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Abstract – The inference of network structure from dynamic data is one of the most challenging
scientific problems in network science. To address this issue, researchers have proposed various
approaches regarding different types of dynamical data. Since many real evolution processes or
social phenomena can be described by discrete state dynamical systems, such as the spreading
of epidemic, the evolution of opinions, and the cooperation behaviors, network reconstruction
methods driven by discrete state dynamical data were also widely studied. In this letter, we provide
a mini-review of recent progresses for reconstructing networks based on discrete state dynamical
data. These studies encompass network reconstruction problems where the dynamical processes
are known, as well as those where the dynamics are unknown, and extend to the reconstruction
of higher-order networks. Finally, we discuss the remaining challenges in this field.

perspective Copyright c© 2023 EPLA

Introduction. – Since many real-world systems can be
abstracted as complex networks with interactions between
nodes, such as power grids, transportation networks, so-
cial networks, biological networks, and so on. Complex
network science has received significant attention in the
past few decades. Wherein the analysis of network struc-
tures and the investigation of collective dynamics on these
structures are the main focuses in network sciences [1–3].
The aforementioned studies are all built upon the assump-
tion that the network structures are known. However, in
many real situations, the topology of a network is often
difficult to directly obtain, giving rise to the problem of
network reconstruction [4,5].

The network reconstruction problem is one of the sig-
nificant “inverse problems” in network sciences, which in-
volves inferring the connectivity among individuals based
on the observation of their dynamical data [4–18], im-
plying great practical values in many fields. One of its
most classical applications is the reverse engineering of
gene regulatory networks in biology. Gene expression data
is assumed to follow a nonlinear dynamical model, and
gene regulatory networks are inferred by linearizing the
model with small perturbations at steady states [19–24].
Up to now, various network reconstruction approaches

(a)E-mail: haifengzhang1978@gmail.com (corresponding author)

have been developed from different perspectives. For
the continuous state dynamical systems, whose dynam-
ical processes are mainly expressed in the form of dif-
ferential equations, such as reaction-diffusion, consensus,
and synchronization. Many methods were developed
to reconstruct networks from such dynamical data, in-
cluding perturbation approaches [19–21], noise-driven ap-
proaches [25–28], driving response approaches [29–31],
adaptive control approaches [32–35], error function min-
imization approaches [11,18,36–38], machine learning
approaches [39,40], and so forth. In addition, some
methods can be extended to reconstruct other types of
networks, e.g., weighted networks [41,42] and multi-layer
networks [43,44], to reconstruct dynamical systems and
predict system catastrophes [13], or to solve network
transport problems [45].

Like the continuous state dynamical systems, discrete
state dynamical systems are also widespread in nature
and human society, examples include infection and sus-
ceptibility in epidemic spreading, cooperation and defec-
tion in evolutionary game, approval and opposition in
voting events, and the spin-up and spin-down states of
atoms in ferromagnetic materials. These discrete dy-
namical models can be generalized to complex networks,
such as the Susceptible-Infectious-Susceptible (SIS) model
on networks [46], game model on networks [47,48], voter
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Fig. 1: Schematic of network reconstruction based on the dis-
crete state dynamical data. (a) Binary-state time series, with
different colors representing two distinct states. (b) The target
network structure to be reconstructed.

model on networks [49], Ising model on networks [50], and
so forth. In many situations, one can only observe the data
generated by the discrete state dynamical models hosting
on complex networks, but the structures of the networks
are unknown. Thus, we should develop some methods to
reconstruct the networks based on these discrete state dy-
namical data.

Specifically, the network reconstruction problem based
on discrete state dynamical data, as shown in fig. 1, can be
addressed by observing the state sequences of nodes (e.g.,
whether they are infected with a disease or have received
information) to reconstruct the structures of networks
where disease or information propagation takes place. As-
suming si

t represents the state of node i at time t, here we
primarily consider binary-state data, where si

t = 1 indi-
cates that node i is in an active state at time t, such as the
infected state in disease spreading models or the spin-up
state in the Ising model, etc. Conversely, si

t = 0 indicates
that node i is in an inactive state at time t, such as the sus-
ceptible state in disease spreading models or the spin-down
state in the Ising model, etc. The network reconstruction
problem from discrete state dynamical data involves infer-
ring the network’s topological structure from the observed
node state data si

t (i = 1, 2, . . . , N ; t = 1, 2, . . . , M), where
N represents the number of nodes, and M represents the
length of the time series.

Network reconstruction with known node dy-
namics. – When the mechanism behind the time series
data is known, i.e., the dynamical model on networks is
known, the transition probabilities P i,t

0→1 and P i,t
1→0 for

node i at time t from state 0 to state 1 and from state
1 to state 0 can be calculated. As for the SIS dynamics,
the probability that node i transitions from the suscepti-
ble state (i.e., 0) to the infected state (i.e., 1) at time tm
is

P i,tm

0→1 = 1 − (
1 − λi

)∑

j �=i

sj
tm

ai,j

. (1)

The probability that node i transitions from the infected
state to the susceptible state is

P i,tm

1→0 = ui, (2)

where λi and μi are the infection rate and recovery rate
of node i, respectively. ai,j = 1 indicates that node j is
a neighbor of node i, and ai,j = 0 indicates that node j
is not a neighbor of node i. Equation (2) indicates that,
for SIS dynamics, the transition probability from the in-
fected state to the susceptible state does not depend on
the neighbors’ states, namely, it is not useful to infer the
network structure. As a result, we only need to focus on
eq. (1), and it can be transformed as follows [14]:

ln[1 − P i,tm

0→1 ] = ln
(
1 − λi

) ∑
j �=i

sj
tm

ai,j . (3)

The values of P i,tm

0→1 and sj
tm

can be calculated from the
time series data, and the network reconstruction problem
is transformed into solving the following system of linear
equations:

CiAi = Yi, (4)

where Ai =
[

ln (1 − λi) ai,1, . . . , ln (1 − λi) ai,i−1,
ln (1 − λi) ai,i+1, . . . , ln (1 − λi) ai,N

]T

, Ci, and

Yi are known. Due to the sparsity of Ai, the compres-
sive sensing method [51,52] is used to solve eq. (4), which
allows us to infer the neighbors of node i. Once the neigh-
bors of all nodes are inferred, it is possible to reconstruct
the entire network’s structure.

Unlike the SIS dynamics described in eq. (4), not all
nodal dynamics equations can be written in the form of
linear equations concerning network structure. In this
case, the compressive sensing based method cannot be
used to reconstruct networks for these discrete state dy-
namics. However, for the most discrete state dynamics,
the transition probabilities depend on the states of neigh-
boring nodes, i.e., P i,t

0→1 and P i,t
1→0 are the functions of∑

j �=i sj
tai,j . Based on this fact, to reconstruct the neigh-

bors of node i, the following likelihood function can be
written [53,54]:

see eq. (5) above

where Ω represents dynamical parameters such as the in-
fection rate and recovery rate in SIS dynamics.

Let us take the logarithmic form of eq. (5) and
differentiating it with respect to {ai,j}j=1,2,··· ,N , leading
to a high-dimensional nonlinear system of equations. Then
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a mean-field approximation is applied to eq. (5), namely,

∑
j �=i

sj
tai,j

ki
≈

∑
j �=i

sj
t

N − 1
, (6)

where ki represents the degree of node i. As a result,
the high-dimensional nonlinear system of equations can
be linearized around point ki

N−1

∑
j �=i sj

t with respect to∑
j �=i sj

tai,j by using the first-order Taylor expansion, and
a similar system of linear equations as eq. (4) can be con-
structed. This method has also been applied to the recon-
struction of signed networks [55] and duplex networks [53].

In addition, for infection cascades or information cas-
cades data, which can be simulated by using SI, SIR, or
independent cascade (IC) models. It is worth noting that
the recovered state (R state) of the SIR model at time
t is denoted as si

t = 2. Therefore, when we have given
the network (i.e., A) and model parameters (i.e., Ω), the
likelihood function is given as follows:

P
{{

si
tm

}
i=1,2,··· ,N ;m=1,2,··· ,M

|A, Ω
}

. (7)

From Bayes’ rule, one can obtain the distribution of
interest:

P
{
A, Ω

∣∣∣{si
tm

}
i=1,2,··· ,N ;m=1,2,··· ,M

}
=

P
{{

si
tm

}
i=1,2,··· ,N ;m=1,2,··· ,M

|A, Ω
}

P {A, Ω}
P

{{
si

tm

}
i=1,2,··· ,N ;m=1,2,··· ,M

} . (8)

To solve eq. (8), the Metropolis-Hastings MCMC algo-
rithm [56] or belief propagation approach [57] can be em-
ployed, which allows us to infer the network structure.

Network reconstruction with unknown node dy-
namics. – In fact, it is difficult to precisely know the
dynamical equations, that is to say, the transition proba-
bility is hard to precisely determine. To solve the problem,
Li et al. assumed that the transition of a node from an
inactive state to an active state is the linear function of
the number of its active neighbors [58], that is,

P i,t
0→1 = ci

∑
j �=i

sj
tai,j + di. (9)

Then a system of linear equations is constructed by utiliz-
ing time series data and eq. (9), and the network can be re-
constructed by using the compressive sensing method [58].
Since eq. (9) neglects the nonlinear characteristics of tran-
sition probability regarding many dynamics, leading to
the reconstruction performance is unsatisfactory in some
cases. On the one hand, the sigmoid function can well re-
flect the nonlinear characteristics of transition probability,
on the other hand, the sigmoid function can approximately
fit many types of functions by varying its parameters. In-
spired by the above reasons, we used the sigmoid functions

in logistic regression to approximate the transition prob-
abilities P i,t

0→1 and P i,t
1→0, and then the likelihood function

concerning eq. (5) can be obtained. Finally, the network
structure can be inferred by similarly utilizing the above
process. In particular, our method can infer the dynamical
mechanism of different dynamics by learning the parame-
ters in the sigmoid function [54].

Another reasonable assumption is that, for the discrete
binary-state dynamics, the transition probability of a node
from an inactive state at time t to an active state at time
t+1 is influenced by its active neighbors at time t. There-
fore, according to the conditional probability formula, one
has [59]

P (si
t+1 = 1, j → i|sj

t = 1, si
t = 0) =

P (j → i|sj
t = 1, si

t = 0, si
t+1 = 1)

∗ P (si
t+1 = 1|sj

t = 1, si
t = 0), (10)

where j → i represents the direct influence of node j on
node i. Let Pj→i = P (j → i|sj

t = 1, si
t = 0, si

t+1 = 1), and
Pj→i > 0 indicates that node j is a neighbor of node i.
Further, let P i

j = P (si
t+1 = 1|sj

t = 1, si
t = 0), and its value

can be estimated through the time series data and is a
known value. Then, if node i is not activated at time tm,
the expected number of times node i is activated at time
tm + 1 can be expressed as

Etm+1
i =

∑
j(j �=i)

Pj→iP
i
jΨ

tm

j + εi, (11)

where Ψtm

j represents the number of times node j is ac-
tivated at time tm. For the discrete binary-state dynam-
ics, the node’s state can only be in active (i.e., 1) or in-
active (i.e., 0) state, i.e., Ψtm

j takes values 1 or 0. εi

represents the reconstruction noise. Then, by assuming
that the times that node i is activated follows a Pois-
son distribution, and the likelihood function can be for-
mulated by using the time series data. Finally, the EM
(Expectation-Maximization) algorithm is applied to solve
the value of Pj→i, and the entire network structure can be
inferred, the whole process is illustrated in fig. 2. This
method has also been applied to reconstruct weighted
networks [60].

In reality, there are many binary-state dynamics where
the two states are not asymmetric (e.g., the SIS dynam-
ics): inactive and active. For instance, in the Ising model,
the two states do not have a primary and secondary dis-
tinction, i.e., the reversal of a node’s state depends on the
neighbors with the opposite state. Therefore, any state
change of a node provides useful information for network
reconstruction. Forcing the node’s states to be strictly
active and inactive would result in wasting a half of the
data, leading to a decrease in the reconstruction accuracy.
Assume that a node i is in state c̄t at time t (one of the
two states), and it may be in state ct (the other state) at
time t + 1 owing to the influence of the neighbors with
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Fig. 2: Network reconstruction illustration. (a) Original network. (b) Discrete time series data. (c) Reconstruction of node 33.
(d) The neighbors of each node are inferred in a similar way. (e) Network structure is reconstructed by setting a threshold.
This figure is reproduced from [59].

state ct. Thus, according to the conditional probability
formula, we have [61]

P (si
t+1 = ct, j → i|sj

t = ct, s
i
t = c̄t) =

P (j → i|sj
t = ct, s

i
t = c̄t, s

i
t+1 = ct)

∗ P (si
t+1 = ct|sj

t = ct, s
i
t = c̄t). (12)

Here Pj→i = P (j → i|sj
t = ct, s

i
t = c̄t, s

i
t+1 = ct), and

Pj→i > 0 represents node j being a neighbor of node
i. Further, let P i

j = P (si
t+1 = ct|sj

t = ct, s
i
t = c̄t), and its

value can be estimated from time series data, too. Then,
the expected number of times node i is in one state at
time tm and in the other state at time tm + 1 can be ex-
pressed as eq. (11). Then the same approach can be used
to infer which nodes are the neighbors of node i. We need
to address that we can determine the nature of the dy-
namical model from the changes in the time series. For
example, in the Ising model, where changes in both states
are influenced by the neighbors’ states, whereas in the SIS
model, only change from one state to another is influenced
by neighbors, but not vice versa.

Since reconstructing networks from observed time se-
ries data can be considered as a “black-box” problem,
deep learning or graph neural network techniques have
been used to address this issue [62,63]. Typically, the
neural network framework for network reconstruction con-
sists of two parts. The first part is the network genera-
tor, which generates network structures, and the second
part is the node state learner, which utilizes the gener-
ated network structure and the previous node states to

predict the future states of nodes. During the training
process, the network generator and the state learner are
cross-trained. This approach not only accurately recon-
structs networks but also enables dynamical prediction,
making it suitable for both discrete and continuous state
dynamical processes.

Higher-order network reconstruction. – As the
data structure of real systems becomes increasingly
complex, entity interactions of a large variety of complex
systems presents many-body features, thus, pairwise inter-
actions between nodes are no longer sufficient to meet the
demand [64,65]. For example, in social contagions, higher-
order interaction groups with different sizes can strengthen
social contagion effects [66,67]. Typically, simplicial com-
plexes can well describe the many-body interactions be-
tween nodes [68–70]. A simplicial complex can be viewed
as a network composed of different simplices. A k-simplex
σ is a set σ = [v0, · · · , vk] composed of k + 1 nodes, de-
scribing a (k + 1)-body interaction. As shown in fig. 3, a
0-simplex is a single node, a 1-simplex is two nodes con-
nected by an edge, and a 2-simplex is a triangle formed
by three nodes, and so on. It is important to note that
in a simplicial complex K, if a simplex σ ∈ K, then any
subset of σ must also be included in K. For example,
a 2-simplicial complex K is the collection of 0-simplices,
1-simplices, and 2-simplices, and any two nodes from a
2-simplex will form three 1-simplices. A social contagion
model that takes into account the reinforcing effect of 2-
simplicial complexes has been proposed in ref. [66], where
a susceptible node i can get infection from an infected
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Fig. 3: Illustration of k-simplex.

neighbor j through their pairwise interaction (i, j) with
a probability λ. Node i can also be infected through a
2-simplex (i, j, k), where both j and k have already been
infected, with the probability λ�, and this probability de-
scribes a synergistic reinforcement effect.

Therefore, for the social contagion dynamics on a
simplicial complex, the transition of a node from an in-
active state to an active state is caused by its neighbors in
the active state, and these active neighbors can influence
the node’s state through two-body interaction (1-simplex),
three-body interaction (2-simplex), or higher-order inter-
actions. In addition, in simplicial complexes, one basic
fact is that higher-order interactions should include lower-
order interactions, for example, if two nodes j and k form
a 2-simplex with node i, node j and node k must be the
neighbors of node i, namely, (i, j) and (i, k) are the 1-
simplices. Given the above fact, the strategy for recon-
structing simplicial complex networks can be divided into
multiple steps [9]. Firstly, the “approximate” neighbor-
hood of each node is inferred by using eqs. (10) and (11),
noting that the predicted neighbors in this step are not
accurate because the three-body interactions have been
ignored. Then, the real 1-simplices and 2-simplices can
be further inferred based on the “approximate” neighbor-
hood information in the first step. Specifically, the tran-
sition probability of a node from an inactive state to an
active state, induced by 2-simplices in an active state, can
be expressed as

P (si
t+1 = 1, jk → i|si

t = 0, sj
t = 1, sk

t = 1) =

P (jk → i|si
t = 0, sj

t = 1, sk
t = 1, si

t+1 = 1)

∗ P (si
t+1 = 1|si

t = 0, sj
t = 1, sk

t = 1) =

Pjk→iP
i
jk, (13)

where jk → i represents the joint influence of nodes j and
k on node i, and if there is an influence, it indicates that
nodes i, j, and k form a 2-simplex (i, j, k). Let Pjk→i =
P (jk → i|si

t = 0, sj
t = 1, sk

t = 1, si
t+1 = 1), and Pjk→i > 0

indicates that nodes i, j, and k form a 2-simplex. Then, let
P i

jk = P (si
t+1 = 1|si

t = 0, sj
t = 1, sk

t = 1), and its value can
be estimated through the time series data. The expected
number of times node i is activated at time tm + 1 can be
expressed as

Etm+1
i =

∑
j(j �=i)

Pj→iP
i
j Ψtm

j

+
∑

j,k(j �=k �=i)

Pjk→iP
i
jkΨtm

j Ψtm

k + εi. (14)

Next, by assuming that the times of activations follows a
Poisson distribution, the likelihood function can be writ-
ten down and the EM algorithm is applied to solve the
value of Pjk→i, finally the 2-simplices in the simplicial
complex are inferred. Of course, the 3-simplices or higher-
order interactions in the simplicial complex can be inferred
in a similar way. Recently, Liu et al. adopted vectoriza-
tion expressions to improve the code running efficiency of
the above method [71].

Outlook. – We have provided a mini-review regarding
network reconstruction approaches from the observed data
driven by the discrete state dynamics. These methods
can reconstruct networks with known nodal dynamics or
unknown nodal dynamics. What is more, some methods
can be used to reconstruct single-layer networks, duplex
networks, signed networks as well as simplicial complexes.
Although significant progresses have been made in this
field, there are still many unresolved issues worth further
research:

Firstly, many researches have demonstrated that hyper-
graphs provide a flexible and natural modeling tool to
model such complex relationships. For instance, in the
basketball games, where each team’s five players present
on the court at each moment can form a hyperedge, or
in a co-authorship network, where several authors collab-
orating on a paper can form a hyperedge. However, com-
pared to the pairwise network or simplicial complexes, the
structures of hypergraphs are more complicated. For ex-
ample, a hypergraph can contain hyperedges with different
sizes, a hyperedge with large size may contain some hy-
peredges with small size, or hypergraphs do not meet the
constraint condition as simplicial complexes (i.e., higher-
order interactions should include lower-order interactions).
Therefore, how to reconstruct hypergraphs from the dis-
crete state data is a meaningful and challenging research
area [72,73].

Secondly, existing network reconstruction approaches
based on discrete state dynamical data usually require to
sample very long time series to achieve high reconstruc-
tion accuracy [74]. Nevertheless, collecting such long time
series in real-world scenarios is often difficult, and it also
yields high computational complexity. One possible so-
lution is to incorporate some a priori knowledge of the
network structure into the proposed methods, such as het-
erogeneity [75], symmetry [18], etc., and they have been
proven to be effective in reconstructing networks based on
continuous state dynamics data. In addition, in practi-
cal situations, the structure of the network is often not
entirely unknown. Therefore, it is possible to incorporate
partial structural information with shorter time series data
to address this dilemma.

Thirdly, for discrete state dynamics, existing recon-
struction methods often assume that the states of nodes
are two or at most three, such as SIS, Ising, voter, SIR
models. In reality, many discrete state dynamics may
have multiple states, such as opinion dynamics, where each
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state can interact and transform each other. As a result,
how to reconstruct networks for multi-state discrete state
dynamics is a very challenging problem.

Fourthly, existing methods are difficult to reconstruct
large-scale network. This difficulty is not only reflected in
computational time, but also in the reconstruction accu-
racy. One possible way of reconstructing large-scale net-
works is to divide the large-scale network into blocks and
then infer the structure of each block. Therefore, two key
issues need to be studied: 1) how to block the large-scale
network through the discrete dynamic data; 2) how to re-
construct a network with unclosed network structure (i.e.,
the connections with other blocks are missed). If these two
problems can be solved, this can lead the network recon-
struction problem to scale and parallelize.

Fifthly, in many situations, some nodes’ data may be
fully unknown (i.e., nodes are hidden) [76–80] or the size
of the network is unknown [81]. Evidently, it is a quite
challenging problem to reconstruct the network structure
as well as to infer the existence and location of hidden
nodes, only based on the available time series. Even
some methods have been proposed to solve this problem,
such as compressive sensing based method [76–78], ran-
dom variable resetting based method [79], statistical in-
ference based method [80], most existing methods were
proposed for the continuous state dynamics data. So how
to generalize the existing methods or develop special meth-
ods for the discrete state dynamics data case also requires
focused research.

Lastly, most reconstruction methods based on discrete
state dynamical data use the simulated dynamical data
to reconstruct network structures, and the performance
of these methods on real data is often unideal, such as
the real data from disease or information flow. Thus, how
to develop more effective and practical reconstruction ap-
proaches for real discrete data is a significant challenge.
Addressing this challenge would greatly enhance the prac-
tical applications of network reconstruction in real-world
scenarios.
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