Sparse Hopfield network reconstruction with ℓ 1 regularization
- Haiping Huang
- … show all 1 hide
Abstract
We propose an efficient strategy to infer sparse Hopfield network based on magnetizations and pairwise correlations measured through Glauber samplings. This strategy incorporates the ℓ 1 regularization into the Bethe approximation by a quadratic approximation to the log-likelihood, and is able to further reduce the inference error of the Bethe approximation without the regularization. The optimal regularization parameter is observed to be of the order of M −ν where M is the number of independent samples. The value of the scaling exponent depends on the performance measure. ν ≃ 0.5001 for root mean squared error measure while ν ≃ 0.2743 for misclassification rate measure. The efficiency of this strategy is demonstrated for the sparse Hopfield model, but the method is generally applicable to other diluted mean field models. In particular, it is simple in implementation without heavy computational cost.
- E. Schneidman, M.J. Berry, R. Segev, W. Bialek, Nature 440, 1007 (2006) CrossRef
- S. Cocco, S. Leibler, R. Monasson, Proc. Natl. Acad. Sci. USA 106, 14058 (2009) CrossRef
- F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D.S. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, Proc. Natl. Acad. Sci. USA 108, E1293 (2011) CrossRef
- P. Ravikumar, M.J. Wainwright, J.D. Lafferty, Ann. Stat. 38, 1287 (2010) CrossRef
- G. Tkacik, E. Schneidman, M.J. Berry, W. Bialek, arXiv:0912.5409 (2009)
- H. Huang, Phys. Rev. E 81, 036104 (2010) CrossRef
- H. Huang, Phys. Rev. E 82, 056111 (2010) CrossRef
- S. Cocco, R. Monasson, V. Sessak, Phys. Rev. E 83, 051123 (2011) CrossRef
- A. Braunstein, A. Ramezanpour, R. Zecchina, P. Zhang, Phys. Rev. E 83, 056114 (2011) CrossRef
- H. Huang, Commun. Theor. Phys. 57, 169 (2012) CrossRef
- Y. Kabashima, T. Wadayama, T. Tanaka, J. Stat. Mech.: Theory Exp. 2009, L09003 (2009) CrossRef
- M. Bayati, J. Bento, A. Montanari. The lasso risk: asymptotic results and real world examples, in Proceedings of the Neural. Inf. Process. Syst. NIPS Conference, Vancouver, 2010
- M. Zibulevsky, M. Elad, IEEE Signal Proc. Mag.27, 76 (2010)
- J. Bento, A. Montanari, arXiv:1110.1769 (2011)
- E. Aurell, M. Ekeberg, Phys. Rev. Lett. 108, 090201 (2012) CrossRef
- A. Lage-Castellanos, A. Pagnani, M. Weigt, R. Zecchina, J. Stat. Mech.: Theory Exp. 2009, P10009 (2009) CrossRef
- J. Barton, S. Cocco, J. Stat. Mech.: Theory Exp. 2013, P03002 (2013)
- S. Cocco, R. Monasson, J. Stat. Phys. 147, 252 (2012) CrossRef
- J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982) CrossRef
- D.J. Amit, H. Gutfreund, H. Sompolinsky, Ann. Phys. 173, 30 (1987) CrossRef
- H. Sompolinsky, Phys. Rev. A 34, 2571 (1986) CrossRef
- M. Okada, T. Fukai, M. Shiino, Phys. Rev. E 57, 2095 (1998) CrossRef
- B. Wemmenhove, A.C.C. Coolen, J. Phys. A 36, 9617 (2003) CrossRef
- I.P. Castillo, N.S. Skantzos, J. Phys. A 37, 9087 (2004) CrossRef
- T.L.H. Watkin, D. Sherrington, Europhys. Lett. 14, 791 (1991) CrossRef
- A. Canning, J.P. Naef, J. Phys. I 2, 1791 (1992)
- M. Mézard, T. Mora, J. Physiol. Paris 103, 107 (2009) CrossRef
- F. Ricci-Tersenghi, J. Stat. Mech. 2012, P08015 (2012) CrossRef
- H.C. Nguyen, J. Berg, J. Stat. Mech. 2012, P03004 (2012) CrossRef
- V. Sessak, R. Monasson, J. Phys. A 42, 055001 (2009) CrossRef
- J. Friedman, T. Hastie, R. Tibshirani, J. Stat. Soft. 33, 1 (2010)
- J. Hertz, Y. Roudi, J. Tyrcha, arXiv:1106.1752 (2011)
- H. Zeng, J. Hertz, Y. Roudi, arXiv:1211.3671 (2012)
- Title
- Sparse Hopfield network reconstruction with ℓ 1 regularization
- Journal
-
The European Physical Journal B
86:484
- Online Date
- November 2013
- DOI
- 10.1140/epjb/e2013-40502-8
- Print ISSN
- 1434-6028
- Online ISSN
- 1434-6036
- Publisher
- Springer Berlin Heidelberg
- Additional Links
- Topics
- Keywords
-
- Statistical and Nonlinear Physics
- Industry Sectors
- Authors
-
-
Haiping Huang
(1)
-
Haiping Huang
- Author Affiliations
-
- 1. Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, 226-8502, Japan