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Statistical inference links data and theory in
network science

Leto Peel 1 , Tiago P. Peixoto 2 & Manlio De Domenico 3

The number of network science applications across many different fields has
been rapidly increasing. Surprisingly, the development of theory and domain-
specific applications often occur in isolation, risking an effective disconnect
between theoretical and methodological advances and the way network sci-
ence is employed in practice. Here we address this risk constructively, dis-
cussing good practices to guarantee more successful applications and
reproducible results. We endorse designing statistically grounded methodol-
ogies to address challenges in network science. This approach allows one to
explain observational data in terms of generative models, naturally deal with
intrinsic uncertainties, and strengthen the link between theory and
applications.

Network science is the study of complex systems composed of fun-
damental units, represented as nodes, and their interactions or
relations, represented as links1,2. This mathematical abstraction pre-
sents the opportunity to study an interacting system as a whole, and
allows us to uncover important insights thatwewould otherwisemiss
had we studied the system as a simple collection of units, e.g., by
reducing it to the sum of its parts or any other naive aggregation.
Furthermore, network science points towards a unified formalism
that can be used to describe systems belonging to various scientific
domains, but can nevertheless be cast as a network of interacting
elements. Indeed, this holistic treatment had been employed for the
study of a wide variety of complex systems, including biological
(from cellular biology3–5 to neural circuits6–8 and ecological food
webs9–11), technological (from coupled infrastructures12,13 to com-
munication systems14,15) and social (from socio-technical
relationships16–19 to animal interactions20,21) systems, enhancing our
understanding of emergent phenomena in society22,23, life24–26 and
disease27–29, as well as their combination30–35.

Despite the comprehensive embrace of this holistic ethos in such
a large variety of scientific disciplines, it is perhaps surprising to find
that the development of network science theory and its application to
specific domains often occur with some degree of isolation. Con-
sequences of this separation are (i) that general network science
methods are typically developed that do not consider the provenance
of the underlying data and (ii) that network science methods are

misused and/or used out of context. These issues arise because, on the
one hand, methods are often developed and tested with little con-
sideration for inherent uncertainties and incompleteness of readily-
available empirical data, or even an in-depth understanding of its
provenance and measurement procedure. On the other hand, original
empirical work that involves collecting data and subsequent analysis,
often employs off-the-shelf methodology that may be incompatible
with the data and/or domain. Perhaps this separation of tasks can be
considered a simple and convenient division of labour that naturally
occurs as individual researchers specialise within a given domain. One
might argue that such specialisation is reasonable, offering a more
efficient path to solving specific challenges and even that it is neces-
sary to flourish within the competitive environment of scientific
research.

Here we highlight some of the risks associated with such a
separation within a field as diverse and interdisciplinary as network
science. The variety of potential problems, range from the prolifera-
tion of theories that lose sight of target research questions to applying
methodswhile overlooking the underlying hypotheses and limitations.
The use of inappropriate methodology or blind application of meth-
ods in lieu of a clear understanding runs the risk of cutting down
network science before it has the chance to fully bloom, and can
undermine the efforts for dialog and confrontation built over more
than two decades by those scientists who areworking from theoretical
to applied problems.
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Linking data and theory in network science
The central issue we wish to highlight is that, when manifest, the dis-
connect betweenmethodandapplication erases the crucial distinction
between data (i.e., what is actually measured) and abstraction (i.e., the
underlying network representation). Very often, researchers choose to
draw the shortest line from the measurements at hand to a network
representation, ignoring the fact that the actual interactions between
network elements usually manifest themselves only indirectly in the
observations. This occurs for a variety of reasons, ranging from
uncertainties in the measurements, data inaccessibility or inap-
propriate choice of representation.

Herewe argue that themost appropriate stance to take is to frame
network analysis as a problem of inference, where the actual network
abstraction is hidden from view, and needs to be reconstructed given
indirectdata.We illustrate this in Box 1, wherewe show someexamples

of indirect measurements—incomplete and erroneous networks, time
series dynamics and proximity events—that point only indirectly at the
underlying network structure, which needs to be reconstructed.

In this work, we will focus on three intimately related factors that
are often overlooked as a consequence of the aforementioned gap
between theory and practice in network science: (1) The obscured
quality of the data. (2) The choice of representation. (3) The suitability
of the methods.We argue that in order to close this gap it is necessary
to adopt a model-centric approach to data-driven network analysis,
requiring an appropriate level of abstraction to describe the object of
study (often not directly observed in the data), and an inferential step
that allows us to extract that abstraction from the (potentially indirect)
data at hand. The methodology providing this connection should be
derived from first principles, and should be tailored to particular
domains of application.

BOX 1

Linking data and theory in network science

A network of interactions A that gives as a result some kind of observational data D should not in general be conflated with the data itself.
Instead, we need to recognize that the data D is the result of measurement process P(D∣A) that is conditioned on the unseen network, but is to
some extent unavoidably decoupled from it. In order to estimate the underlying network, we need to perform an inferential step P(A∣D), which
needs to includeourmodeling assumptions about how the network and the data aregenerated. The resulting estimate Âwill have an uncertainty
that reflects the experimental design, accuracy of the measurements and overall feasibility of the particular reconstruction problem.
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We will demonstrate typical pitfalls that result from blurring the
distinction between data and abstraction, recent work that has been
done to address them, as well as existing challenges and unexplored
open problems. We focus primarily on the structural analysis of net-
works, as determining the network structure is typically thefirst step in
any network analysis. However, the points we raise apply equally to the
analysis of empirical measurements on networks, i.e., dynamical pro-
cesses that take place on them.

Obscured quality of data
When network data are considered, measurement uncertainties are
almost universally neglected, and empirical studies are frequently
carried out as if the given network representation of a real system is
perfectly accurate — an untenable practice long discarded in estab-
lished empirical fields. Observational data is typically incomplete, for
practical reasons, which should raise questions about whether the
dataset is representative or biased and towhat extent. Just to give brief
examples, respondents in survey data may interpret questions in dif-
ferent ways, thus potentially generating inconsistencies36, and obser-
vations of interactions between plant and pollinator species may miss
pollination contacts either due to chance37 or because some species
aremoredifficult to spot thanothers. Furthermore, even if the process
of data collection is accurate enough such that these uncertainties
could be neglected, there are always possibilities for the inclusion of
transcription or copying errors. It might seem trivial to an experi-
mentalist, but the heterogeneity of backgrounds in Network Science
means that these issues are recognized potential as problems to
varying extents and often overlooked entirely.

A case in point is the Zachary’s Karate Club network, which
represents the social interactions betweenmembers of a karate club38.
This network is one of the simplest and most widely used social net-
works for developing Network Science methods—most often
employed only as a standard test network, rather than an object of
study in its own right. It is worth mentioning an obvious transcription
error in the paper that prevents a fully unambiguous accounting of the
data: the recorded adjacency matrix contains a provable error as the
entry (23, 34) is zero while the entry (34, 23) is nonzero even though
the network is undirected. This ambiguity occurs in both the weighted
and unweighted versions of thematrix presented in the original paper.
Furthermore, even if interactions among people had been manually
recorded by Zachary in completeness without errors, the underlying
raw data (direct observations, surveys, school records) and their
associated uncertainty are unavailable to the research community.
This lack of fundamental measurement information severely limits
what can be ultimately learned from this data.

The possibility of measurement errors and omissions should be
considered the rule, rather than the exception, whenever data about
the real world is collected. Typically, those researchers who work
within a specific application area know well these issues and how they
manifest within their specific domain. For instance, the computational
social scientist studying human behavior on social media will be aware
that the data they receive from the platform API is a potentially biased
subset of a complete dataset39 and that the set of users of a specific
platformarenot necessarily representative of the generalpopulation40.
However, such specific domain knowledge is rarely captured in the
data that arepre-processed andmadepublicly available—thedataupon
which the computational tools of network science are developed. The
absence of this metadata that describes the quality of the original data
means that many of the tools of Network Science are built upon the
implicit hypothesis that networks have been constructed perfectly
without errors or omissions in the data—something that rarely can be
justified. Because of this, the rather uncontroversial fact that all data
contain some amount of uncertainty is almost never incorporated into
network analyses and their conclusions, and any awareness of this fact
is (at best) left only as a post hoc admonition or disclaimer.

The central issue here is not accuracy itself, but the lack of error
assessment. Network data are not inherently less or more accurate
than any other kind of empirical data. However, the errors in network
data can easily be amplified in network analyses, and in manners that
are difficult to predict due to the highly nonlinear nature of how they
depend on the network structure, making it hard to estimate the
uncertainty of ourfinal conclusions. Figure 1 illustrates thisproblem, in
which we compute commonly used network descriptors for a simu-
lated noisy measurement of two empirical networks, one of friend-
ships between high-school students41, and the other of hyperlink
connections between political blogs42. These networks themselves are
measured and therefore contain their own unknown errors. However,
for the purpose of this simulation, we assume they are complete
without any errors. Based on this fictitious “true” network, we simulate
an edge not being recorded (a “false negative”) with a uniform prob-
ability p and a non-edge being recorded as an edge (a “false positive”)

with a probability q=pE=½ N
2

� �
� E�, where N and E are the number of

nodes and edges in the original network. The probability q is chosen in
this way such that the expected number of observed edges is the same
as in the original network. One might naively expect that the effect of
this kind of uniform measurement error is simply to introduce fluc-
tuations around the values of the network descriptors for the original
network. Instead we observe systematic biases that shift these values
into particular directions such that they no longer resemble those of
the original network and, importantly, they can hide existing struc-
tures or amplify existing ones.

Fig. 1 | Network descriptors measured from noisy networks and their recon-
struction. We investigate two empirical networks: a friendships between
high school students and b hyperlinks between political blogs—measured with
a simulated missing edge probability p, and spurious edge probability

q=pE
�

N
2

� �
� E

� �
. We consider the resulting network as it is measured in this

noisy manner (“not reconstructed”), and the reconstructed networks obtained
with the Bayesian method of ref. 53, after M independent noisy measurements
are performed. We show the values of averaged local clustering coefficient and
spectral gap of the corresponding random walk transition matrix, obtained in
each case. The error bars correspond to the standard deviation of posterior
distribution. The horizontal line shows the true values for the original network.
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It should be remarked here that early work in network science
acknowledged that network data are susceptible to errors43 and laid
the foundations for the task of inferring missing links from an
observed network that would later be known as link prediction44.
While Goldberg and Roth43 developed heuristics to leverage the
newly discovered “small-world” properties of networks45, others
used node attributes to predict missing links46,47. Since then a
numerous literature on the topic of link prediction44,48–50 has
emerged, including the related, but distinct, task of predicting
future links in temporally evolving networks51. However, it appears
as though these works have been developed within their own silo of
“link prediction” with little interaction with the rest of network
analysis (notable exceptions are the works of Clauset et al.49 and
Guimerá et al.48, who framed link prediction as a statistical inference
problem, based on generative network models). Decomposing a
problem into separate subtasks can offer great benefits in how we
organize scientific development, but this separation incurs the risk
of these subtasks becoming universes in their own right, and the
fact that they are a piece a larger puzzle can easily be forgotten. In
the specific case of link prediction, researchers tend to focus on the
core theoretical problem but often neglect essential practical
matters, e.g., most emphasis is given to ranking edges according to
those most likely to be present, but not to how many edges should
be predicted or the impact of asymmetries in misclassification
costs. Framing link prediction as a ranking problem allows different
methods to be easily compared to each other, but it does not by
itself deliver a complete methodology that can be readily used by
practitioners. Because of this, the abundant literature on link pre-
diction has not resulted in an abundance of actual links predicted.

Fortunately, more recently the idea of uncertain network data has
been restored and started to return to the mainstream with a few
researchers bringing forth a research agenda devoted to the incor-
poration, both theoretically and in practice, of the existence and the
effects of errors in network measurements. The first step in this
direction is to embrace the fundamental distinction between data and
abstraction, and accept the fact that whatever measurement we make
is not necessarily "the” network we want to study, but includes at least
some amount of distortion. Consequently, studying a network should
be framed in terms of network reconstruction, which we have already
introduced in Box 1. This idea is implemented as quantitative metho-
dology by formulating generativemodels that combine both the noisy
measurement, expressed as a probability P(D∣A) of observing data D
given an underlying networkA, as well as the latent network structure,
encoded in a prior probability P(A), and using this information to
determine which are the networks that are more likely to lie behind a
given observation, via the Bayesian posterior distribution

PðA∣DÞ= PðD∣AÞPðAÞ
PðDÞ : ð1Þ

This approach is arbitrarily extensible, since we can replace our
measurement models and network prior as desired, incorporating
appropriatedomainknowledge,tobettersuitanyparticularapplication.

In the context of social networks, Butts36 has implemented the
above approach to take into account reporting errors in network data.
Newman52 has also used the above approach to show how multiple
independent network measurements can be used to reconstruct a
network that is more accurate than what we would obtain with indi-
vidual measurement. Building upon the seminal works of Guimera
et al.48, Clauset et al.49 and Airoldi et al.50, Peixoto53 extended this fra-
mework by introducing structured network priors that can uncover
the latent modular network structure, and use this information to
determine what is more likely to be the underlying network, even
in situations where a single network measurement is made, and the
errors are unknown. Young et al.54 built a general setup where the

practitioner can specify an arbitrary measurement model, in a situa-
tion where multiple measurements are made.

Figure 1 also shows the results obtained with the reconstructed
networks using the method of ref. 53, which are closer to the true
values (even for single measurements, M = 1), and approaches them
asymptotically as the number of independent measurements increa-
ses. These kinds of result illustrate two main points: i) More sensible
approaches that incorporate, rather than ignore, the possibility of
measurement error can improve the analysis even when information
about the uncertainty of the data is unavailable; ii) Accurate results are
only ultimately possible if proper error quantification ismade (as in the
multiple measurements M > 1 in Fig. 1), and these are taken into
account in the analysis. Although there are alreadymethodsdeveloped
that implement the first approach, these can still be further developed,
incorporatingmore realistic anddiverse networkmodels, andbemade
more computationally efficient. However, these approaches will
invariably hit upon fundamental limits of reconstruction, which can
only be lifted if proper error quantification is incorporated in the data
acquisition phase. This means that accurate network analysis will only
be possible if the empirical practice in network science ceases to omit
such crucial information.

Although still far from common practice, we see that the network
science community has at least considered issues of data uncertainty
and the growing emphasis on network reconstruction is promising.
However, it is important to note that not only links but also the nodes
(and their attributes, or metadata) may also contain errors, which are
often seen in the context of node identity. For instance, consider a
collaboration network in which nodes are authors who are linked if
they have worked together. These networks can be constructed from
bibliometric data, but defining a node requires matching an individual
author across multiple publication records. Errors can easily arise
becausedifferent authors can have the samename, potentially causing
multiple nodes to be collapsed into a single node, and an individual
author can have different collaborators and institutional affiliations, or
a name that appears undermultiple spellings, potentially representing
a single node as multiple nodes. These issues are further exacerbated
by errors or differences in recording node attributes, e.g., author
affiliations are often formatted differently from journal to journal.

This kind of node uncertainty has not really received sufficient
attention, yet, in the network science literature. However, resolving
these uncertainties has been previously explored in the context of
matching entities across different data sources55,56. The problem is
commonly referred to entity resolutionbut also knownbyother names
such as record linkage, deduplication, object identification and iden-
tity uncertainty, among others. Althoughmuch of the work in this area
was not applied to data that we typically represent as a network, later
works leveraged the network structure in order to improve
matches57–59.

Choice of representation
The choice of relevant variables is one of themost difficult tasks in any
scientific discipline, and itmight be evenmore problematic in network
science, since it deals with complex systems that admit multiple
representations.

When conducting network analysis, it should be commonpractice
to carefully think about what are the nodes and what are the edges.
This issue has been made explicit by Butts60, who warned about how
defining what is a node and an edge is a central choice with crucial
consequences to the network analysis. Butts argued that since the
network representation is always an approximation of the underlying
system, its construction is a theoretical act, that cannot be free of
assumptions, which in turn need to be made explicit and scrutinized.

As we have already mentioned, it is not difficult to confuse a
particular mathematical description of a network with the actual
underlying object of inquiry. In fact, it is common practice to draw the
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shortest route from the data at hand to a network representation,
often referred to as “the” network, even if in many cases this might be
ignoring the crucial distinction between data and abstraction, for
which there are many alternatives that should be at least inspected
before jumping into the analytical stage. In fact, the omission of
measurement errors discussed above can be seen as a particular
symptom of this shortsightedness, but the underlying problem too
often goes well beyond this. As a simple example, we can take any
network and transform it into its corresponding line graph by repla-
cing the edges with nodes, significantly changing the properties of the
network61,62. From a purely mathematical point of view, neither
representation can be considered “the” network, since this transfor-
mation is reversible. Although in most contexts the situation is far less
ambiguous than this, nevertheless it is less common to consider the
possibility that an observed pairwise relation in some data should be
better understood as an indirect manifestation of some hidden rela-
tionship, which may involve different units altogether, or even
none at all.

Once again, we can use the Zachary’s Karate Club as a simple
example. In the original paper the reported network is based upon
some unknown function of multiple types of observed social interac-
tion, that hide, in fact, the underlying chosen representation. What
does each link in Zachary’s network really tell us about the social
interactions among the members of the Karate club? Not knowing
precisely what has been measured by Zachary, and how, prevents any
real scientific understanding to be extracted from what has been
reported.

We can solve a large part of this issue with the choice of repre-
sentation once we require our network abstraction to be part of a
generative process — a mathematical model that is capable of repro-
ducing, at least in principle, whatever data D we are observing, con-
ditioned on the unseen network A as an unknown parameter. This
takes the form of the probability P(D∣A) in Box 1. Arguably, it is only
when such amodel is actually elaborated that we finally have a precise
definition of what our network abstractionmeans and how it relates to
the data. After the generative model is decided, the inference proce-
dure that reconstructs the network follows directly from the posterior
distribution P(A∣D), given by Eq. (1), in a principled manner. What
remains are theoretical and technical issues relating to the tractability,
efficiency and feasibility of the inference, but no longer its interpret-
ability. The uncertainty of the estimates and statistical significance of
the ensuing analysis follow inherently as a natural consequence of this
approach.

In the following, we illustrate common pitfalls that arise from
ignoring or avoiding the above prescription.

(I) Reconstruction based on correlations and thresholding. We
argue that it is crucial to understand not only the provenance of net-
work data, but also tomake explicit the underlying abstraction that we
wish to extract from it. Perhaps the best systematic example of this
problem is the study of time-varying signals, where each node pro-
duces a time series, the underlyingnetwork structure— responsible for
coupling the dynamicsof distinct nodes— is unknownand the shortest
line from data to network is to consider the correlation between time
series as the “edges”of aweighted “correlation network”. However, it is
elementary that correlation is fundamentally different from causation,
and the observed correlation inmany cases is a result of indirect causal
relationships between the units, or in fact by no causal relation-
ship at all.

One may argue that although not sufficient, correlation is neces-
sary evidence of causation, and therefore identifying patterns of cor-
relation may yield insights about the underlying causal relationships.
Indeed, with purely observational data (i.e., with no ability to perform
interventions) there may be ultimately no alternative63. However,
approaching this problem naively is a reason of high concern. We
illustrate this with a deeply flawed, but commonly used approach of

extracting associations based on correlations, where an association
between two time series is deemed to exist if their correlation exceeds
a predefined threshold. We can see how this fails with a basic example:
Consider three variables X(t), Y(t) and Z(t) that each represent time
series in which X(t) and Y(t) are simply noisy perturbations of Z(t), e.g.,

X ðtÞ = Z ðtÞ+ ϵ1
Y ðtÞ = Z ðtÞ+ ϵ2,

ð2Þ

where ϵ1 and ϵ2 are independent noise terms. Clearly, X(t) and Y(t) are
conditionally independent given Z(t), but X(t) and Y(t) will have a
nonzero correlation that can exceed any arbitrary threshold. There-
fore, correlation thresholding will impute that an edge exists between
X(t) and Y(t), even though none exists.

Yet, despite such limitations beingwell known in somedisciplines,
they are often neglected in others, thus leading to several works based
on correlation thresholding. In Fig. 2 we illustrate how ill-suited this
kind of representation is, with a simple example of an Ising model
simulated on a food web64. The Ising model is a simple mathematical
model of ferromagnetism in statistical mechanics in which each node
at a given time is in one of two states {−1, +1}. Interactions across edges
cause neighbouring node states to align or anti-align with larger
probability. Note that we choose the Ising model for this illustration
not due to its realistic nature, but due to its simplicity, and ease of
interpretation. After drawing M = 105 independent samples from the
model at the critical temperature, we compute the pairwise correla-
tions between nodes, and select those above a threshold t as the edges
of our tentative reconstructed network. As the value of t is varied
across the entire range, the resulting correlation network never
achieves more than a marginal resemblance to the true underlying
network. We show further in Fig. 2 that typical network descriptors
vary significantly depending on the threshold chosen. While it may be
possible to choose a particular value of t such that a given descriptor
matches the true network, these specific values are not consistent for
all descriptors. This inconsistency raises a crucial problem for those
studies that select an “optimal threshold” on the basis of this type of
analysis, since such optimal threshold changes with the descriptor,
thus invalidating the concept of global optimization. Even if the
threshold value is chosen tominimize the distance to the true network
—an impossible task in practice because the true network is not
available—most descriptors still remain severely distorted.

Indeed, the general solution to this problem is to recognise once
more the distinction between the data (correlations) and the abstrac-
tion (network), and embrace the perspective of inferring, or recon-
structing, a hidden network from indirect data. Such ideas are by no
means new: Literature on multivariate analysis, as early as the 1970s,
frame this problem as covariance selection65 recognising that condi-
tional independence can be modelled by zeros in the precision matrix
(the inverse of the covariancematrix). A classic approach of this kind is
the graphical LASSO66, which models the set of time series as a mul-
tivariate Gaussian and infers a sparse precision matrix that is con-
sistent with the data. We see in Fig. 2 that, even with this misspecified
model, we can reconstruct the network much better than naive cor-
relation thresholding.

We can also go further and cast this problem under the exact
same inferential framework of Eq. (1), since it represents a very
general reconstruction setting. For this problem, the data D are not
noisy network measurements, but instead a set of time series
representing the node states evolving over time, i.e., samples from
the Ising model67. This reconstruction approach has been demon-
strated in ref. 68, and we show how it behaves for our example in
Fig. 2, where it achieves an accuracy far superior to the threshold
approach, for the same data. The reason for this superior perfor-
mance is straightforward: Eq. (1) allows us to articulate in a formal
way what prior knowledge we have about the underlying network
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and how the data was generated. Eq. (1) also gives us the inference
that follows directly from combining these pieces of information. If
our assumptions are correct, then we have a provably optimal way
to proceed, since no alternative would be able to compete with it.
Otherwise, the resulting inference represents the best state of our
knowledge, and as soon as a better hypothesis is found, the same
framework can be used to compare it with the previous one.

Whatever reconstruction procedure ends up being devised and
used in place of the above prescription (even the one where the data is
taken “as is”) is formally equivalent to a particular posterior distribu-
tion where an implicit model specification does exist but is hidden
from view, making it difficult to express or analyze. Nevertheless, its

implicit character does not exempt it from justification. Therefore we
argue that model specifications need to be made explicit, so that they
can be readily judged, rather than protected from scrutiny.

There are no sound scientific arguments for trying to bypass this
modelling route, although the difficulty or inability to elaborate on the
possible data-generating mechanisms might prove a technical obsta-
cle: e.g., when time series donot come fromaknown, tractableprocess
such as the Ising model or pulse-coupled oscillators69; in such cases
any generative model for the dynamics is at best an approximation,
and a current research challenge consists in developing a general fra-
mework to overcome these limitations. One possibility is to try to infer
the dynamical rules together with the network itself, which may be

Fig. 2 | Network reconstruction in action. Reconstruction of an empirical food
web (upper left), from M = 105 samples of the Ising model at critical temperature.
Left panels: a The true original network, compared with a reconstructed network
obtained by inferring a sparse precision (inverse covariance) matrix using the
graphical LASSO (b). Edges that do not exist in the true network are colored red.
The graphical LASSO assumes the data is drawn from a multivariate Gaussian,
which is clearly a misspecification. However, even this misspecified model per-
forms better than naive correlation thresholding. The result obtained with the
Bayesian method of ref. 68, which matches the data-generating process and

therefore provides a more accurate reconstruction is shown in panel (c). Middle
panels: d networks obtained by considering pairwise correlations above a thresh-
old t as edges in the network, as shown in the legend. Right panels: e Descriptors –
measured from networks obtained through correlation thresholding – as a func-
tion of the correlation threshold t. The solid horizontal line marks the values
obtained for the true network, and the horizontal dashed line the values obtained
with the Bayesian inference. The plot on the lower right shows the Jaccard simi-
larity between the true and reconstructed networks, and the vertical line marks, in
all figures, the threshold value with the maximum Jaccard similarity.
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possible to approximate in a nonparametric fashion, using, for exam-
ple, Bayesian symbolic regression70.

(II) Reconstruction based on proximity. The so-called “proximity
networks” offer a good example of network analyses where a given
observation is mapped directly to an immediate network representa-
tion, often bypassing any latent abstraction. In these analyses, time-
stamped “edges” are associated with proximity events between two
people, i.e., the point in timewhen they comecloser than a pre-defined
distance threshold or a face-to-face interaction has been recorded71–73.

These important works have allowed a very productive series of
studies on temporal networks74, by providing a rich set of interpretable
network data on which meaningful theories have been developed, as
well as the evaluation and comparison of network methodology.
Nevertheless, similar to “correlation networks”, it is important to
consider that these proximity events may ormay not yield the desired
information, depending on the context. For instance, physical
proximity73 may not be so meaningful when reconstructing social
relationships. Chance encounters can occur due to shared circum-
stance, e.g., entering the same elevator, eating in the cafeteria, or
sharing public transportation, which are not indicative of meaningful
social relationships. Face-to-face interactions, on the other hand, can
exclude encounters due to mere proximity72, but they still omit the
context andnatureof the interactions, beyond their timeandduration.
A more challenging, but arguably more informative approach would
be to spell out the different kinds of latent pairwise relationships that
one would like to consider, and how they affect the proximity events
via a generative model (e.g., how differently should close friends
interact in space and time when compared to mere acquaintances?).
Inferring these types of latent social relationships in this way would be
more suitable for most analyses of social dynamics than using the raw
spatial data as a proxy.

We emphasize that there is no inherently correct network repre-
sentation for any particular data, and it all depends on the answers
sought. In fact, proximity networks offer an excellent representation in
the study of the transmission of infectious disease, for example, which
primarily relies on timing and proximity of physical contact, inde-
pendently on what precipitated the proximity. Well-designed, con-
trolled experiments in which on-person sensors have been carefully
selected and calibrated to detect proximity at relevant physical and
temporal ranges have been used to reconstruct networks of potential
transmission pathways and to study the effect of contagionmitigation
strategies75–83. Nevertheless, even in such cases where the chosen
network representation is convincing, one still needs to consider to
what extent it can be extracted fromdata. The useof heterogeneous or
uncalibrated devices, as well as environmental effects (absorption/
reflection by objects, walls, floors etc) widens the gap between a
detected proximity event and a potential transmission84. An appro-
priate choice of representation never obviates the need for an infer-
ential step that extracts from thedata the underlying object of interest,
with some amount of uncertainty.

(III) Reconstruction based on specific granularity prescriptions.
The choice of the relevant temporal or spatial scale for an analysis, also
known as coarse graining, is another ubiquitous and difficult problem
to be solved in a variety of applied disciplines, not just network sci-
ence. A given choice of scale, or aspects of the system that are mea-
sured,will invariably hide information at a smaller scale, or aspects that
are not measured. An immediate network representation based on a
particular choice may therefore provide only an incomplete or dis-
torted picture of the overall system.

A good example is given by spatial networks, such as urban sys-
tems or ones at a larger scale. In this case, the source of bias is the
modifiable areal unit problem arising when a point-based measure is
aggregated into delimited geographic areas85. Considering human
mobility networks where GPS data is used to infer the flows between
distinct parts of a city or a country: point data is aggregated to a

chosen granularity in both space and time without a clear clue about
which scales have to be used. Unfortunately, this choice can dramati-
cally affect the reconstructed network topology, constraining results
to such a specific spatio-temporal granularity and not allowing for an
easy generalization of the observed phenomena86,87. It is important
therefore to recognise the effect of resolution when coarse-graining
spatial data in this manner and either take care in selecting an appro-
priate resolution or explore multiple resolutions in parallel.

There are also examples where the issues of correlations and
spacial granularity can even be mixed. A prime example is the recon-
struction of the connections in the human brain. One way to approach
this is by means of diffusion-based imaging techniques88. In this set-
ting, the structural connectivity is inferred frommethods likeDiffusion
Tensor Imaging together with 3D modelling to represent nerve tracts.
With this method, the difficulty lies on tracing the neural tracts in a 3D
image of objects, and to aggregate the measurements of several indi-
viduals. Since the brains of different individuals are not anatomically
identical, this requires the use of templates for the atlases used to
parcelate the brain. The scale choices involved in this procedure, such
as theRegions of Interests (i.e., the nodes), potentially introduce a bias.
The output links can either represent the number of tracts or the
probability to have those tracts, but the resulting network will depend
on the specificmethod used formodelling and, again, on thresholding
choices.

Alternatively, the measurement of the so-called “functional con-
nectivity” is based on fMRI data on local activities on regions of the
brain. It also relies on the choice of an atlas to define nodes and the
choice of a method to capture correlations between time series, thus
potentially introducing a bias due to the choice of one method over
another. In this case, the connections represent activity correlations
and not physical nerve bundles: network scientists do not consider
such connections as part of a tangible network, but a way to map co-
activating brain areas under some conditions (e.g., resting state or task
performance). We refer to89 for a broader and more specialized
discussion.

Nevertheless, the result is that topological information inferred
using such a heuristic approach depends on the time series length and
tends to overestimate certain patterns90. These misrepresented pat-
terns have non-trivial consequences for our understanding of the
human brain, such as its small-worldness feature91, with a strong
dependence on the number of parcels92. More specifically, Papo et al.
have addressed the problem of how network neuroscientists, using
standard system-level neuroimaging techniques, can interpret the
“small world” construct in the context of functional brain networks,
regardless of the fact if the physical human brain is itself a small world
network or not, and we refer to their work91 for details.

Again, what seems to be lacking is a clear articulation via a gen-
erative model (prior to any measurement) of what constitutes the
connection between brain regions in the first place, and how that
relates to the measured data. Network models applied to functional
connectivity are possible, for example, once one frames it as a
reconstruction problem, where the features inferred relate to an
underlying network responsible for the observed co-activation
patterns68,93.

(IV) Reconstruction based on state space and temporal correla-
tions. Another reconstruction approach consists of considering an
observed time series as the outcome of an (unknown) dynamical sys-
tem that can be written in general as as

_xiðtÞ= FiðxÞ+ ξ iðtÞ, ð3Þ

where xi(t) is the state variable of the i–th unit in a network of size N, Fi
encodes nonlinear functions of the state variables and their coupling,
ξi(t) is a noise term with zero average, and x = {x1, x2, . . . , xN} denotes
the system’s state vector. This representation allows one to cast the
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reconstruction task as the solution of an inverse problem, where the
theory of dynamical systems provides a set of powerful tools to
characterize the underlying dynamics in terms of state space recon-
struction and invariant measures.

Perhaps themost paradigmatic examples of this kind of approach
stem from the work of Marc Timme and collaborators94–98. Largely,
thesemethods are based on finding theminimal network (i.e., smallest
ℓp-norm of the edge couplings) that is compatible with the unde-
termined inversion of the nonlinear system (often coupled oscillators,
but generalizations are possible99) given the observed dynamics. This
kind of ansatz provides a revealing connection between the theory of
dynamical systems and network reconstruction. One drawback, how-
ever, is that it provides only point estimates of the inferred networks,
i.e., a single network estimate with no uncertainty assessment.

Another example comes from applications to atmospheric
dynamics, where data is available on a spatio-temporal grid and a
combination of dimension reduction and reconstruction is used to test
hypotheses about the underlying mechanisms100. Another approach,
applied on extreme-rainfall events, introduces a technique that cor-
rects for the bias due to multiple comparisons — similar in spirit to
what is done to build Bonferroni networks101 — and combine it with
network analysis, to unravel global teleconnection patterns likely to be
controlled by a physical mechanism known as Rossby waves102. A sui-
table combination of a discovery algorithm with conditional inde-
pendence tests have been recently used to infer networks validated by
both synthetic and real-world systems, the latter based on known
physical mechanisms in the climate system and the human heart103.

In some cases, relationships can be also deduced without expli-
citly requiring the knowledge of the governing dynamics equations
while assuming that nonlinear deterministic dynamics are at work104.
This is the case of empirical dynamic modelling — accommodating
desirable cases such as nonequilibrium and nonlinear dynamics, and
can be used for “equation-free” modeling and forecasting105, with
emerging applications to network dynamics106 — as well as other
methods based on state-space reconstruction107.

Since the complex dynamics of interconnected units can be often
described by a set of coupled ODEs where each equation consists of
one term encoding an agent’s self-dynamics and one term encoding
the influenceof other agents, it is possible to approximate a solution to
the inverse problem by using complete orthonormal bases. Following
this prescription, one can use the observed time series to estimate the
unknown coefficients of the model by formulating a linear inverse
problem for each agent. This approach turned out to be successful
when applied to a broad range of problems, from studying social
synchronization in groups of mice to interdependent electrochemical
oscillators108.

Although the approaches mentioned above come substantially
closer to the general inferential procedure we propose, in general they
fall short of a complete implementation. This is because they typically
avoid an explicit definition of a generative model, and attempt to
reconstruct the underlying network from temporal correlations in the
time series. Although these approaches are often said to uncover
causal relationships, this is in fact a misnomer, and an instance of the
post hoc ergo propter hoc fallacy of assuming that one event preceding
another can be used as a proof of causation. Although, as we already
mentioned, there is little hopeof completely disambiguating causation
purely from observational data, a proper inferential framework will
ascribe to everypossible set of causal connections compatiblewith the
data an equal posterior probability, provided they are also equally
likely a priori. This will convert the causal ambiguity present in the data
into an uncertainty estimate, which is something that most of the
approaches mentioned above lack, since they yield only a “point esti-
mate,” i.e., a single network with no associated error assessment.

Furthermore, reconstruction approaches that claim to be “model-
free” should be met with a degree of scepticism, since this is arguably

impossible. This is because we can use Bayes’ formula of Eq. (1) in the
reverse direction, and obtain from any inference procedure P(A∣D) a
corresponding generative model P(D∣A) that is compatible with it.
Therefore, reconstruction approaches cannot be free of models; at
most they can be obscured from view behind the technical imple-
mentation of the method. This inability to easily scrutinize the una-
voidable modelling assumptions that must comewith any conceivable
reconstruction method renders these allegedly model-free approa-
ches black boxes that should be handled with care. Ideally, the mod-
elling assumptions should be made explicit to invite scrutiny, model
selection and the usual iteration of the scientific process.

(V) Reconstruction based on responses to perturbations. In some
cases, one observes the timecourse of a system’s units, but has also the
opportunity to either: (i) act on the system with small perturbations
and record its dynamical response, or (ii) access data where known
perturbations happen at specific points in space and time.

In such scenarios, which can be reliably summarized into con-
trolled perturbation experiments, one can develop ad hocmethods to
exploit the system’s response to reconstruct the unknown topology.
For instance, it is possible to quantify the asymptotic response after
relaxation, where the system has reached a new dynamical state of
equilibrium that can be captured by a response matrix109. This
approach allows one to capture a node’s impact on its local neigh-
bourhood and recover some apparently ubiquitous scaling laws across
disparate complex systems, finding applications in cellular dynamics
and human dynamics in online social networks110.

For specific types of dynamics (e.g., epidemic spreading or
information diffusion) perturbations can be encoded at each time
step by specifying the change in state of a unit, in response to
the corresponding changes in state of its neighbors at previous
time steps. In this case, the equations for the underlying dynamics
can be written in terms of a typical susceptible-infected-susceptible
(SIS) model, by mapping the reconstruction problem to solving a
convex optimization problem such as compressed sensing111. While
this approach is powerful under its working hypotheses, it is limited
to the class of considered dynamical systems. Nevertheless, it
provides a promising procedure that can be adapted to other
inverse problems. In fact, the same trick of transforming the
reconstruction problem into one of sparse signal reconstruction
can be applied to other contexts, such as evolutionary games and
communication processes, where another convex optimization
method, namely the LASSO, can even be used in the presence of
noisy time series and partially missing node data112.

Another possibility is to exploit responses of invariant measures
of adequate driving signals for reconstructing physical interactions
among system’s units. Under mild assumptions, it can be shown that
the vector of averaged driving signals can be directly related to
response differences and the Jacobian matrix of the underlying
dynamics. The larger the number of controlled perturbation experi-
ments, the higher the accuracy in reconstruction. However, often it is
unrealistic to achieve many of such experiments: for this reason, one
can exploit compressed sensing to find a solution of the correspond-
ing optimization problem, achieving remarkable accuracy in recon-
structing empirical networks, such as the circadian clock network in
Drosophila97. This technique is powerful but its performance might
critically depend on the number of available experiments.

Suitability of the methods
Central to many network science techniques is the calculation of net-
work descriptors, e.g., degree distribution, clustering, centrality,
maximum modularity1. The aim of collecting these descriptors is that
they might provide a meaningful summary of the properties of
the network, such as identifying influential nodes with respect to some
measure of importance or characterizing small-scale and meso-scale
structures.
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However, it is not uncommon that descriptors are employed in a
black-box manner, without adequately considering their original
context, limitations and interpretability, and are simply presentedwith
little discussion on the implication of the reported values. This kind of
careless application of network descriptors means that even when we
understand what a particular descriptor is measuring, that descriptor
may not provide meaningful information in a particular context. For
example, a descriptor may lose its applicability due to the underlying
statistics, such as when one summarizes a degree distribution with the
mean degree, despite the former being heavy-tailed, and hence ren-
dering the mean unrepresentative. Inapplicability also occurs due to
basic problems of interpretation, e.g., when descriptors such as
shortest paths no longer carry the same meaning when applied
to networks whose edges represent statistical correlations or
probabilities.

In the following, we highlight some common problems that arise
when network descriptors are employed in an inappropriate manner.

(I) Formulating null models and testing hypotheses. Some
descriptors measure a deviation from the mean of a randomized null
model, such as modularity113—a measure of the tendency of a network
to be organized into assortative groups—and the rich club
coefficient114—a measure of the tendency of highly linked nodes to
connect with each other. Such descriptors consequently have a num-
ber of assumptions baked in (i.e., those of the null model), which
almost certainly will not be universally appropriate and are too often
overlooked.

These network descriptors are context-dependent such that their
absolute value cannot be interpreted directly, e.g., a network with a
maximum modularity of Q = 0.9 does not necessarily have a stronger
community structure than another withQ =0.6 (in fact, even networks
which are completely random can have high modularity values115).
Therefore, it is often necessary to frame the observed value against the
distribution of values under an explicitly stated and suitably chosen
null model. The use of a null model in this way requires a decision
aboutwhat elements of thenetwork shouldbe randomized, but how to
make this decision is still largely an open question. Key to answering it
is determining which properties of the network are important to a
given problem, and therefore need to be fixed, and which properties
can be varied. For example, in the pursuit of determining whether or
not a particular node feature bears relevance to the network structure
we see examples based on comparing a network statistic against null
distributions that either fix the network structure and permute the
node features116,117 or fix the degree distribution and rewire the links118

or a combination of the two119. It remains unclear which null model we

should prefer for a given situation. In many cases, attempting to say
what the network is not (i.e., choosing a null model) cannot be fully
decoupled from assumptions about what the network may be (i.e., a
generative model), therefore attempting to do the first as a means of
fully bypassing the second goal is generally ill-fated.

Furthermore, while testing against null models can be good
practice when it allows us to easily exclude well-defined scenarios that
lack a particular property of interest, one can argue it is fundamentally
misguided whenever the answer we are trying to extract from data
requires more than a single scalar value. When we try to reject a null
model, we can only answer the question of which model was not
responsible for the data. When our hypothesis involves detailedmulti-
dimensional structures, this answer is irrelevant at best. In the worst
case, it induces a serious but commonmisconception that the absence
of evidence for the null model implies evidence for the existence of
another hypothesis that has not been explicitly tested. A prominent
example of this error is community detection using modularity
maximization120. Although the many serious drawbacks of this non-
statistical approach have been long identified and studied in theore-
tical and methodological papers115,121–123, modularity maximization is
still widely employed, especially in domain-specific applications.While
the modularity value itself measures a deviation from a null model,
when it is maximized it does not possess statistical regularization, and
therefore it finds high-scoring partitions even in completely random
graphs, which are entirely due to random fluctuations115,124. This has led
many researchers to suggest computing the statistical significance of
the modularity value, when compared to a null model of a completely
randomnetwork125. It is easy to see, however, that framing the problem
in this way is in fact inappropriate. We illustrate this in Fig. 3, where we
show a completely random graph, with the addition of a few non-
random edges forming an embedded clique composed of 6 nodes.
Despite being very small, this modification of the network is very
unlikely given the null model, and therefore it causes the value of
maximum modularity to deviate significantly from what is obtained
from the null model. When encountering such a network, we would
therefore confidently conclude—correctly—that the null model of a
fully randomnetwork should be rejected, aswe see in Fig. 3a.However,
this does not mean that the community structure found—the actual
partition of the nodes—is statistically meaningful. We can see this by
inspecting the actual partitions found, as shown in Fig. 3b. We see that
although the high-scoring values of modularity correspond to parti-
tions where the planted clique is, to some extent, identified, it also
finds numerous other communities that bear no relevance to the
actual generative process behind the network, i.e., they represent

Fig. 3 | Evaluating community structure with null and generative models.
a Distribution of maximum modularity value Q for a null model of a fully random
network with N = 100 nodes. The vertical line marks the value encountered for a
modified version of the networkwith an embedded clique of 6 nodes, as described

in the text.bConsensus partition foundbymaximizingmodularity on themodified
network with a planted clique. c Partition inferred by fitting the SBM, for the same
network as in b.
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density fluctuations that arise directly from the randomness of the null
model126.

The reason why the above answer is inappropriate is because we
are asking the wrong question: it is largely irrelevant if the maximum
value of modularity is statistically significant, what matters is to what
extent the partitions found can be attributed to the null model. To
answer this question, it is substantiallymore productive to in fact flip it
around, and try to determine which model is more likely to be
responsible for the data, rather than which null model should be
rejected. This idea forms the backbone of the modern inferential
approaches based on the stochastic block model (SBM)126–129,
which ascribe to each possible network partition b a posterior prob-
ability

Pðb∣AÞ= PðA∣bÞPðbÞ
PðAÞ , ð4Þ

where P(A∣b) is the SBM likelihood, a generativemodel for the network
structure that takes into account its modular structure. As we see in
Fig. 3c, when applied to the same network, this approach has no
trouble in not only perfectly identifying the planted clique, but in also
correctly determining that the remaining nodes belong to the same
partition, meaning they all have the same probability of connecting to
the rest of the network. This method works better because it amounts
to asking a more appropriate and fundamental question: what is the
most likely division of the network into groups? It is not possible to
answer this question in any way other than through Eq. (4); although
we can choose its parts in many ways129. Incidentally, with this
approach we are also able to reject the null model of a fully random
network even more explicitly than via modularity. The reason is
because a fully random network amounts to a special case of the SBM
with a single group, for which we are able to write down an exact
posterior probability. Nevertheless, despite its conceptual, theoretical
and practical superiority this kind of approach has not yet reached
some domains of application.

By asking ourselves why these approaches have not permeated
the full breadth of network science domains, we can identify a number

of possibilities. One particular issue is that researchers are subject to
the incentive to search for the next big breakthrough rather than
explore the equivalences between existing methods130,131, or revisit
prior work or established beliefs (e.g., node attributes are not true
communities132, network data are uncertain43 and thresholding corre-
lation matrices is futile65) and potentially reinvent the wheel133. Com-
munity detection provides a particular case in point, as the SBM was
first developed decades ago134,135 (although robust and efficient
methods for its inference have only been developed in the last dec-
ade). Since the introductionof the community detectionproblem136 we
have seen a very large amount of methods developed, creating a lack
of coherence in theory. An unfortunate outcome when many of these
methods can be seen as less principled variants or approximations of
the SBM framework130. This over-exploration of a particular part of the
problem space has almost certainly come at the cost of neglecting
other related problems of network clustering126,137.

(II) Accounting for reconstruction uncertainty. There are other
practical cases where one asks the wrong questions of the data. Since
any real-worldmeasure is affectedbymeasurement errors, it should be
standard practice to account for them, as well as their propagation,
when estimating network descriptors. This would allow us to
quantify the uncertainty of our estimation and to compare
results across different measurements and experiments, as in any
quantitative discipline. Conversely, the lack of such a suitable proce-
dure inevitably leads to estimations that cannot be compared across
experiments and, consequently, to conflicting outcomes that cannot
be easily resolved.

Let us consider again the scenario where the underlying network
structure is not known, but it is possible tomeasure some signals from
the nodes (see Fig. 4). Very often correlation or causal analysis is
performed to represent the functional relationships between a sys-
tem’s units and from this representation, network descriptors are
successively calculated.

After applying a valid reconstruction method, as the ones
described in Sec. (II), it is also possible to summarize in a convenient
way themarginal probability pij of existence of an edge between nodes
i and j, conditional on the available data and at the expense of some

Fig. 4 | Measuring network descriptors under uncertainty. In many practical
problems, the structure of a network cannot be directly observed, while signals
(e.g., the time course of physical variables) can be measured from its units. After
applying a valid reconstruction method as the ones described in Sec. (II), the
results can be summarized in a convenient way via a marginal probability of the
existence for each pairwise link, at the expense of some loss of information present
in the full joint distribution. Note that the set of those probabilities does not
represent a weighted or directed network, and it would be wrong to perform any
standard network analysis on the corresponding graph. In fact, in this context,

single measures at the level of a single node or the whole network are replaced by
probability distributions, encoding how likely it is to measure a specific value. For
instance, in a network of size N, instead of the degree ki of a single node i one
estimate the probability P(ki = k) that that node has degree k, with k =0,1,...,N.
Similarly, the transitivity ci of node i is replaced by the probability P(ci = c) that that
node has transitivity c, which might correspond to multiple local configurations
rather than a specificone, as illustratively shown in the right-hand sideof thefigure.
Suchprobability distributionsmight be obtainedwithin the framework of Bayesian
inference used to build the probabilistic network model106.
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lossof informationpresent in the full joint distribution. This stepmight
be necessary in some situations, e.g., when a plausible model for the
dynamics is still not clear.

The outcome is a probabilistic network that, however, cannot be
simply analysed as a traditional network since probabilities do not
represent traditional weights. Note that a probabilistic networkmodel
is the outcome of any valid reconstruction method in the considered
scenario: there is no way to upgrade a link measured from a statistical
procedure to a real link.

In this case, no network descriptor canbe correctly representedby
just one number. Let us consider, for example, the degree, the simplest
node centrality measure which counts the number of its incoming and
out-going links. If each link has a certain probability of existing, the
degree itself becomes a stochastic variable which requires a probability
distribution to be described. Therefore, reporting that i has degree
equal to 3, for instance, is meaningless for systems reconstructed from
the observation of its units’ signals: instead, it makes sense to assess
that the probability that node i has degree 3 is equal to 10% or to assess
that it is 3 within a confidence or credible interval. While this assess-
ment might appear natural to a statistician, it is still rather overlooked.
Methods facilitating this type of estimation are still poorly developed
and appearing only recently106, focusing on specific problems such as
networks of coupled oscillators138, redefining nulls models by using
random matrix theory139 or proposing ad hoc configuration models
able to preserve node strength140. However, reconstruction based on
Bayesian inference provides an elegant and unifying framework that
also naturally allows us to accommodate such requests.

Outlook
The great promise of network science, built on decades of shared
efforts across a broad spectrum disciplines to develop a common
language, is accompanied with the responsibility to further advance
such a language beyond the intrinsically limited perspective of each
discipline in isolation. The benefit in the consolidation of network
science is not limited to its own community: in fact, requiring
enhanced methodological standards catalyzes the cross-pollination
between distinct disciplines.

Therefore, for the near future, it is important to not lose sight of
the need for rigorous theory and methods, their careful application,
and the prudent interpretation of their results. Network science is not
about constructing arbitrary networks and calculating tables of net-
work statistics. Instead it should be a comprehensive framework that
adds value, allowsus to testnewhypotheses and ascertainnew insights
and interpretations: together, methods and applications have shaped
and will continue to shape network science.

To realise its full potential, it is essential to preserve and
strengthen the link between methods and applications by recognizing
the interdisciplinary nature of network science. Collecting scientists
from a broad range of backgrounds presents a tremendous opportu-
nity for cross-fertilization of ideas, but that only works if we all
understand each other. To strengthen the links between theory and
applications it is imperative that we establish a shared epistemological
understanding that is reflected in our methodology and common
language. We should also be wary of simply transposing terms from
one domain onto another, e.g., a network community does not
necessarily imply a social or ecological community117, network con-
trollability does not necessarily imply that we can perform mind
control141.

Looking forward, we require more critical thought about the
choices we make in applying network methods. Network science is a
relatively young discipline, but one that is built upon the strong
foundations of well-established methodological disciplines such as
mathematics, physics and computer science as well as all the applica-
tion domains where it is employed. As it moves towards a new stage in
its maturity, the field needs to consolidate best practices, in the same

way it happened and it continued happens in other mature fields. For
instance, it is desirable to avoid purely heuristic (re)construction of
networks and the application of network statistics without caution,
following good practices as the ones discussed in this work.

As attractive as it sounds that we can represent somany complex
systems as networks to make use of a common set of tools, ultimately
we should be moving away from creating one-size-fits-all solutions.
Instead, we should be working more closely together to develop rig-
orousmethods that incorporate relevant domain knowledge and allow
us to probe more deeply and directly address the questions that can
only be answered by viewing the system as a whole.

Here we have demonstrated how generative models provide
promising means to progress towards these common goals. Gen-
erative models are extensible and can be easily adapted to explicitly
encode specific hypotheses and assumptions about complex systems
and how we observe them. Statistical inference allows us to fit these
models and compare levels of support for competing hypotheses.
Developing end-to-end models in this manner acknowledges that the
process of network analysis, from data to conclusion, is itself a com-
plex system. No stage in the analytical process is independent and
therefore should not be handled in isolation. Our design decisions
across the whole of the analytical process should be connected such
that specific choices can inform one another54,68,93,142.

Based on our analysis, we can identify a succinct set of best
practices for the next advances of network science and its applications
to domain-specific challenges. First, we must understand the prove-
nance of network data and make explicit, via a generative model, the
underlying abstraction that one wishes to extract from it. Ideally, our
chosen abstraction shouldnot depend on an arbitrary choice of spatial
and/or temporal granularity, or we should at least demonstrate that
the resulting analysis is not sensitive to this choice. Second, we must
incorporate, both theoretically and in practice, the presence and the
effects of errors and incompleteness in networkmeasurements. Third,
when developing a new analytical approach, we should validate it on
synthetic data to guarantee that expected outcomes are found. If the
validity of a method cannot be demonstrated on controlled synthetic
experiments, results obtainedwhen it is applied to empirical data have
little value.

Much of what we are discussing may appear standard and estab-
lished guidelines to the eyes of researchers in particular empirical
scientific areas. What we stress here is that there are subtle issues that
can emerge when rigorous methodologies are not employed more
generally. The network science community is characterized by the
heterogeneous background of its members— one of our community’s
strengths. However, such heterogeneity also means that many of the
above points, as a whole, are not universally recognized, and therefore
require emphasis. For instance, methodological flaws that are easily
identified within the boundaries of a specific discipline can inevitably
lead to controversial results even when applied to the same data,
within the wider boundaries of network science. Therefore, it is
necessary to move beyond the particular languages and practices of
individual disciplines and positively cross-pollinate to obtain a shared
standard of best practices across our multidisciplinary field.

Only when used responsibly, and with the appropriate level of
methodological rigour, can the tools of network sciencegive us unique
insight into the structure, function and dynamics of complex systems.
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