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Abstract—The history of artificial intelligence (AI) has witnessed
the significant impact of high-quality data on various deep
learning models, such as ImageNet for AlexNet and ResNet.
Recently, instead of designing more complex neural architectures
as model-centric approaches, the attention of AI community has
shifted to data-centric ones, which focuses on better processing
data to strengthen the ability of neural models. Graph learning,
which operates on ubiquitous topological data, also plays an
important role in the era of deep learning. In this survey, we
comprehensively review graph learning approaches from the data-
centric perspective, and aim to answer three crucial questions: (1)
when to modify graph data, (2) what part of the graph data needs
modification to unlock the potential of various graph models,
and (3) how to safeguard graph models from problematic data
influence. Accordingly, we propose a novel taxonomy based on
the stages in the graph learning pipeline, and highlight the
processing methods for different data structures in the graph
data, i.e., topology, feature and label. Furthermore, we analyze
some potential problems embedded in graph data and discuss
how to solve them in a data-centric manner. Finally, we provide
some promising future directions for data-centric graph learning.

Index Terms—Data-centric Learning, Graph Neural Network.

I. INTRODUCTION

ECENT advancements in the non-Euclidean domain

draw substantial attention from the artificial intelligence
(AI) community. Graphs, as typical non-Euclidean data, are
ubiquitous in the real world and have been widely used in many
fields, such as recommendation, security, bioinformatics, etc.
Over the past decade, the progress of graph-related research
has been propelled by innovations in graph models, ranging
from graph kernels [1]], [2]] to graph embeddings [3], [4], and
culminating in the latest advancements represented by graph
neural networks (GNNs) [5]], [6]]. Conversely, little research
has been directed toward the intrinsic aspects of graph data,
including quality, diversity, security, and so on.

Generally, the revolutions in AI have consistently been
initiated by the availability of vast amounts of high-quality data,
subsequently followed by powerful models. A notable example
is the success of ImageNet [7], which significantly contribute
to the development of deep convolutional neural networks,
e.g., AlexNet [8]] and ResNet [9]. As the significance of data
becomes increasingly acknowledged, recently, the attention of
the Al community has shifted from model-centric approaches
to data-centric ones [10], [11].

The emerging data-centric Al emphasizes producing suitable
data to improve the performance of a given model. “How to
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process the graph data to unlock the full potential of graph
models?” A well-informed answer can help us understand the
relationship between graph data and graph models. However,
unlike Euclidean data such as images and tabular data, the ir-
regular nature of graphs poses several questions for data-centric
graph learning: Firstly, when should we modify graph data to
benefit graph models? Data modification may occur in different
stages of graph learning. For example, we can heuristically
perturb the edges before training, while we can also estimate
new graph structures from the node representations during
training. Secondly, which part of the graph data should we
modify? Graph data involves various structures, including edges,
nodes, features, and labels, each of which plays an important
role in graph representation learning. Thirdly, how to prevent
the graph models from being affected by the problematic graph
data? Graph data may inevitably introduce noise and bias, due
to the manually defined relations and features, which makes
the models untrustworthy.

This survey systematically reviews and categorizes existing
graph learning methods from the data-centric perspective. In
particular, to answer the first question, we divide the graph
learning process into four stages: preparation, pre-processing,
training, and inference, as illustrated in Figure [I| We discuss
the significance of each stage for graph data. Next, we further
categorize existing methods from a structural perspective
to address the second question. Specifically, we consider
how to handle the topology, features, and labels of graph
data, respectively. Finally, we analyze the potential problems
in existing graph data, including vulnerability, unfairness,
selection bias, and heterophily. We further discuss how to
solve these issues in a data-centric way.

Related Surveys. Currently, there is some literature on
data-centric Al [[10], [11]. However, they mainly focus on
the Euclidean domain, and there is little discussion about
non-Euclidean data. Additionally, there are many surveys on
the topic of model-centric graph learning. For example, Cui
et al. [[12] summarizes network embedding methods, Wu et
al. [[13] divides GNNs into four representative frameworks,
and Bronstein et al. [14] studies the equivariant and invariant
models on the geometric data. These surveys introduce various
powerful graph models but are orthogonal to our data-centric
survey. On the other hand, there are also works covering some
specific data-centric approaches, e.g., graph augmentation [[15],
graph sampling [16]], and graph structure learning [[17], which
can be seen as a part of our survey. The recent work [18] also
provides a review for data-centric graph learning. However, it
does not distinguish the different stages of data-centric graph
learning.

0000-0000/00$00.00 © 2021 IEEE
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Fig. 1. Pipeline of data-centric graph learning. The first step is to construct different graphs from the data as needed. The graph structure, node features, or
labels are then pre-processed to facilitate the learning of graph models. During the training phase, graph data is collaboratively processed with the task-solving
model to improve its performance. Ultimately, prompts are designed to imbue the graph models with enhanced predictive capabilities during the inference stage.

Contributions. The contribution of this paper is summarized
as follows:

o Novel Taxonomy. We categorize existing data-centric
graph learning methods by the stages in the graph learning
pipeline, including pre-processing, training, and inference.
For each stage, we introduce its goal and importance for
data-centric graph learning.

Multiple Perspectives. We highlight how to process
different data structures in the graph data, including
topology, feature, and label, to unlock the potential of
given graph models.

Comprehensive Discussion. We analyze the potential
influence of problematic graph data on the graph models
and discuss how to alleviate these problems in a data-
centric manner. Moreover, we suggest three possible future
directions for data-centric graph learning, which may
benefit the development of this field.

Organization. The rest of this survey is organized as
follows: Section [[Ij outlines the background of data-centric
graph learning, and describes how graph data is manually pro-
cessed. Sections introduce the data-centric graph learning
methods in the pre-processing, training, and inference stages,
respectively. Section [VI| introduces the potential problems of
graph data and discusses how to deal with these issues. Finally,
Section provides a summarization of this paper and poses
several promising future directions.

II. DEFINITION AND BACKGROUND

The first occurrence of the term “graph” dates back to 1878,
when J. J. Sylvester [19]] used it to establish a connection
between mathematics and chemical structures. Before that,
graph theory can be traced back to 1735, when Euler [20]]
solved the Seven Bridge of Konigsberg problem and proved
that it is impossible to walk through all seven bridges exactly
once. There are also some other significant graph theory
problems [21]], such as Diagram-Tracing Puzzles, Four-Color
Problem, etc.

A graph consists of different nodes and their connections,
which can be defined as:

Definition 1: A graph is represented as G = (V, E), where
V is the vertex set and F is the edge set. Let |V|=N, the
adjacency matrix of graph G is represented as A € {0, 1}V*V,
where Aij = 1 if there is an edge between nodes ¢ and j, and
A;; = 0 otherwise. A graph including node attributes is defined
as an attributed graph, where X € RV*4 is the node feature
matrix and the ¢-th row X, indicates the attributes of node
v;. The Laplacian matrix of graph G is denoted as L, and
L =1Iy — D Y2AD™'/2 is the normalized graph Laplacian
matrix with D the diagonal degree matrix.

Building upon the graph definition, we can abstract the
real-world objectives and their relations into a graphical
representation. For example, in the Konigsberg problem, Euler
simplifies the islands into nodes and bridges into edges. In
contrast to naturally occurring images and languages, creating
graphs demands significant artificial priors. Consequently, graph
construction stands as the first step of data-centric graph
learning.

Initially, the definition of edges contains meaningful se-
mantics. On the one hand, different definitions of edges
convey disparate information. Consider the example of a
molecular graph where atoms serve as nodes. Edges can
be defined as Chemical bonds between atoms, reflecting
their chemical properties. Alternatively, edges also can be
defined as connections between atoms within a specific radius,
i.e., KK-Nearest Neighbor (/XNN) graphs, representing the
positional information in Euclidean space. On the other hand,
various auxiliary information introduces diverse edge types as
shown in Figure [T} For instance, directed graphs consider the
directions of edges, heterogeneous graphs [22] cover different
relations between nodes, hypergraphs [23] capture high-order
correlations, and temporal graphs [24]] encode the time stamps
of edges.

In addition to the definition of edges, there are also various
definitions of node features. For example, within text-attributed
graphs, textual information serves as node features. In the
Planetoid datasets [25]], the text is represented as the bag-of-
words, while in the OGB datasets [26], the text representations
are encoded by the pre-trained language models. These two
different definitions of node features result in a significant
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TABLE I
TAXONOMY AND REPRESENTATIVE WORKS OF DATA-CENTRIC GRAPH LEARNING.

Perspective Method Stage Category & Reference
Graph Reduction (8 m‘) Pre-processing g%ir;;?l‘;iggg {i;}:{gg}, Coarsening [41]-[48],
Graph Generation (8 [II-A2) Pre-processing gg:“{:; tﬁg’eggs\fgg?; fgzt]r’i)[(6[76]2], [63], Embedding [64]. [65],
(8 m Pre-processing  Dropping [68]|-[[73]], Subgraph [74]-[76|, Diffusion [77]-[79]
Graph Augmentation (8 [IV-T]) Training Structure [80]-[96], Spectrum [97]-[99]], Automated [[100]—[104]
Topology (§ [-AB)) Pre-processing  Random [105]-{107], Importance [108]-[112]
Graph Sampling (§ [V-A2) Training Node-wise [113]-[T17], Layer-wise [118], [T19]
(8 m Pre-processing  Node-level [[120]—[127]], Graph-level [[128]—[132]
Graph Curriculum Learning ¢ [N"AZ)) Training Edge [1331-[136], Node [137)-[139], Graph [140]-[142]
Graph Structure Learning (8 [IV-_A3]) Training Discrete [[143]]-[150], weighted [[6], [80], [82f], [151]-[164]
Feature Augmentation (8 [mb Pre-processing ~ Pre-Attribute [68]], [165]-[171]], Attribute-Free [3], [4], [172], [173]
Position Encoding (8 [m[) Pre-processing  Absolute [[174]-[178], Relative [179]-[182]
Feature Feature Selection (8 [W]} Training Task-independent [[183]—[|188] , Task-specific [189], [[190]
Feature Completion (8 [W]) Training Homogeneous [191]-[194], Heterogeneous [[195]—[[199]
Graph Prompt (8 Inference Pre-prompt [200]-[202], Post-prompt [203], [204]
Label Mixup (8 m Pre-processing ~ Mixup [205]-209], Knowledge Distillation [210]-[221]
Label Pseudo Labeling (§ [[V-C2) Training Multi-stage [222]-{225]
(

Active Learning

§ [IV-C1)) Training

Node-independent [226]-[230], Node-correlated [231[-[243]

performance gap. Therefore, how to process the node features
to improve the performance of graph models is also crucial
for data-centric graph learning.

III. PRE-PROCESSING STAGE

In this section, we will discuss data-centric methods at the
pre-processing stage, which aim to heuristically modify graph
data without leveraging the information from task-solving graph
models. Specifically, we consider different data structures in
each subsection, including topology, features, and labels. We
also introduce how to add, delete, or change each type of data
in detail.

A. Topology

Topology is the most important part of graph data, represent-
ing its structural information. In this section, we first introduce
how to enrich the topology information of graphs, including
augmentation and generation. Next, we refer to the topology
reduction, which removes some redundant edges and nodes
in the topology. Finally, we present curriculum learning and
sampling, aiming to speed up the training of graph models by
changing the original graph data distribution.

1) Graph Augmentation: Due to the scarcity and sparsity
of graph data, it is difficult for graph models to fit the
underlying distribution of graph data and easily fall into local
optimum. Therefore, it is important to enrich the topology
information in a low-overhead manner. Under this circumstance,
graph augmentation is proposed to alleviate the over-fitting
of graph models by perturbing the graph topology without

changing its crucial information. Here we introduce some off-
the-training heuristic methods, including masking, substitution,
and diffusion.

Edge and Node Masking. Stochastically masking the edges
or nodes in the graphs is a basic but extensively employed
technique for graph augmentation. DropEdge [73] first proposes
randomly masking edges when training GNNs to alleviate the
over-smoothing problem. Subsequently, You et al. [68] follow a
similar scheme that randomly deletes nodes and their associated
edges from the graph. In addition to dealing with the over-
fitting and over-smoothing issues, these masking methods have
been extensively adopted in graph self-supervised learning
(SSL). On the one hand, graph contrastive learning [68]—[70]
leverages these incomplete topologies as different views of a
graph and learns to capture their consistency. On the other hand,
some generative graph SSL methods [71], [72] treat the masked
edges and nodes as self-supervised signals. By reconstructing
the masked information, these methods can learn meaningful
graph representations.

Subgraph Substitution. The masking-based methods can
only affect the local topology of a graph, overlooking its
global structures. In response, subgraph substitution methods
have been introduced to replace the specific substructures
within graphs as a means of augmentation. MoCL [74]
employs biomedical knowledge to augment molecular graphs by
substituting important substructures, such as functional groups,
which injects domain-specific insights into graph augmentation.
SubMix [75] utilizes importance sampling to extract and
exchange the connected and clustered subgraphs from a pair of
graphs, which effectively fuse their topologies. M-Evolve [76]]
uses motifs to augment graph data by selecting target motifs
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and adjusting edges within them.

Graph Diffusion. Graph diffusion [77]] provides a way to
enrich the topology information by aggregating the neighbors
at different distances, which can be formulated as:

A= i 0, T",
k=0

where A is the augmented adjacency matrix, T = AD ™! is the
random walk transition matrix, k is the distance, and 8, denotes
the weight coefficients. There are two special examples of
graph diffusion: Personalized PageRank (PPR) and heat kernel.
Specifically, PPR uses the random walk transition matrix with
coefficients 6 = a(1 — a)* and heat kernel uses ), = e‘s%
to exponentially reduce the influence of remote nodes, where
« and s are hyperparameters.

The aforementioned graph augmentation methods are in-
tuitive, concise, and provide adequate performance in most
cases. Additionally, they can be aggregated to form a complex
enhancement strategy, which will be further discussed in
Section [V-ATl

2) Graph Generation: Although graph augmentation can
initially enrich the topology information, it inevitably introduces
noise and hurts the model performance. As an advanced
approach, graph generation [244], [245] aims to generate graph
samples with high quality and diversity. In this section, we
introduce some representative graph generation methods based
on the varied generated data, including sequence, embedding,
adjacency matrix, and eigenvector.

Node Sequence. Simplifying a graph into a sequence is the
first idea of graph generation, resulting in the autoregressive
graph generation methods. Generally, autoregressive methods
aim to generate graphs node-by-node based on the pre-sampled
ordering. However, due to the non-uniqueness and high-
dimensional nature of graphs, utilizing node ordering as input
needs to consider the permutation-invariance property. To
address this challenge, Li et al. [57] randomly sample node
orderings from the full permutation of the nodes to guarantee
the invariance. This strategy is effective but inefficient. Subse-
quently, GraphRNN [58]], MolecularRNN [59]], GraphGen [61]],
and GraphDF [60] employ Breadth-First Search (BES) or depth-
first search (DFS) to guarantee the uniqueness of node orderings
and maintain high scalability.

Adjacency Matrix. In addition to sequence generation,
another natural idea is to directly generate the adjacency matrix
of the graph. Methods belonging to this category, e.g., DiGress
[62] and EDGE [63]], mainly use the emerging diffusion model
as the generation framework. Typically, they first gradually
add Gaussian noise into the nodes or edges in the adjacency
matrix. After that, a standard de-noising process is emplyed to
recover the adjacency matrix from the noisy graph structures.
A major advantage of this process is that the generation is
permutation-equivariant and effective in generating high-quality
small graphs.

Node Embedding. Generating adjacency matrices of graphs
is usually time-consuming and cannot scale to large graphs.
One possible solution is to generate the graph in an indirect
way. For example, the adjacency matrix can be represented by

ey

the node embeddings: A = H-HT. In this way, we only need
to generate a small tensor H € RY X9, rather than the large
adjacency matrix A € RV*YN where d < N. For example,
VGAE [64] and GNF [65] first utilize GNNs to learn the node
representations and then map them into a multivariate Gaussian
distribution, where the mean and variance are defined by the
node representations. In the training process, these methods
will reconstruct the graph structure via a link prediction loss
function. In the generation process, these methods directly
sample node representations from the learned multivariate
Gaussian distribution to generate the graph topology. Although
generating node embeddings can scale to large graphs, it still
suffers from the high computation cost as it needs to post-
process the graphs for alignment.

Eigenvalue and Eigenvector. Another indirect graph gener-
ation method is to generate the eigenvalues and eigenvectors
of graphs. SPECTRE [66] and GSDM [67] are the two
representative methods, which leverage generative adversarial
network and diffusion model to generate the eigenvalues and
eigenvectors of graphs, respectively. Since the spectrum of a
graph encodes its global structure, these generation methods
can capture the shape information of graphs and therefore
result in better generative performance.

3) Graph Reduction: The inherent irregular and non-
Euclidean structure of graphs prevents the graph models from
scaling to large scales [246], [247]]. To reduce the computational
complexity and improve scalability, one possible way is to
reduce the redundant nodes and edges in the graphs without
changing the crucial structural information. Therefore, the graph
models trained on the original and reduced graphs will have
similar performance. Graph reduction can be divided into three
categories: edge reduction, node reduction, and co-reduction.

Edge Reduction. Removing the redundant edges in a graph
is known as the graph sparsification method, which aims to
get a sparsified graph G5 = (V, E) by removing some edges
of the original graph G, where E; C E. In general, G4 should
preserve some crucial properties of G, including cut weights,
spectral similarity, and shortest path, resulting in three types
of graph sparsification methods: cut sparsification [27]-[29],
spectral sparsification [30], and spanner [31].

Cut sparsification aims to reduce edges while preserving
the value of the graph cut C' = (V’',V — V'), which divides
a graph into two subgraphs with node sets V/ and V — V",
respectively. The value of a graph cut w(C') is defined as the
total weight of the edges with the endpoint on each side of a
cut. Generally, G is a e-cut sparsifier of G if it satisfies the
following equation for arbitrary graph cut:

(1 —ewa(C) < ws(C) < (1+€wa(C), (2)

where € € (0,1). This property has been widely used in many
graph theories, such as graph connectivity, the maximum flow
problem, and the minimum bisection problem.

Spectral sparsification ensures the original and sparse graphs
have similar quadratic forms, i.e., smoothness. G is a e-spectral
sparsifier of G if it satisfies the following equation for any
vector q € RV*1:

(1-€)a"Lea < q"Lsq < (1 +€)q" Leq, A3)
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where q"Lq is the quadratic form. Spectral sparsification
preserves the most important spectral property that represents
the global structural information.

Spanner is designed for tasks that focus on the distance
of node pairs. G is a t-spanner of G if their shortest paths
ds and d¢ satisfy the following equation for all node pairs
(Ui7 Uj), Vi, Vg evV:

da(vi,v5) < dg(vi,vj) < t-de(vs,v;), 4

where ¢ > 1. The ¢-spanner can capture the underlying graph
structure of a network and perform well in some special graphs,
such as rings, meshes, trees, butterflies, and cube-connected
cycles. [32]

There are many methods to implement the aforementioned
sparsifiers, including sampling [29], [30], [40] and dynamic
streaming [33]-[35]]. Sampling methods aim to assign each edge
a possibility. A larger possibility means a higher probability of
being removed. Dynamic streaming methods continuously add
or remove some edges in a stream until reach the requirement
of the sparsification. Recent studies have also shown great
potential to use graph sparsification to alleviate over-fitting and
over-smoothing of GNNs [36], [[37]], which may be a future
direction of research in graph sparsification.

Node Reduction. Merging a set of closely connected nodes
into a super node can also reduce the size of graphs, which
is also known as graph coarsening. The coarsened graph
is defined as G5 = (Vs, E;), where |Vs| = n < N. The
basic approach of graph coarsening is pairwise aggregation,
which merges a pair of nodes into a supernode based on
some similarity measures [42]]-[44]]. In recent years, spectrum-
preserving coarsening methods have received more attention
because of their superiority in capturing important structural
information.

Loukas et al. [45] propose restricted spectral similarity (RSS)
to evaluate whether the coarsened graph can learn the spectrum
of the original graph, which is defined as:

(1= )M < ufLug < (14 G, ©)

where A and uy indictae the k-th eigenvalue and eigenvector
of L, respectively. L € RV X is the approximation of L, which
bridges the gap between the original and coarsened graphs.
Intuitively, L, preserves the information of L as it approximates
the total variation of the eigenvectors, i.e., smoothness.

Many others follow and continue to work on the graph
Laplacian, proposing various methods to measure the distance
between the coarse graph and the original graph. For example,
Jin et al. [46] proposes spectral distances to capture structural
differences between graphs.

Co-reduction. Simultaneously removing the edges and nodes
of a graph is defined as co-reduction. The representative work
is graph condensation, which synthesizes a condensed graph
G with fewer nodes and edges. The graph models trained
on the original and the condensed graphs can have similar
performance.

Jin et al. [49] introduce the concept of graph condensation,
and provide the first framework of graph condensation. This
framework leverages the gradient matching [[50] method to align

the distributions of original and condensed graphs. Specifically,
the optimization process can be formulated as follows:

Ys=VoLl(fo(As,Xs),Ys), (6)
T =Vol (fG(A7X>7Y) ) @)
. YTs- Y

Dis(Ts,Y) = 5"~ 8
00 X0 = o ®

where fg denotes the graph models parameterized with 6,
L is the loss function, and Y, Y are the gradients on the
condensed and origina graphs, respectively. By minimizing
the distance Dis between gradients, the condensed graph can
preserve the structure and feature information of the original
graph.

To overcome the computational inefficiency caused by
bilevel optimization, DosCond [51]] proposes an aggressive
approximation of the gradient matching loss, which only
matches the gradients of the initial model, avoiding the need for
the inner loop. GCDM [53]] optimizes the synthetic graph by
minimizing the distance between the distribution of receptive
fields in the original and synthetic graphs. SFGC [52] solely
optimizes the node features of the synthetic graph, treating
the Laplacian matrix constructed by structure information as
an identity matrix. To improve the suboptimal performance
caused by the inexact approximation methods aforementioned,
KIDD [54] adopts kernel ridge regression for an exact solution
and proposes a series of variants to further boost efficiency.
SGDD [55] constructs the structure of the synthetic graph
via a structure learning model integrating both feature and
auxiliary information. GCEM [56] also tackles the cross-
architecture problem from the spectral perspective. Unlike
SGDD, GCEM directly optimizes the eigenbasis by aligning
the subspaces represented as the outer product of the eigenbasis
of the original and synthetic graph respectively, and then
constructs the synthetic graph using the learned eigenbasis
and the spectrum of the original graph.

4) Graph Curriculum Learning: Curriculum learning [248]
aims to imitate the human learning process, advocating that the
model starts learning from easy samples and gradually advances
to complex samples. Graph Curriculum Learning (CuL) [249]]
can benefit the convergence of graph models and improve
the generalization ability. Most graph CuL methods have two
important functions: difficulty measurer and training scheduler.
The former evaluates the difficulty of the training data to give
the learning prior, and the latter decides how to learn from
easy to hard samples. According to the data structures used
in these two functions, we divide existing methods into two
categories: node-level and graph-level.

Node-level CuL. The basic idea is to determine the difficulty
of nodes utilizing some statistical information. For example,
CLNode [|120] uses node features, node structure, and label
noise to get the difficulty of training samples. MTGNN [[121]]
evaluates the difficulty by the length of the predicted steps,
while Tuneup [122]] uses node degree to measure the difficulty.
Data relationship is also a major perspective in designing the
difficult measurer. For example, DiGCL [[123] and HSAN [|124]]
leverage contrastive loss to judge difficulty, DualGCN [125]]
employs the cross-review strategy, GNN-CL [126] focuses on
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homophily and smoothness of node and their neighbors, GCN-
WSRS [[127] emphasizes the correlation between samples.

Graph-level CuL. Different from the above Node-level Cul,
Graph-level Cul incorporates graph information into the diffi-
culty measurer and training scheduler. CurGraph [128]] calcu-
lates the difficulty based on the within-class and between-class
distributions of the embeddings of the samples., CuCo [129]]
determines difficulty based on the similarity of embeddings
between negative and positive samples, and SMMCL [[130]
evaluates difficulty with multimodal consistency and multi-
modal uncertainty. Some methods, such as HACL [[131] and
CHEST [132], utilize both properties and data relationships to
design the difficulty measurer. HACL employs the complexity
of the vocabulary in the sample and the consistency between
the sentiment expressed by the vocabulary in the sample and the
expected sentiment to evaluate the difficulty. CHEST defines the
difficulty measurer on multiple pre-training tasks, namely three
subgraph context information tasks related to nodes, edges,
meta-paths, and a graph contrastive learning task.

5) Graph Sampling: Graph sampling methods focus on
selecting the nodes that are important for the training of graph
models, which can restrict the memory overhead within a fixed
budget and speed up the convergence of graph models. In this
part, we discuss the heuristic sampling methods, which can
be further divided into two categories: random sampling and
importance sampling.

Random Sampling. Since nodes in graphs have different
numbers of neighbors, directly aggregating the information
of neighbors will lead to uncontrollable expenses. The basic
way to control the overhead of graph models is to randomly
sample the same number of neighbors for each node, making
the time and memory overhead controllable during training.
Specifically, GraphSAGE [1035]] is the first proposed graph
sampling algorithm for GNNs. For each node, GraphSAGE
randomly samples a fixed number of neighbor nodes with
equal probability in each convolutional layer of the model for
node feature aggregation. Different from GraphSAGE, Cluster-
GCN [106] performs random sampling in units of subgraphs.
It first divides the original graph into multiple clusters by
using some graph clustering algorithms and randomly selects a
fixed number of clusters, combined into a subgraph for training.
Parallelize Graph Sampling [107] is proposed to accurately and
efficiently train large-scale graph data, which also randomly
samples nodes when generating subgraphs for training.

In summary, random sampling treats the sampled nodes as
obeying a uniform distribution. This method overcomes the
limitation of neighborhood explosion when aggregating node
features and avoids the out-of-memory issue.

Importance Sampling. Different from random sampling, in
order to sample more informative nodes, importance sampling
assigns each node a different sampling probability. Importance
samplings can reduce the variance caused by sampling, leading
to a more stable training process and enhanced model per-
formance, which can be classified into node-wise sampling,
layer-wise sampling, and subgraph-based sampling based on
previous work [250], [251].

Specifically, FastGCN [108|] and LADIES [109] are typical
layer-wise sampling algorithms. FastGCN performs node

sampling independently at each layer based on a pre-set
probability, with the sampling probability calculated by the
degree of the node. It believes that nodes with higher degrees
contain more information. Differently, LADIES calculates
the layer-dependent laplacian matrix for nodes to obtain
the sampling probability of each node. GraphSAINT [110]
is a subgraph-based sampling algorithm, which additionally
introduces the calculation method of the sampling probability
on the edge. These probabilities are also related to the adjacency
matrix of the graph and are independent of the training of the
model. Additionally, some methods are considered as node-
wise sampling by us and they are based on random walk such
as PinSage [111]] and HetGNN [[112]], which preferentially
sample nodes with a high number of visits after the random
walk. We also consider the number of visits as the importance
of the node.

In Chapter [IV-A2| we will discuss adaptive and learnable
sampling methods, which perform better sampling of the
original graph as the model is trained.

B. Feature

In this section, we first delve into feature augmentation, di-
viding our discussion into two distinct categories: pre-Attribute
augmentation and attribute-free augmentation. Following this,
we explore position encoding methods, which are crucial
for capturing structural information in graph networks. This
exploration is further categorized into two types: absolute
position encoding and relative position encoding.

1) Feature Augmentation: By creating or modifying node
features, feature augmentation introduces additional, relevant
information into the dataset, which helps the model generalize
better and avoid overfitting. Depending on the initial availability
of node features in a dataset, graph feature augmentation
methods can be divided into two main categories: vanilla
methods and feature-free methods.

Pre-Attribute Augmentation. In graphs equipped with pre-
existing features, augmentation methods aim to enhance the
utility and diversity of these features through various intuitive
adjustments. These methods can be categorized as follows:
feature corruption [[165]-[167]], which introduces controlled
noise to the features; feature shuffling, which rearranges
the features; feature masking [68], [[168], which selectively
hides certain features; feature addition, which introduces new
features; feature rewriting [[169], [[170], which alters existing
features; feature propagation, which spreads features across the
graph; and feature mixing [[171]], which combines features from
different nodes. Further details and examples of these methods
can be found in a comprehensive survey on the topic [15].

Attribute-Free Augmentation. For nodes without initial
features, several methods have been proposed to generate
meaningful features. A prominent approach is the utilization
of random walks to capture structural information. Perozzi
introduces DeepWalk et al. [3]], which initiates multiple random
walks from each node and uses the sequence of nodes in these
walks to generate node embeddings utilizing word2vec [172].
Building on this, node2vec [4]] extends DeepWalk by incorpo-
rating a flexible probability mechanism for guiding the random
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walks, thereby offering a more nuanced exploration of the
graph structure. In contrast, an alternative approach known
as SDNE [173]] employs an encoder-decoder architecture for
node feature learning. In this method, each column of the
adjacency matrix is treated as the initial node embeddings and
serves as input to the encoder. The model computes its loss by
assessing the disparity between these initial embeddings and
the embeddings generated by the decoder, effectively capturing
the underlying structural essence of the graph.

In general, feature augmentation exhibits diversity and
flexibility, allowing for customized enhancements tailored to
the specific requirements of a given problem.

2) Position Encoding: It is well-recognized that the expres-
sive power of message-passing neural networks (MPNNs) is
bounded by the 1-Weisfeiler-Lehman (WL) test and cannot
distinguish the isomorphism graphs [252]]. To break this
limitation, a popular way is to augment the node features
with some positional information, known as the positional
encodings. In this section, we introduce two types of position
encodings: absolute methods and relative methods.

Absolute Position Encoding (APE). The objective of APE
is to assign each node a position representation to indicate its
unique position in the whole graph. A popular approach for
APE involves utilizing the eigenvectors of the graph Laplacian,
which is first introduced by Dwivedi et al. [[174] in the graph
Transformer architecture and then adopted by [181].

However, the eigenvectors suffer from the sign- and basis-
ambiguity, implying that randomly reflecting the signs or
rotating the coordinates still satisfies the definition of eigen-
value decomposition [[175]]. To solve these issues, SAN [176]
proposes to use the Transformer to learn a rotations-equivariant
APE. Due to the permutation-invariant property of self-attention,
SAN is invariant to the rotations of eigenvectors’ coordinates.
Additionally, SignNet [175]] proposes to simultaneously take the
positive and negative eigenvectors as input, so as to address the
sign-flipping problem. And then use invariant and equivariant
GNNSs to learn positional representations from the eigenvectors.

There are also other APE methods, such as random fea-
tures [177] and random walk features [178]]. However, they
suffer from either poor generalization or limited receptive field,
which limits their widespread use in graph models.

Relative Position Encoding (RPE).RPE captures the re-
lational information between two nodes by employing the
distances between them as position encodings. The existing
methods are categorized into 1D-RPE and 2D-RPE based on
the involved dimensionality.

Given a target node, 1D-RPE methods aim to leverage the
distance between the anchor nodes and the target node as the
positional representations. The pioneering 1D-RPE method,
PGNN [179], adopts a strategy of random sampling anchor
nodes and utilizing the distances to these anchor nodes as
position encodings. Li et al. [[180] further proposes distance
encoding, which takes the geodesic distances between nodes
as the relative positions and avoids the choice of anchor nodes.

2D-RPE methods frequently function as the inductive bias
for graph structures, a key component widely employed in the
graph Transformer architecture. For example, Graphormer [[181]]
encodes the information of the shortest path between two

nodes as the 2D-RPE and adds it to the self-attention matrix to
preserve the structural information, which can be formulated
as:
4. — (hiWo) (h;Wg)"
ij =

\/77
where h; and h; are the representations of nodes v; and v;,
respectively, r is the dimension of representations, and ¢ (v;, v;)
indicates the shorest path encoding function.

Generally, 1D-RPEs are more user-friendly, whereas 2D-
RPEs provide a more comprehensive set of positional informa-
tion. The 1D-RPEs can be transformed into 2D-RPEs. For
example, PEG [182]] uses the Euclidean distance between
eigenvectors to reweight the adjacency matrix, which combines
the advantages of both APE and RPE.

+ bgb(v,;,vj)7 (9)

C. Label

In this section, we explore various techniques designed to
augment the existing graph label data and mitigate issues
related to overfitting and noisy labels. These include label
mixup methods, which blend labels from different instances to
create new training examples, and knowledge distillation, where
a teacher model is employed to generate labels for unlabeled
data. Additionally, we discuss alternative approaches that focus
on refining or selectively using labels to improve the training
process. These methodologies collectively contribute to the
robustness and accuracy of GNNs in handling graph-structured
data.

1) Label Mixup : Label mixup combines two different
instances including their associated labels as a new instance,
and employs the mixed instances to train GNN models. This
approach effectively increases the diversity of the training data,
helping the model to better handle a wider range of inputs,
thereby making the learned models more generalized and less
overfitted. Label mixup methods in graph learning can be
broadly divided into graph-level mixup and node-level mixup
based on the mixing object.

Graph-level Mixup. The graph-level mixup involves mixing
labels of two distinct graphs. For instance, G-Mixup [205]]
starts by estimating a graphon [206] using graphs of the
same class and then progresses to interpolating graphons
of different classes in Euclidean space. This interpolation
creates mixed graphons, from which synthetic graphs are
generated through sampling. Concurrently, it blends the la-
bels of these classes using a predefined parameter. Besides,
GraphMAD [207] integrates topology by performing nonlinear
graph mixup within a continuous domain characterized by
graphons. Moreover, it employs convex clustering to learn
data-driven mixup functions, allowing generated samples to
exploit relationships among all graphs rather than just pairs
of data. Similar to G-Mixup, it combines labels using a pre-
defined weight. Meanwhile, Graph Transplant [208] combines
irregular graphs by transplanting subgraphs between instances.
This approach leverages node saliency to select meaningful
subgraphs effectively and uses adaptive label assignment,
demonstrating improved performance across diverse graph
domains.
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Node-level Mixup. Conversely, the node-level mixup focuses
on mixing labels of different nodes, particularly for the node
classification task. A notable approach proposed by Wang
et al. [209] utilizes a two-stage Mixup framework. In the
first stage, a standard feed-forward process within GNNs is
employed to obtain node representations. Following this, in the
second stage, Mixup is applied using representations of each
node’s neighbors derived from the first stage, and the label is
mixed by a hyperparameter weight same as the aforementioned
works.

2) Knowledge Distillation: Knowledge distillation [253]],
[254] enables a light-weight model (i.e., student) to acquire
knowledge by regarding the soft predictions made by a high-
capacity model (i.e., teacher) as pseudo labels for unlabeled
nodes/graphs. In this survey, we focus on offline distillation
techniques [210]-[221]], which can be seen as data-centric
enrichment of labels. Specifically, a static teacher model
is utilized to produce labels for unlabeled data, and these
freshly generated labels are then harnessed to train the student
model. For instance, Yang et al. [212] introduce a knowledge
distillation approach tailored for GCNs, utilizing a Local
Structure Preserving (LSP) module to ensure topology-aware
transfer of knowledge from a teacher model to a compact
student model. BGNN [210] sequentially transfers knowledge
from multiple GNNs into a student GNN, augmented by an
adaptive temperature module and a weight boosting module
to enhance learning effectiveness. Furthermore, CPF [214]]
extracts GNN knowledge from a pre-trained GNN model and
infuses it into a simpler student model, which combines label
propagation and feature transformation, to enhance prediction
accuracy while preserving interpretability.

3) Others: Beyond the techniques of label mixup and
knowledge distillation, which predominantly generate extra
labels for unlabeled sets, there exists a body of work that
specifically focuses on modifying [255]—[257] or omitting
noisy labels [258]] in the labeled set. For instance, Zhong
et al. [257] employs a GCN to refine noisy predictions by
establishing relationships between high-confidence snippets and
low-confidence ones, thereby propagating anomaly information
to correct erroneous labels. Similarly, GNN Cleaner [255]]
corrects noisy labels by generating pseudo labels through label
propagation, and then adaptively and dynamically adjusting
these labels during training. In a different vein, Better With
Less [258] introduces a novel graph selector that identifies the
most instructive data points based on predictive uncertainty
and inherent properties of graphs.

IV. TRAINING STAGE

In this section, we introduce the graph data modification
method in the training phase, where the data modification
module and the task-solving model cooperate with each other to
improve performance. Following Section [[TI] we also consider
how to operate (i.e., add, delete, or change) different data
structures (i.e., topology, feature and label) in each subsection.
The related methods can be seen in Table

A. Topology

In this section, we delve into diverse techniques crafted
for modifying the graph structure throughout model training.
Initially, we present graph adaptive augmentation, striving to
seamlessly integrate augmentation procedures during the train-
ing phase. Subsequently, we discuss graph adaptive sampling
methods capable of adjusting the sampling strategy according
to the current model’s performance. Besides, we also present
graph structure learning which endeavors to uncover valuable
graph structures from data. Finally, we explore self-paced
learning which allows the model to measure the difficulty of
instances and determine the training progress according to the
current model state.

1) Graph Adaptive Augmentation: The conventional rule-
based augmentation methods may not be sufficient when
demanding increased robustness and improved performance,
primarily due to their independence from the task-solving
model’s training process. Conversely, graph adaptive augmen-
tation techniques integrate augmentation procedures seamlessly
during the training phase, which we classify into four distinct
categories. Edge-based methods revamp the adjacency matrix
guided by loss functions, subgraph-based methods concentrate
on extracting a more informative subgraph, spectrum-based
methods propose to generate an augmentation from the graph
spectrum view, and automated augmentation frameworks
introduce to learn optimal augmentation strategy for varied
scenarios.

Edge-based. To ensure that the edge augmentation process
is guided by a differentiable loss function, some studies (e.g.,
GLCN [80], TO-GCN [81]], Pro-GNN [82]]) treat the graph
as continuous rather than having exact edges. These works
formulate loss functions by incorporating specific constraints,
such as smoothness and sparsity, to generate gradients for
refining the graph structure. As an example, Pro-GNN [82]
proposes a loss function:

£ = ||A = AlB +nl[Alls + BIIA]L + p(X"EX) + 7L,
(10)
where A is the augmented graph adjacency matrix, and
L is the normalized laplacian matrix. Specifically, the term
/A — AJ|%2(]| - || means Frobenius norm) aims to make A
close to A. The term 7||Al|; (|| - ||, means L; norm) and
BlIA|]+ (|| - ||+ means nuclear norm) ensure sparsity and low-
rank properties, respectively. The term p(XTI:X) controls
feature smoothness, and vLgnn is the empirical loss.

Other studies do not directly implement alterations to the
graph through gradients; instead, they iteratively generate or
remove discrete edges during training. A representative work
is AdaEdge [83], where edges are added or removed based on
the classification results of their respective nodes. Similarly,
GNNGuard [[84]] selectively removes edges between dissimilar
nodes that may be malicious. Besides, TADropEdge [85]]
drops edges according to their weights, calculated from the
graph spectrum. PTDNet [86] and NeuralSparse [87] leverage
sparsity and low-rank properties to remove task-irrelevant edges.
Furthermore, there are also some related works proposed to
fulfill different demands, such as fairness ( [88]]), and anomaly
detection ( [89]).
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Subgraph-based. Subgraph-based adaptive augmentation
aims to find the most representative and informative subgraph
(also known as the graph rationale), like the functional groups
in a molecule, to enhance the model in terms of performance,
interpretability, robustness, and so on ( [90]], [91]], [92]], [93]).
For instance, GIB [90] extracts information from graph structure
and node features, adopting an Information Bottleneck (IB)
perspective, and encourages the learned representation to
contain the minimum amount of information appropriate for
downstream prediction tasks. Consequently, models trained
using this approach demonstrate reduced susceptibility to
overfitting and increased robustness against adversarial attacks.
Moreover, GSAT [92] proposes stochastic attention to reduce
information from the input graph, thus achieving better general-
ization and interpretation. GREA [93] introduces environment
replacement augmentation, which identifies the rationale and
separates it from the graph, then substitutes the remaining
part, which they call the environment, to generate augmented
data. Besides, several related methods garner attention within
the out-of-distribution (OOD) research field ( [94], [95], [96]).
These approaches are devised to separate and leverage causal
and non-causal, or invariant and variant subgraphs, with the
aim of enhancing OOD generalization.

Spectrum-based. It is preferred to consider global informa-
tion to better preserve graph properties when generating an
augmentation [77]. Graph spectrum is such a tool that naturally
incorporates global graph properties including clusterability,
connectivity, d-regularity, etc., offering an effective way to gain
rich information with respect to the overall structure of the
graph. Specifically, the graph spectrum A is calculated by an
eigendecomposition procedure:

L =UAUT, (11)

With such a powerful tool, several spectral augmentation
methods are proposed. SpCo [97] seeks to identify optimal
contrastive pairs by amplifying high-frequency amplitudes,
thereby introducing distinctions between the original and
augmented graphs, while retaining low-frequency amplitudes to
preserve invariant information within the graph. Simultaneously,
it addresses the optimization problem by treating it as a matrix
perturbation through Sinkhorn’s Iteration. SPAN [98] also aims
to maximize the spectral difference between two graphs, but
the optimization is guided by gradients. Furthermore, SFA [99]
presents two augmentation methods: spectral graph cropping,
which involves the removal of the two smallest non-zero
eigenvalues, and graph frequency component reordering, which
permutes the eigenvectors associated with the top & eigenvalues.

Automated Augmentation. The methods mentioned above
utilize fixed augmentation strategies. Nonetheless, the same
augmentation strategy may not be suitable for diverse datasets.
Consequently, a significant portion of research is transitioning
towards automatic augmentation, which entails the learning of
the optimal augmentation strategy during the model training
process. For example, JOAO [100]] sets up a bi-level opti-
mization procedure to train the encoder and augmentation
strategy simultaneously. Besides, many methods take advantage
of reinforcement learning (RL) in data augmentation. LG2AR
[102] learns a policy to assign probabilities to a set of strategies

(edge dropping, feature masking, etc.) and samples from
them in each training epoch. AutoGDA [103] introduces a
community-customized graph data augmentation method that
employs an RL-agent to determine the optimal strategy for each
community within a given graph. GraphAug [[104] focuses on
providing label-invariance augmentations for different graphs,
implemented by an RL-agent which takes graph embedding as
input and samples a strategy.

2) Graph Adaptive Sampling: In this subsection, we discuss
graph adaptive sampling algorithms, which can adjust the
sampling strategy based on the current model’s performance,
facilitating more effective utilization of graph information
during the training process and thus improving the model’s
performance. According to the strategy and scope during node
sampling, we currently classify these methods into node-wise
sampling and layer-wise sampling as mentioned in [[II-A

Node-wise Sampling. Node-wise sampling is a fundamental
sampling technique that samples a fixed number of neighboring
nodes for each target node layer by layer.

In particular, VR-GCN [113] performs a fixed number of
random sampling of neighbor nodes like GraphSAGE. However,
we classify it as a graph-adaptive sampling method because it
retains and utilizes intermediate node information that evolves
as the model learns to approximate unsampled nodes. This
approach enables the model to gather a relatively greater
amount of node information, ultimately enhancing model
performance with a small number of samples. PASS [114]
directly utilizes gradient information and task performance loss
to train a sampling policy. Since the sampling operation is
non-differentiable, PASS proposes to learn from the gradients
to determine which neighbors provide valuable information
and are therefore assigned high sampling probabilities. Besides,
GCN-BS [115] and Thanos [[116] consider the sampling
problem from another perspective. GCN-BS reformulates the
optimization of sampling variance by treating it as a bandit prob-
lem, establishing a connection between sampling variance and
both the reward and the regret. To achieve adaptive sampling
probabilities, GCN-BS calculates the reward and subsequently
updates the sampler following back propagation. Based on
GCN-BS, Thanos introduces a novel biased reward function
and corresponding regret, while also loosening the model’s
data-related assumptions. Experimental results demonstrate that
Thanos surpasses GCN-BS in terms of approximation error and
converges at a nearly optimal rate. Furthermore, ANS-GT [117]]
is applied to the graph transformer, which develops a framework
that combines multiple node-wise heuristic sampling strategies
and designs learnable weights for each heuristic strategy to
adaptively select the best-performing sampling algorithm during
training, making the model achieve the best performance.

Layer-wise Sampling. Different from the above method,
layer-wise sampling abandons sampling from nodes and,
instead, within the realm of graph convolutional layers, selects
a consistent number of nodes at each layer. For example, AS-
GCN [118] is a typical adaptive layer-wise sampling method,
which samples nodes for the lower layers based on the nodes in
the top layer and enables the sharing of sampled neighbor nodes
among different parent nodes. This approach facilitates control
over the number of nodes at each layer, preventing excessive
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expansion. More importantly, the newly proposed layer-wise
sampling method in AS-GCN is adaptive and explicitly
reduces sampling variance, thereby enhancing the training
effectiveness of this approach. Additionally, MVS-GNN [119]
theoretically analyzes the components of sampling variance and
introduces gradient-based minimization of variance sampling.
It samples from the optimal importance sampling distribution
by computing the gradient norm, ensuring that the sampled
nodes consistently maintain the smallest sampling variance.

3) Graph Structure Learning: The effectiveness of GNNs in
capturing expressive representations is significantly influenced
by the quality of the underlying graph-structured data. However,
real-world graph structures are frequently noisy or incomplete.
Therefore, Graph Structure Learning (GSL) endeavors to
uncover valuable graph structures from data to enhance the
learning of graph representations. Depending on whether
weight information on the edges is considered, existing GSL
methodologies can be broadly classified into two categories:
learning discrete graph structures and learning weighted graph
structures.

Learning Discrete Graph Structures. The methods in
this category consider graph structures as random variables,
where discrete graph structures can be sampled from a certain
probabilistic adjacency matrix. Various techniques, such as
variational inference [143]-[147]], bi-level optimization [148]],
[149]], and reinforcement learning [[150], are leveraged to jointly
optimize both the probabilistic adjacency matrix and GNN
parameters. For example, G3NN [[143]] treats node features,
graph structure, and node labels as random variables, then
utilizes a flexible generative model to capture their joint
distribution for the graph generation. VGCNs [144] aims to
maximize the posterior over binary adjacency matrix given the
observed data, namely node features and observed node labels.
In contrast to variational inference approaches, LDS [[14§]]
and GSEBO [149] view the task, i.e., optimizing the graph
structure and GNN parameters, as a bi-level optimization
problem. Furthermore, DGM [[150] employs reinforcement
learning to tackle the non-differentiability challenge arising
from the edge sampling operation during optimization.

Learning Weighted Graph Structures. Since learning
discrete graph structures tends to optimize the adjacency
matrix directly based on certain prior constraints on the
graph properties, many of these approaches are unsuitable
for the inductive learning setting where unseen nodes emerge
during the inference phase [259]]. Consequently, inspired by
attention techniques [6], a class of methods focuses on learning
weighted graph structures, i.e., edge weights between nodes.
Based on various similarity measures, such as cosine-based
similarity [151], [152], attention mechanisms [6]], [153]-[157],
kernel-based similarity [[158]], [[159]], many methods take node
embedding to learn pairwise node similarity matrices. Some
methods further integrate intrinsic edge embeddings [[160],
[161] or edge connection information [162]] into the process
of similarity learning. Additionally, graph regularization tech-
niques [80], [82f, [151]], [[163], [164] directly optimize the
graph structure by considering various graph properties, such
as smoothness, connectivity, low rank and sparsity. For instance,
Pro-GNN [82] learns a refined graph structure from a perturbed

graph by leveraging the sparsity, low rank, and smoothness
properties of the graph. When a new structure is learned through
the above methods, completely discarding the original graph
structure may result in the loss of valuable information. In
light of this, recent work [151]], [[I58]] suggests utilizing both
the learned graph structure and the original graph structure
through a linear combination.

4) Graph Self-paced Learning: As a special curriculum
learning algorithm, self-paced learning allows the task-solving
model to measure the difficulty of instances and determine the
training progress according to the current model state [260]].
Similar to Section we categorize existing methods into
node-level, link-level, and graph-level methods.

Node-level Self-paced Learning. The basic idea is to
determine the training nodes according to the current training
state. DSP-GCN [133]] and SPC-GNN [134] gradually incorpo-
rate unlabeled nodes with higher confidence predictions into
the training set, while SS-GSELM [135] and SPGCN [[136]]
according to the loss value of the labeled nodes in each training,
nodes with smaller loss values are prioritized for training.

Edge-level Self-paced Learning. Different from node-
level, edge-level self-paced learning gradually introduces the
relationships between nodes in the training process. For
instance, SCCABG [137] and SCCBG [138]] determine the
reliability of each edge by an adaptive clustering similarity
measure, and then the edges gradually are included in order
of reliability. SANE [139] gradually introduces the semantic
relationship between nodes into the network representation
learning by considering node similarity.

Graph-level Self-paced Learning. The core insight of such
approaches is to gradually determine the context of the center
node. For example, SeedNE [140], relying on the sampling
probability of nodes, progressively selects difficult negative
context nodes to learn better node representations. In contrast,
SPGCL [141] prioritizes the nodes with the largest mutual
information as neighbors. Meanwhile, SPARC [142] selects
graph contexts for model training based on the number of labels
in different classes, gradually focusing on contexts associated
with rare classes.

B. Feature

In this section, we explore the manipulation of graph
features during model training, organizing our discussion
into two distinct categories: feature completion and feature
selection. Feature completion is designed to generate missing
node features, addressing incomplete features in graph data.
Conversely, feature selection aims to pinpoint highly valuable
features during model training.

1) Feature Completion: The majority of GNNs assume that
the node features on the graph are complete, but this assumption
is often broken in practical applications, the reasons mainly
come from the following aspects [191]]: (1) machine or human
errors during the data collection process; (2) collecting the
dataset completely is very costly in practice; (3) many users
are not willing to provide complete personal information due
to privacy protection. Therefore, to address the problem of
incomplete features in graph data, feature completion as a
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key solution aims to fill in the missing node features in the
graph. According to different types of graph data, the existing
methods can be roughly categorized into homogeneous and
heterogeneous graph-based feature completion.

Homogeneous Graph-based Feature Completion. For
homogeneous graphs, GCN,,; [191]] employs the Gaussian
mixture model to represent the missing node features. Based
on a shared-latent space assumption on graphs, SAT [192]]
designs a distribution matching GNN architecture for feature
completion. Amer [[193]] develops a novel generative adversarial
network to generate missing attributes. GINN [194] reconstructs
a complete graph by using a GNN-based autoencoder network.

Heterogeneous Graph-based Feature Completion. For
more complex heterogeneous graphs, a series of node feature
completion methods capable of handling different types of
nodes and edges have been proposed [195]-[199]. For example,
AC-HEN [195] utilizes feature aggregation and structural
aggregation to obtain multi-view embeddings for completing
missing attributes. HGNN-AC [196] pre-learns topological
embeddings and then utilizes them to guide the feature
completion. HGCA [197]] designs an augmentation network that
captures the semantic relationships between nodes and attributes
to achieve fine-grained attribute completion. AutoAC [[19§]]
models the attribute completion problem as an automatic search
problem for each missing attribute node.

2) Feature Selection: The cost of model training signifi-
cantly rises when data used in machine learning algorithms
displays sparse features in a high-dimensional space, which we
call the curse of dimensionality. As a result, Feature Selection
(FS) emerges as one approach to mitigate this challenge. The
goal of FS is to identify highly correlated features with the
labels and prioritize them during model training. FS not only
helps reduce the computational costs associated with high-
dimensional data but also improves model performance by
fitting meaningful features. In graph learning, the frequently
utilized FS methods, incorporated into the model training phase,
can be classified into two types based on their relationship
with downstream tasks: task-independent FS and task-specific
FS.

Task-independent FS. Such methods concentrate on gener-
ating superior features and seamlessly integrate with any GNN
model or downstream tasks. To start, various works [[183]—
[186] center around introducing a regularization objective for
feature selection. For example, Graph Lasso [183] incorporates
a graph regularizer based on Lasso [261]] for the feature graph
to account for structural information. Further, ASGNNS [185]]
combines L2, 1/L1-norm regularized attribute selection and
GNNSs together to extract meaningful features and eliminate
noisy ones. Except for regularization-based FS, [187] proposes
a task-independent method, which first extends the feature
selection algorithm presented via Gumbel Softmax to GNNs
to extract features, and then implements a mechanism to rank
the extracted features. ADAPT [188] introduces a framework
for feature selection with the goal of identifying informative
features that accurately describe the adaptive neighborhood
structure of a network.

Task-specific FS. In contrast, the task-specific FS methods
take the GNN model’s task into consideration. Noticing that

selective aggregation outperforms default aggregation in node
classification tasks, Dual-Net GNN [189] suggests a classifier
model trained on a subset of input node features to predict node
labels and a selector model that learns to provide the optimal
input subset to the classifier for achieving best performance. Lin
et al. [190] introduce FS-GCN, an FS method that integrates
an indicator matrix into the propagation process of GCN.
The optimization of the indicator matrix involves minimizing
the cross-entropy loss derived from the semi-supervised node
classification task, coupled with a sparsity-based regularization.

C. Label

In this section, we explore the augmentation of labels during
model training, organizing our discussion into two distinct
categories: active learning and pseudo labeling. Active learning
is devised to strategically select the most impactful data and
label it for enhancing the task-solving model. Additionally,
pseudo labeling aims to expand the label set by employing a
trained model and assigning pseudo-labels.

1) Active Learning: In real-world scenarios, demanding a
large quantity of labeled data to achieve an excellent model
is both expensive and unrealistic. Therefore, the concept of
Active Learning (AL) has been introduced. It aims to select
the most effective data for the task-solving model from the
data set and label it to get the best model performance when
the labeling cost is limited. While numerous AL methods have
been employed in graph data, the majority remains centered
on node classification problems. Categorically, the existing
AL methods applied to graph data can be segregated into two
groups: node-independent and node-correlated AL methods.

Node-independent AL. These methods usually select nodes
in unlabeled data for labeling based on metrics and rules.
They regard each node selection as an independent process
and believe that the current node selection process will not
have an impact on other nodes. For example, AGE [226]
uses three indicators: information entropy, information density,
and graph centrality to select the most informative nodes
for labeling. ANRMAB [227] focuses on improving AGE
by employing a multi-armed bandit mechanism to dynamically
learn weights for balancing the aforementioned three metrics.
Similar to ANRMAB, ActiveHNE [228] is generalized to
heterogeneous graphs. Besides, SmartQuery [229] introduces
degree and PageRank informativeness measurements to select
nodes. Furthermore, ALG [230]] introduces a novel metric called
Effective Reception Field (ERF), which combines receptive
field with node effectiveness measurements, leading to the
involvement of more nodes in training when ERF is maximized.

Overall, these methods use greedy ideas to independently
select nodes to label based on different measurements, and
cannot guarantee that the model achieves long-term optimal
performance.

Node-correlated AL. Differing from node-independent AL,
such AL methods assume nodes are correlated and consider
interactions between nodes. This idea avoids that the selected
nodes are similar and clustered together, which leads to
no duplication of information. Consider a straightforward
example where, in node-independent methods, two similar and
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informative nodes might be chosen and labeled sequentially,
resulting in a failure to maximize information acquisition for
enhancing model performance within limited labeling costs.
In contrast, node-correlated methods address this limitation.
Currently, these methods can be broadly categorized into three
groups: reinforcement learning (RL)-based, influence function-
based, and clustering-based.

Many RL-based methods model active learning on graphs
as a Markov decision process. The selection of nodes for
marking is regarded as an action, and the performance of
the model based on the selected nodes is viewed as a
reward, so as to consider the interaction between nodes and
obtain the long-term performance of the model. Specifically,
GPA [231]] parameterizes the policy network as a GNN and
utilizes reinforcement learning to train the policy network.
Subsequently, the network generates a probability for each
unlabeled node and then samples a node for labeling based on
the probability. Inspired by GPA, DAG [232]] learns a graph-
specific policy based on a universal policy for each graph when
solving the transferable problem. The knowledge learned by
graph-specific policies is dynamically distilled into the universal
policy by minimizing the KL divergence between graph-
specific policies. Similarly, ALLIE [233]] applies an imbalance-
aware reinforcement learning based graph policy network to
find unlabeled nodes that maximize model performance, and
uses a graph coarsening strategy to make it applicable to
the large-scale graph. BIGENE [234] introduces multi-agent
reinforcement learning into batch active learning to improve
sampling efficiency and considers both node informativeness
and diversity.

There are still some methods based on the influence function
that consider the information of each node. After message
passing, the most effective nodes are selected through the
aggregation of node information from a full-graph perspective
to obtain long-term effects. For example, Grain [235] connects
active learning on graphs with social influence maximization
and proposes a diversified influence maximization strategy to
select nodes. SAG [236] introduces the L1-norm of the expected
Jacobian matrix as the influence of nodes after k-layer GCN
propagation. IGP [237] proposes relaxed query and soft label
conditions, and selects nodes by maximizing a new criterion
called information gain propagation. Moreover, the influence
function is employed in JuryGCN [238] to quantify jackknife
uncertainty for each node, and nodes exhibiting high jackknife
uncertainty are then selected for active learning.

Clustering-based active learning methods for graph data
ensure the diversity of nodes to the greatest extent and avoid
redundant information. For example, FeatProp [239] uses
propagated node features for clustering and labels the nodes
at the center of each cluster. Unlike FeatProp, LSCALE [240]
clusters node embeddings in a latent space that contains two
key attributes: low label requirements and informative distances.
In ScatterSample [241], the uncertainty of all nodes is first
calculated, and then the top uncertain nodes are clustered to
ensure the diversity of sampling.

Some other different advanced technologies have also been
proposed. SEAL [242] introduces adversarial learning into
graph active learning for the first time. And MetAL [243]]

evaluates the importance of nodes based on meta-gradients
rather than heuristic rules.

In general, no matter what strategy is used (RL-based,
influence function-based and clustering-based, etc.), the node-
correlated AL methods always do not treat the selection of
each node as an independent process. They consider both the
informativeness and diversity of nodes to different extents to
avoid redundant information and achieve long-term effects.

2) Pseudo Labeling: With a multi-stage training paradigm,
Pseudo Labeling [222]-[225] utilizes a trained model to expand
the label set by assigning a pseudo-label, then fine-tunes the
trained model or re-trains a new model. For example, Li et
al. [222] first present a pseudo-labeled GCN, where the top
K high-confidence unlabeled nodes are selected to expand
the training set for model retraining. MT-GCN [223]] takes
the pseudo label to accomplish the mutual teaching process
across the two GCNs. M3S [224] employs a deep clustering
model to assign pseudo-labels. InfoGNN [225] considers both
informativeness and prediction confidence of pseudo-labeled
nodes, to further solve the problem of information redundancy
and noisy pseudo-labels in existing methods.

V. INFERENCE STAGE

The inference stage refers to the phase where a pretrained
graph model is used for the prediction of downstream tasks.
Moreover, inference data refers to the graph data utilized during
the inference phase of pretrained models. In this stage, we
can adjust the inference data to fulfill different trustworthy
requirements or reformulate the downstream tasks to align
with the pretext tasks ensuring high-quality knowledge transfer.
From a data-centric perspective, using prompts to modify the
inference data can help obtain the desired objectives without
changing model parameters. In this section, we discuss prompt
learning methods which are gradually gaining popularity in
the realm of graphs. To elaborate, we classify existing graph
prompting methods into two categories: pre-prompt and post-
prompt, based on whether the task-specific prompts operate
before or after the message passing module as shown in

FigurdT]

A. Pre-prompt

In the case of pre-prompt methods, existing works such as
[200]-[202], [262]-[264] modify the input graph data either
in terms of topology or node features before message passing
to facilitate downstream task adaptation, or they construct a
prompt graph to promote the model’s adaptation to downstream
tasks.

A classical example that applies prompt learning to graph
neural networks is AAGOD [200]], which utilizes prompt learn-
ing to modify the graph topology thus achieving adaptation for
out-of-distribution (OOD) detection tasks without changing the
parameters of GNN backbones. Using a parameterized matrix
as a learnable instance-specific prompt, AAGOD superimposes
this prompt on the adjacency matrix of the original input graph
and reuses the well-trained GNN to encode the modified graph
into vector representations. The instance-specific prompt helps



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

highlight potential patterns in the in-distribution (ID) graphs,
thereby increasing the difference between OOD and ID graphs.

In a similar vein, a notable contribution in this area is a
multi-task prompt method [201] which uses prompts to modify
the input feature. It bridges the gap between graph pre-training
and downstream tasks under the multi-task background. This
work initially constructs induced graphs for nodes and edges
through 7-hop neighbors, thereby reformulating node-level and
edge-level tasks into graph-level tasks. Additionally, it designs
prompt tokens for the input graph and modifies the features of
each node by weighting all the prompt tokens before message
passing. Finally, using the meta-learning paradigm, the prompt
parameters are updated for multi-task scenarios.

Another approach to designing prompts for graphs involves
utilizing a prompt graph to assist model training. Prodigy
[202] proposes a graph prompt learning design that not only
reformulates downstream tasks into a unified template but also
introduces a prompt graph with regard to few-shot tuning. In the
process of few-shot prompting for downstream tasks, Prodigy
first retrieves the corresponding context from the source graph
data. Subsequently, it abstracts the corresponding task into
a task graph and combines it with the data graph to form a
prompt graph. Once the prompt graph is obtained, leveraging
a proficiently trained GNN via specifically crafted pre-training
tasks enables the acquisition of predicted labels for each data
point.

B. Post-prompt

As for post-prompt methods [203], [204]], task-specific
prompts often operate on representations that have already
undergone message passing to enable downstream task adapta-
tion.

GraphPrompt [203] is also among the early attempts at
prompt learning in the field of graphs. It similarly aims to
bridge the gap between pretext tasks and downstream tasks
but in a post-prompt manner. This framework begins with pre-
training on unlabeled graphs employing a self-supervised link
prediction task. It unifies node classification tasks and graph
classification tasks into a link prediction form by adding pseudo
nodes, thereby eliminating the gap between pretext tasks and
downstream tasks. Subsequently, it utilizes learnable prompts
to guide each downstream task. This learnable prompt can be
understood as a weighted mask to the readout representation.
As a result, it can be applied to various tasks, each with a
distinct emphasis on different feature channels.

Another pioneering work is GPPT [204]. Unlike Graph-
Prompt which achieves a form of multi-task unification for
tasks at graph-level, node-level, and edge-level, GPPT primarily
focuses on node classification tasks. Similarly, GPPT utilizes
link prediction as a pretraining task, although it differs in
prompt design by concatenating task-specific prompts with
node representations to guide adaptation.

VI. PROBLEMATIC GRAPH DATA

Manually defined and processed graph data inevitably
introduces noise and problems. The aforementioned methods
are usually used in general graph data, without considering the

specific issues hidden in the graph structure. In this section,
we list a series of commonly introduced problematic graph
data and discuss how to deal with these issues in a data-centric
approach.

Vulnerability. Recent advances in graph adversarial learning
show that graph structures are vulnerable [265], where a
small perturbation in the structures, features, or labels can
significantly affect the predictions of the graph models [266].
However, existing methods focus on designing graph defense
models to handle adversarial edges and lack generalization.
The emerging certificate method [267] provides a data-centric
way to consistently improve the robustness of data against
perturbations, which has been widely used in graph data. For
example, Bojchevski et al. [268] first propose the verifying
certifiable robustness of graph data, improving the robustness
by constraining the local and global certificates. Tao et al. [269]
further present the immunization method for graph data, which
injects protective edges to improve the robustness of graphs
against perturbations.

Unfairness. Existing literature shows that graph models may
have inherent prejudice if the training data contains sensitive
attributes or specific structures. Feature fairness requires
graph models to make predictions without using sensitive
attributes, such as gender and race. Agarwal et al. [270]
propose fairness-aware graph augmentation, which utilizes
the counterfactual perturbation to make graph models learn
invariant representations against sensitive attributes. Structural
fairness refers to the phenomenon that graph models have
different accuracy on nodes with different structures, e.g., high-
degree and low-degree nodes [271]]. GRADE [272] first finds
that graph contrastive learning has better structural fairness than
semi-supervised GNNs. Based on this discovery, they propose
interpolation-based and purification-based graph augmentations
for low- and high-degree nodes.

Selection Bias. Due to the influence of human factors, the
collection of graph data will inevitably introduce selection
bias, making the distribution of training data and test data
inconsistent. For example, existing molecular graph datasets can
only cover part of the overall molecular distribution, resulting
in distribution shifts. One data-centric approach to mitigating
this problem is stable learning [273]], which can be viewed
as a special case of data sampling. For example, SGL [274]]
introduces a stable graph learning framework, which can learn
invariant patterns against selection bias in an unsupervised
way. DGNN [275]] re-weights the node weights to remove the
spurious correlations in node representations.

Heterophily. Most graph models rely on the homophily
assumption, i.e., nodes belonging to the same class tend to
connect with each other, to learn representations. However, real-
world graphs have mixed patterns, where heterophilic graphs
exist, such as protein-protein interaction networks [276]. The
homophilic ratio of graphs significantly affects the performance
of graph models [277]]. Some methods use graph structure learn-
ing to find the non-local neighbors to alleviate the heterophily
of graphs. For example, Geom-GCN [278]] constructs a latent
geometric graph to enrich the potential homophilic neighbors.
AM-GCN [279] proposes to fuse the original graph and kNN
graph of node features, which leverages the feature similarity
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to enhance the graph homophily.

VII. FUTURE DIRECTIONS

Data-centric Al is an emerging topic in deep learning. Here
we present several promising future directions for data-centric
graph learning.

A. Standardized Graph Data Processing

Existing graph construction and data processing methods rely
on expert priors to define the structures, features, and labels,
which seriously hinders the transferability of graph data across
different domains. For example, the graph models trained on
citation networks cannot be used for social networks, due to
their discrepancy in node features. Is there a way that we can
standardize the processing principles of graph data? If so, the
ubiquitous graph data can be unified and the knowledge can
be transferred across domains. One possible approach is to use
large language models (LLMs) to process graph data, unifying
the node features in the language space [280)].

B. Continuous Learning of Graph Data

Continuous learning aims to endow deep learning models
with the ability to continuously learn new knowledge from a
stream of data. An interesting question is that can graph data
also learn knowledge from the predictions of graph models?
Graph models can learn semantic information from the raw
graph data and remove some noise. Based on the predictions of
graph models, graph data can also be continuously optimized.
For example, graph condensation methods [49], [51] aim to
use the gradients of graph models to generate new graph data,
which can be seen as a special case of data continuous learning.

C. Graph Data & Models Co-development

While we have frequently highlighted the importance of
high-quality graph data for the success of model-centric
graph learning, it is crucial to acknowledge the reciprocal
relationship. It is foreseeable that optimal data manipulation
strategies and model design mutually influence each other,
and there is no single set of graph strategies/models that
consistently performs best when paired with different graph
models/strategies. Therefore, how to further encourage the
collaborative development of graph data and models is an
important task for data-centric graph learning. The key to this
lies in blurring the boundary between graph data and models,
followed by the collaborative design of data-centric operations
and model-centric methods. GraphStorm [281]] adeptly focuses
on both the development of graph data and the deployment
of graph models, resulting in heightened effectiveness and
efficiency.

VIII. CONCLUSION

In this survey, we give a comprehensive review of data-
centric graph learning. We categorize existing methods from
two perspectives: One is the learning stage, including pre-
processing, training, and inference. Another is the data structure,
including topology, feature, and label. Through these two views,

we carefully explain when to modify graph data and how to
modify graph data to unlock the potential of the graph models.
Besides, we also introduce some potential issues of graph data
and discuss how to solve them in a data-centric approach.
Finally, we propose several promising future directions in this
field. To sum up, we believe that data-centric Al is a viable
path to general artificial intelligence, and data-centric graph
learning will play an important role in graph data mining.
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