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ABSTRACT

We study the problem of detecting or discovering a planted
clique embedded in a random graph. Using recent results
from random matrix theory, we demonstrate the presence of a
phase transition in eigen-analysis based methods for planted
clique detection. The transition separates a regime in which
eigen-analysis based methods will successfully detect the
planted clique and the associated vertices from one in which
the planted clique is present but is undetectable. We validate
the prediction with numerical simulations.

Index Terms— planted clique, network, random matrix
theory

1. INTRODUCTION

The problem of community detection in networks is an active
area of research [1, 2]. Communities are groups of vertices
within a network that have a high density of within-group con-
nections but a lower density of between-group connections.
The challenge is to find such groups accurately and efficiently
in a given network and to identify the fundamental limits of
such algorithms. The planted clique problem [3, 4, 5, 6], de-
scribed next, is a variant of the community detection problem.

A clique is a set of vertices such that every two vertices
are connected by an edge. The planted clique problem refers
to the problem of discovering the vertices associated with a
clique that is ‘planted’ or embedded in a random graph where
every two vertices in the random graph are connected by an
edge with probability p. In this paper we focus on eigen-
analysis based methods for planted clique discovery, which
exploit the properties of matrix representations of networks
such as the adjacency matrix or its close relative, the modu-
larity matrix [2].

In recent years, significant effort has been devoted to the
development of practical algorithms using these and related
methods [3, 7, 5, 6]. There has been less work on formal
examination of their fundamental limits and the implications
for algorithm performance. Here we give an analysis of eigen-
analysis based methods for planted clique detection and in
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the process uncover a fundamental limit that is of practical
importance.

Specifically, we uncover the presence of a sharp transition
between a regime in which the eigen-spectrum contains infor-
mation on the planted clique and a regime in which it does
not. In the former regime, reliable planted clique detection is
possible and current eigen-analysis based algorithms will per-
form well; in the latter, any method relying on the spectrum
to perform planted clique detection must fail in the limit of
large networks.

The paper is organized as follows. Section 2 formulates
the planted clique problem and motivates the use of eigen-
analysis based techniques. Section 3 presents our main results
on the phase transition alluded to while Section 4 outlines a
proof based on recent results in the mathematical literature.
Simulations for validating our theory are presented in Section
5, followed by some concluding remarks in Section 6.

2. PROBLEM FORMULATION

We are given a graph G = (V,E) with a vertex set V com-
prising of n vertices and edge set E; a k-clique is a subset of
k vertices, V ∗ ⊂ V , |V ∗| = k such that all vertices are con-
nected to each other. The vertices outside the planted clique
V ∗ are randomly connected to each other such that any two
vertices are connected by an edge with probability p. The
k-clique is thus embedded in an (undirected) G(n, p) Erdos-
Renyi graph [?, 8]. Throughout this paper, we refer to this as
a (k, p, n) planted clique problem.

The adjacency matrix A of an undirected network is the
n × n symmetric matrix with elements Aij = Aji = 1 if
vertices i and j are connected by an edge and 0 otherwise.
The adjacency matrix A for the planted clique problem can
be modeled as

Aij = Aji =


1 if i, j ∈ V ∗

1 with prob. p if i, j /∈ V ∗

0 with prob. 1− p if i, j /∈ V ∗.

The goal is to find the vertices associated with the planted
clique given the adjacency matrix A. A close-relative of the
adjacency matrix is the so-called modularity matrix [2] B
which is defined as

Bij = Aij − Pij ,
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where Pij is the expected value of the adjacency matrix in
a null model that does not contain the planted clique. Here
Pij = p so that Bij = Aij − p or equivalently

B = A− p11T,

where 1 denotes the n × 1 vector containing all ones. Let
B = E[B] denote the expected value of the modularity matrix
B. Then,

E[Bij ] =

{
1− p if i, j ∈ V ∗

0 otherwise.

Thus B is a rank-1 matrix whose only non-zero eigenvalue
equals k(1 − p). The indices of the non-zero entries of the
associated (unit-norm) eigenvector u reveals the vertices of
the planted clique. This is the motivation for eigen-analysis
based planted clique discovery [7]. Of course, we do not have
B. We now describe an algorithm for planted clique detection
or discovery using eigen-analysis.

Note that instead of B, we have

B = A− p11T = B +X, (1)

where X is the deviation between the modularity matrix B
and its average value B. We note that E[Xij ] = 0 and that

var[Xij ] =

{
0 if i, j ∈ V ∗

p (1− p) otherwise.
(2)

Let v denote the eigenvector of B associated with its largest
eigenvalue and let vi for i = 1, . . . , n denote its i-th element.

Under the null model that does not contain the planted
clique, the largest eigenvector of B is asymptotically dis-
tributed as

√
nv ∼ N (0, I) [9]. For a significance level of

α corresponding to the false-alarm probability of misidenti-
fying a vertex as part of the clique, we obtain the following
procedure for detecting vertices î in the planted clique

î =
{
i : |
√
nvi| > τα := F−1N (0,1)

(
1− α

2

)}
. (3)

The main result of this paper, stated next is a precise charac-
terization of the fundamental, asymptotic limit of clique dis-
covery using (3).

3. HARD LIMITS OF CLIQUE DETECTION

Theorem 3.1. Consider a (k, p, n) planted clique problem
where the clique vertices are identified using (3) for a signifi-
cance level α. Then, for fixed p ∈ (0, 1), and k, n→∞ such
that k/

√
n −→ β ∈ (0,∞) we have

P(Clique discovered)
p−→

1 if β > βcrit. :=

√
p

1− p
α otherwise,

where
p−→ denotes convergence in probability.

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

β

P
ro

b
(C

o
rr

e
c
t)

 

 

n = 1500

n = 3000

n = 6000β
crit.

Increasing n

Fig. 1. A plot of the probability that the clique vertices
are correctly identified as a function of β = k/

√
n for

n = 1500, 3000, 6000. Here we set p = 0.5 and evaluate the
empirical probability over 400 trials. Theorem 3.1 predicts a
phase transition in detectability about βcrit. = 1.

Remark 1. We conjecture that the above statement holds with
probability 1.

Remark 2. Note that when p = 1/2, βcrit. = 1. In [4],
the authors show that when k > n1/2−ε then reliable clique
detection is possible.

We now characterize the fundamental limit in the setting
where the clique is embedded in a sparse random graph with
an average degree of c.

Claim 3.2. For a (k, p, n) planted clique problem, let pn =
c/n. Then for sufficiently large c > 1, there exists βcrit. such
that

P(Clique discovered)
p−→

{
1 if k > kcrit. :=

√
c+O

(
1
c

)
α otherwise.

Remark 3. Claim 3.2 follows from plugging in pn = c/n
in Theorem 3.1. The O(1/c) correction term comes from the
observations in [10] for sparse Erdos-Renyi graphs.

We now provide a justification for Theorem 3.1 using re-
cent results from the mathematical literature [11, 12]. We
note that similar results can also be derived for multiple dis-
joint cliques and the planted biclique problem.

4. SKETCH OF THE PROOF

The general form of the matrix B in (1) is that of a rank-1
matrix B = k(1 − p)uuT plus a random perturbation matrix
X whose entries are independent, zero mean with a ‘variance
profile’ given by (1)).
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(a) Phase transition in clique discovery.
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(b) Heat map of probability of clique discovery.

Fig. 2. (a) A plot of the probability that the clique vertices are correctly identified as a function of the clique size k and the
average degree c of the random graph. This corresponds to the sparse setting described in Claim 3.2; here n = 100000,
α = 0.01 and we used (3) to identify the vertices. (b) A heat map of the logarithm of the probability of correct identification of
clique vertices for the same setting as (a). The solid white line corresponds to the phase transition prediction in Claim 3.2 with
kcrit. =

√
c.

The matrix X is a so-called Wigner matrix, an ensemble
that has been extensively studied in the mathematical litera-
ture [13, 14]. In [11, 12], it is shown that for a Wigner ma-
trix with zero mean entries and a variance of 1/n, there is a
phase transition whereby the largest eigenvector v of the rank-
1 perturbation of X having form θuuT exhibits the following
behavior in the n −→∞ limit

|〈v, u〉|2 a.s.−→


1− 1

θ2︸ ︷︷ ︸
=:γ2

if θ > 1

0 otherwise

. (4)

For finite, but large n we have that

√
n v ∼

{√
nγ u+N (0,

√
1− γ2 I) if θ > 1

N (0, I) otherwise
+ op(1).

Thus for large n and θ < 1, the procedure in (3) will yield

P(Clique vertex identified) −→ α.

In our setting, the unit-norm eigenvector u has exactly k non-
zero entries equal to 1/

√
k = 1/

√
β
√
n, for k = β

√
n as in

the hypothesis of Theorem 3.1. Thus for θ > 1 we have

P(Clique vertex misidentified) = Φ

(
τα −

√
nγ 1√

k√
1− γ2

)
+ op(1)

= Φ

(
τα − n1/4 γ√

β√
1− γ2

)
+ op(1),

where Φ(x) = 1/
√

2π
∫ x
−∞ exp(−x2/2)dx is the CDF of the

standard normal distribution. As n −→∞, τα−n1/4 γ√
β
−→

−∞ and consequently

P(Clique vertex misidentified) −→ 0,

and hence

P(Clique vertices identified) −→ 1.

Tail bounds allow us to establish the stated mode of conver-
gence. Thus, we have shown that so long as θ > 1, the eigen-
spectrum will allow the clique to be correctly identified (in
the large graph limit). Conversely, for θ < 1, eigen-analysis
will yield no evidence of the presence of the clique.

Recall that the argument above revealed a phase transition
above a critical θ value of 1 for a rank-1 perturbation of the
form θuuT to a Wigner matrix having zero mean entries with
variance 1/n. To apply this result to our problem, we set

θ = k√
n
·
√

1−p
p and hence obtain Theorem 3.1. The portion

of the random matrix corresponding to the clique will be non-
random but since that size is O(

√
n), it will not matter in the

limit of large network. Thus, what emerges for the analysis is
the presence of hard detectability threshold below which the
planted clique is present but cannot be detected or discovered
using eigen-analysis based techniques.
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5. NUMERICAL SIMULATIONS

Figure 1 shows a plot of the probability of correctly identi-
fying the planted clique vertices for the dense setting in The-
orem 3.1 in the setting where p = 0.5. As n increases we
see a phase transition like effect in good agreement with the
prediction with a rounding off due to finite size of the graphs.
Figure 2 shows a plot of the probability of correctly identify-
ing the planted clique vertices for the sparse setting in Claim
3.2 with n = 100000 as a function of the average degree c
and size of the clique k. The solid white line corresponds to
the curve

√
c. As the figure shows, the agreement between

the prediction and the simulations is excellent.

6. CONCLUSIONS

We studied the problem of detecting or discovering a planted
clique embedded in a random graph and showed, using recent
results from random matrix theory, that there is a hard limit
of eigen-analysis based clique discovery or detection.

One might imagine this transition to be a particular prop-
erty of the eigen-analysis method we have considered. Per-
haps a different algorithm, one not based on eigen-analysis
techniques, or a different type of clique detection method al-
together (such as for example, [5, 6]) would be able to get
past this detectability threshold?

Or perhaps the threshold coincides with an algorithmic
phase transition of the kind considered in [15]. The answers
to these questions remain open and will provide better insight
on the ultimate limits of efficient algorithms for planted clique
detection and discovery.
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