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Abstract. – A large number of complex networks, both natural and artificial, share the
presence of highly heterogeneous, scale-free degree distributions. A few mechanisms for the
emergence of such patterns have been suggested, optimization not being one of them. In this
letter we present the first evidence for the emergence of scaling (and the presence of small-
world behavior) in software architecture graphs from a well-defined local optimization process.
Although the rules that define the strategies involved in software engineering should lead to
a tree-like structure, the final net is scale-free, perhaps reflecting the presence of conflicting
constraints unavoidable in a multidimensional optimization process. The consequences for
other complex networks are outlined.

Two basic features common to many complex networks, from the Internet to metabolic
nets, are their scale-free (SF) topology [1] and a small-world (SW) structure [2, 3]. The
first states that the proportion of nodes P (k) having k links decays as a power law P (k) ∼
k−γφ(k/ξ) (with γ ≈ 2–3) [1, 4, 5] (here φ(k/ξ) introduces a cut-off at some characteristic
scale ξ). Examples of SF nets include Internet topology [4,6], cellular networks [7,8], scientific
collaborations [9] and [10] lexical networks. The second refers to a web exhibiting very small
average path lengths between nodes along with a large clustering [2, 3].

Although it has been suggested that these nets originate from preferential attachment [4],
the success of theoretical approximations to branching nets from optimization theory [11, 12]
would support optimality as an alternative scenario. In this context, it has been shown that
minimization of both vertex-vertex distance and link length (i.e. Euclidean distance between
vertices) [13] can lead to the SW phenomenon. In a similar context, SF networks have been
shown to originate from a simultaneous minimization of link density and path distance [14].
Optimal wiring has also been proposed within the context of neural maps [15]: “save wiring”
is an organizing principle of brain structure. However, although the analysis of functional
connectivity in the cerebral cortex has shown evidence for SW [16], the degree distribution is
clearly non-skewed but single-scaled (i.e. ξ is very small).

The origin of highly heterogeneous nets is particularly important since it has been shown
that these networks are extremely resilient under random failure: removal of randomly chosen
nodes (typically displaying low degree) seldom alters the fitness of the net [17]. However, when
c© EDP Sciences
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nodes are removed by sequentially eliminating those with higher degree, the system rapidly
experiences network fragmentation [17,18].

Artificial networks offer an invaluable reference when dealing with the rules that underlie
their building process [19]. Here we show that a very important class of networks derived from
software architecture maps, displays the previous patterns as a result of a design optimization
process.

The importance of software and understanding how to build efficiently software systems
is one of our major concerns. Software is present in the core of scientific research, economic
markets, military equipments and health care systems, to name a few. Expensive costs (thou-
sands millions dollars) are associated with the software development process. In the past
thirty years we have assisted to the birth and technological evolution of software engineering,
whose objective is to provide methodologies and tools to design and build software efficiently.

Designed software represents a human vision or conception of a problem. Briefly, to design
a software application is to decompose it into a set of disjoint, smaller, functional units also
named hereafter software components(1). There are well-defined principles that enable the
engineer to find the optimal partition that solves the problem within the external constraints
of available time and economic resources [20].

A software component is an abstract entity which represents everything from hardware
components to entire software applications [21]. The software functionality is distributed
among these components by the engineer who has to decide if a given function is implemented
by a single component, or as the result of several interacting components. In the latter case,
the engineer defines explicitly the communication between the components by means of rela-
tionships. There are also other types of relationships but in our study we will not make any dif-
ference between them. The number of software components and their sizes (usually measured
as number of lines of source code (NLOC)) can vary greatly from one application to another.

The above design process is documented by means of the software architecture where
the different software components and their relationships are explicitly depicted (this is a
diagram expressed in standard graphical notation like UML [22] or OMT [23]). We define the
software graph as a network obtained from an existing software architecture where every node
corresponds to exactly one software component and two nodes are linked if the corresponding
software components are related to each other in the software architecture. This kind of graph
constitutes a very rough approximation to the fully detailed software architecture but it is of
interest because the topological information is preserved(2).

We have analysed the class diagram of the public Java Development Framework 1.2 (JDK
1.2) [24], which is a large set of software components widely used by Java applications, as well
as the architecture of a large computer game [25]. These are examples of highly optimized
structures, where design principles call for diagram comprehensibility, grouping components
into modules, flexibility and reusability (i.e. avoiding the same task to be performed by differ-
ent components) [20]. Although the entire plan is controlled by engineers, no design principle
explicitly introduces preferential attachment nor scaling and small worldness. The resulting
graphs, however, turn out to be SW and SF nets.

The software graph is defined by a pair Ωs = (Ws, Es), where Ws = {si}, (i = 1, . . . , N) is
the set of N = |Ω| classes and Es = {{si, sj}} is the set of edges/connections between classes.
The adjacency matrix ξij indicates that an interaction exists between classes si, sj ∈ Ωs

(1)In object-oriented languages (i.e.: C++, Java) a component is also known by the term “class”.
(2)The inner details of every class were discarded and only the class names and the names of the relationships

were kept. The type and semantics of every relationship is not considered here. All the software architectures
analysed here were stored in an electronic format compatible with the Rational Rose 98 specification (see
http://www.rational.com) and converted automatically by custom software to our graph representation.
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(ξij = 1) or that the interaction is absent (ξij = 0). The average path length l is given by the
average l = 〈lmin(i, j)〉 over all pairs si, sj ∈ Ωs, where lmin(i, j) indicates the length of the
shortest path between two nodes. The clustering coefficient is defined as the probability that
two classes that are neighbors of a given class are neighbors of each other. Poissonian graphs
with an average degree k̄ are such that C ≈ k̄/N and the path length follows [3]:

l ≈ logN

log(k̄)
. (1)

C is easily defined from the adjacency matrix, and is given by

C =

〈
2

ki(ki − 1)

N∑
j=1

ξij

[ ∑
k∈Γi

ξjk

]〉
Ωs

. (2)

It provides a measure of the average fraction of pairs of neighbors of a node that are also
neighbors of each other.

The building process of a software graph is done in parallel (different parts are built and
gradually get connected) and is assumed to follow some standard rules of design [20, 21, 23].
None of these rules refer to the overall organization of the final graph. Essentially, they deal
with optimal communication among modules and low cost (in terms of wiring) together with
the rule of avoiding hubs (classes with large number of dependencies, that is, large degree).
The set of bad design practices, such as making use of large hubs, is known as antipatterns in
the software literature: see [26]. The development time of the application should be as short
as possible because of the expensive costs involved. It is argued in the literature [20] that
there is an optimum number of components so that the cost of development is minimized,
but it is not possible to make a reliable prediction about this number. Adding new software
components involves more cost in terms of interconnections between them (links). Conversely,
the cost per single software component decreases as the overall number of components (nodes)
is increased because the functionality is spread over the entire system. Intuitively, a trade-off
between the number of nodes and the number of links must be chosen.

However, we have found that this (local) optimization process results in a net that ex-
hibits both scaling and small-world structure. First, we analyzed JDK 1.2 network which
has N = 9257 nodes and Nc = 3115 connected components, so that the complete graph Ωs

is actually given by Ωs = ∪iΩi, where the set is ordered from larger to smaller components
(|Ω1| > |Ω2| > . . . > |ΩNc |). The largest connected component, Ω1, has N1 = 1376, with
〈k〉 = 3.16 and γ = 2.5, with clustering coefficient [4] C = 0.06 � Crand = 0.002 and the
average distance l = 6.39 ≈ lrand = 6.28, i.e. it is a small world. The same basic results
are obtained for Ω2 (shown in fig. 1a): here we have N2 = 1364, 〈k〉 = 2.83 and γ = 2.65,
C = 0.08 � Crand = 0.002 and l = 6.91 ≈ lrand = 6.82.

The degree distribution for the two largest components is shown in fig. 1b, where we have
represented the cumulative distribution

P>(k; Ωi) =
N(Ωi)∑
k′≥k

p(k′,Ωi) (3)

for i = 1, 2. We can see that the largest components display scaling, with estimated exponents
γ ≈ 2.5–2.65.

Similar results have been obtained from the analysis of a computer game graph [25]. This
is a single, complex piece of software which consists of N = 1989 classes involving different
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Fig. 1 – (a) One of the largest components of the java net (Ω2, displays scale-free and small-world be-
havior (see text)). In (b) the cumulative frequencies P>(k) are shown for the two largest components.
Here the power-law fit gives γ1 = 2.5 ± 0.05 and γ2 = 2.65 ± 0.08.

aspects like: real-time computer graphics, rigid body simulation, sound and music playing,
graphical user interface and memory management. The software architecture graph for the
game has a large connected component that relates all subsystems. The cumulative degree
frequency for the entire system is scale-free, with γ = 2.85 ± 0.11. The network also displays
SW behaviour: the clustering coefficient is C = 0.08 � Crand = 0.002 and the average
distance is l = 6.2, close to lrand = 4.84.

These results reveal a previously unreported global feature of software architecture which
can have important consequences in both technology and biology. This is, as far as we know,
the first example of a scale-free graph resulting from a local optimization process instead
of preferential attachment [4] or duplication-rewiring [27, 28] rules. Since the failure of a
single module leads to system’s breakdown, no global homeostasis has been at work as an
evolutionary principle, as it might have occurred in cellular nets. In spite of this, the final
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Fig. 2 – (a) Using the 32 connected components with more than 10 classes (nodes), the l log(k̄)-N
plots is shown. As predicted from a SW structure, the components follow a straight line in this
linear-log diagram. Three subwebs are shown (c-d), displaying hubs but no clustering (their location
is indicated in (a)). The black square corresponds to the computer game graph.
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structure is very similar to those reported from the analysis of cellular networks. Second, our
results suggest that optimization processes might be also at work in the latest, as has been
shown to occur in transport nets [11].

Complex biosystems are often assumed to result from selection processes together with
a large amount of tinkering [29]. By contrast, it is often assumed that engineered, artificial
systems are highly optimized entities, although selection would be also at work [30]. Such
differences should be observable when comparing both types, but the analysis of both natural
and artificial nets indicates that they are often remarkably similar, perhaps suggesting general
organization principles. Our results support an alternative scenario to preferential attachment
based on cost minimization together with optimal communication among units [14] process.
The fact that small-sized software graphs are trees (as one would expect from optimization
leading to hierarchical structures, leading to stochastic Cayley trees [6]) but that clustering
emerges at larger sizes (see fig. 2) might be the outcome of a combinatorial optimization
process: As the number of modules increases, the conflicting constraints that arise among
different parts of the system would prevent reaching an optimal structure [31]. Concerning
cellular networks, although preferential linking might have been at work [32], optimization
has probably played a key role in shaping metabolic pathways [33–35]. We conjecture that
the common origin of SF nets in both cellular and artificial systems such as software might
stem from a process of optimization involving low cost (sparse graph) and short paths. For
cellular nets (but not in their artificial counterparts) the resulting graph includes, for free, an
enormous homeostasis against random failure.
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