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The large amounts of data from molecular biology and neuroscience have lead to a renewed interest in

the inverse Ising problem: how to reconstruct parameters of the Ising model (couplings between spins and

external fields) from a number of spin configurations sampled from the Boltzmann measure. To invert the

relationship between model parameters and observables (magnetizations and correlations), mean-field

approximations are often used, allowing the determination of model parameters from data. However, all

known mean-field methods fail at low temperatures with the emergence of multiple thermodynamic states.

Here, we show how clustering spin configurations can approximate these thermodynamic states and how

mean-field methods applied to thermodynamic states allow an efficient reconstruction of Ising models also

at low temperatures.
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Taking a set of spin configurations sampled from the
equilibrium distribution of an Ising model, can the under-
lying couplings between spins be reconstructed from a
large number of such samples? This inverse Ising problem
is a paradigmatic inverse problem with applications in
neural biology [1,2], protein structure determination [3],
and gene expression analysis [4]. Typically a large number
of spins (representing the states of neurons, genetic loci, or
genes) is involved, as well as a large number of interactions
between them.

Such large system sizes makes the inverse Ising model
intrinsically difficult: solving the inverse problem involves
first solving the Ising model, in some manner, for a given
set of couplings and external fields. Then one can ask how
couplings between spins and external fields need to be
adjusted in order to match the inferred model with the
observed statistics of the samples. An early and fundamen-
tal approach to the inverse Ising model, Boltzmann ma-
chine learning [5], follows this prescription quite literally.
Proceeding iteratively, couplings and fields are updated
in proportion to the differences of magnetizations and
two-point correlations resulting from the current model
parameters and the corresponding values observed in
data. To compute the magnetizations and two-point corre-
lations, each iteration involves a numerical simulation of
the Ising model, so this approach is limited to small
systems.

Instead, mean-field theory is the basis of many ap-
proaches to the inverse Ising problem used in practice
[6,7]. Under the mean-field approximation, the Ising model
can be solved easily for the magnetizations and correla-
tions between spins. The mean-field solution is then in-
verted (see below) to yield the parameters of the model
(couplings and external fields) as a function of the empiri-
cal observables (magnetizations and correlations). Yet, as
temperature is decreased and correlations between spins
grow and become more discernible, the reconstruction

given by mean-field theory becomes less accurate not, as
one might expect, more accurate. This effect has been
called ‘‘an embarrassment to statistical physics’’ [8].
Mean-field reconstruction of the Ising model even breaks
down entirely near the transition to a low-temperature
phase [9]: in the low-temperature phase there is no corre-
lation between reconstructed and underlying couplings.
This low-temperature failure equally affects all refine-
ments related to mean-field theory like the Thouless-
Anderson-Palmer (TAP) approach [6,7,9], susceptibility
propagation [9,10], the Sessak-Monasson expansion [11],
and Bethe reconstruction [12].
The breakdown of mean-field reconstructions can have

different roots: the emergence of multiple thermodynamic
states at a phase transition, an increasing correlation length
at lower temperatures, or the freezing of the spins into a
reduced set of configurations at low temperatures requiring
more samples to measure the correlations between spins.
To address this issue, we first consider a very simple case
where mean-field theory is exact: the Curie-Weiss
model. The zero-field Hamiltonian of N binary spins si is
H JðsÞ ¼ �J=N

P
i<jsisj with J ¼ 1. This corresponds to

equal couplings J0ij ¼ J=N between all pairs of spins, a

fact that is of course not known when reconstructing the
couplings.M samples of spin configurations are taken from
the equilibrium measure expf��H JðsÞg=Z, where � is
the inverse temperature and Z is the partition function. In a
real-life reconstruction, these configurations would come
from experimental measurements of neural activity, gene
expression levels, etc. One then can calculate the observed
magnetizations �mi ¼ 1

M

P
�s

�
i and connected correlations

�cik ¼ 1
M

P
�s

�
i s

�
k � �mi �mk, with � ¼ 1; . . . ;M denoting

the sampled configurations.
The mean-field prediction for the magnetizations of

the Curie-Weiss model is given by the solution of the
self-consistent equation
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mi ¼ tanh

�X
j�i

Jijmj þ hi

�
; (1)

where the couplings are rescaled with temperature
Jij ¼ �J0ij. The connected correlations follow from

Eq. (1) by considering the linear response

cik ¼ @mi

@hk
¼ ð1�m2

i Þ
�X
j�i

Jij
@mj

@hk
þ �ik

�

¼ ð1�m2
i Þ
�X
j�i

Jijcjk þ �ik

�
: (2)

Inserting the observed magnetizations and correlations
into Eq. (2) gives [6]

X
j�i

Jij �cjk ¼ ��ik þ �cik=ð1� �m2
i Þ; (3)

which can be solved directly for the couplings
Jij ¼ �ð �c�1Þij (i � j) and the fields hi ¼ arctanh �mi �P

j�iJij �mj using Eq. (1).

Figure 1(a) shows how well this reconstruction performs
at different inverse temperatures � and different number
of samples M. For �<�c ¼ 1, the reconstruction error

goes to zero with the number of samples as M�1=2: since
for the Curie-Weiss model the self-consistent equation (1)

is exact, the reconstruction is limited only by fluctuations
of the measured correlations resulting from the finite num-
ber of samples and by the finite system size.
Yet for �>�c, the difference between the underlying

couplings and the reconstructed couplings does not vanish
with increasing number of samples. While the self-
consistent equation (1) is still correct, the identification
of its solutions with the observed magnetizations �mi is
mistaken. For the ferromagnetic phase at �>�c, there
are two solutions of the self-consistent equation, denoted
m�i ¼ �m. The observed magnetizations are averages
over these two thermodynamic states, and they have noth-
ing to do with either of the two solutions of Eq. (1). The
same holds for the connected correlations cþij and c�ij in the
two states and the observed correlations �cij. Any method

explicitly or implicitly connecting the magnetization in
low-temperature states with the average magnetization
over samples will thus fail at low temperatures. Note that
this does not affect Boltzmann machine learning, where the
magnetization is averaged over all states.
A simple cure suggests itself: since each sample stems

from one of the two thermodynamic states, we divide the
M configurations into those configurations with positive
total magnetization

P
is

�
i and those with negative total

magnetization. Then the magnetizations in the two ther-
modynamic states can be calculated separately, giving
�mþi ¼ 1

Mþ

P
�2þs

�
i and similarly for �m�i and the connected

correlations. Identifying these magnetizations with the
solutions of the self-consistent equation (1), we obtain in
place of Eq. (3) two sets of equations:

X
j�i

Jij �c
þ
jk ¼ ��ik þ �cþik=½1� ð �mþi Þ2�; (4)

X
j�i

Jij �c
�
jk ¼ ��ik þ �c�ik=½1� ð �m�i Þ2�: (5)

Reconstructing the couplings using a single state only, by
solving say Eq. (4), the observed positive magnetization
can be accounted for equally well by positive external
fields (even though the samples were generated by a model
with zero field) or, alternatively, by ferromagnetic cou-
plings between the spins. One finds that solving Eq. (4)
leads to an underestimate of the couplings, and positive
external fields calculated by Eq. (1) follow. Corres-
pondingly, basing the reconstruction only on data from
the down state by solving Eq. (5) also leads to an under-
estimate of the couplings and large negative fields. This
effect has already been noted in the context of the inverse
Hopfield problem [13]. We thus demand that the recon-
structed fields obtained from either state are equal to each
other,

X
j�i

Jijð �mþj � �m�j Þ ¼ arctanh �mþi � arctanh �m�i ; (6)
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FIG. 1 (color online). Reconstructing couplings of the Curie-
Weiss ferromagnet. The root-mean-squared deviation between

the reconstructed couplings and underlying couplings, � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN�1Þ
P

i<jðJij=�� J=NÞ2
q

, is plotted against the inverse tem-

perature � for different numbers of configurations (J ¼ 1). The
system size is N ¼ 100. The insets show this deviation on a
logarithmic scale versus the number of samples M at different
inverse temperatures indicated by the colors of the curves
(� ¼ 0:3, 0.58, 0.86, 1.14, 1.42, 1.7). (a) Reconstruction based
on a single thermodynamic state breaks down in the low-
temperature phase �> 1, and the deviation between recon-
structed and underlying couplings does not vanish with an
increasing number of samples M (see the top curves in the
inset). (b) Reconstruction based on two thermodynamic
states is asymptotically exact. The deviation between recon-
structed and underlying couplings vanishes as M�1=2 at low
temperatures.
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and claim that jointly solving Eqs. (4)–(6) gives the correct
mean-field reconstruction at low temperatures.

Already Eqs. (4) and (5) are two linear equations per
coupling variable, so in general, there is no solution to
these equations. However, we expect that the underlying
couplings used to generate the M configurations actually
solve these equations, at least up to fluctuations due to the
finite number of configurations sampled and the finite size
effect. For an overdetermined linear equation of the form
A � x ¼ bwith vectors of different dimensions x and b and
a nonsquare matrix A, the Moore-Penrose pseudoinverse
Aþ [14,15] gives a least-squares solution x ¼ Aþ � b such
that the Euclidean norm kA � x� bk2 is minimized. In this
sense, the Moore-Penrose pseudoinverse allows us to solve
Eqs. (4)–(6) as well as possible. The linear equations (4)–(6)
can be written as a single matrix equation J �A ¼ B, where
A is the N � ð2N þ 1Þ matrix (�cþ, �c�, �mþ � �m�) and B
is the N � ð2N þ 1Þ matrix ( �bþ, �b�, ~mþ � ~m�), with
�bþij ¼ ��ij þ �cþij=½1� ð �mþi Þ2� and analogously for �b�ij ,
and ~mþi ¼ arctanh �mþi and analogously for ~m�i . The
Moore-Penrose inverse is calculated using singular value
decomposition [16] and right multiplied withB to obtain the
the optimal solution J. In general, this matrix will not be
symmetric, and we use ðJij þ JjiÞ=2, i � j for the recon-

structed couplings. The external fields can be computed for
each state from hþi ¼ arctanh �mþi �

P
j�iJij �m

þ
j and analo-

gously for h�i . Their average over the two states is used for
the reconstructed fields.

Figure 1(b) shows how the reconstruction error now

vanishes as M�1=2 also in the ferromagnetic phase, albeit
with a prefactor which grows as the temperature decreases.
So while the mean-field reconstruction from many samples
is still successful at low temperatures, more configurations
are needed to obtain a certain reconstruction error: at very
low temperatures, most spins will be in the same state
(either up or down); the connected correlations are small
as a result and require many samples for their accurate
determination. The quality of the reconstruction depends
on configurations being correctly assigned to the thermo-
dynamic states. Artificially introdcuing mistakes in this
assignment, we find the reconstruction error increases
linearly with the fraction of mistakes in the assignment
of configurations to states.

In practice, couplings between spins will not all be equal
to each other as they are in the Curie-Weiss model.
Ferromagnetic as well as antiferromagnetic couplings
may be present in magnetic alloys, neurons have excitatory
and inhibitory interactions, regulatory interactions be-
tween genes can either enhance or suppress the expression
of a target gene. The Curie-Weiss ferromagnet is not a
good model for all those cases where the couplings are of
different signs and magnitudes. In fact, in models where all
spins interact with each other via couplings that can be
positive or negative [17], the low-temperature regime may
be characterized not by two but by many thermodynamic

states [18,19]. These so-called glassy states cannot be
identified simply by the total magnetization of each
sample, as is the case for the ferromagnet. Nevertheless,
configurations �, �0 from the same thermodynamic state
are typically close to each other, having a large overlap

ð1=NÞPis
�
i s

�0
i . Glassy thermodynamic states thus appear

as clusters in the space of configurations [20,21].
We use the k-means clustering algorithm [22] to find

these clusters in the sampled spin configurations. Starting
with a set of randomly chosen and normalized cluster
centers, each configuration is assigned to the cluster center
it has the largest overlap with. Then the cluster centers are
moved to lie in the direction of the center of mass of all
configurations assigned to that cluster, and the procedure is
repeated until convergence. We also tried out different
algorithms from the family of hierarchical clustering
methods but found no significant difference in the recon-
struction performance. Then, magnetizations and con-
nected correlations are computed for each cluster
separately. Equations (4)–(6) can be written for k thermo-
dynamic states. The mean-field equation for each state and
the condition that the external fields are equal in all states
can be written again in the form of a matrix equation J �
A ¼ B. A is the N � ðkN þ kÞ matrix (�c1; . . . ; �ck; �m1�
h �mi; . . . ; �mk�h �mi), where h�i denotes the average over
clusters, h �mi ¼ ð1=kÞPk

a¼1 �ma, and analogously for B.
The pseudoinverse of A can be computed in OðkN3Þ steps
[16], so up to a factor of k coming from the number of
clusters this is just as fast as the high-temperature mean-
field reconstruction based on Gaussian elimination to invert
the correlation matrix.
We test this approach using couplings drawn indepen-

dently from a Gaussian distribution of zero mean and
variance 1=N (the Sherrington-Kirkpatrick model [17]).
Figure 2(a) shows the reconstruction at low temperatures
improving with the number of clusters k and configuration
samples M. We note that at high temperatures, magnetiza-

tions are 0�OðN�1=2Þ, so for small system sizes clustering
erroneously identifies distinct clusters with small magneti-
zation. Thus, at high temperatures the low-temperature re-
construction based onmany clusters does not work aswell as
the standard approach based on a single cluster.
A further improvement is possible. For disordered sys-

tems, the self-consistent equation (1) is not exact. An
additional term is required, the so-called Onsager reaction
term describing the effect a spin has on itself via the
response of its neighboring spins. The TAP equation [18],

mi ¼ tanh

�X
j�i

Jijmj �mi

X
j�i

J2ijð1�m2
j Þ þ hi

�
; (7)

turns out to be exact for fully connected models. For each
state a we now obtain instead of Eq. (4)
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X
j�i

Jij �c
a
jk¼��ikþ �caik=½1�ð �ma

i Þ2�þ �caik
X
j�i

J2ij½1�ð �ma
j Þ2�

�2 �ma
i

X
j�i

J2ij �m
a
j �c

a
jk: (8)

These equations are no longer linear in the couplings Jij
and cannot be solved by the pseudoinverse. A simple
gradient descent method still allows us to solve these
equations in OðkN3Þ steps per iteration. We define a
quadratic cost function S for the couplings J by squaring
the difference between the lhs and rhs of Eq. (8) and
summing over all spin pairs i, k and states a. Differences
in the external fields hai ¼ arctanh �ma

i �
P

j�iJij �m
a
j þ

�ma
i

P
j�iJ

2
ij½1� ð �ma

j Þ2� across thermodynamic states are

penalized by an additional term
P

i;aðhai � hhiiÞ2. The iter-
ative prescription with rate �, Jij  Jij � �@S=@Jij, con-

verges to a point near the solution of the TAP equation with
small differences in the external fields across states (the
deviations resulting from the finite number of samples and
finite system size). Figure 2(b) shows how the reconstruc-
tion error asymptotically tends to zero with growing k
and M.

Mean-field theories exist beyond the Curie-Weiss or the
Sherrington-Kirkpatrick model discussed here [23]. We
have shown that the use of mean-field methods to solve
the inverse Ising problem at low temperatures hinges on

our ability to reconstruct the thermodynamic states from
the sampled data. With this proviso, the entire range of
mean-field methods can be now be used, for instance,
for treelike couplings [12] or couplings with local
loops [24].
We placed our focus on mean-field approaches, since

they result in computationally efficient reconstructions
independently of the underlying model (for instance a
full connectivity matrix Jij versus a sparse matrix).

Reconstructions based on pseudolikelihood [25] can fail
at low temperatures as well [26], although [27] finds a good
reconstruction for several models also at low temperatures,
albeit at a large computational cost. The adaptive cluster
expansion recently introduced by Cocco and Monasson
[28] is not affected by the transition to a low-temperature
phase but becomes computationally unwieldy for highly
connected models due to the large number of clusters to be
considered.
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