′ is a valid labeling and El ⊂ El′ .

7. Proof follows by examining cases for all possibilities of membership of u ∈ S, u /∈ S, v ∈ T, v /∈ T .

3.3 The Hungarian Algorithm

1. Start with some matching M , and a valid labeling l ::= ∀x ∈ X, y ∈ Y : l(y) = 0, l(x) = maxy′∈Y (weight(x, y′))

2. Do the following until M is a perfect matching:

(a) Look for augmenting path

(b) If augmenting path does not exist, improve l→ l′ and go to step (a).

3.4 Complexity

1. Each Step (a) or (b) increase the size of the matching by 1 edge each round, hence O(|V | = 2n) = O(n) total
rounds.

2. Augmenting M : O(|V |) to find the right vertex if one exists, O(|V |) to flip the matching

3. Improving the label: O(|V |) to find δl and update the labeling. Improving the labeling can occur O(|V |) times
if no augmenting path is found. So total O(|V |2) in a single round.

4. O(|V |) rounds with work O(|V |2), total running time is O(|V |3) = O(n3).

References

[1] Wikipedia. “Hungarian Algorithm” http://en.wikipedia.org/wiki/Hungarian_algorithm.

[2] Dr. Derek Bruff. Department of Mathematics, Harvard University. “The Assignment Problem and the Hungarian
Method” http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf.

[3] Mordecai Golin. Dept. of Computer Science, Hong Kong UST. “Bipartite Matching & the Hungarian Method”
http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf.

2

