

Scale-free networks from optimal design
To cite this article: S. Valverde et al 2002 EPL 60 512

View the article online for updates and enhancements.

Related content
The large-scale organization of chemical
reaction networks in astrophysics
R. V. Solé and A. Munteanu

-

Crossover from scale-free to spatial
networks
M. Barthélemy

-

Scale-free networks are not robust under
neutral evolution
M. Hörnquist

-

Recent citations
Effect of link oriented self-healing on
resilience of networks
Yilun Shang

-

Poor—rich demarcation of Matthew effect
on scale-free systems and its application
Yan Dong et al

-

Sustainable growth in complex networks
C. J. Tessone et al

-

This content was downloaded from IP address 138.38.99.73 on 08/06/2020 at 10:03

https://doi.org/10.1209/epl/i2002-00248-2
http://iopscience.iop.org/article/10.1209/epl/i2004-10241-3
http://iopscience.iop.org/article/10.1209/epl/i2004-10241-3
http://iopscience.iop.org/article/10.1209/epl/i2003-00600-6
http://iopscience.iop.org/article/10.1209/epl/i2003-00600-6
http://iopscience.iop.org/article/10.1209/epl/i2001-00541-0
http://iopscience.iop.org/article/10.1209/epl/i2001-00541-0
http://iopscience.iop.org/1742-5468/2016/8/083403
http://iopscience.iop.org/1742-5468/2016/8/083403
http://iopscience.iop.org/1674-1056/20/4/040205
http://iopscience.iop.org/1674-1056/20/4/040205
http://iopscience.iop.org/0295-5075/96/5/58005
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvRFLa1W8-apfnLh6mnM02b8CAPzdQ2rqLj2pCHJD0OQflWLn6I5ZCg8RcuC6pH7koAvF33jhkdO9rP4AhdhMDDoBGiJA21e2k5AvKuJKFqEh4iasXYl8imrpf1eRyE-pxqNOB_U13OrW8Mt4CCYBw3zzBZ877OBJRBFbc8WuhFfqqbrPIWhVdOjIMxrj3fBEwXD0tslIuecu4w34BiHrSQHZWGlZmF9v7gaOnSaUPwjwBYw-2W&sig=Cg0ArKJSzG2Blgc1_VvR&adurl=http://iopscience.org/books

Europhys. Lett., 60 (4), pp. 512–517 (2002)

EUROPHYSICS LETTERS 15 November 2002

Scale-free networks from optimal design

S. Valverde
1
, R. Ferrer Cancho

1 and R. V. Solé
1,2

1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB)
Dr. Aiguader 80, Barcelona 08003, Spain
2 Santa Fe Institute - 1399 Hyde Park Road, NM 87501, USA

(received 19 April 2002; accepted in final form 10 September 2002)

PACS. 05.10.-a – Computational methods in statistical physics and nonlinear dynamics.
PACS. 05.65.+b – Self-organized systems.

Abstract. – A large number of complex networks, both natural and artificial, share the
presence of highly heterogeneous, scale-free degree distributions. A few mechanisms for the
emergence of such patterns have been suggested, optimization not being one of them. In this
letter we present the first evidence for the emergence of scaling (and the presence of small-
world behavior) in software architecture graphs from a well-defined local optimization process.
Although the rules that define the strategies involved in software engineering should lead to
a tree-like structure, the final net is scale-free, perhaps reflecting the presence of conflicting
constraints unavoidable in a multidimensional optimization process. The consequences for
other complex networks are outlined.

Two basic features common to many complex networks, from the Internet to metabolic
nets, are their scale-free (SF) topology [1] and a small-world (SW) structure [2, 3]. The
first states that the proportion of nodes P (k) having k links decays as a power law P (k) ∼
k−γφ(k/ξ) (with γ ≈ 2–3) [1, 4, 5] (here φ(k/ξ) introduces a cut-off at some characteristic
scale ξ). Examples of SF nets include Internet topology [4,6], cellular networks [7,8], scientific
collaborations [9] and [10] lexical networks. The second refers to a web exhibiting very small
average path lengths between nodes along with a large clustering [2, 3].

Although it has been suggested that these nets originate from preferential attachment [4],
the success of theoretical approximations to branching nets from optimization theory [11, 12]
would support optimality as an alternative scenario. In this context, it has been shown that
minimization of both vertex-vertex distance and link length (i.e. Euclidean distance between
vertices) [13] can lead to the SW phenomenon. In a similar context, SF networks have been
shown to originate from a simultaneous minimization of link density and path distance [14].
Optimal wiring has also been proposed within the context of neural maps [15]: “save wiring”
is an organizing principle of brain structure. However, although the analysis of functional
connectivity in the cerebral cortex has shown evidence for SW [16], the degree distribution is
clearly non-skewed but single-scaled (i.e. ξ is very small).

The origin of highly heterogeneous nets is particularly important since it has been shown
that these networks are extremely resilient under random failure: removal of randomly chosen
nodes (typically displaying low degree) seldom alters the fitness of the net [17]. However, when
c© EDP Sciences

S. Valverde et al.: Scale-free networks from optimal design 513

nodes are removed by sequentially eliminating those with higher degree, the system rapidly
experiences network fragmentation [17,18].

Artificial networks offer an invaluable reference when dealing with the rules that underlie
their building process [19]. Here we show that a very important class of networks derived from
software architecture maps, displays the previous patterns as a result of a design optimization
process.

The importance of software and understanding how to build efficiently software systems
is one of our major concerns. Software is present in the core of scientific research, economic
markets, military equipments and health care systems, to name a few. Expensive costs (thou-
sands millions dollars) are associated with the software development process. In the past
thirty years we have assisted to the birth and technological evolution of software engineering,
whose objective is to provide methodologies and tools to design and build software efficiently.

Designed software represents a human vision or conception of a problem. Briefly, to design
a software application is to decompose it into a set of disjoint, smaller, functional units also
named hereafter software components(1). There are well-defined principles that enable the
engineer to find the optimal partition that solves the problem within the external constraints
of available time and economic resources [20].

A software component is an abstract entity which represents everything from hardware
components to entire software applications [21]. The software functionality is distributed
among these components by the engineer who has to decide if a given function is implemented
by a single component, or as the result of several interacting components. In the latter case,
the engineer defines explicitly the communication between the components by means of rela-
tionships. There are also other types of relationships but in our study we will not make any dif-
ference between them. The number of software components and their sizes (usually measured
as number of lines of source code (NLOC)) can vary greatly from one application to another.

The above design process is documented by means of the software architecture where
the different software components and their relationships are explicitly depicted (this is a
diagram expressed in standard graphical notation like UML [22] or OMT [23]). We define the
software graph as a network obtained from an existing software architecture where every node
corresponds to exactly one software component and two nodes are linked if the corresponding
software components are related to each other in the software architecture. This kind of graph
constitutes a very rough approximation to the fully detailed software architecture but it is of
interest because the topological information is preserved(2).

We have analysed the class diagram of the public Java Development Framework 1.2 (JDK
1.2) [24], which is a large set of software components widely used by Java applications, as well
as the architecture of a large computer game [25]. These are examples of highly optimized
structures, where design principles call for diagram comprehensibility, grouping components
into modules, flexibility and reusability (i.e. avoiding the same task to be performed by differ-
ent components) [20]. Although the entire plan is controlled by engineers, no design principle
explicitly introduces preferential attachment nor scaling and small worldness. The resulting
graphs, however, turn out to be SW and SF nets.

The software graph is defined by a pair Ωs = (Ws, Es), where Ws = {si}, (i = 1, . . . , N) is
the set of N = |Ω| classes and Es = {{si, sj}} is the set of edges/connections between classes.
The adjacency matrix ξij indicates that an interaction exists between classes si, sj ∈ Ωs

(1)In object-oriented languages (i.e.: C++, Java) a component is also known by the term “class”.
(2)The inner details of every class were discarded and only the class names and the names of the relationships

were kept. The type and semantics of every relationship is not considered here. All the software architectures
analysed here were stored in an electronic format compatible with the Rational Rose 98 specification (see
http://www.rational.com) and converted automatically by custom software to our graph representation.

514 EUROPHYSICS LETTERS

(ξij = 1) or that the interaction is absent (ξij = 0). The average path length l is given by the
average l = 〈lmin(i, j)〉 over all pairs si, sj ∈ Ωs, where lmin(i, j) indicates the length of the
shortest path between two nodes. The clustering coefficient is defined as the probability that
two classes that are neighbors of a given class are neighbors of each other. Poissonian graphs
with an average degree k̄ are such that C ≈ k̄/N and the path length follows [3]:

l ≈ logN

log(k̄)
. (1)

C is easily defined from the adjacency matrix, and is given by

C =

〈
2

ki(ki − 1)

N∑
j=1

ξij

[∑
k∈Γi

ξjk

]〉
Ωs

. (2)

It provides a measure of the average fraction of pairs of neighbors of a node that are also
neighbors of each other.

The building process of a software graph is done in parallel (different parts are built and
gradually get connected) and is assumed to follow some standard rules of design [20, 21, 23].
None of these rules refer to the overall organization of the final graph. Essentially, they deal
with optimal communication among modules and low cost (in terms of wiring) together with
the rule of avoiding hubs (classes with large number of dependencies, that is, large degree).
The set of bad design practices, such as making use of large hubs, is known as antipatterns in
the software literature: see [26]. The development time of the application should be as short
as possible because of the expensive costs involved. It is argued in the literature [20] that
there is an optimum number of components so that the cost of development is minimized,
but it is not possible to make a reliable prediction about this number. Adding new software
components involves more cost in terms of interconnections between them (links). Conversely,
the cost per single software component decreases as the overall number of components (nodes)
is increased because the functionality is spread over the entire system. Intuitively, a trade-off
between the number of nodes and the number of links must be chosen.

However, we have found that this (local) optimization process results in a net that ex-
hibits both scaling and small-world structure. First, we analyzed JDK 1.2 network which
has N = 9257 nodes and Nc = 3115 connected components, so that the complete graph Ωs

is actually given by Ωs = ∪iΩi, where the set is ordered from larger to smaller components
(|Ω1| > |Ω2| > . . . > |ΩNc |). The largest connected component, Ω1, has N1 = 1376, with
〈k〉 = 3.16 and γ = 2.5, with clustering coefficient [4] C = 0.06 � Crand = 0.002 and the
average distance l = 6.39 ≈ lrand = 6.28, i.e. it is a small world. The same basic results
are obtained for Ω2 (shown in fig. 1a): here we have N2 = 1364, 〈k〉 = 2.83 and γ = 2.65,
C = 0.08 � Crand = 0.002 and l = 6.91 ≈ lrand = 6.82.

The degree distribution for the two largest components is shown in fig. 1b, where we have
represented the cumulative distribution

P>(k; Ωi) =
N(Ωi)∑
k′≥k

p(k′,Ωi) (3)

for i = 1, 2. We can see that the largest components display scaling, with estimated exponents
γ ≈ 2.5–2.65.

Similar results have been obtained from the analysis of a computer game graph [25]. This
is a single, complex piece of software which consists of N = 1989 classes involving different

S. Valverde et al.: Scale-free networks from optimal design 515

10
0

10
1

10
2

k

10
0

10
1

10
2

10
3

10
4

C
um

ul
at

iv
e

fr
eq

ue
nc

y

-1.65

-1.50

ba

Fig. 1 – (a) One of the largest components of the java net (Ω2, displays scale-free and small-world be-
havior (see text)). In (b) the cumulative frequencies P>(k) are shown for the two largest components.
Here the power-law fit gives γ1 = 2.5 ± 0.05 and γ2 = 2.65 ± 0.08.

aspects like: real-time computer graphics, rigid body simulation, sound and music playing,
graphical user interface and memory management. The software architecture graph for the
game has a large connected component that relates all subsystems. The cumulative degree
frequency for the entire system is scale-free, with γ = 2.85 ± 0.11. The network also displays
SW behaviour: the clustering coefficient is C = 0.08 � Crand = 0.002 and the average
distance is l = 6.2, close to lrand = 4.84.

These results reveal a previously unreported global feature of software architecture which
can have important consequences in both technology and biology. This is, as far as we know,
the first example of a scale-free graph resulting from a local optimization process instead
of preferential attachment [4] or duplication-rewiring [27, 28] rules. Since the failure of a
single module leads to system’s breakdown, no global homeostasis has been at work as an
evolutionary principle, as it might have occurred in cellular nets. In spite of this, the final

n0

n1

n9

n17

n3

n4

n6

n8

n15

n16

n5

n11

n13

n22

n7

n12

n2

n10

n18

n19

n20

n14

n21c

n0

n58

n3

n4

n5

n7

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n21

n22

n23

n24

n25

n26

n27

n28

n29

n30

n31

n32

n33

n35

n37

n38

n39

n40

n41

n42

n43

n44

n45

n46

n47

n48

n49

n50

n52

n53

n54

n55

n56

n57

n1

n2

n6

n8

n9

n51

n36

n34b

n0

n125

n109

n127

n5

n8

n9

n23

n37

n76

n81

n84

n88

n89

n90

n91

n92

n93

n94

n95

n96

n97

n99

n104

n107

n108

n126

n128

n144

n173

n174

n190

n195

n204

n209

n213

n214

n231

n232

n233

n236

n240

n241

n245

n246

n251

n254

n1

n71

n188

n110

n111

n113

n114

n115

n120

n121

n122

n129

n130

n131

n132

n134

n242

n253

n2

n3

n4

n6

n98

n100

n101

n102

n103

n138

n224

n243

n244

n247

n248

n249

n250

n7

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n21

n22

n24

n25

n26

n27
n28

n29

n30

n31

n32

n34

n33

n35

n36

n39

n54

n38

n40

n41

n42

n43

n44

n45

n46

n47

n48

n49

n52

n53

n55

n56

n57

n58

n61

n62

n63

n64

n65

n66

n67

n68

n69

n59

n60

n50

n51

n70

n72

n73

n74

n75

n77

n78

n79

n80

n82

n83

n85

n87

n189

n191

n192

n193

n194

n196

n197

n198

n199

n200

n201

n202

n203

n205

n206

n211

n86

n105

n106

n116

n117

n118

n119

n123

n124

n133

n135

n136

n252

n112

n143

n166

n171

n172

n175

n176

n177

n178

n179

n180

n181

n182

n183

n184

n185

n186

n187

n208

n210

n212

n215

n216

n218

n219

n221

n222

n223

n226

n227

n234

n235

n237

n238

n137

n139

n140

n141

n142

n145

n146

n147n148

n149

n150

n151

n152

n153

n154

n155

n156

n157

n158

n159

n160

n161

n162

n163

n164

n165

n167

n168

n169

n170

n207

n220

n225

n228

n229

n230

n217

n239

d

10 1 10 2 10 3 10 4

 N

0

1

2

3

4

5

 l
lo

g<
k>

a

c

b

d

Fig. 2 – (a) Using the 32 connected components with more than 10 classes (nodes), the l log(k̄)-N
plots is shown. As predicted from a SW structure, the components follow a straight line in this
linear-log diagram. Three subwebs are shown (c-d), displaying hubs but no clustering (their location
is indicated in (a)). The black square corresponds to the computer game graph.

516 EUROPHYSICS LETTERS

structure is very similar to those reported from the analysis of cellular networks. Second, our
results suggest that optimization processes might be also at work in the latest, as has been
shown to occur in transport nets [11].

Complex biosystems are often assumed to result from selection processes together with
a large amount of tinkering [29]. By contrast, it is often assumed that engineered, artificial
systems are highly optimized entities, although selection would be also at work [30]. Such
differences should be observable when comparing both types, but the analysis of both natural
and artificial nets indicates that they are often remarkably similar, perhaps suggesting general
organization principles. Our results support an alternative scenario to preferential attachment
based on cost minimization together with optimal communication among units [14] process.
The fact that small-sized software graphs are trees (as one would expect from optimization
leading to hierarchical structures, leading to stochastic Cayley trees [6]) but that clustering
emerges at larger sizes (see fig. 2) might be the outcome of a combinatorial optimization
process: As the number of modules increases, the conflicting constraints that arise among
different parts of the system would prevent reaching an optimal structure [31]. Concerning
cellular networks, although preferential linking might have been at work [32], optimization
has probably played a key role in shaping metabolic pathways [33–35]. We conjecture that
the common origin of SF nets in both cellular and artificial systems such as software might
stem from a process of optimization involving low cost (sparse graph) and short paths. For
cellular nets (but not in their artificial counterparts) the resulting graph includes, for free, an
enormous homeostasis against random failure.

∗ ∗ ∗

The authors thank J. Gamarra, J. Montoya, W. Parcher, C. Herman and M.

Herman for useful comments. This work was supported by the Santa Fe Institute (RFC and
RVS) and by grants of the Generalitat de Catalunya (FI/2000-00393, RFC) and the CICYT
(PB97-0693, RVS).

REFERENCES

[1] Albert R. and Barabási A.-L., cond-mat/0106096.
[2] Watts D. J. and Strogatz S. H., Nature, 393 (1998) 440.
[3] Newman M. E. J., J. Stat. Phys., 101 (2000) 819.
[4] Barabási A.-L. and Albert R., Science, 286 (1999) 509.
[5] Amaral L. A. N., Scala A., Barthélemy M. and Stanley H. E., Proc. Natl. Acad. Sci.

USA, 97 (2000) 11149.
[6] Caldarelli G., Marchetti R. and Pietronero L., Europhys. Lett., 52 (2000) 304.
[7] Jeong H., Mason S., Barabási A. L. and Oltvai Z. N., Nature, 411 (2001) 41.
[8] Jeong H., Tombor B., Albert R., Oltvai Z. N. and Barabási A.-L., Nature, 407 (2000)

651.
[9] Newman M. E. J., Proc. Natl. Acad. Sci. USA, 84 (2001) 404.
[10] Ferrer Cancho R. and Solé R. V., Proc. R. Soc. London, Ser. B, 268 (2001) 2261.
[11] West B. and Brown J., Scaling in Biology (Oxford, New York) 2000.
[12] Rodriguez-Iturbe I. and Rinaldo A., Fractal River Basins (Cambridge University Press,

Cambridge) 1997.
[13] Mathias N. and Gopal V., Phys. Rev. E, 63 (2001) 1.
[14] Ferrer Cancho R. and Solé R. V., SFI Working paper 01-11-068.
[15] Cherniak C., Trends Neurosci., 18 (1995) 522.

S. Valverde et al.: Scale-free networks from optimal design 517

[16] Stephan K. A., Hilgetag C. C., Burns G. A. P. C., O’Neill M. A., Young M. P. and
Kötter R., Philos. Trans. R. Soc. B, 355 (2000) 111.

[17] Albert R. A., Jeong H. and Barabási A.-L., Nature, 406 (2000) 378.
[18] Solé R. V. and Montoya J. M., Proc. R. Soc. London, Ser. B, 268 (2001) 2039.
[19] Ferrer Cancho R., Janssen C. and Solé R. V., Phys. Rev. E, 63 (2001) 32767.
[20] Pressman R. S., Software Engineering: A Practitioner’s Approach (McGraw-Hill, New York)

1992.
[21] Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns Elements of Reusable

Object-Oriented Software (Addison-Wesley, New York) 1994.
[22] Booch G., Rumbaugh J. and Jacobson I., Unified Modeling Language User Guide (Addison-

Wesley, New York) 1999.
[23] Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W., Object-Oriented

Modeling and Design (Prentice-Hall, Englewood Cliffs) 1991.
[24] Sun, Java Development Kit 1.2. Web site: http://java.sun.com/products/java/1.2/.
[25] UbiSoft ProRally 2002: http://ubisoft.infiniteplayers.com/especiales/prorally/.
[26] Brown W. H., Malveau R., McCormick H., Mowbray T. and Thomas S. W., Antipat-

terns: Refactoring Software, Architectures, and Projects in Crisis (John Wiley & Sons, New
York) 1998.

[27] Solé R. V., Pastor-Satorras R., Smith E. D. and Kepler T., Adv. Complex Syst., 5
(2002) 43.

[28] Vazquez A., Flammini A., Maritan A. and Vespignani A., cond-mat/0108043 (2001).
[29] Jacob F., Science, 196 (1976) 1161.
[30] Monod J., Le hasard et la nécessité (Editions du Seuil, Paris) 1970.
[31] Kauffman S. A., Origins of Order (Oxford, New York) 1993.
[32] Wagner A. and Fell D. A., Proc. R. Soc. London, Ser. B, 268 (2001) 1803.
[33] Mittenthal J. E., Yuan A., Clarke B. and Scheeline A., Bull. Math. Biol., 60 (1998)

815.
[34] Melendez-Hevia E., Waddell T. G. and Shelton E. D., Biochem. J., 295 (1993) 477.
[35] Melendez-Hevia E., Waddell T. G. and Montero F., J. Theor. Biol., 166 (1994) 201.

