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Abstract

Consider stochastic models for the spread of an infection in a structured com-
munity, where this structured community is itself described by a random network
model. Some common network models and transmission models are defined and
large population proporties of them are presented. Focus is then shifted to statis-
tical methodology: what can be estimated and how, depending on the underlying
network, transmission model and the available data? This survey paper discusses
several different scenarios, also giving references to publications where more details
can be found.
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1 Introduction

In the current paper we are concerned with stochastic models for how an infectious diseases
spreads in a community, where the social structure of relevance for the disease spreading
is described by a random network model.

In certain cases the underlying social structure is known, the presence of households being
the prime example. Here we put more focus on the case where the underlying structure
is not entirely known, which explains why a random network model is advocated.

Which network model to use will depend on the infectious disease under consideration
and the community upon which it spreads. If considering diseases with airborne spreading
like influenza and childhood diseases, the network should reflect pairs of individuals being
in proximity of each other on regular basis (preferably also adding random contacts). If
spreading occurs through close physical contact such as Ebola, the network edges connect
pairs of individuals having such contacts on regular basis, and if considering a sexually
transmitted infection (STI) the underlying network will be that of sexual contacts.

The type of network model to be used hence depends on the disease and context. If we
are considering short term outbreaks a static network may be sufficient, whereas if we
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are interested in longer time spans a dynamic model, where individuals die and new are
born but also where connections are dropped and new are created, may be preferred.
Individuals are usually not all the same: some individuals have more social contacts than
others, which should be reflected in the degree distribution (the degree of an individual
is the number of social connections it has). Other characteristics of a network is cluster-
ing, reflecting how common triangles in a network are, and degree correlation: positive
(negative) degree correlation implies that individuals with high degree tend to mix with
individuals of high degree. Given a set of such egocentric network proporties, the network
is then often defined by saying that, other than obeying the pre-specified proporties the
network is chosen randomly among all networks satisfying the properties. Of course, more
complicated networks may also be considered, for example by allowing different types of
individuals, and having weighted edges affecting the transmission probabilities.

Our interest lies in how an infectious model can spread on the random network. There are
different infectious disease models, the base model being an SIR (Susceptible-Infectious-
Recovered) epidemic model, where individuals are first susceptible, and if they get infected
they become infectious and later they recover and stay immune for the rest of the study
period. Other version are SEIR, where exposed individuals are first latent before they
become infectious, SIRS where immunity eventually vanishes and the individual becomes
susceptible again, and so on. In reality, infectivity usually builds up over time and after
some further time starts dropping down to 0. Here we simplify the situation by assuming
that an infected individual has constant infectivity during the whole infectious period
I, and we focus on the two situations where [ is either fixed and the same for all, or
otherwise exponentially distributed. The two models are referred to as the Reed-Frost and
the Markovian versions. The Reed-Frost model is often studied in its discrete time version
where infections happen sequentially in generations. The Markovian model assumes that
infectious individuals infects each of their susceptible neighbour independently at rate
and recovers at rate v, and the Reed-Frost model assumes that an individual infected in
generation k infects each if its susceptible neighbours in the next generation independently
with probability p and then recovers. In both models it is possible to also allow for
transmission with randomly chosen individuals beside the neighbours in the network.

One reason for studying epidemic models on networks is to better understand what model
features affect spreading the most, and in particular how it is possible to reduce spreading
by means of public health measures such as vaccination, (quicker) diagnosis and treatment,
isolation, travel restrictions and so on. This can be achieved by inserting the relevant
preventive measure into the model, and to analyse the outcome and then compare with
the outcome without prevention.

In order to make conclusion about real life situations it is necessary to fit the models
to the real world situation, preferably by collecting network and/or disease data to infer
model parameters using proper statistical methods. If the entire underlying network is
observed, this is often straightforward. However, as mentioned above this situation is not
a common situation. Instead some egocentric data may be available, perhaps together
with some outbreak data, from which to perform inference, and then statistical methods
are more complicated and many problems remain open.

In the current paper we will describe such network models, transmission models "on” the
networks, models capturing control measures, and their inference procedures. Needless to
say, this whole area is bigger than can be captured in one review paper, so we will only



touch upon most models and methods and leave out several. Another focus of the paper
is to describe important unsolved problems, with the aim to stimulate more work in this
important research area.

We start by describing a few different random network models (Section [2)), then describe
the two transmission models mentioned above in a bit more detail, followed by models for
prevention (Sections |3 and . In Section |5 we present known properties of the models
with and without control measures, and in Section [6| we describe how to perform inference
for several different models and data settings, also mentioning several open problems.

2 Social network models

A network consists of nodes and edges. In our application the nodes will be individuals
and the edges, between pairs of individuals, reflect some type of social relationship. Unless
otherwise mentioned, we consider static, unweighted, undirected edges, all being of the
same type as shown in Figure[I] In what follows we will assume that there are n nodes and
that which pairs of nodes that are connected by an adge is random. The focus lies on the
population size n being large and that the number of edges connecting pairs of individuals
is of the same order O(n) as the number of nodes, implying that each individual has a
mean degree F(D) = p (0 < p < 00) which remains fixed as n — oo, denoted sparse
graphs/networks.

J

Figure 1: Ilustration of a small random social network. In this network nodes have
degrees between 1 and 4, and the mean degree equals E(D) = p = 2.7.

There exists several well-known random network models (the synonym ”random graph
models” is often used in more mathematically oriented papers).

The first and most well-studied random network model is the Erd6s-Rényi random
graph (Erd6s and Rényi, 1959). This model has the least possible structure. It assumes
that every pair of individuals is connected to each other, independently, with probaility
A/n. This model contains a single parameter A being (approximately) the mean degree
of individuals. An individual has n — 1 possibly connections, each being present with
probability A/n, so the number of neighbours any individuals has is binomially distributed:
D ~ Bin(n — 1,\/n). As n — oo it is well-known that this distribution tends to the
Poisson distribution with mean A, so D ~ Po(\).

A second well-studied model is the Configuration model (e.g. Molloy and Reed, 1998, or
Bollobés, 2001). This model is specified by an arbitrary degree distribution D ~ {p;} on
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the nonnegative integers. The model is defined as follows (see Figure [2|for an illustration).
Label the nodes 1,...,n. Draw independent random variables di,...,d, from D and
create d; stubs going out of node 7, ¢ = 1,...,n. The network is then constructed by
sequentially connecting the stubs pairwise at random. The first stub, of individual 1 say,
is connected to any of the remaining stubs uniformly at random. These pair of stubs are
then removed, and the procedure is repeated until there are no stubs remaining. This
procedure may result in multiple edges between certain pair of nodes, and self loops, and
if the number of studs happens to be odd, there will be one remaining stub which cannot
be connected. It has been proven that the number of such imperfections are bounded
in probability as long as the degree distribution has finite mean FE(D), and removing
multiple edges (keeping just one), self-loops and one possible odd stub will then have
negligible effect on the network and its degree distribution. The configuration network
is hence the network obtained after removing multiple edges, self-loops and the possible
remaining odd stub.

Figure 2: Illustration of the configuration model for a very small network. a) The degree
of each vertex is drawn i.i.d. from the degree distribution. b) Stubs are paired completely
at random. c¢) Multiple edges and self-loops are removed thus producing the final network.

Another popular network model is the Preferential attachment model due to Barabasi
and Albert (1999). This model contains, in its simplest form, one parameter r being a
positiv integer, and is defined sequentially starting with a single node without any edges.
At each time step k one node equipped with r edges are added to the existing network.
The randomness comes from how the r edges are connected to the existing nodes, and
this is done by attaching each edge independently, and the probability to attach to a
specific node is proportional to its current degree. As a consequence, there is a tendency
to attach to nodes already having high degree: the "preferential” feature of the model.
This procedure is continued until there are n nodes present in the network (and r(n — 1)
edges).

The final model we will describe is the Small world model by Watts and Strogatz
(1998). In this model all nodes are labelled and put one a line which is made to a circle.
The model has two parameters, k and p, the former being a positive integer and the latter
a number between 0 and 1 (typically close to 0 — sometime it is scaled to p/n). Each
node is first connected to its £ closest neighbour on both sides, for example, individual
1 is connected to 2,...,1+ k and n,...,n — k + 1. Then each edge, independently and
with probability p, rewires one of its end nodes to a uniformly selected node.

The models described above are all for static undirected networks with one type of nodes
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and no weight on the edges. There are many other random network models defined for
particular purposes. For example Ball et al. (2013) define a configuration type model
allowing also for arbitrary clustering and degree correlation.

Other models are dynamic in nature, allowing both individuals to die and get born, and/or
for existing edges to disappear and new to appear. Often edges between unconnected pairs
of individuals appear randomly in time but at equal rates and existing edges disappear at
constant rates, and the population size is either constant equal to n (an individual who
dies is replaced by a newborn individual without connections), fluctuates around n, or is
growing according to a supercritical branching process (e.g. [9]). There are also models
where the network is affected by the ongoing epidemic, for example individuals distancing
themselves from infected individuals (e.g. Leung et al., 2018) but these are harder to
analyse and will be not discuss further.

If there are different types of individual it is often natural to let the probability of pairs of
individuals to be connected to depend on the type of the two individuals. One such model,
where the type space is continuous and reflecting ”social activity” are the Poissonian
random graphs (Norros and Reittu, 2006). There each individual ¢ is given a social
activity weight W, and the probability that individuals ¢ and j are connected is given
by min(W;W;/n,1) or a similar expression. A more specific model is where there are
two types of individuals, and where an individual is only connected to individuals of the
other type, heterosexual networks and client-server-networks being two examples. Such
networks are referred to as bipartite networks (Newman et al., 2002).

Other random network models allow for directed as well as undirected edges, and edges
having different weights, typically reflecting ”closeness” of the social relationship (e.g.
Spricer and Britton, 2015, and Barrat et al., 2004). A different class of network models
are Random block models, where individuals can be grouped into a small number
of (known or more often unknown) subcommunities, where the probability of two nodes
being connected depends on the groups of the two involved individuals (e.g. Nowicki and
Snijders, 2001).

Many of the models discussed above can be put under the general framework of inhomo-
geneous random graph models for which there is a rich theory of results available (e.g.

B]).

A slightly different very flexible class of random graph models are socalled Exponen-
tial random graph models, ERGMs in short [31]. This model class is inspired from
statistical physics, and allow for penalizing or favouring more or less any network fea-
ture. It could feature individual edges, but most often it does so for summary statistics
Si,..., Sk, such as mean degree, the number of triangles, high /low degree correlation and
higher moments of the degree distribution. Given the set of chosen network statistics and
corresponding model parameters 61, ..., 0, the probability of a specific network/graph
outcome G is defined by
P(G) x 2 03%3(G)

where s;(G) is the value of the summary statistic for the network G, an the proportionality

constant is given given by the corresponding sum over all 2(3) possible networks of size
n. There is no direct method for generating such networks, instead they are obtained
by starting with an initial network and then adding/removing edges in an MCMC like
manner until the chain is close to stationarity. Probabilistic properties of such graphs



are less explored compared to models discussed above, and they have mainly been useful
for inferring the importance of various network measures in small social networks. Their
application for epidemics on networks remain mainly yet to be shown.

3 Infectious disease spreading models

In the previous section we described several random network models. In the current
section we assume the network is given to us, generated from a suitable network model.
We now describe some epidemic models for such a network.

The two models we describe are so called SIR epidemic models, where individuals are first
Susceptible, and if they get infected they become Infectious and after a while Recover and
become immune.

We describe first the discrete time epidemic model (Reed-Frost) and then a continuous
time Markovian model. Both are defined on a static undirected network/graph G.

Definition 3.1 (The discrete time Reed-Frost epidemic on a network). Initially, in gen-
eration k = 0, one randomly chosen index case 1s infectious, and the rest of the popula-
tion/network is susceptible. Individuals who are infectious in generation k, infects each
susceptible neighbour in G, independently with probability p and then recover (nothing
happens with immune or infectious neighbours). Those who become infected by at least
one infective become infectious in generation k + 1. The epidemic goes on until the first
generation T when no new infections arise. The number of individuals that get infected
during the course of the epidemic (including the index case) is denoted Z and called the
"final size”.

Remark 3.1 It is possible to have some other, random or non-random, set of index cases.
The model is then the same except that it is started by more than one index case. This
model can also be defined in continuous time as described after the next definition.

Definition 3.2 (The continuous time Markovian epidemic on a network). Initially, at
time t = 0, one randomly chosen index case is made infectious, and the rest of the popu-
lation/network is susceptible. While an individual is infectious it has infectious contacts
with each susceptible neighbour in G randomly in time according to independent Poisson
processes with rate 3. Each infected individual remains infectious for a period I ~ Exp(7y)
(exponentially distributed with mean 1/v) efter which it revoers and becomes immune. All
infectious periods and contact processes are defined independently. The epidemic goes on
until the first time T that there are no infectious individuals and the epidemic stops. The
number of individuals that get infected during the course of the epidemic (including the
index case) is denoted Z and called the ”final size”.

Remark 3.2 It is not hard to show that the Markovian network epidemic model can
allow for a random latent period upon infection and before becoming infectious, without
affecting who gets infected at the end (but of course affecting its time dynamics). The
model can also be extended to let the infectious period I follow an arbitrary random
distribution, however then the model is no longer Markovian. One particular choice is
when I = ¢ (non-random and equal for all individuals), denoted the continuous time
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Reed-Frost epidemic. It can be shown that the distribution of the final size for this choice
of infectious period is identical to that of the discrete time Reed-Frost epidemic if the two
models are callibrated by p = 1 —e ™. The time dynamics of the two models are however
different.

The two models described above are different in that the first model considers the disease
outbreak to occur in discrete time referred to as generations, and the latter in continuous
time. In reality epidemic outbreaks of course take place in continuous time. However, if
there is a fairly long latency period, followed by a short concentrated infectious period
(such as e.g. measles and Ebola), then the description of generations makes sense, at least
in the beginning of an outbreak. As described in Remark 3.2 there is also a continuous
time version of the Reed-Frost network epidemic. The important mathematical differ-
ence between the Markovian network epidemic and either of the two Reed-Frost network
epidemics lies in that the events of infecting different neighbours are independent in the
Reed-Frost model whereas they are positively correlated in the Markovian version. This
is easy to show mathematically and comes from the fact that, when the infectious period
has random length, the event to infect a given neighbour indicates a long infectious period
which increases the risk for infecting also other friends.

In both models above it is only possible to infect neighbours in the network, where being
neighbours reflect a social proximity of relevance for the disease under consideration (e.g.
daily close contact). For many infectious diseases transmission also occur from more
random type of contacts, like sitting next to each other on a bus. The models defined
above can add such random contacts as we now define.

Definition 3.3 (Network epidemic models with random contacts). Start with either of
the network epidemics defined above (or their extensions described in the remark). The
discrete time model is then modified by, at each time step and for each infected, beside
infecting susceptible neighbours in G with probability p we now also let them infect, in-
dependently, each susceptible in the whole community (neighbour or not) with probability
Ba/n. For the continuous time version where infectives infect each susceptible neighbour
at rate B, we now also let infectives have infectious contacts with each other individual
(neighbour or not) independently at rate Sg/n.

Remark 3.2 The rate of infecting non-neighbours is hence much smaller than infecting
neighbours. The random contact were, for mathematical convenience, defined to happen
also with neighbours. The total infection rate with a susceptible neighbour is hence
B+ Be/n which for all practical purposes is equal to § when the community is large. The
contact rate/probability fSg/n with a specific individual outside the household is very
small in a large community (as it should be). However, the overall rate that an individual
makes random contacts equals nfs/n = B¢ which is not negligible.

There are numerous extentions to these models. Individuals may be categorized into
different types, and the transmission rate/probability can then depend on the two types
involved, there may be different types of edges, each type having a specific infection
rate/probability, and the network may be dynamic and infection can only take place
along currently existing edges.

The models defined above assumed that all individuals beside the index case were sus-
ceptible. In reality this may not be the case since there might be prior immunity in
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the community. If there are immune individuals in the community, such individuals can
simply be neglected, and edges connecting to them as well. The degree of susceptible in-
dividuals should hence reflect the number of susceptible neighbours which should be kept
in mind when e.g. estimating degree distributions from census data, so-called egocentric
network data.

4 Models for prevention

In the previous section it was mentioned that only initially susceptible individuals should
be considered, and that initially immune individuals and their connections can simply be
ignored. In the current section we also assume all individuals to be susceptible, but now
we see what happens if some are immunized e.g. by vaccination (from now on we call
them vaccinated). It is then natural to keep track also of the vaccinated individuals in
order to study the effect of vaccination. Suppose that a vaccine giving complete immunity
is available and that this can be distributed prior to the start of the outbreak. Mathe-
matically, this can be modelled by labelling vaccinated individuals as recovered /immune
and to remove them and all their connections from the network. The effect is that the
size of the network of susceptibles (unvaccinated) becomes smaller, but more important,
that the degrees of remaining individuals are reduced. The practical effect is hence that
all vaccinated are protected, but also the non-vaccinated individuals profit in that they
have fewer neighbours who can infect them. It is also possible to consider vaccines giving
partial immunity (which reduces the risk of getting infected from neighbours) and poten-
tially also reducing infectivity in case of still getting infected (see [17] for such description
and how these quantities are estimated) but we will not consider such models further.

If a fraction v of the community are vaccinated prior to the outbreak, it is of interest
to see the effect of such a control program as compared to no prevention. In order
to study this (which we briefly do inte next section) it is not enough to specify what
fraction was vaccinated. Also who was vaccinated needs to be known. Needless to say,
vaccinating individuals with many neighbours is better from a public health perspective
than vaccinating individuals with no or few connections.

One vaccination policy which could be easy to implement is where candidates are chosen
at random, so that the group of vaccinees is a uniformly chosen fraction v of the com-
munity. We call this strategy the uniform vaccination strategy. There are several other
more efficient vaccination strategies, but these are often harder to implement practically.
One strategy is to choose the individuals having largest degrees, so the fraction v being
vaccinated are those with highest degrees. This is often the best or close to best strategy,
but on the other hand it is rarely the case that the degrees of individuals are known. In-
stead often other proxys are used to reach socially active individuals. For instance, when
considering STT’s condoms are sometimes distributed freely at night clubs/discoteques
and/or at sex-counselling cliniques, thus reaching sexually active people. Another more
mathematically formulated strategy is the so called acquaintance vaccination strategy [12).
In this strategy individuals are chosen uniformly and then one of its neighbours are vacci-
nated, and this is done until a community fraction v has been vaccinated. By vaccinating
friends of randomly selected individuals, rather than the individuals themselves, individ-
uals being vaccinated will tend to have higher degree. This follows from the somewhat



sad network property that ”your friends (typically) have more friends than you do”. In
practice it seems like an unethical vaccination strategy, but a related strategy that has
been implemented is to give a vaccine or other protection to randomly selected individuals
and their partners.

There are other forms of prevention than vaccination and isolation. Mathematically there
are two different types of prevention. One aims at reducing the rate of contact between
individuals, and the other aims at reducing the risk of transmission upon contact. Isolation
belongs to the first group whereas vaccination to the second — so we have just seen
that their mathematical effect may not differ, but often they do. When it comes to
preparedness for a new pandemic influenza, school closure is often considered as one
option for reducing disease spreading (e.g. [11]), but also vaccination once a vaccine has
been developed for the new strain (e.g. [24]), and when it comes to more serious diseases
spreading locally, like SARS and Ebola, travelling bans are often discussed and their
effects modelled (e.g. [29]).

5 Model properties

In the current section we state some results for the network epidemics defined above. We
do this without 100% rigor in order to avoid too many special cases and assumptions.
Before doing this we define the most important quantity of the network epidemic model.

Definition 5.1 (Reproduction numbers). Consider a network epidemic taking place in
a large community. The basic reproduction number is denoted Ry and is (loosely)
defined as the expected number of new infections caused by typical infected individuals
during the early stage of the epidemic. The preventive reproduction number after a
vaccination strategy S with vaccination coverage v has been implemented, is denoted Ry

The main reason why these reproduction numbers are important lies in their relation to
the threshold value 1 which determines if a major outbreak is possible or not:

Result 5.1. For the network epidemics defined in previous sections (and for a very wide
class of epidemic models) the over-all fraction getting infected 1, = Z/n, where Z is the
final number getting infected, satisfies T, — 0 in probability if and only if Ry < 1. Further,
a vaccination strategy S with vaccine coverage v results in “herd immunty” (thus surely

protecting also unvaccinated) if and only if R <1

The consequence of the result is hence that a network epidemic having Ry > 1 is in
danger a large community fraction getting infected (for many models it is also possible
to determine this fraction but we omit these type of results here). The aim for any
vaccination (or other preventive) program is therefore to reduce the reproduction number

to below 1, i.e. to obtain R <1

It is not alway easy to determine the basic reproduction number for a network epidemic
model, and for many networks with complicated structure these are not available. For
simpler networks Ry is however known:

Result 5.2. Consider the Erdos-Renyi network, the Configuration model network or the
Preferential attachment network, having degree distribution D ~ {py} having mean pp
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and variance 0%. The basic reproduction number for the Reed-Frost epidemic on these
networks is given by

N k2 2 _
R§™) = p (E(D - 1)) =p (—Z’LDpk - 1) =p <uD+ b —Hp MD) :

UD

The basic reproduction number for the Markovian epidemic on these networks is given by

(M) B A N 5 ZkaPk_)_ B ( U%)_ND)
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The basic reproduction number for the two models also having random contacts is as
above but adding the term B in the Reed-Frost model and the term g /v in the Markov
model. For the preferential attachment model is is known that the degree distribution D
has infinite variance, which hence implies that Ry = +00.

We will not prove this result, but give a quick heuristic explanation of the first equality —
the latter equalities follow from simple algebra. The degree of infectives during the early
stages of an epidemic is different from the degree of individuals in the community at large.
Clearly, individuals with degree 0 (i.e. having no connections) will never get infected.
More precisely, an individual with degree k is k times more likely to get infected than
an individual having degree 1. The consequence of this is that the degree of infectives
during the early stages of an outbreak equals k has probability proportional to kpy.
This so called size-biased degree distribution is denoted D, with outcome probabilities
Pr = kpr/pp. In the beginning of an outbreak all neighbours except the infector will be
susceptible, so there are D — 1 possible individuals to infect, and the probability to infect
any given neighbour is p in the Reed-Frost epidemic and 8/(5 ++) in the Markov model.
This explains the first equalities above: the expression to the right is the probability
of infecting a susceptible neighbour multiplied by the expected number of susceptible
neighbours of infected individuals during the early stage of an outbreak. The added term
for the models also having random contacts is simply the mean number of such global
infectious contacts (all will be with susceptibles during the early stages of the outbreak).

The corresponding reproduction number after a vaccination program has been initiated
is often more complicated to derive. However, the uniform vaccination strategy with
vaccination coverage v has a simple form:

Result 5.3. For the epidemic models in the previous result (and more or less all epidemic

models), the reproduction number RE,U) after a fraction v, chosen uniformly in the com-
munity, have been vaccinated, relates to the basic reproduction number by the following
relation:

RY) = Ry(1 — ).

The critical vaccination coverage for the uniform vaccination coverage (the fraction needed
to vaccinate to reduce Rf)U) down to 1) is hence given by

o) =1—1/R,.

C

For vaccination strategies that do better than the uniform strategy, typically by vacci-
nating individuals with higher degree, the corresponding reproduction number is smaller
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than that of the uniform strategy with the same coverage. Consequently, the critical vac-
cination coverage is smaller for such strategies as compared with the uniform. However,
other strategies typically do not give explicit expressions for the reproduction number and
critical vaccination coverage.

As mentioned earlier we will not prove any of the results mentioned above. The proofs
are rather complicated, and several results for probabilistic analysis of network epidemics
are still missing. The main reasons for the complications are: random networks are
complicated in their own right, to add random epidemic process taking place "on” the
network clearly adds complexity, and whether individuals get infected or not depend on
the status of neighbours so the events of getting infected are dependent.

6 Statistical inference

We now move to the important area of making statistical inference for epidemics taking
place on networks. This is a complicated area which desrves more attention. One reason
for the complications lie in the underlying probabilistic complexity described in the pre-
vious section. However, a more important reason is the fact that often very little of the
epidemic, and the network in particular, is observed. Below we describe a few different
data scenarios, and give some important questions deserving attention for each of the
data settings. The data could either reflect the final outcome of an epidemic, or disease
incidence over time, but also reflect what is known or observed about the underlying
network. In Subsection we also briefly describe inference methodology for outbreaks
where also virus sequence data is available, methods which make use of the evolution of
the virus by comparing virus sequences of diagnosed cases.

6.1 Epidemic outbreak on known network

In some situations, for example diseases spreading through airborne aerosols, like in-
fluenza, the most important social structure of relevance for disease spreading is believed
to be households. Since this is a known structure which is easy to collect information
about, a model for the underlying network is not needed. Consider for example the final
outbreak taking place in a community built up of households. That is, the data we ob-
serve is {n,;;0 < i < h < hAyax}, where ny; denotes the number of households having h
initially susceptible and in which ¢ of them were infected during the outbreak. As men-
tioned earlier, it is important to only consider susceptible individuals. In practice this
can be achieved by testing for antibodies prior to the outbreak.

We have not described a household epidemic model, but the simplest, Reed-Frost type,
household epidemic is given by the Reed-Frost epidemic model with random contacts
defined earlier, but where the network consists of small, fully connected subgroups — the
households.

The model can be approximated by assuming that households behave independently and
all individuals having a fixed probability ps to be infected from outside the household.
For this approximate model it is possible to write down the probability that ¢ out of
h individuals in a household get infected m,,; = m:(p,pe), as a function of the two
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model parameters p and pg. This is done by first conditioning on how many that get
infected from outside the household (a binomial outcome) and then the rest being infected
from household members. These latter probabilities are non-trivial and given by certain
recursive formulae not presented here (see Longini and Koopman [23] and Addy et al.
[1] who also considers different types of individual). The conclusion is anyway that the
likelihood is simple in terms of these probabilities:

hmax h

Lp,pe) = [[ [[7ni(p.pc)™.

h=1 =0

It is worth emphasizing that this is not the exact likelihood for the stochastic household
model, but an approximation relying on a large community where households are close to
independent, so it can be called a pseudo-likelihood. Parameter estimates are obtained by
maximizing the likelihood with respect to p and pg (or when the original parametrization
with individual global transmission probability G /n is used then pg should be replaced
by the community infection probability 1 — e=?¢7, 7 being the overall fraction infected).
For details on this we refer to Longini and Koopman [23]. The pseudo-likelihood gives a
consistent estimate of the parameters p and pg but their uncertainty estimates are biased
from neglecting depedencies — in Ball et al. [4] it is described how to correct for this using
the proper stochastic epidemic model and its central limit theorem.

If we instead consider an arbitrary but known network where we observe the final outbreak
as illustrated on the small network in Figure [3| inference is much less straightforward
even when all transmission takes place along edges in the network and random infectious
contacts are not considered. The main reason is that we do not observe who-infected

y

Figure 3: Illustration of the final outcome in a small random social network. Red nodes
have been infected and black nodes have not.

whom, or not even in which order individuals were infected. As an illustration, individual
¢ in the figure was infected during the outbreak and so were 2 out of 3 neighbours of .
What is the contribution of this to the likelihood? The answer will depend on when ¢ was
infected in relation to the neighbours. Clearly ¢ was infected by one of the two infected
neighbours (excluding the small probability that ¢ was the index case), but was i infected
by the first of the other two getting infected and did ¢ then infect the other, or was i
not infected by the first of them and failed to infect any of the remaining individuals?
The former would indicate a larger value of p compared to the latter, but information
on which of these scenarios (or other scenarios) is not contained in the data thus making
inference much harder. One possible approach is to try to collect also information on time
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of infection (or diagnosis) making the likelihood manageable, or to augment the final size
data with this information and use MCMC methods thus integrating over possible and
likely temporal outbreak data (see e.g. Britton and O’Neill [I0]). Another observation
from the figure is that there is a higher tendency for individuals with high degree to get
infected. There are however exceptions: the individual left to ¢ has four neighbours, and
all of them were infected, but still this individual escaped infection by chance.

It seems like an important open problem to come up with simpler pseudo-likelihood
methods for the type of data considered. It is not clear if the likelihood is better to
consider for different nodes or for different edges in the network. If considering the
likelihood contribution from different individuals, such methods might make use of the
fact that the likelihood contribution from an individual ¢ escaping infection should be
(1 — p)%i, where T; denotes the total number of infected neighbours to i. If instead
considering the likelhoood in terms of edges, then edges where both individuals escape
infection there is no contribution to the likelihood, and for edges where one individual is
infected and the other escapes infection the likelihood contribution is 1 — p, since there
was no transmission through that edge. The problem lies in edges where both individuals
were infected. For such edges it is not (always) clear if a transmission took place or if the
second individual to get infected escapes infection from that neighbour and only later got
infected from another neighbour.

It is also possible to consider other known network structures, such as schools, together
with households and possible random contacts. The likelihood of course becomes more
complicated and some computer intensive statistical methodology has to be used (e.g.
[11)).

If temporal data is available inference is often simplified, at least when the order of in-
fection can be inferred from the temporal data. Suppose for simplicity that we observe
when individuals get infected and when they recover. We summarize this data by the
following quantities for each individual : (E;, Ny, I;), where E; is the accumulated ex-
posure to infection up until individual ¢ was infected, or to the end of the epidemic if ¢
was not infected. N; and I; are only relevant if ¢ got infected. In that case N; denotes
the number of infectious neighbours of ¢ at the time when ¢ gets infected, and I; denotes
the length of the infectious period of ¢. Clearly, this information is available when the
network is known and we observe infection and recovery times of all infected individuals.
The likelihood for this data is given by:

LBy = [Te T N T] £) ocePB57 1T f(1),
i i€Inf i€Inf i€Inf

where we have left out a combinatorial factor not affecting estimation on the left hand side,
Z denotes the final number infected, and f(I;) is the density of the infectious period — this
likelihood is valid also for other distributions than the exponential distribution. From this
we see that estimates of J and « are more or less independent, and the inference for the
infectious period distribution is just as when observing i.i.d. infectious periods. Further,
it is easy to show that the ML-estimate for [ is given by

the number of infections dived by the overall exposure times between infectious individuals
and their susceptible neighbours. To obtain standard errors for this estimate remains an
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open problem for most networks. However, using theory for counting processes (Andersen
et al., [2]) this should be possible to derive using similar to techniques as for homogeneous
epidemic models observed continuously in time (see for example Diekmann et al. [13],
Section 5.4.2).

6.2 Epidemic outbreak on known network model

Much more common than knowing the underlying social network (as considered in the
previous subsection) is to not know the underlying network. In some situations the
structure of the underlying network could be known, at least partially, but it is not
known at an individual level. This would be the case when a (representative) sample of
so-called egocentric networks are observed but not related to the epidemic outbreak (e.g.
[30]). As an illustration for STI's in a one-sex population, a study of sexual habits can be
used to infer the degree distribution {p} for the number of sex-partners the last year, and
then the configuration model or the preferential attachment model (for suitable choice of
r) might be used to model the underlying sexual network even though it is not observed.

If an epidemic outbreak is observed for such a network, the inference methodology will
depend on what is observed. If all that is observed is the final fraction getting infected,
then very little can be done. If the underlying network model, including parameter values
is known, then it is in principle possible to estimate one disease spreading parameter, at
least for network epidemics for which the limiting final size has been derived. This final
size limit 7 will be a function of the network model (assumed known) and disease model
parameters (e.g. p in the Reed-Frost version), and the estimate p is then the value of p for
which 7 coincides with the observed final fraction 7. Such an estimate of disease spreading
paramaters relies on the network model, including its parameters, is fully known. If for
example an incorrect value for the mean degree u is used, then p will be biased.

If instead incidence is observed over time, and/or also network information of infected
individuals is collected, then inference procedures should be possible to improve, but such
methods are still to be developed.

6.3 Epidemic outbreak on unknown network model using virus
sequences

A related situation as considered in the previous section is for epidemic data where diag-
nosed individuals are also sequenced, meaning that the DNA of the virus (or other disease
agent) is sequenced. The underlying idea is that, for viruses that evolve (within infected
individuals) at the same time scale as the epidemic spreads, individuals close to each other
in the transmission tree will have virus sequences that are more similar as compared to
individuals that are farther away from each other in the transmission tree. So by observ-
ing also the sequences among diagnosed individuals, it is possible to learn more about the
underlying transmission tree and hence about the underlying social network upon which
the disease spreads.

This new research area, of making inference using sequences, with or without traditional
epidemic data, has exploded the last 10-15 years. To describe this field in detail would
require many pages of modelling and statistical methodology — here we simple sketch it
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briefly. For a more thorough descriptin we refer to other papers, for example the survey
chapter by Klinkenberg, Colijn and Didelot in Held et al. [18].

There are numerous models for how a virus population within a host evolves over time.
A simple model assumes that an individual is infected by one single virus strain, and
that this strain evolves over time within the individual, but that all copies of the virus
are identical. The motivation is that mutations that are inferior quickly die out whereas
mutations that are superior quickly take over the entire virus population — this is called the
“one dominant strain” assumption as opposed to allowing for within-host diversity. When
applying the one-dominant-strain assumption and a suitable evolutionary model for DNA
mutations (see e.g. Felsenstein [15]) it is possible to infer the virus genealogy of the virus
sequences from the infected individuals. This virus genealogy, where distance is measured
in evolutionary distance (e.g. number of mutations per 1000 base pairs), is in turn related
to corresponding transmission tree where distance is measured in calender time. In case
of one-dominant-strain and assuming a constant molecular clock (i.e. constant rate of
mutation over time and across individuals) the two trees are identical, except that the virus
genealogy does not contain information on who infected whom, which the transmission
tree does (cf. Figure {4) for an illustration).
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Figure 4: Tllustration of an transmission tree (A) and the corresponding virus genealogy
(B). In the transmission tree individual 1 is the index case and this individual directly
infects individual 2, and later individual 7 (infections are indicated by dashed upward
lines, and infectious periods of individuals are marked with red horizontal lines). In the
virus genealogy the information about who infected whom is lost, as are the starting times
of individuals’ infectious periods. The distance unit for the transmission tree is calendar
time whereas it is evolutionary distance in the virus genealogy.

So by sequencing viruses of infected individual, it is possible to learn about the virus
genealogy and hence also about the transmission tree. By comparing the inferred virus
genealogy with typical virus genealogies from various network and transmission models
(and their parameters) it is possible learn what the underlying network structure might
have been. These type of ideas are often used for outbreaks of HIV in order to learn more
about spreading patterns (e.g. Leventhal et al. [21] and Giardina et al. [16]).

The statistical methodology is often quite involved and numerically intensive, for exam-
ple employing MCMC, Approximate Bayesian Computation (ABC) and Iterated filtering
methods. As mentioned earlied the main idea in MCMC for infectious disease data is
to treat unknown features, such as the underlying network, as latent variables used in
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the MCMC chain which are then integrated over. The main idea with ABC and iter-
ated filtering methods is to simulate/generate output for different choices of models and
parameters, and to run additional simulations for models/parameters ”close” to those of
earlier simulations which resembled the observed data (importance sampling). The com-
parison of how well a simulation agrees with data can for example be performed using
tree shape measures such as Sackin index (cf. [21]).

A disadvantage with most work in this new area of infectious disease inference is that
traditional epidemic data, in particular of exposed individuals avoiding infection, is rarely
used. In fact, Li et al. [22] even report that precision in inference worsens when the
statistical analysis also make use of incidence data beside the virus sequence data. It is my
strong opinion that this should not be the case if a correctly performed statistical analysis
is used on a suitable statistical model for community structure and disease transmission.
It is an important area to develop statistical methodology for network epidemic data using
both virus sequences and incidence and other epidemic and network data.

6.4 Predicting effects of preventive measures

One of the main reasons for mathematical modelling and statistical analysis of (network)
epidemics is prevention: next time there is a similar epidemic outbreak, or even during
an ongoing outbreak, it is of interest to predict what would happen if various control
measures are put in place. These control measures could for example be vaccination,
increased condom use, isolation of infected cases, school closures or introducing travelling
restrictions. The common way to proceed is to estimate paramaters for a suitable model of
the network and disease spreading, and then to mathematically analyse what would be the
outcome if some control measure was put in place for the studied model with parameter
values taken from the estimation step. As a very simple illustration, suppose the basic
reproduction has been estimated to Ry = 1.5 and with standard error s.e.(Ry) = 0.1. If a
vaccine giving 100% immunity is available next time and a fraction v = 0.2 of randomly
selected individuals were vaccinated, an estimate of the new reproduction number would

N

be R = Ro(1 —v) =1.5%0.8 =1.2 (cf. Result 5.3 in Section 5). Similarly, the critical

vaccination coverage is estimated to 3 =11 / Ry = 0.33, meaning that predicted
fraction necessary to vaccine in order to avoid a future outbreak is 33%. Using also the

standard error it is possible to construct an upper confidence bound on vﬁU).

In more complicated situations, like an ongoing epidemic where vaccination is introduced
or modelling effects of school closure, in structured communities, the corresponding effects
are most often studied by means of simulations (e.g. Longini et al. [24] and Cauchemez et
al. [TT]). The basic idea is however the same: to first use data to infer model parameters
and then to study effects of intervention for the model and its estimated parameters. The
effect of intervention, for example how much susceptibility is reduced by the vaccine, or
the effect of closing schools on infection between school children, has to be known or
estimated using some other data source.

Increasing knowledge in this area can either consist of improving the mathematical anal-
ysis of effects of intervention in network models, and/or to improve inference procedures
for data on network epidemics.
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7 Discussion and Extensions

The ambition with the paper has been to give some basic ideas behind stochastic mod-
elling and statistical analysis of infectious disease outbreaks taking place in communities
structured as social networks. The focus has been on methodology rather than hands-
on data analysis. This area uses many different probabilistic and stochastic techniques
making it impossible to cover the area in any detail — instead we have referred to useful
publications in different subareas where more can be learned.

An inherent problem with the area, beside its mathematical complexity stemming from
randomness in both the underlying network and the disease spreading on it, is that very
rarely is the network structure even partly known or observed. The area certainly requires
more research, in particular to make better use of virus sequences and other proxies
(e.g. from egocentric networks) giving information about the underlying network, and to
combine such information with incidence and exposure data for an improved combined
statistical analyis.

Needless to say, we have left out several important issues. Some very important issues only
briefly mentioned in the text, and important to consider both in modelling and statistical
analysis are: under-reporting, asymptomatic cases and partial immunity. Nearly all data
on epidemic outbreaks miss some infected cases, perhaps because they were asymptomatic
or mild cases, but also for other reasons. Partial immunity is another aspect which cannot
be neglected. If estimation is performed in a partially immune community, then the
conclusion are no longer valid when immunty in the community wames.

We now mention some topics we have not touched upon: models and analysis of diseases
that are endemic in the population, models and analysis for situations where indivuduals
change behavior over time — perhaps as a result of the epidemic outbreak, statistical anal-
ysis of epidemics on dynamic networks, models for which the infectivity of an individual
varies over time (e.g. the accute and chronic phase of HIV), and the important area of
model fit.

As has been mentioned in several places, the statistical methods for models capturing both
(often unobserved) network structure and transmission models, are often too complicated
for direct methods such as maximum likelihood estimation. Instead some numerically
intensive method like MCMC, ABC or Particle filtering can be adopted. Held et al. [18]
is a recent book describing such (and other) statistical methods for infectious disease data,
but without focus on the network situation.

Eventhough statistical analysis of network epidemics is quite hard, it is encouraging to
see that preventive measure make use of ideas from network epidemic modelling. For
example, distribution of vaccines and/or condoms to selected individuals and their part-
ners (mimicking the acquaintance vaccination strategy in Section 4), and ring-vaccination
in Ebola outbreaks, clearly making use of social structures by vaccinating relatives and
friends of all reported cases [19].

It is my strong belief that much progress can be made in this important research area
by development of new statistical methodolology together with close connections to data
collectors, thus paving the way to more informative data collection as well.
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