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We present a scalable nonparametric Bayesian method to perform network reconstruction from observed
functional behavior that at the same time infers the communities present in the network. We show that the
joint reconstruction with community detection has a synergistic effect, where the edge correlations used to
inform the existence of communities are also inherently used to improve the accuracy of the reconstruction
which, in turn, can better inform the uncovering of communities. We illustrate the use of our method with
observations arising from epidemic models and the Ising model, both on synthetic and empirical networks,
as well as on data containing only functional information.

DOI: 10.1103/PhysRevLett.123.128301

The observed functional behavior of a wide variety large-
scale system is often the result of a network of pairwise
interactions. However, in many cases, these interactions are
hidden from us, either because they are impossible to
measure directly, or because their measurement can be done
only at significant experimental cost. Examples include the
mechanisms of gene and metabolic regulation [1], brain
connectivity [2], the spread of epidemics [3], systemic risk
in financial institutions [4], and influence in social media
[5]. In such situations, we are required to infer the network
of interactions from the observed functional behavior.
Researchers have approached this reconstruction task from
a variety of angles, resulting in many different methods,
including thresholding the correlation between time series
[6], inversion of deterministic dynamics [7–9], statistical
inference of graphical models [10–14] and of models of
epidemic spreading [15–20], as well as approaches that
avoid explicit modeling, such as those based on transfer
entropy [21], Granger causality [22], compressed sensing
[23–25], generalized linearization [26], and matching of
pairwise correlations [27,28].
In this Letter, we approach the problem of network

reconstruction in a manner that is different from the
aforementioned methods in two important ways. First, we
employ a nonparametric Bayesian formulation of the prob-
lem, which yields a full posterior distribution of possible
networks that are compatible with the observed dynamical
behavior. Second, we perform network reconstruction
jointly with community detection [29], where, at the same
time aswe infer the edges of the underlying network,we also
infer its modular structure [30]. As we will show, while
network reconstruction and community detection are desir-
able goals on their own, joining these two tasks has a
synergistic effect, whereby the detection of communities
significantly increases the accuracy of the reconstruction,

which in turn improves the discovery of the communities,
when compared to performing these tasks in isolation.
Some other approaches combine community detection

with functional observation. Berthet et al. [31] derived
necessary conditions for the exact recovery of group assign-
ments for dense weighted networks generated with com-
munity structure given observed microstates of an Ising
model. Hoffmann et al. [32] proposed a method to infer
community structure from time-series data that bypasses
network reconstruction by employing a direct modeling of
the dynamics given the group assignments, instead.
However, neither of these approaches attempt to perform
network reconstruction together with community detection.
Furthermore, they are tied down to one particular inverse
problem, and as we will show, our general approach can be
easily extended to an open-ended variety of functional
models.
Bayesian network reconstruction.—We approach the

network reconstruction task similarly to the situation where
the network edges are measured directly, but via an
uncertain process [33,34]: If D is the measurement of
some process that takes place on a network, we can define a
posterior distribution for the underlying adjacency matrix A
via Bayes’ rule

PðAjDÞ ¼ PðDjAÞPðAÞ
PðDÞ ; ð1Þ

where PðDjAÞ is an arbitrary forward model for the
dynamics given the network, PðAÞ is the prior information
on the network structure, and PðDÞ ¼ P

A PðDjAÞPðAÞ is
a normalization constant comprising the total evidence for
the data D. We can unite reconstruction with community
detection via an, at first, seemingly minor, but ultimately
consequential modification of the above equation where we

PHYSICAL REVIEW LETTERS 123, 128301 (2019)

0031-9007=19=123(12)=128301(7) 128301-1 © 2019 American Physical Society

https://orcid.org/0000-0002-4505-0517
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.128301&domain=pdf&date_stamp=2019-09-18
https://doi.org/10.1103/PhysRevLett.123.128301
https://doi.org/10.1103/PhysRevLett.123.128301
https://doi.org/10.1103/PhysRevLett.123.128301
https://doi.org/10.1103/PhysRevLett.123.128301


introduce a structured prior PðAjbÞ where b represents the
partition of the network in communities, i.e., b ¼ fbig,
where bi ∈ f1;…; Bg is group membership of node i. This
partition is unknown, and is inferred together with the
network itself, via the joint posterior distribution

PðA; bjDÞ ¼ PðDjAÞPðAjbÞPðbÞ
PðDÞ : ð2Þ

The prior PðAjbÞ is an assumed generative model for the
network structure. In our work, we will use the degree-
corrected stochastic block model (DC-SBM) [35], which
assumes that, besides differences in degree, nodes belong-
ing to the same group have statistically equivalent con-
nection patterns, according to the joint probability

PðAjλ; κ; bÞ ¼
Y
i<j

e−κiκjλbi;bj ðκiκjλbi;bjÞAij

Aij!
; ð3Þ

with λrs determining the average number of edges between
groups r and s and κi the average degree of node i. The
marginal prior is obtained by integrating over all remaining
parameters weighted by their respective prior distributions,

PðAjbÞ ¼
Z

PðAjλ; κ; bÞPðκjbÞPðλjbÞdκdλ; ð4Þ

which can be computed exactly for standard prior choices,
although it can be modified to include hierarchical priors
that have an improved explanatory power [36] (see
Supplemental Material [37] for a concise summary.).
The use of the DC-SBM as a prior probability in Eq. (2)

is motivated by its ability to inform link prediction in
networks where some fraction of edges have not been
observed or have been observed erroneously [34,39]. The
latent conditional probabilities of edges existing between
groups of nodes is learned by the collective observation of
many similar edges, and these correlations are leveraged to
extrapolate the existence of missing or spurious ones. The
same mechanism is expected to aid the reconstruction task,
where edges are not observed directly, but the observed
functional behavior yields a posterior distribution on them,
allowing the same kind of correlations to be used as an
additional source of evidence for the reconstruction, going
beyond what the dynamics alone says.
Our reconstruction approach is finalized by defining an

appropriate model for the functional behavior, determining
PðDjAÞ. Here, we will consider two kinds of indirect data.
The first comes from a susceptible-infected-susceptible
(SIS) epidemic spreading model [40], where σiðtÞ ¼ 1
means node i is infected at time t, 0, otherwise. The
likelihood for this model is

PðσjA; τ; γÞ ¼
Y
t

Y
i

P(σiðtÞjσðt − 1Þ); ð5Þ

where

P(σiðtÞjσðt − 1Þ)
¼ f(emiðt−1Þ; σiðtÞ)1−σiðt−1Þ × f(γ; σiðtÞ)σiðt−1Þ ð6Þ

is the transition probability for node i at time t, with
fðp; σÞ ¼ ð1 − pÞσp1−σ , and where miðtÞ ¼

P
j Aij lnð1 −

τijÞσjðtÞ is the contribution from all neighbors of node i to
its infection probability at time t. In the equations above,
the value τij is the probability of an infection via an existing
edge ði; jÞ, and γ is the 1 → 0 recovery probability. With
these additional parameters, the full posterior distribution
for the reconstruction becomes

PðA; b; τjσÞ ¼ PðσjA; τ; γÞPðAjbÞPðbÞPðτÞ
PðσjγÞ : ð7Þ

Since τij ∈ ½0; 1�, we use the uniform prior PðτÞ ¼ 1. Note,
also, that the recovery probability γ plays no role on the
reconstruction algorithm, since its term in the likelihood
does not involve A [and, hence, gets cancelled out in the
denominator PðσjγÞ ¼ PðγjσÞPðσÞ=PðγÞ]. This means that
the above posterior only depends on the infection events
0 → 1 and, thus, is also valid without any modifications to
all epidemic variants susceptible-infected (SI), susceptible-
infected-recovered (SIR), susceptible-exposed-infected-
recovered (SEIR), etc., [40], since the infection events
occur with the same probability for all these models.
The second functional model we consider is the Ising

model, where spin variables on the nodes s ∈ f−1; 1gN are
sampled according to the joint distribution

PðsjA; β; J; hÞ ¼ exp ðβPi<jJijAijsisj þ
P

ihisiÞ
ZðA; β; J; hÞ ; ð8Þ

where β is the inverse temperature, Jij is the coupling on
edge ði; jÞ, hi is a local field on node i, and ZðA; β; J; hÞ ¼P

s expðβ
P

i<j JijAijsisj þ
P

i hisiÞ is the partition func-
tion. Note that this is not a dynamical model as each
microstate s is sampled independently according to the
above distribution. Unlike the SIS model considered
before, this distribution cannot be written in closed form
since ZðA; β; J; hÞ cannot be computed exactly, rendering
the reconstruction problem intractable. Therefore, instead,
we make use of the pseudolikelihood approximation [41],
which is very accurate for the purpose at hand [14], where
we approximate Eq. (8) as a product of (properly normal-
ized) conditional probabilities for each spin variable si

PðsjA; β; J; hÞ ¼
Y
i

expðβsi
P

jJijAijsj þ hisiÞ
2 coshðβPjJijAijsj þ hiÞ

: ð9Þ

With the above likelihood, reconstruction is performed by
observing a set ofM microstates s̄ ¼ fs1;…; sMg, sampled
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according to Pðs̄jA; β; J; hÞ ¼ Q
l PðsljA; β; J; hÞ, which

yields the posterior distribution

PðA; b; β; J; hjs̄Þ

¼ Pðs̄jA; β; J; hÞPðβÞPðhÞPðJjAÞPðAjbÞPðbÞ
Pðs̄Þ : ð10Þ

In the above, we use uniform priors PðJjAÞ ¼Q
ij½−1=2 < Jij < 1=2�Aij , thus, forcing, without loss of

generality, the values of Jij to lie in the shifted unit interval
½−1=2; 1=2�. For the remaining parameters, we use uniform
priors, PðhÞ ∝ 1 and PðβÞ ∝ 1, for β ∈ ½−∞;∞� and
h ∈ ½−∞;∞�N .
For any of the above posterior distributions, we perform

sampling using a Markov chain Monte Carlo procedure:
For each proposal A → A0, it is accepted with the
Metropolis-Hastings probability [42,43]

min

�
1;
PðA0; b; θjDÞ
PðA; b; θjDÞ

PðA0 → AÞ
PðA → A0Þ

�
;

and likewise, for the node partition b → b0, and any of the
remaining parameters θ → θ0. Note that the acceptance
probability does not require the intractable normalization
constant PðDÞ to be computed. For both functional models
considered, a whole sweep over E entries of the adjacency
matrix and N nodes is done in time OðEM þ NhkiÞ, where
M is the number of data samples per node, allowing the
method to be applied for large systems. We summarize and
give more details about the technical aspects of the
algorithm in the Supplemental Material [37].
Synthetic networks.—We begin by investigating the

reconstruction performance of networks sampled from
the planted partition (PP) model, i.e., a DC-SBM with
κi ¼ 1, λrs ¼ λinδrs þ λoutð1 − δrsÞ, with λin ¼ hki½1þ
ϵðB − 1Þ�=N and λout ¼ hkið1 − ϵÞ=N, where ϵ ¼ Nðλin −
λoutÞ=hkiB controls the strength of the modular structure.
The detectability threshold for this model is given by
ϵ� ¼ 1=

ffiffiffiffiffiffiffihkip
, below which it is impossible to recover the

planted community structure [44]. Given a network A�
from this model, we sample M independent Ising micro-
states s according to Eq. (8) using Jij ¼ 1, hi ¼ 0, and
β ¼ β� being the critical inverse temperature for the
particular network. We compare two inference approaches:
In the first, we sample both the reconstructed network as
well as its community structure form the joint posterior of
Eq. (10). In the second approach, we perform reconstru-
ction and community detection separately, by first perform-
ing reconstruction in isolation, by replacing the DC-SBM
prior PðAjbÞ by the likelihood of an Erdős-Rényi model.
We evaluate the quality of the reconstruction via the
posterior similarity S ∈ ½0; 1�, defined as

SðA�; πÞ ¼ 1 −
P

i<jjA�
ij − πijjP

i<jjA�
ij þ πijj

; ð11Þ

where A� is the true network and π is the margi-
nal posterior probability for each edge, i.e., πij ¼P

A;b;θ AijPðA; b; θjDÞ. A value S ¼ 1 means perfect
reconstruction. We then perform community detection
a posteriori by obtaining the maximum marginal point
estimate

Âij ¼
�
1 if πij > 1=2;

0 if πij < 1=2.
; ð12Þ

and then sampling from the posterior PðbjÂÞ. Figure 1
contains the comparison between both approaches for
networks sampled from the PP model, which shows how
sampling from the joint posterior improves both the
reconstruction as well as community detection. For the
latter, the joint inference allows the detection all the way
down to the detectability threshold, for the examples
considered, which, otherwise, is not possible with the
separate method.
Real networks with synthetic dynamics.—Now, we

investigate the reconstruction of networks not generated
by the DC-SBM. We take two empirical networks, the

(a)

(b)

FIG. 1. Comparison between joint and separate reconstruction
with community detection for a PP model with N ¼ 1000,
hki ¼ 15, and B ¼ 10. (a) Normalized mutual information
(NMI) between inferred and planted node partitions, as a function
of the model parameter ϵ, for several values of the number of
samples M from the Ising model described in the text. (b) Pos-
terior similarity between planted and inferred networks, for the
same cases as in (a). The vertical line marks the detectability
threshold ϵ ¼ 1=

ffiffiffiffiffiffiffihkip
.
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worldwide network of N ¼ 3286 airports [45] with E ¼
39430 edges, and a food web from Little Rock Lake [46],
containing N ¼ 183 nodes and E ¼ 2434 edges, and we
sample from the SIS (mimicking the spread of a pandemic)
and Ising model (representing simplified interspecies
interactions) on them, respectively, and evaluate the
reconstruction obtained via the joint and separate inference
with community detection, with results shown in Fig. 2.
As is also the case for synthetic networks, the reconstru-
ction quality is significantly improved by performing joint
community detection [47]. The quality of the reconstru-
ction peaks at the critical threshold for each model, at
which the sensitivity to perturbations is the largest. As the
number of observed samples increases, so does the quality
of the reconstruction, and the relative advantage of the joint
reconstruction diminishes, as the data eventually “washes
out” the contribution from the prior. For the Ising model,
we compare the results of our method with the mean-field
inverse correlations method [14], i.e., βAijJij ¼ ½C−1�ij,
where Cij ¼ hσiσji − hσiihσji is the connected correlation
matrix. As seen in Fig. 2, this simpler reconstruction
method can be just as accurate as our separate
reconstruction approach, but only close to the critical point.
For higher inverse temperatures, the reconstruction deteri-
orates rapidly and breaks down completely as the system
becomes locally magnetized, with whole rows and columns
of the matrix C being equal to zero, causing it to be singular
[48]. In such situations, this kind of approach requires
explicit regularization techniques [49], which become

unnecessary with our Bayesian method. The joint inference
with community structure improves the reconstruction even
further, beyond what is obtainable with typical inverse Ising
methods, since it incorporates a different source of
evidence.
In Fig. 3, we show a comparison of the reconstruction of

the food web network from a simulated Ising model, using
different approaches. Optimal thresholding corresponds to
the naive approach of imputing the existence of an edge to
the connected correlation between two nodes exceeding a
threshold c�, i.e., πij ¼ f1 if Cij > c�; 0; otherwiseg. The
value of c� was chosen to maximize the posterior similarity,
which represents the best possible reconstruction achiev-
able with this method. Nevertheless, the network thus
obtained is severely distorted. The inverse correlation
method comes much closer to the true network, but
is superseded by the joint inference with community
detection.
Empirical dynamics.—We turn to the reconstruction

from observed empirical dynamics with unknown under-
lying interactions. The first example is the sequence of
M ¼ 619 votes of N ¼ 575 deputies in the 2007 to 2011
session of the lower chamber of the Brazilian congress.
Each deputy voted yes, no, or abstained for each legis-
lation, which we represent as f1;−1; 0g, respectively. Since
the temporal ordering of the voting sessions is likely to be
of secondary importance to the voting outcomes, we
assume the votes are sampled from an Ising model [the
addition of zero-valued spins changes Eq. (9) only slightly
by replacing 2 coshðxÞ → 1þ 2 coshðxÞ]. Figure 4 shows
the result of the reconstruction, where the division of
the nodes uncovers a cohesive government and a split

(a) (b)

(c) (d)

FIG. 2. Reconstruction results for simulated dynamics on
empirical networks, comparing separate and joint reconstruction
with community detection. (a) and (b) correspond to a SIS
dynamics on global airport data, using τij ¼ τ, γ ¼ 1, for
different values of the infection probability τ and node activity
a (defined as the number of infection events per node), and (c)
and (d) the Ising model on a food web, using Jij ¼ 1 and hi ¼ 0.
The dashed red line corresponds to the inverse correlation method
for the Ising model. The solid vertical line marks the critical value
for each model.

(a) (b)

(c) (d)

FIG. 3. Reconstruction of a food web network [46] from M ¼
104 samples of an Ising model at critical temperature. Edges
marked in red are erroneous in the reconstruction. (a) Original
network. (b) Optimal correlation thresholding. (c) Inverse corre-
lations. (d) Joint reconstruction with community detection. The
legends show the values of the posterior similarity [Eq. (11)].
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opposition, as well as a marginal center group, which
correlates very well with the known party memberships
and can be used to predict unseen voting behavior
(see Supplemental Material [37] for more details). In
Fig. 5, we show the result of the reconstruction of the
directed network of influence between N ¼ 1833 twitter
users from 58224 retweets [50] using a SI epidemic model
(the act of “retweeting” is modeled as an infection event,

using Eqs. (5) and (6) with γ ¼ 0) and the nested DC-SBM.
The reconstruction uncovers isolated groups with varying
propensities to retweet, as well as groups that tend to
influence a large fraction of users. By inspecting the
geolocation metadata on the users, we see that the inferred
groups amount, to a large extent, to different countries,
although clear subdivisions indicate that this is not the
only factor governing the influence among users (see
Supplemental Material [37] for more details).
Conclusion.—We have presented a scalable Bayesian

method to reconstruct networks from functional observa-
tions that uses the SBM as a structured prior and, hence,
performs community detection together with reconstru-
ction. The method is nonparametric and, hence, requires no
prior stipulation of aspects of the network and size of the
model, such as number of groups. By leveraging inferred
correlations between edges, the SBM includes an additional
source of evidence and, thereby, improves the reconstru-
ction accuracy, which in turn also increases the accuracy of
the inferred communities. The overall approach is general,
requiring only appropriate functional model specifications,
and can be coupled with an open ended variety of such
models other than those considered here.
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