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Question
What makes a

random constraint
satisfaction problem
hard to solve?

1 million dollars question ;-)
(P vs NP)



Answer
The structure of the
solutions space

* Random CSP undergo phase transitions, that
change drastically the solution space (proved)

 Connect behavior of solving algorithms to the
structure of the solution space (first results...)



Random CSP

e random g-col
g-coloring a random graph with N vertices and M links

e random K-SAT

N Boolean variables and M randomly generated clauses
(constraints) of fixed length K
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Connection to

computational complexity
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Rigorous results

* Friedgut ('99): For any K there exist a sequence
as(IN) such that for N — oo

Psar(M/N = a4(N) —¢) — 1

Ve >0
Psat (M/N = as(N) +¢) — 0

Numerically as(N) — as
Rigorously only bounds to a are known.

o All provably linear time convergent algorithms
stop working at some «,, well before o

E.g. for large K In K

a, < — 92K 4, ~

oK
- K
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Solution space structure

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS ‘07
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Solution space structure

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS ‘07
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Solu’rion space structure

HH Oi(1)s -+ Tiy (k)

Z,u wy > wy > w3 > ... A3©
Ay

e RS: most of the measure in a single cluster lim w; =1

N — o0

e d1RSB: the measure divides in ¢V clusters

e s1RSB: the measure condensates
in sub-exp number of clusters  lim lim Z w; =1

n—oo N —oo 4



Random K-XORSAT

Ricci-Tersenghi, Zecchina & Weigt, PRE ‘01
Mézard, Ricci-Tersenghi & Zecchina, JSP '03
Cocco, Dubois, Mandler & Monasson, PRL '03

Like random K-SAT but replacing OR with XOR

(0'7@0'4@0'13 0'1()@0'13@0'2)/\

N7

M parity checks over N variables

Equivalent to M linear equations in N binary variables



SAT/UNSAT phase transition in
random K-XORSAT
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Increase in computing times

< In(# calls) >

13

12 ~

11 ~

10

random
3-XORSAT.

“w L N W ) AN Co O
T T T T T T

0.4

0.6

0.8

1.6



Solution space structure
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Solution space structure

# solutions = exp(NS)
# clusters = exp(NY)
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Leaf removal algorithm

while (there exists a vertex of degree 1)
remove it and the clause it belongs to

for a < ay g = (V, E) — (Vm@)
for & > oy G=((V,E)— (V.,E.)

reconstruction procedure for a < ay

 assignh to any value the variables in V.

e add clauses in the reverse order and assign the

newly added variable to satisfy the clause



The core

On the core:

- N. variables, minimum degree 2, M. clauses

- exp(NNY) solutions at distance O(N)

- long range correlations: hard to find solutions
- solutions exist as long as M. < N,
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The core

For a > ay

On the core:

- N. variables, minimum degree 2, M. clauses

- exp(NNY) solutions at distance O(N)

- long range correlations: hard to find solutions
- solutions exist as long as M. < N,



Where are hard instances?
(random K-XORSAT)
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Solutions space structure
(random 3-SAT)

Mézard, Parisi & Zecchina, Science '02
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Where are hard instances?
(random 3-SAT)
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Counting solutions clusters

NX(s) = Ns

e # clusters of size ¢

Z eNZ() sl ~ exp (N max |2(s) + s])
- s:21(s)>0

Dominating clusters have size V*

* >
R T T



Counting solutions clusters
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Counting solutions clusters
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Random 4-SAT
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Algorithms performances

Analytically solvable algorithms

(random 4-SAT)
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Algorithms performances

Analytically solvable algorithm

(random 4-SAT)
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Beliefs/surveys inspired
decimation (BRID/SID)

* while (there are unassigned variables)
— compute marginals (with BP or SP)

— choose an unassigned variable
(randomly / the most biased)

- fix it (according to its marginal /
to the most probable value)

— simplify the formula by UCP



BID for random 4-SAT
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BID for random 4-SAT
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BID for random 4-SAT
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BID for random 4-SAT
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proved for large k in Coja-Oghlan, Pachon-Pinzon, arxiv:1102.3145



Solution space structure
vs. algorithmic behavior

e Most algorithms are local: take decisions looking
at a bounded neighbourhood

e If strong correlations develop between distant
variables, local algorithms are deemed to fail

e Ts the condensation threshold a. the natural
limit for local algorithms ?
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Frozen variables

Must take a specific value in a cluster
in order the formula tfo be SAT

6-coloring random.
regular graphs.
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Summary of rigorous results
(random K-SAT)

Achlioptas, Coja-Oghlan, Ricci-Tersenghi, RSA ‘11

Theorem 2. Forevery k > 8, there exists a value of r < ry and constants a;, < B, < 1/2
and €, > 0 such that w.h.p. the set of satisfying assignments of F,(n,rn) consists of 2%"
nonempty cluster regions, such that

1. The diameter of each cluster region is at most o;n.
2. The distance between every pair of cluster-regions is at least Byn.

Theorem 3. Forany0 <8 < 1/3,ifr = (1 —68)2XIn2, then for all k > ky(8), Theorem 2
holds with

1 1 5 o
= —, = — — =40, — — —3k2.
0% A B > 6\/_ €k >

Theorem 8. For every k > 9, there exists ¢, < ry such that for all r > ¢, w.h.p. every
cluster of Fi,(n,rn) has at least (1 — 2/k) - n frozen variables. As k grows,

Cr 4

Sy —

2kIn2 5’




What about non-random CSP?

e The locally tree-like topology is not strictly
necessary

e Long range correlations and phase transitions are
common to any high dimensional model

e The freezing of (random) subsets of variables in
(random) directions can be the general driving
mechanism for the onset of NP-hardness



What about non-random CSP?

e Can we identify strongly correlated subset of
variables in a general model?

e Algorithmic problems related to short loops

e Loops corrections to mean-field approximations:
Cluster Variational Methods (CVM),
Generalized Belief Propagation (GBP), ...



What about the UNSAT phase?

e (Clustering structure also in the UNSAT phase

e Succinct UNSAT certificates by uncovering
frozen (or strongly correlated) variables

e Message-passing algorithms for determining the
probability of being in the UNSAT certificate



Thanks |

References and more info can be found on web pages of

me --> http://chimera.romal.infn.it/FEDERICO
Dimitris Achlioptas (UC Santa Cruz)

Amin Coja-Oghlan (Univ. Warwick)

Andrea Montanari (Stanford)

Riccardo Zecchina (Politecnico Torino)



