
PHYSICAL REVIEW E 88, 022805 (2013)

Motifs in triadic random graphs based on Steiner triple systems
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Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks
of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e.,
the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links,
serve as the building blocks of network structures. Although the relation between a network’s topology and
the general properties of the system, such as its function, its robustness against perturbations, or its efficiency
in spreading information, is the central theme of network science, there is still a lack of sound generative
models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation.
We employ the framework of exponential random graph models (ERGMs) to define models based on triadic
substructures. The fact that only a small portion of triads can actually be set independently poses a challenge
for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are
partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the
concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with
nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad
patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional
implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs
analytically.
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I. INTRODUCTION

The topological structure of interactions among the con-
stituents of complex many-particle systems is intimately linked
to system function and global system properties. The study of
complex networks aims to elucidate this link between structure
and function.

Motivated by the stark contrast between topological fea-
tures found in real-world data and expectations based on the
assumption of purely random link formation [1,2], two main
threads of research can be identified.

The first thread is aimed predominantly at explaining the
network formation process, i.e., identifying the forces shaping
a network. A particularly productive approach has been the
development of network growth models following the publi-
cation of Barabási and Albert [3] to explain non-Poissonian
degree distributions. See [4–6] and the references therein for a
review. Growth models generally take the agreement between
a particular feature in real-world data with networks resulting
from a particular model as evidence for a particular aspect of
a growth process, such as preferential attachment.

The second thread of research focuses on explaining the
influence certain topological features may have on global
system properties such as the robustness against perturbations
or the stability of the system under node or link removal
[7], as well as on dynamical processes taking place on the
network [8]. In order to study such questions systematically,
the ability to generate an ensemble of networks with a precise
set of topological features, but no others, is crucial. Growth
models are generally not suited for this task since a network
formation process often introduces invariable correlations
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between network features that are difficult to disentangle. For
example, the Barabási-Albert model is capable of generating
networks with a broad degree distribution, but at the same
time introduces degree-degree correlations. Further, growth
models are generally very difficult to characterize in terms
of their statistical properties. In contrast, generative proba-
bilistic models which parametrize an ensemble of networks
via an explicit expression for the probability distribution
over adjacency matrices can facilitate such analysis. The
present work introduces a class of probabilistic generative
models.

Good generative probabilistic models of networks should
combine three characteristics: First, every aspect of net-
work structure that is not explicitly specified through the
parametrization is maximally random. Second, they should
allow for unbiased estimation of parameters from data. If
parameters are estimated from data, these data are typical for
the ensemble thus parameterized. Third, they should be easy to
specify and parameters should be simple to learn and interpret.
Exponential random graph models (ERGMs), i.e., those that
specify a Boltzmann distribution over the set of all adjacency
matrices of given size, meet all of these criteria [9–12]. They
are maximum entropy, mean unbiased, and the parameters can
be learned consistently via maximum likelihood estimators or
Monte Carlo Markov chain (MCMC) methods [13–15].

Generally, pairwise relations between nodes, i.e., the
so-called dyads, are considered the fundamental building
blocks of complex networks and, hence, also the fundamental
unit when modeling a network, regardless of whether by
growth or probabilistic models. Erdös-Rényi (ER) graphs, the
configuration model [16,17], stochastic block models [18–21],
and degree corrected block models [22] all fall into the class
of dyadic models. The basic assumption underlying dyadic
models is that dyads are conditionally independent given the
model’s parameters.
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FIG. 1. All 16 possible nonisomorphic triadic subgraphs (sub-
graph patterns) in directed networks.

However, the assumption of dyadic independence as a
general paradigm of network modeling seems questionable.
For example, in a social context, the idea that the relation
of Alice and Bob is independent of the relation of Alice
and Charlie seems to go against experience, especially if
the relation is of a romantic type. Similarly, triadic closure,
or the large clustering coefficient observed in many net-
works, hints at a dependence between the connections in a
network. Generalizing these ideas, during the last decade,
the systematic study of third- and fourth-order subnetwork
structure captured much attention [23–27]. Apart from node
permutations, there are 16 distinct triad patterns in directed
unweighted networks, as shown in Fig. 1. It was found that
certain patterns of three-node subgraphs occur significantly
more frequently than expected in an ensemble of networks
generated by shuffling the connections of the original network
under the constraint of preserving the nodes’ in and out
degrees.

Sampling from an ensemble of randomized networks yields
an average occurrence 〈Nrand,i〉 and a standard deviation
σrand,i for each triad pattern i shown in Fig. 1. Over- and
underrepresentation of pattern i is quantified through a Z score,

Zi = Noriginal,i − 〈Nrand,i〉
σrand,i

. (1)

Notice that Z scores are evaluated by counting the subgraph
patterns over all ( N

3 ) possible triads. Every network can be
assigned a vector �Z whose components comprise
the Z scores of all possible triad patterns. Significant patterns
are referred to as “motifs” [23]. It is common to consider only
the Z scores of the triad patterns in which all three nodes
are attached to an edge. Further, one commonly refers to
the normalized Z vector as the “significance profile,” �SP =
�Z/

√∑16
i=4 Z2

i . This normalization makes systems of different
sizes comparable [23]. Many real-world systems have been
examined with respect to their triadic Z scores and significance
profiles [23,24,28–30] and it was suggested that they can be
grouped into so-called superfamilies [24].

Surprisingly, to date, no general model exists that can
fully explain or model the triad significance profiles observed
in many real-world networks. The present work suggests a
generative probabilistic model capable of describing a wide
range of significance profiles.

A number of growth models exist which are capable of
reproducing certain parts of the motif statistics, in particular,
the fraction of closed triangles, by explicitly formulating “tri-
adic closure” processes. Starting from an initially unclustered
network, one searches for edges with a common neighbor and
then connects them successively to form triangles [31–36].
Yet, the calculation of their properties is limited to numerical
approaches [31].

Further, specifying generative models has proven difficult.
Using the Strauss model [10], specified by a Hamiltonian with

two fields, with one acting on individual links and the other
one acting on triads of links, it is possible to generate systems
with—on average—predefined link and triad appearance.
However, Park and Newman showed that the average does
not describe the properties of a typical system generated by
the model. In fact, there is a large degenerate phase in which
most instances of networks tend to be either fully connected
or empty [37].

Another alternative suggested by Newman generates net-
works in which both the number of single links, si , of every
node i, as well as the number of triads, ti , it participates
in are specified initially [31]. The model yields networks,
drawn uniformly at random from the set of all possible
matchings of “stubs” and “corners.” With this generalization
of random-graph models, it is possible to analytically compute
component sizes, the existence and size of a giant component,
and percolation properties. The model yields an unbiased
ensemble of networks with clustering. However, attempting to
specify the probabilities for all possible three-node subgraphs
simultaneously poses a problem.

Alternatively, it has been noted early on that latent variables
might offer an explanation for the observed motif distributions
within the framework of dyadic independence models. The
randomization employed in the calculation of the Z scores
ignores all mesoscopic structure that is possibly present in
the system. Thus, parts of the over- and underrepresentations
of certain motifs, compared to the randomized versions,
may stem from such structure [38–40]. For example, some
features of the significance profile of the neural network of
C. elegans could successfully be explained by means of latent
class structure, while accounting for both properties on the
individual node level and on the group level [38]. In Ref. [39],
the authors show that strong modular structure leads to a strong
overrepresentation of subgraph patterns comprised of closed
triads. The abundance of triad motifs is apparently strongly
related to mesoscopic network structure or, in other words,
comparison of a network with block structure to a null model
which does not account for such groups may result in Z scores
which are more or less artifacts of the mesoscopic structure.
Yet, mesoscopic block models alone are not sufficient to
explain all observed motifs.

In general, when trying to reproduce triad structures,
models formulated in terms of dyads face the difficulty that
each dyad influences an extensive number of triads. On the
other hand, directly modeling all triad structures is impos-
sible, as not all local triad configurations may be specified
independently from each other. Yet, the Z-score statistics are
obtained by considering every individual triadic subgraph
pattern.

In the following section, we will suggest a model which
is based on triads rather than dyads which actually can be
specified independently from each other, i.e., the so-called
Steiner triple systems (STSs). Starting from the framework of
Steiner triple systems, it will be possible to define a whole
class of triadic exponential random-graph models. In this
paper, we discuss the most basic of such models, i.e., one
which assumes the same probability distribution of triadic
subgraph configurations on all Steiner triples (STs). This can
be considered the triadic analog to ER graphs on dyadic
models. We will investigate how a distribution on the STs
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affects the corresponding triad significance profiles. With
this work, we will be able to investigate correlations in the
abundance of triad patterns which occur solely for statistical
reasons. Moreover, we provide for a class of generative models
which are capable of modeling structure of higher than dyadic
order. We aim to design ensembles of networks with predefined
Z-score profiles. In Sec. II, we will introduce the concept
of STSs; subsequently, in Sec. III, we will define the triadic
random-graph model, which is a generative model based on
STs. Finally, in Sec. IV, we will present results for the latter.
In particular, we will show that triadic random graphs are
capable of generating networks with nonvanishing Z scores.
Furthermore, we will investigate correlations in the appearance
of triadic subgraph patterns and discuss their implications
for the functional interpretation of motif significance profiles.
Finally, we will calculate the degree distribution of triadic
random graphs analytically.

II. STEINER TRIPLE SYSTEMS

We will now define the terminology used throughout the
remainder of this article: A dyad is a set of two nodes. An edge,
or interchangeably a link, describes the presence of a dyadic
connection, i.e., a connection between two nodes; it can be
uni- or bidirectional. A triad is a set of three nodes. A triangle
denotes three mutually interconnected nodes. A subgraph is a
part of a network which considers only a subset of all nodes,
including their mutual connections. A subgraph configuration
is a specification of the connections in a subgraph, while
accounting for node identities; e.g., dyad configuration A →
B is distinct from dyad configuration B ← A. Subgraph
patterns are sets of nodes including their relations without
accounting for node identities, i.e., isomorphic subgraph
configurations are mapped to the same subgraph pattern; e.g.,
dyad pattern A → B is the same as pattern A ← B. A(n)
(anti)motif is a subgraph pattern which is significantly over-
(under)represented, as compared to some null model.

In a network of N nodes, there are T = ( N

3 ) distinct triads.
Yet, it is not possible to specify all their triadic-subgraph
configurations independently of each other; e.g., consider
the network in Fig. 2. Suppose we set the relations in the
three-node subgraph of nodes 1, 2, and 3, denoted as (1,2,3),
such that they adopt pattern . Further, we specify the triads
(1,4,5) and (4,6,2) such that they assume patterns and

, respectively. Then, with the choices for the discussed three

FIG. 2. (Color online) Only a few triad configurations can be
specified independently of each other: e.g., a specification of the
triads (1,2,3), (1,4,5), and (2,4,6) fully determines the configuration
of (1,2,4).

triads in Fig. 2, the subgraph of (4,1,2) is already determined to
take the pattern implicitly. This is because (4,1,2) contains
dyadic relations which have already been assigned in the other
three triads.

Since there are only E = ( N

2 ) dyads in a network and every
triad comprises three dyadic relations, there is an upper bound
to the number of triads which are dyad disjoint and therefore
can be set without overdetermining the system:

No. of dyad-disjoint triads � E

3
= N (N − 1)

6
� T . (2)

Networks for which the upper bound is exactly met can
be partitioned into triads such that every pair of nodes in
the system is part of exactly one of them. Such systems are
called Steiner triple systems (STSs) [41]. STSs consisting of
N vertices are called Steiner triple systems of order N , or
STS(N ). There are two necessary and sufficient requirements
for the existence of an STS(N ):

N mod 2 = 1, (3)
N (N − 1) mod 3 = 0. (4)

For a detailed discussion, see, e.g., [42, p. 277] or [43, p. 205].
The problem was originally solved by Kirkman in 1847 [44].

From Eqs. (3) and (4), we can conclude that by approxima-
tion, systems of arbitrary size can be decomposed into Steiner
triples. All one has to do is either add up to three “dummy”
nodes to the system or ignore up to three nodes including their
relations.

To clarify these ideas, Fig. 3 shows the partition of an STS
of order 7 into STs. Due to the small amount of vertices,
it is possible to derive the STS deductively: Without loss of
generality, we start with node 1. Since 1 is part of six dyads
(one with every remaining node), it has to be part of three
Steiner triples. The first one shall be (1,2,3) (color coded in
yellow in the matrix representation in Fig. 3), the second one
shall be (1,4,5) (red, checkered), and the third one shall be

FIG. 3. (Color online) Schematic presentation of a Steiner triple
system of order seven. The Steiner triples are set to be (1,2,3), (1,4,5),
(1,6,7), (2,4,6), (2,5,7), (3,4,7), and (3,5,6), as indicated by the colors
of the matrix elements. Every matrix element is assigned to exactly
one Steiner triple.
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(1,6,7) (cyan, vertical lines). Now each dyadic relation that
node 1 participates in is covered by exactly one Steiner triple.
We continue with the dyads of node 2: those with nodes 1 and 3
are already contained in (1,2,3). Nodes 4 and 5 are already part
of ST (1,4,5) and therefore need to be assigned to a distinct
ST. We choose 6 to be in the ST with 2 and 4 (blue, diagonally
checkered), and thus we have also specified ST (1,5,7) (green,
diagonal lines). Continuing with node 3, the dyads with nodes
4, 5, 6, and 7 need to be assigned to a ST. Node 4 is already
assigned to STs with 5 and 6. Thus, the two remaining STs
are (3,4,7) (magenta, horizontal lines) and (3,5,6) (orange,
diagonal lines).

From the ( 7
3 ) = 35 possible triads of a network of order

seven, only E/3 = 7 · 6/6 = 7 triads can be specified inde-
pendently of each other.

Also in Fig. 3, all triads for a network of seven nodes
are displayed. A possible choice of an STS is highlighted
with colors corresponding to the matrix representation above.
Of course, still most triad configurations will be specified
implicitly. However, an STS provides for a maximum set of
triples which can be specified independently of each other.

A detailed proof that Eqs. (3) and (4) are indeed sufficient
for the existence of an STS can be found in Ref. [43].

Of course, for larger system sizes, it is not practical to
construct STSs the way described above. However, a larger
STS can be constructed by merging smaller ones. For the
STS(7), the partition described above is unique, apart from
relabeling nodes. For STSs of higher order, there are multiple
nonisomorphic ways to partition the nodes into Steiner triples.
STSs provide us with sets of triads which can actually be
configured without overdetermining dyadic relations. They
thus can be considered a basis to express an adjacency matrix.

In order to account for substructures of higher than dyadic
order, our goal is now to define a model based on triadic rather
than dyadic entities. Since Steiner triple systems assign every
dyadic relation, i.e., every pair of nodes, to exactly one triad,
the specification of the configurations of all Steiner triples is
equivalent to specifying an adjacency matrix A. To convince
oneself that a formulation of a network in terms of Steiner
triples is equivalent to a formulation in terms of dyads, consider
a directed unweighted graph with N vertices. There are ( N

2 )
dyads. Each dyad (i,j ) may adopt four distinct configurations.

Thus, in total, there are 4
( N

2 ) = 2
2( N

2 )
possible states of the

system, i.e., distinct adjacency matrices. On the other hand,
there are ( N

2 )/3 distinct Steiner triples. Each of those triads

may assume 26 = 64 distinct configurations (every of the six
unidirectional links in the triad may be present or absent).

Therefore, again we obtain 64
( N

2 )/3 = 2
6( N

2 )/3 = 2
2( N

2 )
possi-

ble states. The argument for undirected graphs is analogous.

III. MODEL

Let us recall that dyadic ERGMs assume that the likelihoods
for the presence of two edges are conditionally independent of
each other. Further, let the matrix D with components Dij ∈
{0,1} denote the random variables corresponding to the entries
of the adjacency matrix A. Then, the independence assumption

implies, for the likelihood of observing an adjacency matrix A,

P(D = A|�θ) =
N−1∏
i=1

∏
j=i+1

P(Dij = Aij ,Dji = Aji |�θ )

=
N−1∏
i=1

N∏
j=i+1

P( �D(i,j ) = �A(i,j )|�θ), (5)

where �θ includes all parameters of the model. The vector
notation on the right-hand side accounts for the fact that
in directed unweighted networks, there are four possible
dyadic relations: Aij = 0 ∧ Aji = 0, Aij = 0 ∧ Aji = 1,
Aij = 1 ∧ Aji = 0, and Aij = 1 ∧ Aji = 1. They can be
combined in a four-dimensional indicator vector �A(i,j ) with all
components being zero, except for one component being one.

We will now employ the concept of Steiner triple systems to
define the triadic analog to Eq. (5). Now, instead of assuming
the likelihoods of dyads to be conditionally independent of
each other, we suppose the likelihoods for the configurations
on Steiner triples to be conditionally independent. With this
assumption, the likelihood of observing an adjacency matrix
A factorizes as follows:

P(D = A|�θ) =
N(N−1)/6∏

σ=1

P( �Dσ = �Aσ |�θ)

=
N(N−1)/6∏

σ=1

�P( �Dσ |�θ) · �Aσ , (6)

where σ denotes the Steiner triples of an STS(N ), �Dσ is an
indicator variable for the configuration of Steiner triple σ , and
�Aσ is a value of this variable. Analogously to Eq. (5), for

each of the vectors exactly one component is unity, while
all others are zero, which is equivalent to the fact that a
triad cannot be in multiple configurations at the same time.
For undirected networks, it is �Dσ ∈ {0,1}8, and for directed
ones, it is �Dσ ∈ {0,1}64. Accordingly, it is �P( �Dσ |�θ) ∈ [0,1]8 or
[0,1]64, respectively, with the sums of the elements normalized
to one. By defining Eq. (6), we make the assumption that the
likelihoods of Steiner triple configurations factorize, i.e., they
are conditionally independent of each other.

For unweighted graphs, Eq. (6) describes the most general
formulation of models based on conditionally independent
STs. We will now further investigate the properties of a
particular realization of this class of models. The simplest
such model has the same likelihood distribution for the
triad configurations on all Steiner triples, �P( �Dσ |�θ ) = �P( �D|�θ ).
Since all nodes are treated equally in this model and a priori,
the presence of any link is equally likely, and global network
architecture is not modeled. This allows us to disentangle the
influence of global properties from the impact of local patterns
on the overall network structure and to test the hypothesis
of whether triadic patterns serve as the building blocks of
complex networks. The model can be regarded to be the triadic
analog to dyadic ER graphs, in which the likelihood for the
existence of an edge is the same for all dyads. We will refer to
them as triadic random graphs. Since the ordering of the nodes
in a Steiner triple is arbitrary, there is no need to distinguish
between isomorphic triad configurations. For example, the
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likelihoods of the three configurations of subgraph 4, shown
in Fig. 4, will be the same. Thus, the triadic random
graphs have 16 parameters, with each of them indicating the
probability of a Steiner triple to assume one of the subgraphs

shown in Fig. 1. Of course, their values need to sum up to
unity.

Given the parameters, the probability distribution of each
Steiner triple is given by

(7)

The matrix M maps each of the 16 nonisomorphic subgraph
patterns in Fig. 1 to their corresponding isomorphic configu-
rations with equal probability, i.e., the sums of its columns are
normalized to one. Here, the only parameters �θ of the model
are the entries of the vector �P .

Equations (6) and (7) describe the triadic random-graph
model, in which the configuration for each Steiner triple
is drawn—conditionally independent from other Steiner
triples—from the same probability distribution over the 16
subgraphs shown in Fig. 1.

If (unidirectional) links are set purely at random with
probability p, as is the case in ER graphs, then the probabilities
for the triadic subgraph patterns are

(8)

The triadic random-graph model allows us to deviate from this
probability distribution. Therefore, we can enhance or suppress
certain substructures as compared to ER graphs.

IV. RESULTS

A. Z-score profiles

In order to examine the impact of the triad distribution
for the STS on the Z-score profile of the total network, we did
extensive samplings on the 16-dimensional simplex defined by
the probability distributions (7). Samplings were performed
for both systems of size 49 and 63. For the computation of
the Z-score profiles, we used the MFINDER software (version
1.2) [45] and averaged the Z score for each vector �P over
multiple samples. It should be noticed that the software only

4.1 4.2 4.3

FIG. 4. The three isomorphic configurations belonging to pattern 4.

considers those triad configurations which have all three nodes
attached to at least one edge. Thus, there are no Z scores for the
subgraphs 1 ( ), 2 ( ), and 3 ( ) of Fig. 1. Yet, of course, it
is necessary to account for them in the input distributions for
the STS.

Figure 5 displays exemplary results obtained from the
sampling. Figures 5(a)–5(c) show the distributions imposed
on the STS (blue circles). This distribution already determines
the expectation value for the link density of the network. For
example, suppose 60% of the Steiner triples adopt pattern

(which has two of the six possible links being set) and
40% adopt (five of the six links being set); then the
expected density will be p = (0.6 · 2 + 0.4 · 5)/6 ≈ 53%. For
comparison, we also plot the distribution one would expect on
the STs for a dyadic ER graph with the same link density as
given by Eq. (8) (red squares, dashed line in Fig. 5).

Figures 5(d)–5(f) show the Z-score profiles obtained from
the input distributions above for networks of size 49 (blue
circles) and 63 (violet squares). Displayed are the mean values
averaged over 15 samples for each distribution. For systems
with no higher order structure, such as ER graphs, all Z scores
are expected to vanish. However, for the triadic random-graph
model, we observe Z scores with magnitudes larger than five,
implying that certain motifs appear five standard deviations
more frequently than expected for the randomized ensemble.
Thus, triadic random graphs are capable of modeling structure
of higher than dyadic order. It shall be emphasized that this
higher order structure does not stem from mesoscopic group
structure; all Steiner triples and, therefore, all nodes have the
same parameters. In accordance with the literature [23], a
larger system size results in a larger magnitude of the Z scores.
However, the shape of the Z-score profiles is size independent.

B. Z-score correlations

For the interpretation of triad significance profiles observed
in real networks, it is important to be aware of correlations
between the Z scores of pairs of triad patterns, which inherently
already arise solely for statistical reasons.

We did extensive uniform sampling of the 16-dimensional
simplex spanned by the parameter space of the triadic
random-graph model (7). In fact, we sampled more than
2 × 104 distinct distributions. For each of the distributions,
we generated five network instances and we evaluated the
average Z-score profiles. Using the latter, we can evaluate
cross correlations between pairs of Z scores over the input
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FIG. 5. (Color online) Top: Distribution �P of triad configurations for the Steiner triples (blue circles) and expected distribution of triad
configurations for ER graphs with the same link density (red squares). Bottom: Z scores obtained from networks sampled from the distributions
above for systems of size N = 49 (blue circles) and N = 63 (violet squares), averaged over 15 sample networks.

distributions sampled. For two patterns, i and j , it is

CZi,Zj
= 〈Zi Zj 〉 − 〈Zi〉〈Zj 〉

σZi
σZj

. (9)

The averages are taken over all sampled STS distributions
considered for the evaluation of the correlation matrix. The
statistical significance of the correlation is tested by means of
a t-test.

Figure 6(a) shows the correlation matrix between pairs of
Z scores when sampling randomly. Considered are significant

correlations at a level of 5%. The side lengths of the squares
indicate the magnitudes of the correlation coefficients between
the corresponding subgraphs. Positive values are colored in
black; negative ones are colored in red. The magnitude (zero
to one) is proportional to the length of the squares. One can
clearly see that certain Z scores are strongly anticorrelated
with each other, while others are positively correlated. To
keep track of the impact of the link density on potential
correlations, the distributions are grouped in bins of width
0.05. We evaluated separate correlation matrices for each

a b

FIG. 6. (Color online) (a) Z-score cross correlations in 2 × 104 randomly sampled distributions on Steiner triple systems. (b) Correlations
obtained from real data sets (Table I). The length of the squares indicates the magnitude (0 to 1). Black and red shading corresponds to positive
and negative values, respectively. Shown are significant entries at a level of 5%.
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TABLE I. Z scores observed in real-world data sets.

Data set

C. Elegans [46–48] −16.5 −6.29 −24.23 −11.99 12.43 24.48 −27.02 −16.3 −5.02 2.59 27.29 13.15 9.64
Political blogs [46,49] −76.09 −51.28 −49.36 −58.19 55.26 40.28 −54.07 −31.17 −2.32 2.97 47.19 27.05 24.82
E. Coli (v. 1.1) [45,50] −12.23 −12.23 0 −12.23 12.23 0 0 0 0 0 0 0 0
English book [24,45] 26.09 13.58 14.35 22.8 −22.52 −10 24.67 13.51 −1.39 −6.59 −21.84 −13.58 −5.53
French book [24,45] 31.51 26.31 13.4 31.52 −29.1 −10.16 16.17 12.03 −11.5 −12.34 −15.07 −12.33 −4.72
Japanese book [24,45] 15.01 12.05 13.43 14.97 −14.39 −7.94 12.13 9.27 −4.76 −9.92 −7.4 −8.3 −3.07
Spanish book [24,45] 26.58 27.5 13.57 23.77 −22.3 −4.16 29.35 12.39 −13.22 −19.82 −25.22 −10.99 −7.57
leader2Inter [24,45] −2.25 −1.2 −2.58 −1.22 0.81 1.33 −3.24 −4.5 0.38 1.15 2.31 1.8 3.53
prisonInter [24,45] −6.06 −3.71 −10.14 −9.06 4.31 7.84 −8.26 −13.83 0.4 1.99 5.42 7.49 11.93
Electr. circ. (s208) [45] 1.63 −9.57 0 1.63 −1.63 0 0 0 11.01 0 0 0 0
Electr. circ. (s420) [45] 1.61 −17.21 0 1.61 −1.61 0 0 0 20.74 0 0 0 0
S. Cerevisiae [45,51] −13.73 −13.52 −0.96 −13.66 13.6 −0.35 −5.91 0 −0.17 9.9 3.94 0 0

of the link-density ranges. It turns out that correlations and
anticorrelations occur consistently between the same sets of
triad patterns for all link densities sampled.

In order to distinguish between Z scores which actually
describe characteristics of the networks from purely statistical
artifacts, we also investigated Z-score correlations over various
real-world networks. Figure 6(b) shows the correlation matrix
obtained from the 16 real-world data sets shown in Table I.
We observe that the most pronounced correlations found in
the ensemble of triadic random graphs also appear in the real
data sets. The attribution of functional significance to single
(anti)motifs is therefore difficult. Table II displays the ten
strongest cross correlations between pairs of triadic subgraph
patterns which were found in our random samples of the
triadic random-graph ensemble together with the correlation
coefficients found in the real data for the respective pairs of
triad patterns. Apparently, nine of the top ten (anti)correlations
of the statistical data are also found in the real systems.
However, not all entries of correlation matrix obtained from the
triadic random graphs are reflected in Fig. 6(b): e.g., patterns

and are anticorrelated in the random ensemble, while
being strongly positively correlated in the real data. This gives
rise to the conjecture that this correlation captures valuable
information about the systems’ structure. On the contrary, e.g.,

TABLE II. Top ten (anti)correlations between subgraph patterns
found in the synthetic random samples, as well as the corresponding
correlations observed in real-world data sets.

Rank Patterns Random samples Real data

1 , −0.780487 −0.527285
2 , −0.74238 −0.977566
3 , −0.732722 −0.998263
4 , −0.730034 −0.989075
5 , −0.661864 −0.985936
6 , −0.661757 −0.996671
7 , 0.578477 0.990511
8 , −0.562423 0.958279
9 , −0.49549 −0.703186

10 , −0.488278 −0.835307

the correlation between patterns and seems to stem from
statistical roots.

Investigations of correlations in the appearance of subgraph
motifs have been done before by Ginoza and Mugler [52]. Yet,
their work focuses on correlations within the randomization
process of single networks. They consider motifs in two partic-
ular networks, namely, for the transcriptional regulatory net-
works of E. coli and S. cerevisiae. One of their key results is that
the abundances of patterns , , and are strongly mutually
correlated, while being anticorrelated with pattern in both
systems. Moreover, they found correlations between patterns

, , , and for the S. cerevisiae network. Our approach,
however, considers correlations which appear over multiple
network instances and is therefore complementary to the one
in Ref. [52]. Again, Fig. 6(a) displays our observed correlations
between subgraph patterns which occur solely for statistical
reasons. In accordance with Ginoza et al., we find strong
correlations between patterns and , as well as strong
anticorrelation of them with . However, the former are hardly
correlated with pattern (in fact, the correlation coefficient
is even slightly negative). Although, doubtlessly, in most real
networks there is a strong mutual (anti)correlation in the abun-
dance of subgraphs , , , and , our results indicate that
they do not necessarily follow for statistical reasons and thus
may be of relevance for the performance of the systems’ func-
tion. Furthermore, in addition to the findings of Ginoza et al.,
we also observe strong anticorrelations between and ,
between and , between and , and between and .

C. Degree distributions

An important characteristic of complex networks is their
degree distribution.

In dyadic ER graphs, the node degrees are expected to be
Poissonian distributed:

P (k = κ) = e−〈k〉 〈k〉κ
κ!

. (10)

This holds for both in and out degrees.
To derive the expected in-degree distribution for triadic

random graphs, consider an arbitrary node i. It is part of
(N − 1)/2 Steiner triples. Now let si be a random variable
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indicating the number of i’s Steiner triples in which a single
edge is directed towards it. Further, let di be the random
variable indicating the number of its Steiner triples with two

links directed towards it. From the probabilities in Eq. (7), we
can directly infer the probabilities for a single ST to contribute
to si and di , respectively:

(11)

Since the model parameters are the same for all nodes, the expectation values for s and d will also be the same for all i:

〈s〉 = 〈si〉 = N − 1

2
p (si) ,

〈d〉 = 〈di〉 = N − 1

2
p (di) .

(12)

Each of the (N − 1)/2 Steiner triples of node i has either zero, one, or two edges directed towards it. Therefore, the joint
probability distribution of si and di is given by the multinomial

p

(
si = ns

di = nd

)
=

(
N−1

2

ns,nd,
N−1

2 − ns − nd

)
p(si)

ns p(di)
nd [1 − psi) − p(di)]

N−1
2 −ns−nd

=
(

N−1
2

ns , nd , N−1
2 − ns − nd

)(
2

N − 1

)ns+nd

〈s〉ns 〈d〉nd
[

1 − 2 (〈s〉 + 〈d〉)
N − 1

] N−1
2 −ns−nd

. (13)

For the second equality, we used Eq. (12). For large sparse systems and 〈s〉,〈d〉 � N , we find

lim
N→∞

p

(
si = ns

di = nd

)
= lim

N→∞

(
N−1

2

)
!(

N−1
2 − ns − nd

)
!

(
2

N − 1

)ns+nd 〈s〉ns

ns!

〈d〉nd

nd !

(
1 − 〈s〉 + 〈d〉

N−1
2

) N−1
2

︸ ︷︷ ︸
→e−〈s〉−〈d〉

(
1 − 〈s〉 + 〈d〉

N−1
2

)−(ns+nd )

︸ ︷︷ ︸
→1

= lim
N→∞

N−1
2 + N−3

2 + · · · + N−1
2 − ns − nd + 1(

N−1
2

)ns+nd︸ ︷︷ ︸
→1

〈s〉ns

ns!

〈d〉nd

nd !
e−〈s〉−〈d〉

= 〈s〉ns

ns!

〈d〉nd

nd !
e−〈s〉−〈d〉. (14)

The in degree of node i is

kin
i = si + 2di. (15)

The probability distribution for node i to have in degree κ is thus

p(kin = κ) =
N−1

2∑
ns=0

N−1
2∑

nd=0

p

(
si = ns

di = nd

)
δκ,ns+2nd

= e−〈s〉−〈d〉
κ
2∑

nd=0

〈s〉κ−2 nd

(κ − 2nd )!

〈d〉nd

nd !
, (16)

where δ is the Kronecker delta (δi,j = 1 if i = j , and 0 otherwise). In the limit 〈d〉 → 0, the distribution is Poissonian. With
〈d〉 approaching 1

2 〈kin〉, the distribution becomes broader, implying larger deviations from 〈k〉. Figure 7 shows distributions of
Eq. (16) with fixed 〈k〉 = 〈s〉 + 2 〈d〉 = 100 for various ratios of r = 〈s〉/〈d〉 together with the corresponding Poissonian.

The out-degree distribution can be derived analogously. In this case, only the probabilities for the triads with a single out-going
edge, p(sout

i ), and for two out-going edges, p(dout
i ), need to be adjusted accordingly,

(17)
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FIG. 7. (Color online) Degree distributions for mean degree 〈k〉 =
100 and various ratios r = 〈s〉/〈d〉.

D. Design of significance profiles

To achieve the goal of designing networks with certain
triad significance profiles, it is important to understand the
relationship between the distribution of triad configurations on
Steiner triples and the Z scores obtained from their ensembles.
Therefore, we also investigated the cross correlations between
the ST configurations and the obtained corresponding Z scores:

C̃Pi ,Zj
= 〈Pi Zj 〉 − 〈Pi〉〈Zj 〉

σPi
σZj

. (18)

The results are presented in Fig. 8. Of course, there is a
strong correlation between the imposed triad patterns on the
Steiner triples and the Z scores of these patterns. However, as
for the Z-score–Z-score cross correlations, again we observe
strong anticorrelations between certain patterns. As before,
the observations are valid for all examined link densities.
Correlations between the input distributions on the STS and the

STS distributions

Z
sc

or
es

FIG. 8. (Color online) Correlation matrix between triad configu-
rations on STs and the resulting Z-score profiles obtained from 5000
configurations. The length of the squares indicates the magnitude (0
to 1). Black and red shading corresponds to positive and negative
values, respectively.

obtained overall Z-score profiles can be helpful in designing
systems with predefined significance profiles.

For a simplistic approach, we assume a linear relation
between the input distribution �P and the significance profile,
conveyed by the correlation matrix ˜C (Fig. 8),

�SP ∝ ˜C �P. (19)

In order to design systems with predefined significance
profiles, it is necessary to map the latter to a corresponding
input distribution, which can be realized by means of the

pseudo inverse matrix ˜C
−1

,

�P ∝ ˜C
−1 �SP. (20)

Figure 9 shows the significance profiles corresponding to the
Z scores in Fig. 5 together with the prediction obtained from
Eq. (19). The predictions agree very well with the actually
observed profiles. However, attempts to model an arbitrary
significance profile with the linear relation given by Eq. (20)
will not succeed in all cases, as shown in Fig. 10.
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FIG. 9. (Color online) Significance profiles corresponding to the
Z scores in Fig. 5 for systems of size 49 (blue circles). The violet
squares indicate the prediction obtained from the input distribution
�P by assuming �SP ∝ ˜C �P .
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FIG. 10. (Color online) Attempt to model the significance profile
indicated by the violet squares. However, networks with their
parametrization obtained from Eq. (20) yield very different signif-
icance profiles.

This may be for various reasons. First, the relationship
between �P and the significance profile is certainly not entirely
linear. Second, not all significance profiles are necessarily
realizable, e.g., think of a SP with all patterns being over-
represented. Furthermore, the triadic random-graph model
describes the most simplistic model based on STSs, which,
e.g., does not account for individual node properties. This
is also reflected in the fact that the degree distributions of
triadic random graphs are close to a Poissonian. A formulation
of more specific models based on STSs may overcome
these shortcomings. Still, these first steps open the way to
efficiently generate networks in which certain motifs are over-
or underrepresented and thus enable systematic investigations
of the functional significance of these motifs.

V. CONCLUSIONS

Over the last decade, the over- and underrepresentation of
particular subnetwork patterns has attracted much attention.
This led to the hypothesis that instead of links, they serve
as the building blocks of network structures [23]. The

fact that only a small portion of triad configurations can
actually be specified independently poses a challenge to the
formulation of generative models which account for higher
order substructures. Based on sets of pair-disjoint triads, i.e.,
the so-called Steiner triple systems, we have introduced a
class of generative models. The simplest realization of such
models assumes the same probability distribution over the
possible triad patterns for all Steiner triples in the system. We
referred to them as triadic random-graph models. By extensive
samplings, we proved that in contrast to ER graphs, even this
most simplistic model is capable of inducing nonvanishing
Z scores. Furthermore, we discovered inevitable correlations
between triad patterns with respect to their abundance. These
occur solely for statistical reasons. This dependence in the
appearance of subgraph patterns should be taken into account
when attributing functional relevance to network motifs in
real systems. Moreover, we unveiled correlations between the
probability distributions on the Steiner triples and the observed
Z-score profiles over the whole network. These are helpful for
designing ensembles of networks with predefined significance
profiles, which can facilitate a systematic study of the effect
of motif distributions on network dynamics. Finally, we could
also calculate the degree distributions of triadic random graphs
analytically. We found it to be similar, yet not identical, to a
Poissonian. Depending on the input distribution �P , the degree
distribution is broader than a Poissonian.

The triadic random-graph model assumes all nodes to be
equal and thus can be considered the triadic analog to ER
graphs. However, in many real-world systems, individual node
properties like the popularity or activity of vertices play a
crucial role. Future models based on Steiner triple systems,
which, e.g., aim to predict hitherto undiscovered links, may
include those parameters in Eq. (6) in order to model the correct
degree distribution. In addition, the introduced framework also
allows for the definition of models for signed networks, i.e.,
graphs with positive or negative edges which play an important
role in the social sciences in the context of structural balance
theory [53,54], as well as in the biosciences where they are
used to model excitatory and inhibitory links in neural or gene-
regulation networks [55].
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85, 056119 (2012).

[41] Steiner triple systems are a special case of the more general
t (v,k,λ) or Sλ (t,k,v) designs, where v denotes the number of
points and k denotes the cardinality of the blocks (three for
triangles). For any set T of t points, there are exactly λ blocks
incident with all points in T . Thus, Steiner triple systems are
2 (v,3,1) or S1 (2,3,v). For more details, see, e.g., [43].

[42] M. J. Hall, Combinatorial Theory (Wiley, New York, 1986).
[43] J. H. Van Lint and R. M. Watson, A Course in Combinatorics

(Cambridge University Press, Cambridge, 1992), Chap. 1.
[44] T. P. Kirkman, Cambridge Dublin Math. J. 2, 191 (1847).
[45] U. Alon, http://www.weizmann.ac.il/mcb/urialon/ (unpub-

lished).
[46] M. E. J. Newman, http://www-personal.umich.edu/∼mejn/

netdata/ (unpublished).
[47] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
[48] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, Phil.

Trans. R. Soc. B 314, 1 (1986).
[49] L. A. Adamic and N. Glance, in Proceedings of the 3rd

International Workshop on Link discovery, LinkKDD ’05 (ACM,
New York, NY, USA, 2005), pp. 36–43.

[50] S. Mangan and U. Alon, Proc. Nat. Acad. Sci. USA 100, 11980
(2003).

[51] M. C. Costanzo, Nucleic Acids Res. 29, 75 (2001).
[52] R. Ginoza and A. Mugler, Phys. Rev. E 82, 011921 (2010).
[53] F. Heider, Psycholog. Rev. 51, 358 (1944).
[54] D. Cartwright and F. Harary, Psycholog. Rev. 63, 277

(1956).
[55] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, Proc. Nat. Acad.

Sci. USA 101, 4781 (2004).

022805-11

http://dx.doi.org/10.1007/s003579900004
http://dx.doi.org/10.1080/01621459.1987.10478385
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.1089167
http://dx.doi.org/10.1126/science.1089167
http://dx.doi.org/10.1371/journal.pbio.0020369
http://dx.doi.org/10.1038/ng881
http://dx.doi.org/10.1038/ng881
http://dx.doi.org/10.1093/bioinformatics/bth402
http://dx.doi.org/10.1016/j.jtbi.2006.01.018
http://dx.doi.org/10.1098/rsif.2009.0495
http://dx.doi.org/10.1098/rsif.2009.0495
http://dx.doi.org/10.1016/j.neures.2004.11.004
http://dx.doi.org/10.1016/j.neures.2004.11.004
http://dx.doi.org/10.1103/PhysRevLett.103.058701
http://dx.doi.org/10.1103/PhysRevE.64.046132
http://dx.doi.org/10.1103/PhysRevE.64.046132
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://dx.doi.org/10.1103/PhysRevE.65.036123
http://dx.doi.org/10.1186/1471-2105-10-405
http://dx.doi.org/10.1186/1471-2105-10-405
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevE.72.026136
http://dx.doi.org/10.1371/journal.pone.0021282
http://dx.doi.org/10.1371/journal.pone.0021282
http://dx.doi.org/10.1098/rsif.2012.0490
http://dx.doi.org/10.1103/PhysRevE.85.056119
http://dx.doi.org/10.1103/PhysRevE.85.056119
http://www.weizmann.ac.il/mcb/urialon/
http://www-personal.umich.edu/%7Emejn/netdata/
http://www-personal.umich.edu/%7Emejn/netdata/
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1093/nar/29.1.75
http://dx.doi.org/10.1103/PhysRevE.82.011921
http://dx.doi.org/10.1037/h0055425
http://dx.doi.org/10.1037/h0046049
http://dx.doi.org/10.1037/h0046049
http://dx.doi.org/10.1073/pnas.0305937101
http://dx.doi.org/10.1073/pnas.0305937101



