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Question
What makes a 

random constraint
satisfaction problem

hard to solve?
1 million dollars question ;-)

(P vs NP)



Answer
The structure of the 

solutions space
• Random CSP undergo phase transitions, that
   change drastically the solution space (proved)

• Connect behavior of solving algorithms to the
   structure of the solution space (first results...)



Random CSP

• random q-col

q-coloring a random graph with N vertices and M links

• random K-SAT

N Boolean variables and M randomly generated clauses 
(constraints) of fixed length K

� = M/N



SAT/UNSAT
phase transition

Kirkpatrick & Selman, Science ‘94
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Connection to
computational complexity38 Chapitre 2. Approche physique de la complexité
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Fig. 2.2: Taille moyenne de l’arbre exploré par l’algorithme DPLL en fonction de α pour
diverses valeurs de N . Cette taille est proportionnellement reliée au nombre d’opérations
requises pour trouver une solution ou prouver l’insatisfaisabilité.

sont presque sûrement satisfaisables1 ; à l’inverse, quand α > αs (k), elle sont presque
sûrement insatisfaisables : la propriété de satisfaisabilité subit une transition abrupte.

Friedgut a pu montrer l’existence d’une transition abrupte dans k-SAT [Fri99],
et son argument a pu être étendu à d’autres problèmes présentant des caractéristiques
similaires. Son résultat implique l’existence d’un seuil non uniforme αN (k), tel que :

∀ε, lim
N→∞

P(satisfaisable) =
!

1 si α< αN (k)(1− ε),
0 si α> αN (k)(1+ ε),

(2.7)

La convergence de αN (k) n’est cependant pas garantie, et reste à ce jour à l’état de
conjecture. Des bornes rigoureuses ont toutefois pu être établies en utilisant des mé-
thodes de premier et de second moment pour les bornes supérieure [DB97, KKKS98]
et inférieure [AP04], respectivement. Nous reviendrons sur les méthodes employées
pour dériver ces bornes dans le chapitre 5.

Quelles performances les algorithmes classiques de SAT affichent-ils sur les pro-
blèmes aléatoires ? La figure 2.2 représente en échelle logarithmique le nombre moyen
d’opérations executées par l’algorithme DPLL sur des instances du problème 3-SAT
aléatoire. On constate que ce nombre connaît un pic autour de la transition αs (k), et
semble croître exponentiellement avec la taille du problème. Cette dernière observa-
tion fait l’objet d’un résultat rigoureux [CS88] dans toute la phase non-SAT. Dans la
phase SAT, [CF86, CF90] démontrent que les algorithmes de type DPLL trouvent

1On dit qu’un événement se produit presque sûrement quand sa probabilité tend vers 1 alors que
N →∞.
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Rigorous results

• Friedgut (’99): For any K there exist a sequence  
            such that for 

Numerically
Rigorously only bounds to      are known.

• All provably linear time convergent algorithms 
stop working at some      , well before 
E.g. for large K
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A big gap!
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Solution space structure

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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k αd αc αs[12] αf

3 3.86 3.86 4.267 *

4 9.38 9.547 9.931 9.88

5 19.16 20.80 21.117 *

6 36.53 43.08 43.37 39.87 [46]

TABLE I: Numerical values of the various critical thresholds. For k = 3 we have formally αc = αd, see the text for details on
the nature of the difference between k = 3 and k ≥ 4.
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FIG. 4: The complexity Σ(φ) for k = 4 and several values of α: from top to bottom α = 9.3, 9.45, 9.6, 9.7, 9.8 and 9.9.

B. The entropic complexity curves

The curves Σ(φ) are shown in Fig. 4 for several values of α. The symbols are obtained in a parametric way, by
solving the 1RSB equations for various values of m and plotting the point (φint(m), Σ(m)). The lines in Fig. 4 are
numerical interpolations, obtained by fitting not directly Σ(φ), but instead the data for Φ(m) with a generic smooth
function9 and then analytically deriving the fitting function to obtain the curves in Fig. 4. The agreement of this
fitting procedure with the parametric plot is excellent. The three regimes are clearly illustrated on this figure:

• For α < αd a portion of the curve Σ(φ) can exist (for instance there is a solution of the 1RSB equation with
m = 0 for α ≥ 8.297 [12]), yet it has no point of slope −m = −1. The contribution of these clusters is negligible
compared to the dominant RS cluster.

• For α ∈ [αd, αc] (see e.g. α = 9.45 data in Fig. 4) the complexity Σ(m = 1) exists and is positive (it is marked
by a black circle in the figure).

• For α ∈ [αc, αs] (see e.g. α = 9.6, 9.7, 9.8, 9.9 in Fig. 4) the complexity Σ(m = 1) is negative and thus the Σ(φ)
curve vanishes at φ(ms) (marked with a black square), where the slope (in absolute value) is smaller than 1 and
equals ms(α). The measure is dominated by a subexponential number of clusters of entropy φ(ms), shown as a
function of α in Fig. 3.

9 We have tried different fitting functions and all provide equivalent and very good results thanks to the smoothness of Φ(m).
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Solution space structure

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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k αd αc αs[12] αf

3 3.86 3.86 4.267 *

4 9.38 9.547 9.931 9.88

5 19.16 20.80 21.117 *

6 36.53 43.08 43.37 39.87 [46]

TABLE I: Numerical values of the various critical thresholds. For k = 3 we have formally αc = αd, see the text for details on
the nature of the difference between k = 3 and k ≥ 4.
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FIG. 4: The complexity Σ(φ) for k = 4 and several values of α: from top to bottom α = 9.3, 9.45, 9.6, 9.7, 9.8 and 9.9.

B. The entropic complexity curves

The curves Σ(φ) are shown in Fig. 4 for several values of α. The symbols are obtained in a parametric way, by
solving the 1RSB equations for various values of m and plotting the point (φint(m), Σ(m)). The lines in Fig. 4 are
numerical interpolations, obtained by fitting not directly Σ(φ), but instead the data for Φ(m) with a generic smooth
function9 and then analytically deriving the fitting function to obtain the curves in Fig. 4. The agreement of this
fitting procedure with the parametric plot is excellent. The three regimes are clearly illustrated on this figure:

• For α < αd a portion of the curve Σ(φ) can exist (for instance there is a solution of the 1RSB equation with
m = 0 for α ≥ 8.297 [12]), yet it has no point of slope −m = −1. The contribution of these clusters is negligible
compared to the dominant RS cluster.

• For α ∈ [αd, αc] (see e.g. α = 9.45 data in Fig. 4) the complexity Σ(m = 1) exists and is positive (it is marked
by a black circle in the figure).

• For α ∈ [αc, αs] (see e.g. α = 9.6, 9.7, 9.8, 9.9 in Fig. 4) the complexity Σ(m = 1) is negative and thus the Σ(φ)
curve vanishes at φ(ms) (marked with a black square), where the slope (in absolute value) is smaller than 1 and
equals ms(α). The measure is dominated by a subexponential number of clusters of entropy φ(ms), shown as a
function of α in Fig. 3.

9 We have tried different fitting functions and all provide equivalent and very good results thanks to the smoothness of Φ(m).
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• RS: most of the measure in a single cluster

• d1RSB: the measure divides in         clusters

• s1RSB: the measure condensates
in sub-exp number of clusters
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Random K-XORSAT
Ricci-Tersenghi, Zecchina & Weigt, PRE ’01

Mézard, Ricci-Tersenghi & Zecchina, JSP ’03
Cocco, Dubois, Mandler & Monasson, PRL ‘03

Like random K-SAT but replacing OR with XOR

(�7 � �̄4 � �13) ⇥ (�10 � �̄13 � �̄2) ⇥ . . .

M parity checks over N variables

Equivalent to M linear equations in N binary variables



SAT/UNSAT phase transition in 
random K-XORSAT
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Increase in computing times
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Fig. 11. Total entropy S(c) and configurational entropy S(c) for p=3.

of (2), spontaneously form clusters. By definition, two solutions having a
finite Hamming distance d, i.e., d/NQ 0 for NQ., are in the same
cluster, while two solutions in different clusters must have an extensive
distance, that is d/N ’ O(1) for large N.
In virtue of the property stated at the beginning of this subsection, all

the clusters have the same size. Their number is eNS(c), where S(c) is called
complexity or configurational entropy. We will show that the number of
clusters equals the number of solution in the core, that is

S(c)=Sc(c). (45)

The intra-cluster entropy, i.e., the normalized logarithm of the cluster size,
is then given by the non-core entropy Snc(c)=S(c)−Sc(c)=S(c)−S(c).
For p=3 these entropies are shown in Fig. 11.
The proof of Eq. (45) is given in 2 steps. First we show that all the

solution assignments of the core variables xFc are ‘‘well separated’’, that is
the distance among any pair of them is extensive. This is what gives rise to
the clustering, with a number of clusters which is at least as large as the
number of core solutions (S \ Sc). Then we show that, for any fixed xFc, all
possible assignments of non-core variables xFnc belong to the same cluster,
and so S=Sc.
The first step is accomplished by calculating the probability distribu-

tion of the distance among any two solutions in the core. Thanks to the
group property, we can restrict the calculation fixing one solution to the
null vector 0F. For simplicity we have performed an annealed average

S(d, c)= lim
Nc Q.

1
Nc
log C

sF

d 1C
i
si=Nc−2d2 DMc

m=1
d(sim1 · · ·simp=1), (46)

Two Solutions to Diluted p-Spin Models and XORSAT Problems 525
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of (2), spontaneously form clusters. By definition, two solutions having a
finite Hamming distance d, i.e., d/NQ 0 for NQ., are in the same
cluster, while two solutions in different clusters must have an extensive
distance, that is d/N ’ O(1) for large N.
In virtue of the property stated at the beginning of this subsection, all

the clusters have the same size. Their number is eNS(c), where S(c) is called
complexity or configurational entropy. We will show that the number of
clusters equals the number of solution in the core, that is

S(c)=Sc(c). (45)

The intra-cluster entropy, i.e., the normalized logarithm of the cluster size,
is then given by the non-core entropy Snc(c)=S(c)−Sc(c)=S(c)−S(c).
For p=3 these entropies are shown in Fig. 11.
The proof of Eq. (45) is given in 2 steps. First we show that all the

solution assignments of the core variables xFc are ‘‘well separated’’, that is
the distance among any pair of them is extensive. This is what gives rise to
the clustering, with a number of clusters which is at least as large as the
number of core solutions (S \ Sc). Then we show that, for any fixed xFc, all
possible assignments of non-core variables xFnc belong to the same cluster,
and so S=Sc.
The first step is accomplished by calculating the probability distribu-

tion of the distance among any two solutions in the core. Thanks to the
group property, we can restrict the calculation fixing one solution to the
null vector 0F. For simplicity we have performed an annealed average

S(d, c)= lim
Nc Q.

1
Nc
log C

sF

d 1C
i
si=Nc−2d2 DMc

m=1
d(sim1 · · ·simp=1), (46)
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Solutions space structure
(random 3-SAT)

values of ! at !d " 3.921 and !c " 4.256.
For ! # !d, the solution is of a paramagnetic
type [all the surveys equal $(u)], a generic
instance is satisfiable, and the solution can be
found even by a simple zero-temperature Me-
tropolis algorithm ( ZTMA) (32). For !d #
! # !c, the space of configurations breaks up
into many states, and there exists a nontrivial
complexity (33). Some of the states have zero
energy; therefore, we are still in the SAT
phase. It can be argued that algorithms like
ZTMA will generically get trapped into the
most numerous states, which have an exten-
sive (proportional to N) energy Eth.

At ! % 4.2 we find analytically Eth "
0.0036N, and we have checked that ZTMA
converges to a similar value of energy. The
fact that eth % Eth/N is small explains the
good performance of smarter algorithms on
instances involving a few thousand variables.
At ! & !c, the system is in its UNSAT phase,
and the lowest possible energy is positive.
The phase diagram is summarized in Fig. 2.
Survey propagation algorithm. We

now consider one given instance (31), that is,
one fixed large graph. We have seen experi-
mentally that in the glassy region ! & !d, the
standard (y % 0) iteration of cavity biases
either ceases to converge or converges to the
trivial paramagnetic solution where all
ua3i % 0. If i is the rth site connected to the
function node a, we introduce a survey
Q a3i

(y) (u) % 'a3i$(u) ( (1 ) 'a3i)$(u ( J a
r)

that is characterized by the single number
'a3i. The survey propagation of Eq. 3 per-
formed with random sequential updating is a
message-passing procedure that defines a dy-
namical process in the space of the KN vari-
ables 'a3i. We have implemented it on large
random instances in the hard part of the SAT
phase, with ! " 4.2 to 4.25, using a suffi-
ciently large value of y (typically y " 4 to 6).
The process is found to converge to a unique
nontrivial solution. We expect that this sur-
vey propagation technique can be of interest
in many problems of statistical inference.

The set of all surveys Q a3i
(y) (u) found after

convergence provides a nontrivial informa-
tion on the structure of the states. From all the
surveys sent onto one site i, we reconstruct
through a reweighted convolution (34) the
probability distribution of local fields on this
site, Pi(H). This is a distribution on integers
[Pi(H) % *r$(H ) r)w i

r]. The total weight
wi

( % *r%1
+ wi

r of Pi(H) on positive integers
gives the fraction of zero-energy states where
si % 1; similarly, the total weight wi

) %
*r%)+

)1 wi
r of Pi(H) on negative integers gives

the fraction of zero-energy states where si %
)1. We have checked numerically, on single
instances with N % 10,000, that these frac-
tions predicted from survey propagation
agree with those obtained by averaging on a
few hundreds of ground states.
A decimation algorithm. This informa-

tion can be exploited to invent new types of
algorithms (31) or to improve existing ones.
We have worked out one such application,
the survey inspired decimation (SID), which
shows promising performance, but other al-
gorithms probably could be found using the
same type of information. Given an instance,
we first compute all the surveys by the survey
propagation algorithm with a sufficiently
large value of y (e.g., y % 6). Then we deduce
the distribution of local fields, and in partic-
ular their weights wi

, on positive and nega-
tive integers. We then fix the variable i with
largest !wi

( ) wi
)
! to the value si %

Sign(wi
( ) wi

)). Satisfied clauses are elim-
inated, and unsatisfied K-clauses involving i
are transformed into K ) 1 clauses, leading to
a new instance with a reduced number of
variables (and of clauses). The surveys can be
propagated again on this new instance (start-
ing from the previous ones) until conver-
gence, and the procedure is iterated. When-
ever a paramagnetic state is found (signaled
by all 'a3i % 1) or at some intermediate
steps, a rapid search process like simulated
annealing at a fixed cooling rate is run.

This SID algorithm has been tested suc-
cessfully on the largest (up to N % 2000)
existing benchmarks (9) of random 3sat

instances in the hard regime. Satisfying
assignments have been found for all bench-
marks. We have applied the SID to much
larger instances, increasing N up to N %
105 at a fixed ! % 4.2. The algorithm is
very efficient: It always finds a SAT con-
figuration, and its apparent complexity
scales like N2, although more systematic
studies with higher statistics will be neces-
sary to establish this behavior. For the very
same large instances, the only existing al-
gorithm able to find solutions, at a consid-
erable computational cost, is a highly opti-
mized version of the walksat algorithm (9,
35).
Conclusions. We have proposed an ana-

lytical method that predicts quantitatively the
phase diagram of the random 3sat problem in
the limit of infinite number of clauses and
opens the way to other types of algorithms. The
existence of an intermediate phase with many
metastable states close to the SAT-UNSAT
transition explains the slowing down of algo-
rithms in this region. We would like to stress
that the solution we propose is typical of a
“one-step replica symmetry-breaking” solution,
as it is called in spin glasses (10). All the
consistency checks of the analytic results lead
us to believe that this solution is exact for the
3sat problem. From the strict mathematical
point of view, the phase diagram we propose
should be considered as a conjecture, as for the
great majority of the theoretical results in sta-
tistical physics. Our computation implies that a
way to provide a fully rigorous proof of the
transition behavior in random Ksat problems
could be based on the study of the decomposi-
tion of the probability measure into states en-
dowed with the clustering property (36). On the
other hand, the predictions of our theory can be
compared with numerical experiments, and our
first such tests have confirmed its validity. On
the basis of the analytical study, our algorithm
looks promising in that it can solve large in-
stances exploring a rather small number of spin
configurations. It will be interesting to explore
its application to other optimization problems.
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10. M. Mézard, G. Parisi, M. A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987).

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

"

# # #

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

" e

# # #

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

"

e

# # #

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

" th

0

d c

Fig. 2. The phase diagram of the
random 3sat problem. Plotted is
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Counting solutions clusters 
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44 Chapitre 2. Approche physique de la complexité
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Fig. 2.4: Les deux cas de figures décrits dans le texte. Dans le panneau de gauche (a),
l’apposition d’une droite de pente −1 à la courbe de complexité donne le point-col s ∗(1).
À droite (b), cette droite prend appui sur le point frontière sM . Celui-ci est décrit par une
« température interne » plus élevée (mM < 1), déduite de la transformation de Legendre
en sM : mM =−∂sΣ(sM ).

(a) mM > 1. Le maximum de Σ(s ) + s est atteint à l’intérieur de l’intervalle de défi-
nition. La température inverse effective vaut alors m = 1, car l’entropie totale est
donnée par stot = ψ(m)/m|m=1 = Σ[s

∗(1)]+ s ∗(1). Bien que l’espace des solution
soit fragmenté, la mesure peut être décrite alternativement soit par un « état » ther-
modyanique unique, soit par une superposition d’un nombre exponentiel d’états
distincts, identifiables aux amas4. Nous parlerons de phase liquide fragmentée ou
encore, pour des raisons historiques, de brisure dynamique de la symétrie des ré-
pliques. s ∗(1) s’interprète comme l’entropie typique de l’amas contenant une solu-
tion prise au hasard avec la mesure uniforme (2.9), et Σ[s ∗(1)] comme le nombre
d’amas concentrant cette mesure.

(b) mM < 1. Le maximum de Σ(s ) + s est atteint au bord de l’intervalle de définition,
en s = sM , où la complexité s’annule, et où sont vérifiées les relations :

sM = ∂mψ(mM ), (2.22)

Σ(sM ) = ψ(mM )−mM sM =−m2
M∂m

!

ψ(m)
m

"
#

#

#

#

#

mM

= 0. (2.23)

La température inverse effective vaut mM < 1, car l’entropie totale est donnée par
stot = ψ(mM )/mM = sM . Ce comportement est en tout point similaire au phéno-
mène de condensation décrit dans le contexte des codes aléatoires au paragraphe

4Nous reviendrons plus tard (§4.1.3) sur la définition de la notion d’état, et sur sa relation aux
techniques de passage de messages.

slopeslope

slope
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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Beliefs/surveys inspired 
decimation (BID/SID)

•  while (there are unassigned variables)

- compute marginals (with BP or SP)

- choose an unassigned variable
(randomly / the most biased)

- fix it (according to its marginal /
 to the most probable value)

- simplify the formula by UCP
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FIG. 7: 4-sat, θ±(α) from the computation of φ, ψ.

B. The computation of ω(θ)

By analogy with xorsat one could think that the above computed lines θ± are (at least bounds on) the limits of
the region of the (α, θ) where the reduced measure µ(·|σD) gets clustered. This does not seem to be the case. At
α = 8.4 as well as α = 7.0, there are no trace of long-range point-to-set correlation in the reduced measure, the
residual entropy goes down smoothly with no complexity arising, see Fig. 8.

In fact non-trivial long-range correlations and complexities arise for larger values of α. Above αt
∗ > α∗, the average

long range point-to-set correlation is non-trivial in a range [θt
−, θt

+], see Fig. 9 for the plots of the correlation, and
Fig. 10 for the values of θt

±. By definition θt
− vanishes at αd, the dynamic transition threshold of the original ensemble.

A condensation transition occurs at some value θc(α) ∈ [θt
−, θt

+]. In the interval [θt
−, θc] the complexity of the

relevant clusters is positive, given by the difference between the solid and dashed line of Fig. 11. In [θc, θt
+] one should
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Solution space structure
vs.  algorithmic behavior

• Most algorithms are local: take decisions looking 
at a bounded neighbourhood

• If strong correlations develop between distant 
variables, local algorithms are deemed to fail

• Is the condensation threshold      the natural 
limit for local algorithms ?

↵c
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truth assignment of a random 3-CNF formula with n = 106 variables and 4.25n clauses in
minutes (and appears to scale as O(n log n)). No other algorithm practically solves formulas
of such density with n = 104. However, we are not aware of any evidence that SP finds
solutions in the regime 2k ln(k)/k < r < rk for arbitrarily large k. A rigorous analysis of
SP has so far remained elusive.

The SP algorithm is based on a hypothesis for the solution-space geometry which, in
turn, is motivated by a mathematically sophisticated but non rigorous analysis that uses
techniques of statistical physics (e.g., [15]). In the present article, we make progress towards
establishing this hypothesis mathematically. In particular, we prove that already much below
the satisfiability threshold, the set of satisfying assignments fragments into exponentially
many connected components. Moreover, we prove that these components are relatively
small in size and far apart from one another. Our bounds suggest that as the formula density
is increased, these components decrease in volume and grow farther apart from one another.
We emphasize that while both the discussion and the results we present refer to k-SAT, this
is not strictly necessary: our ideas and proofs are quite generic, and should generalize readily
to many other random CSP, e.g., graph coloring. In fact, the recent article [1] builds on the
methods developed here.

2. STATEMENT OF RESULTS

We first need to introduce some definitions. Throughout, we assume that we are dealing
with a CNF formula F, defined over variables X = x1, . . . , xn, and we let S(F) ⊆ {0, 1}n

denote the satisfying assignments of F.

Definition 1. The diameter of an arbitrary set X ⊆ {0, 1}n is the largest Hamming distance
between any two elements of X. The distance between two arbitrary sets X , Y ⊆ {0, 1}n,
is the minimum Hamming distance between any x ∈ X and any y ∈ Y . The clusters of
a formula F are the connected components of S(F) when x, y ∈ {0, 1}n are considered
adjacent if they have Hamming distance 1. A cluster-region is a nonempty set of clusters.

Theorem 2. For every k ≥ 8, there exists a value of r < rk and constants αk < βk < 1/2
and εk > 0 such that w.h.p. the set of satisfying assignments of Fk(n, rn) consists of 2εk n

nonempty cluster regions, such that

1. The diameter of each cluster region is at most αkn.
2. The distance between every pair of cluster-regions is at least βkn.

In other words, for all k ≥ 8, at some point below the satisfiability threshold, the set
of satisfying assignments consists of exponentially many, well-separated cluster regions.
The picture suggested by Theorem 2 comes in sharper focus for large k. In particular, for
sufficiently large k, sufficiently close to the threshold, the cluster regions become arbitrarily
small and maximally far apart (while remaining exponentially many). The following result
gives a quantitative version of this fact.

Theorem 3. For any 0 < δ < 1/3, if r = (1−δ)2k ln 2, then for all k ≥ k0(δ), Theorem 2
holds with

αk = 1
k

, βk = 1
2

− 5
6

√
δ, εk = δ

2
− 3k−2.

It is worth noting that, as we will show shortly,

Random Structures and Algorithms DOI 10.1002/rsa

ON THE SOLUTION-SPACE GEOMETRY OF RANDOM CSP 253

truth assignment of a random 3-CNF formula with n = 106 variables and 4.25n clauses in
minutes (and appears to scale as O(n log n)). No other algorithm practically solves formulas
of such density with n = 104. However, we are not aware of any evidence that SP finds
solutions in the regime 2k ln(k)/k < r < rk for arbitrarily large k. A rigorous analysis of
SP has so far remained elusive.

The SP algorithm is based on a hypothesis for the solution-space geometry which, in
turn, is motivated by a mathematically sophisticated but non rigorous analysis that uses
techniques of statistical physics (e.g., [15]). In the present article, we make progress towards
establishing this hypothesis mathematically. In particular, we prove that already much below
the satisfiability threshold, the set of satisfying assignments fragments into exponentially
many connected components. Moreover, we prove that these components are relatively
small in size and far apart from one another. Our bounds suggest that as the formula density
is increased, these components decrease in volume and grow farther apart from one another.
We emphasize that while both the discussion and the results we present refer to k-SAT, this
is not strictly necessary: our ideas and proofs are quite generic, and should generalize readily
to many other random CSP, e.g., graph coloring. In fact, the recent article [1] builds on the
methods developed here.

2. STATEMENT OF RESULTS

We first need to introduce some definitions. Throughout, we assume that we are dealing
with a CNF formula F, defined over variables X = x1, . . . , xn, and we let S(F) ⊆ {0, 1}n

denote the satisfying assignments of F.

Definition 1. The diameter of an arbitrary set X ⊆ {0, 1}n is the largest Hamming distance
between any two elements of X. The distance between two arbitrary sets X , Y ⊆ {0, 1}n,
is the minimum Hamming distance between any x ∈ X and any y ∈ Y . The clusters of
a formula F are the connected components of S(F) when x, y ∈ {0, 1}n are considered
adjacent if they have Hamming distance 1. A cluster-region is a nonempty set of clusters.

Theorem 2. For every k ≥ 8, there exists a value of r < rk and constants αk < βk < 1/2
and εk > 0 such that w.h.p. the set of satisfying assignments of Fk(n, rn) consists of 2εk n

nonempty cluster regions, such that

1. The diameter of each cluster region is at most αkn.
2. The distance between every pair of cluster-regions is at least βkn.

In other words, for all k ≥ 8, at some point below the satisfiability threshold, the set
of satisfying assignments consists of exponentially many, well-separated cluster regions.
The picture suggested by Theorem 2 comes in sharper focus for large k. In particular, for
sufficiently large k, sufficiently close to the threshold, the cluster regions become arbitrarily
small and maximally far apart (while remaining exponentially many). The following result
gives a quantitative version of this fact.

Theorem 3. For any 0 < δ < 1/3, if r = (1−δ)2k ln 2, then for all k ≥ k0(δ), Theorem 2
holds with

αk = 1
k

, βk = 1
2

− 5
6

√
δ, εk = δ

2
− 3k−2.

It is worth noting that, as we will show shortly,

Random Structures and Algorithms DOI 10.1002/rsa

ON THE SOLUTION-SPACE GEOMETRY OF RANDOM CSP 257

Ref. [5] regarding the existence of frozen variables in random formulas (a variable is frozen
in a cluster if it takes the same value in all truth assignments in the cluster).

Theorem 8. For every k ≥ 9, there exists ck < rk such that for all r ≥ ck, w.h.p. every
cluster of Fk(n, rn) has at least (1 − 2/k) · n frozen variables. As k grows,

ck

2k ln 2
→ 4

5
.

To see how Theorem 8 implies the existence of exponentially many clusters, consider r
and k such that ck < r < rk − ε, for some ε > 0. By Theorem 8, every cluster of Fk(n, rn)

has (1 − 2/k) · n frozen variables. Therefore, the probability that any given cluster will
contain at least one satisfying assignment if we add another ζn random k-clauses to the
formula is at most

[
1 −

(
k − 2

2k

)k]ζn

.

As a result, we see that unless Fk(n, rn) contains exponentially many clusters w.h.p., then
for any 0 < ζ < ε, the formula Fk(n, (r + ζ )n) will be unsatisfiable w.h.p., a contradiction.

As the presence of #(n) frozen variables implies the existence of 2#(n) clusters by the
above argument, it turns out we can establish clustering for densities lower than those in
Ref. [5] for frozen variables. That said, recent numerical studies suggest that hardness in
finding solutions is more probably connected to the existence of frozen variables than to
the splitting of solutions in many clusters [6].

3.3. Related Work

The observation that if $(α, k, r) < 1, then w.h.p. Fk(n, rn) has no pairs of satisfying
assignments at distance αn was first made in Ref. [16] and was related to “clustering,” even
though there was no concrete definition of clusters or cluster regions, the latter a seemingly
necessary notion if one is to exploit the fact $(α, k, r) < 1. More importantly, while the
fact $(α, k, r) < 1 implies the absence of pairs of satisfying assignments at distance αn,
it falls far short of proving the existence of multiple clusters. In an attempt to show that
there exist more than one cluster, in Ref. [16, 17] the authors derived an expression for the
second moment of the number of pairs of balanced assignments at distance αn, for each
α ∈ [0, 1]. If α, k, r, are such that the dominant contribution to this second moment comes
from uncorrelated pairs of pairs (of balanced assignments), this implies that with constant
probability Fk(n, rn) contains at least one (balanced) pair of assignments at distance αn.
The authors further prove that the property “has a pair of satisfying assignments at distance
q” has a sharp threshold, thus boosting this constant probability to a high one.

Unfortunately, determining the dominant contribution to the above second moment for
given α, k, r, is a highly non trivial problem. In particular, this “fourth moment” optimization
problem is much harder than the already complicated second moment analysis of Ref. [4].
The authors address it numerically for small k (with no guarantee that the true maximizer has
been found), and completely heuristically for general k, i.e., by simply guessing the locus of
the local maximizer corresponding to correlated pairs and comparing it to the contribution
of uncorrelated pairs. But even if the maximizer in this second moment computation could
be determined rigorously and turned out to coincide with the numeric/heuristic estimate
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What about non-random CSP?

• The locally tree-like topology is not strictly 
necessary

• Long range correlations and phase transitions are 
common to any high dimensional model

• The freezing of (random) subsets of variables in 
(random) directions can be the general driving 
mechanism for the onset of NP-hardness



What about non-random CSP?

• Can we identify strongly correlated subset of 
variables in a general model?

• Algorithmic problems related to short loops

• Loops corrections to mean-field approximations:
Cluster Variational Methods (CVM),
Generalized Belief Propagation (GBP), ...



What about the UNSAT phase?

• Clustering structure also in the UNSAT phase

• Succinct UNSAT certificates by uncovering 
frozen (or strongly correlated) variables

• Message-passing algorithms for determining the 
probability of being in the UNSAT certificate



Thanks !
References and more info can be found on web pages of 

• me --> http://chimera.roma1.infn.it/FEDERICO

• Dimitris Achlioptas (UC Santa Cruz)

• Amin Coja-Oghlan (Univ. Warwick)

• Andrea Montanari (Stanford)

• Riccardo Zecchina (Politecnico Torino)


