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A new approach to Monte Carlo simulations in statistical physics:
Wang-Landau sampling

D. P. Landau, Shan-Ho Tsai,a) and M. Exlerb)

Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

~Received 15 December 2003; accepted 20 February 2004!

We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a
different way. Instead of sampling the probability distribution at a fixed temperature, a random walk
is performed in energy space to extract an estimate for the density of states. The probability can be
computed at any temperature by weighting the density of states by the appropriate Boltzmann factor.
Thermodynamic properties can be determined from suitable derivatives of the partition function
and, unlike ‘‘standard’’ methods, the free energy and entropy can also be computed directly. To
demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order
or second-order phase transitions. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Computer simulation now plays a major role in statistical
physics,1 particularly for the study of phase transitions and
critical phenomena, and is an important tool for teaching and
understanding thermodynamics and statistical mechanics.2

The reason for its importance is that all but the simplest
models are theoretically intractable, and only approximate
methods can generally be used. In particular, stochastic tech-
niques known as Monte Carlo~MC! simulations have proven
to be very powerful. The standard MC method, developed a
half-century ago, is the Metropolis importance sampling
algorithm,3 but more recently new, more efficient algorithms
have begun to play a role in allowing simulations to achieve
the resolution that is needed to accurately locate and charac-
terize phase transitions.1

The motivation for these new developments is that tradi-
tional methods exhibit long time scales, thus requiring long
simulations. At first-order phase transitions metastable states
appear, and critical slowing down becomes a problem at con-
tinuous transitions. For spin systems, beginning with the
seminal work of Swendsen and Wang,4 and extended by
Wolff,5 cluster algorithms have been used to reduce critical
slowing down. The multicanonical ensemble method6–10was
introduced to overcome the tunneling barrier between coex-
isting phases at first-order transitions, and has general utility
for systems with a rough energy landscape.7,11,12In both situ-
ations, histogram reweighting techniques13 can be applied in
the analysis to increase the amount of information that can
be gleaned from simulational data, but the applicability of
reweighting is severely limited in large systems by the sta-
tistical quality of the wings of the histogram. This limitation
is important in systems with competing interactions for
which short-range order effects might occur over very broad
temperature ranges or give rise to frustration and produce a
very complicated energy landscape, thus reducing the effi-
ciency of standard methods.

The partition function can be expressed in terms of a den-
sity of statesg(E), the number of all possible states~or
configurations! for an energy levelE of the system, but di-
rect estimation ofg(E) has not usually been the goal of
simulations. Instead, most conventional MC algorithms,1

such as Metropolis importance sampling and Swendsen-
Wang cluster flipping, generate an unnormalized canonical
distribution

P~E,T!5g~E!e2E/kBT ~1!

at a given temperatureT (kB denotes the Boltzmann con-
stant!. Such distributions are so narrow that multiple runs are
usually needed to describe thermodynamic quantities over a
significant range of temperatures. Becauseg(E) does not
depend on the temperature, we can construct canonical dis-
tributions at any temperature if we can estimateg(E) with
high accuracy for all energies. Onceg(E) is known, we can
calculate the partition function as

Z5 (
$configurations%

e2E/kBT5(
E

g~E!e2E/kBT, ~2!

and the model is essentially ‘‘solved,’’ because most thermo-
dynamic quantities can be calculated fromZ.

Although MC methods are already very powerful,1 there
has been no efficient algorithm to calculateg(E) very accu-
rately for large systems. Even for exactly solvable models,
such as the two-dimensional~2D! Ising model,g(E) cannot
be calculated exactly for large systems.14 All methods based
on accumulation of histogram entries13,15–18have the prob-
lem of scalability for large systems.

In this paper we describe a new, general, and efficient MC
algorithm ~generally known as the ‘‘Wang-Landau algo-
rithm’’ ! that offers substantial advantages over existing
approaches.19 We will explain the algorithm in detail and
describe its application for first- and second-order phase tran-
sitions. Unlike conventional MC methods that directly gen-
erate a canonical distributiong(E)e2E/kBT at a given tem-
perature T, this approach estimatesg(E) directly and
accurately via a random walk that produces a flat histogram
in energy space. The estimate forg(E) is improved at each
step of the random walk, using a carefully controlled modi-
fication factor, to produce a result that converges to the real
value quickly.

Wang-Landau sampling19 has proven to be very useful and
efficient in many different applications, including studies of
complex systems with rough energy landscapes. For ex-
ample, the method has been used in studies of a Potts
antiferromagnet,20 random spin systems,21 quantum
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systems,22–24fluids,25,26 binary Lennard-Jones glass,27 liquid
crystals,28 polymers,25,29 proteins,30,31 other molecular
systems,32,33 atomic clusters,34 optimization problems,35 and
combinatorial number theory.36 Generalizations and further
studies of this sampling technique have been carried out by
several authors.37–41

Although the Wang-Landau method can be applied to
many different types of systems, we will describe it here
only in the context of classical spin systems with discrete
energy values. Therefore, when we refer to the density of
statesg(E), we do not mean an actualdensity, but the num-
ber of states for a given energyE. The two simple models of
interest are the Ising model,42 which has a second-order
phase transition, and theQ-state Potts model43 with Q58,
which undergoes a first-order phase transition.

II. THE WANG-LANDAU ALGORITHM

If we perform an unbiased random walk in energy space
by changing the states of the spins at random and accepting
all energy values thus obtained, the histogram of the energy
distribution should converge to the density of statesg(E) in
the limit of a very long random walk that visits all possible
spin configurations of the system. In practice it is forbid-
dingly difficult to realize such a long random walk with our
current computer resources, given the extremely large num-
ber of spin configurations. For example, the Ising model on a
10310 square lattice already has 2100'1.331030 spin con-
figurations!

The Wang-Landau sampling method performs random
walks in energy space by changing the states of spins ran-
domly, but the energyE associated with each spin configu-
ration is only accepted with a probability that is proportional
to the reciprocal of the density of states. During the random
walk, we also accumulate the histogramH(E) in energy
space, a quantity that keeps track of the number of visits at
each energy levelE @each time an energyE is visited, the
corresponding entry inH(E) is incremented by 1#. The al-
gorithm modifies the estimate of the density of states by a
multiplicative factorf , and uses the updated density of states
to perform a further random walk in energy space. With this
choice of acceptance probability, each random walk gener-
ates a flat histogram for the energy distribution. The modifi-
cation factorf is carefully controlled, and at the end of the
simulation, it should be very close to 1, which is the ideal
case of the random walk with the true density of states.

At the beginning of the simulation,g(E) is unknown, and
we make an initial guess for it. The simplest approach is to
setg(E)51 for all possible energiesE. The initial spin con-
figuration for the entire lattice can be chosen arbitrarily.
Then, a random walk in energy space is begun by forming
trial states, each of which is produced by randomly picking a
spin and randomly changing its state. In general, ifE1 and
E2 are energies before and after a spin value is changed, the
transition probability from energyE1 to E2 is

p~E1→E2!5minS g~E1!

g~E2!
,1D . ~3!

Equation ~3! implies that if g(E2)<g(E1), the state with
energyE2 is accepted; otherwise it is accepted with a prob-
ability g(E1)/g(E2) @that is, the state with energyE2 is ac-
cepted if a random number picked uniformly between 0 and

1 is smaller than or equal to the ratiog(E1)/g(E2)]. If the
trial state with energyE2 is accepted, we multiply the exist-
ing value of g(E2) by a modification factorf .1, that is,
g(E2)→ f 3g(E2), and we update the existing entry for
H(E2) in the energy histogram, that is,H(E2)→H(E2)
11. If the random walk rejects the trial move and remains at
the same energy levelE1 , we modify the existing density of
statesg(E1) by the same modification factor; that is,g(E1)
→ f 3g(E1), and we update the existing entry forH(E1);
that is, H(E1)→H(E1)11. Becauseg(E) becomes very
large, in practice it is preferable to work with the logarithm
of the density of states, so that all possible ln@g(E)# will fit
into double precision numbers. Therefore, each update of the
density of states is implemented as ln@g(E)#→ln@g(E)#
1ln(f ), and the ratio of density of states in Eq.~3! is com-
puted as exp$ln@g(E1)#2ln@g(E2)#%.

A reasonable, although not necessarily optimal choice of
the initial modification factor isf 5 f 05e1.2.71828, which
allows us to reach all possible energy levels quickly even for
a large system. Iff 0 is too small, the random walk will spend
a very long time to reach all possible energies; however, too
large a choice off 0 will lead to large statistical errors. We
proceed with the random walk in energy space until we ob-
tain a ‘‘flat’’ histogram H(E). We typically check whether
the histogram is flat after every 10 000 MC sweeps, where
one MC sweep corresponds to randomly pickingN spins and
thus generatingN trial states (N denotes the total number of
spins on the lattice!. When the histogram is flat, all the pos-
sible energies have been roughly visited an equal number of
times, and the density of states converges to the true value
with an accuracy proportional to the modification factor
ln(f ). We then reduce the modification factor by using a
function such asf 15Af 0, reset the histogram toH(E)50
for all values ofE, and begin the next level random walk
during which we modify the density of states with the
smaller modification factorf 1 for each step. Each level ran-
dom walk is referred to as one iteration in the algorithm.
Note that the spin configuration and the density of states are
never reset during the simulation. We continue performing
the random walk until the histogramH(E) is flat again, and
then we reduce the modification factorf i 115Af i , reset the
histogram toH(E)50 for all values ofE, and restart the
random walk. We stop the simulation when the modification
factor is smaller than a predefined value~such as f final

5exp(1028).1.000 000 01). The modification factor acts as
a control parameter for the accuracy of the density of states
during the simulation and also determines how many MC
sweeps are necessary for the whole simulation.

It is impossible to obtain a perfectly flat histogram and the
phrase ‘‘flat histogram’’ in this paper means that the histo-
gram H(E) for all possibleE is not less thanx% of the
average histogram̂H(E)&, wherex% is chosen according
to the size and complexity of the system and the desired
accuracy of the density of states. For the 2D Ising model
with only nearest-neighbor couplings on small lattices, this
percentage can be chosen as high as 95%, but for large sys-
tems the criterion for ‘‘flatness’’ may never be satisfied if we
choose too high a percentage, and the program might run
forever.

Clearly, one essential constraint is thatg(E) should con-
verge to the true value. The accuracy of the estimate for
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g(E) is proportional to ln(f ) at that iteration. However,
ln(ffinal) cannot be chosen arbitrarily small or the modified
ln@g(E)# will not differ from the unmodified one to within the
number of digits in the double precision numbers used in the
simulation. If this happens, the algorithm no longer con-
verges to the true value, and the program may run forever. If
f final is within the double precision range but is too small, the
calculation might take excessively long to finish.

A simple recipe for reducing the modification factor is to
take a square-root function, andf approaches 1 as the num-
ber of iterations approaches infinity.~There is no reason why
any function cannot be used as long as it decreasesf mono-
tonically to 1. A simple and efficient formula isf i 115 f i

1/n ,
wheren.1. The value ofn can be chosen according to the
available CPU time and the expected accuracy of the simu-
lation. For the systems that have been studied, the choice of
n52 yields good accuracy in a relatively short time, even for
large systems.!

For the initial modification factor ln(f0)51 and the final
factor ln(ffinal)51028, the total number of iterations is 27.
We do not set a predetermined number of MC sweeps for
each iteration, but rather let the program check periodically
whether the established criterion for a flat histogram is sat-
isfied. Generally, the number of MC sweeps needed to satisfy
the criterion increases as we reduce the modification factor,
but we cannot predict the exact number of MC sweeps
needed for each iteration before the simulation. It is prefer-
able to allow the program to decide how much simulational
effort is needed for a given modification factorf i . Nonethe-
less, we need to perform some test runs to make sure that the
program will finish within a given time.

The simulation method can be further enhanced by per-
forming multiple random walks, each for a different range of
energy, either serially or in parallel. We can restrict the ran-
dom walk to remain in the range by rejecting any move out
of that range.19,41 The resultant parts of the density of states
can then be joined together.

During the random walk~especially in the early itera-
tions!, the algorithm does not satisfy the detailed balance
condition exactly, becauseg(E) is modified constantly dur-
ing the random walk. After many iterations, however,g(E)
converges to the true value as the modification factor ap-
proaches 1. Ifp(E1→E2) is the transition probability from
energyE1 to energyE2 , the ratio of the transition probabili-
ties fromE1 to E2 and fromE2 to E1 can be calculated very
easily as

p~E1→E2!

p~E2→E1!
5

g~E1!

g~E2!
, ~4!

where we have used Eq.~3!. In other words, the random
walk algorithm satisfies the detailed balance:

1

g~E1!
p~E1→E2!5

1

g~E2!
p~E2→E1!, ~5!

where 1/g(E1) is the probability at the energyE1 and
p(E1→E2) is the transition probability fromE1 to E2 . We
conclude that the detailed balance condition is satisfied with
accuracy proportional to the modification factor ln(f ).

Almost all recursive methods update the density of states
by using the histogram data directly, and only after enough
histogram entries are accumulated.6,9,11,44–51Because of the

exponential growth of the density of states in energy space,
this process is inefficient because the histogram is accumu-
lated linearly. Instead, in Wang-Landau sampling we modify
g(E) at each step of the random walk, and this modification
allows us to approach the true distribution much faster than
conventional methods, especially for large systems.~We also
accumulate histogram entries during the random walk, but
we only use them to check whether the histogram is flat
enough to go to the next level random walk.!

Although the total number of configurations increases ex-
ponentially with the size of the system, the total number of
possible energies increases linearly with the size of system,
so it is easy to calculateg(E) with a random walk in energy
space for a large system. Consider, for example, aQ-state
Potts model on aL3L lattice with nearest-neighbor
interactions.43 For Q>3, the number of possible energies is
about 2N, whereN5L2 is the total number of the lattice
sites. However, the average number of possible states for
each energy level is as large asQN/2N, whereQN is the total
number of possible configurations of the system. This large
number is why we cannot simply use a computer to realize
all possible states and why efficient and fast algorithms are
required.

At the end of the simulation, the Wang-Landau algorithm
provides only a relative density of states for different ener-
gies. To extract the correct density of statesgn(E) for the
Q-state Potts model, we can either use the fact that the total
number of possible states is(Egn(E)5QN, or that the num-
ber of ground states~whereE522N) is Q. By using the
former rescaling condition, the correct normalized density of
statesgn(E) can be obtained from the simulation datag(E),
by the relation ln@gn(E)#5ln@g(E)#2ln@(Eg(E)#1N ln(Q),
whereas the latter condition leads us to use ln@gn(E)#
5ln@g(E)#2ln@g(E522N)#1ln(Q). For simplicity, we will
denote the normalized density of states simply asg(E) in the
following. The latter normalization guarantees the accuracy
of the density of states at low energy levels, which is impor-
tant in the calculation of thermodynamic quantities at low
temperature. With this normalization, whenT50, we can
obtain exact solutions for the internal energy, entropy, and
free energy when we calculate these quantities from the den-
sity of states. If we apply the normalization that the total
number of states isQN, we cannot guarantee the accuracy of
g(E) for energies at or near the ground state, because the
rescaling factor is dominated by the maximum density of
states. We can use one of these two normalizations to obtain
the absolute density of states, and use the other normaliza-
tion to check the accuracy of the result.

One of the advantages of the Wang-Landau method is that
the density of states does not depend on the temperature. For
example, the internal energyU(T) can be calculated by

U~T!5
(EEg~E!e2E/kBT

(Eg~E!e2E/kBT [^E&, ~6!

and the specific heatC(T) can be determined from the fluc-
tuations in the internal energy

C~T!5
]U~T!

]T
5

^E2&2^E&2

kBT2 . ~7!

We can also access some quantities, such as the Helmholtz
free energy and entropy, that are not directly available from
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conventional MC simulations. For example, by using con-
ventional MC methods the entropy can be estimated by inte-
grating over other thermodynamic quantities, such as the
specific heat, but the result is not always reliable because the
specific heat itself is not easy to accurately determine, par-
ticularly considering its divergence at a phase transition.
However, the free energyF(T) can be calculated directly
from the partition functionZ using

F~T!52kBT ln~Z!52kBT lnS (
E

g~E!e2E/kBTD , ~8!

and the entropy can then be easily computed by

S~T!5
U~T!2F~T!

T
. ~9!

We point out that even for relatively small lattices, the
partition function may be too large to fit into a double pre-
cision number, in which case it cannot be easily computed in
practice. Nevertheless, the thermodynamic quantities can
still be readily computed if we note that

(
E

X~E!g~E!e2E/kBT5el(
E

X~E!eln[g(E)] 2E/kBT2l,

~10!

whereX(E) is a general function ofE and l is the largest
exponent, ln@g(E)#2E/kBT. The summation on the right-hand
side of Eq.~10! can be computed and the factorel does not
have to be evaluated. Because this factor appears in the nu-
merator and the denominator of Eq.~6!, it cancels. This can-
cellation also occurs in the evaluation of the specific heat.
The free energy, which is proportional to thelogarithmof the
partition function, can also be computed without evaluating
el explicitly.

Statistical errors in the thermodynamic quantities can be
estimated by repeating the simulation several times using
different random number sequences, and then computing the
averages and fluctuations in these quantities.

With the histogram reweighting method,13 it is possible to
use simulational data at specific temperatures to obtain com-
plete thermodynamic information near, or between, those
temperatures. Unfortunately, it is usually quite difficult to
obtain accurate information in the region far away from the
simulated temperature due to difficulties in obtaining good
statistics, especially for large systems where the canonical
distributions are very narrow. With Wang-Landau sampling,
the histogram is ‘‘flat,’’ and we have essentially the same
statistics for all energy levels. Because the output of the
simulation is the density of states, which does not depend on
the temperature, we can then calculate most thermodynamic
quantities at any temperature without repeating the simula-
tion. The algorithm is especially useful for obtaining thermo-
dynamic information at low temperatures, or at the transition
temperature where the conventional MC algorithm is not so
efficient.

III. APPLICATION TO A SECOND-ORDER PHASE
TRANSITION

Wang-Landau sampling is very efficient for the study of
second-order phase transitions, because it sidesteps critical
slowing down at the critical temperatureTc and the slow
dynamics at low temperature. To check the accuracy and
convergence of the method, we apply it to the 2D ferromag-

netic Ising model42 with nearest-neighbor interactions on a
L3L square lattice with periodic boundary conditions. Each
of the N5L2 lattice sitesi has a spin denoted ass i , which
can assume the valuess i511 for spin up ands i521 for
spin down. The interaction Hamiltonian is given by

H52(
^ i , j &

s is j , ~11!

where^ i , j & denotes distinct pairs of nearest-neighbor sites;
the number of energies for this system isN21 for evenL.
This model provides an ideal benchmark for new
algorithms,13,52 and is also an ideal laboratory for testing
theory,14,53 because this model can be solved exactly.

With the exact solution for the partition function on finite-
size systems,54 and the expansion of the expression by Math-
ematica, the density of states for the Ising model on a square
lattice can be obtained exactly.14 Beale14 obtained the exact
density of states up toL532, and using Beale’s program,
Wang and Landau19 were able to computeg(E) for L550.
In this paper we show results forL516, but Wang-Landau
sampling has been used to determineg(E) for lattices up to
L5256 for which there is currently no exact solution.19

The estimate of the density of states forL516 using
Wang-Landau sampling is shown in Fig. 1, along with the
exact results by Beale.14 The initial and final modification
factors for the random walks were ln(f0)51 and ln(ffinal)
51028. The histogramH(E) was considered flat when all
entries were not less than 80% of the average^H(E)&. The
absolute density of states in Fig. 1 is obtained by the condi-
tion that the number of ground states is 2 for the 2D Ising
model. With the logarithmic scale used in Fig. 1, the simu-
lational data and exact solution overlap perfectly with each
other. In the inset of Fig. 1, we show the relative error«,
which is defined by the ratio between the error of the simu-
lational data and exact values for any quantityX as

«~X![
uXsim2Xexactu

Xexact
. ~12!

We see that«@ ln(g)# is smaller than 0.2% for most of the
region.

Fig. 1. Logarithm of the density of states, ln@g(E)#, of the 2D Ising model
for L516. The relative errors of the simulational densities of states are
shown in the inset.
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We can calculate the canonical distribution using Eq.~1! at
essentially any temperature without performing multiple
simulations. In Fig. 2 we show the resultant canonical distri-
bution at the critical temperatureTc , which exhibits a single
peak. The distributions at temperatures above and belowTc
are also single peaked, as illustrated in the inset of Fig. 2.

It is also important to study the influence of the errors in
the density of states on the calculated thermodynamic quan-
tities. In Fig. 3 we show the internal energy, the specific heat,
the Helmholtz free energy, and the entropy as a function of
temperature forL516. Both the simulational results com-
puted with Eqs.~6!–~9!, and the exact solutions are plotted
and overlap almost perfectly over a wide temperature region
from kBT50 – 8. Because no difference is visible in these
figures, more stringent tests of the accuracy are provided by

the insets, which show the relative errors for the respective
thermodynamic quantities. The relative errors are quite small
for the entire temperature region fromkBT50 – 8.

Note that because the system has a second-order phase
transition, the first derivative of the free energy is a continu-
ous function of temperature. There are no jumps in either the
internal energy or the entropy even in the limit as the system
size goes to infinity.

The random number generator used in our simulation was
a shift-register algorithm denoted as R1279.1 The average
number of visits to each energy for the entire duration of the
simulation~adding the average number of visits for all itera-
tions! was roughly 106. The CPU time of the simulation to
obtain the density of states shown in Fig. 1 was less than 3
min using a GNU compiler on a Pentium 4~1.3 GHz! pro-
cessor.

IV. APPLICATION TO A FIRST-ORDER PHASE
TRANSITION

In this section, we apply the algorithm to a model with a
first-order phase transition.55,56 In such cases, the internal
energy and the entropy have discontinuities at the transition,
at which both ordered and disordered states coexist. We con-
sider the 2DQ58 Potts model43 on L3L square lattices
with nearest-neighbor interactions and periodic boundary
conditions. The total number of spins isN5L2, and the
Hamiltonian can be written as

H52(
^ i , j &

d~qi ,qj !, ~13!

where qi51,2,...Q denotes the Potts spin at sitei and
d(qi ,qj ) is a Kronecker delta. During the simulation, we
select lattice sites randomly and choose integers between
@1,Q# randomly for new Potts spin values. The modification

Fig. 2. The canonical distribution at the transition temperatureP(E,Tc)
5g(E)e2E/kBTc for the L516 Ising model. The inset shows the canonical
distribution at a temperature slightly above and belowTc for the same
system.

Fig. 3. Thermodynamic quantities for theL516 2D Ising model calculated from the density of states. The relative errors with respect to the exact solutions
by Ferdinand and Fisher54 are shown in the insets:~a! internal energy,~b! specific heat,~c! Helmholtz free energy, and~d! entropy.
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factor ln(fi) changes from ln(f0)51 at the beginning, to
ln(ffinal)51028 by the end of the random walks. The histo-
gram of energyH(E) is considered flat when all entries are
not less than 80% of the average^H(E)&. To guarantee the
accuracy of thermodynamic quantities at low temperatures,
we use the condition that the number of the ground states is
Q58 to normalize the density of states. The densities of
states forL58, 12, and 16 lattices are shown in Fig. 4. We
see that the maximum density of states from our data forL
516 is very close toe530, which is about 1.5310230.

In Fig. 5 we show the double-peaked canonical probability
distribution56 at the transition temperatureTc for the first-
order transition, computed from the simulational data using
Eq. ~1!. The ‘‘transition temperature’’kBTc(L) is approxi-
mately 0.7519 forL516 and is the temperature where the
double peaks are of the same height. The transition tempera-
ture for the infinite lattice is known exactly to bekBTc

51/ln(11AQ)'0.7449.43 The valley between the two peaks
is approximately 0.37 forL516, and becomes deeper asL
increases. The latent heat for this temperature-driven first-
order phase transition can be estimated from the energy dif-

ference between the double peaks. WhenT is slightly away
from Tc , one of the double peaks increases dramatically in
magnitude and the other decreases as shown in the inset of
Fig. 5.

Because of the double-peaked structure at a first-order
phase transition, conventional MC simulations are not effi-
cient because an extremely long time is required for the sys-
tem to travel from one peak to the other in energy space.
With the Wang-Landau algorithm, all possible energy levels
are visited with equal probability, so it overcomes the barrier
between the coexisting phases in the conventional MC simu-
lations. The final flat histogram forL516 is shown in Fig. 6,
and it describes the total number of visits to each energy
level for the random walk of the last iteration.

Figure 7 illustrates some thermodynamic quantities calcu-
lated from the density of states using Eqs.~6!–~9!. Near the
transition temperatureTc , the internal energy, shown in Fig.
7~a!, has a steplike change that becomes sharper as the lattice
size increases and transforms into a discontinuous jump
when the system size goes to infinity. The magnitude of this
jump @shown in Fig. 7~a! for an infinite lattice# equals the
latent heat for the phase transition.

The specific heat, shown in Fig. 7~b!, has a peak in the
vicinity of Tc , and both the maximum value and the position
of the peak depend on the finite size of the lattice. AsL
increases, the peak in the specific heat becomes narrower and
goes to a delta function in the thermodynamic limit.

Our results for the Helmholtz free energy per lattice site
are shown in Fig. 7~c! as a function of temperature. Because
the transition is of first-order, the first derivative of the free
energy has a discontinuity atTc . ~The location of this dis-
continuity can be used as an estimate ofTc .)

Like the internal energy, the entropy shown in Fig. 7~d!
has a steplike change nearTc . This change becomes sharper
as L increases and becomes a discontinuous jump whenL
→`. Because the jump in the internal energy equals the
latent heat of the phase transition, and the free energy is
continuous atTc , the magnitude of the jump in the entropy
equals the latent heat divided byTc @see Eq.~9!#.

V. RANDOM WALK IN ENERGY AND ORDER
PARAMETER SPACE

To study the effect of an applied magnetic field on the
Ising and Potts models, we have to perform a random walk

Fig. 4. Logarithm of the density of statesg(E) for the 2DQ58 Potts model
as a function of energy per lattice site,E/N, for L58, 12, and 16. With the
scale in the figure, the errors of the simulational data are within the width of
the lines.

Fig. 5. The canonical distribution at the transition temperatureP(E,Tc)
5g(E)e2E/kBTc for the Q58 Potts model forL516. The inset shows the
canonical distribution at a temperature slightly above and belowTc for the
same system.

Fig. 6. Final histogram of energy for the last iteration of random walks to
estimate the density of states of aQ58 Potts model forL516.
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in both the energy and order parameter space. 2D random
walks may also be required to study systems with more com-
plex orders, such as a three-dimensional spin glass model,
even in the absence of external fields.

To illustrate a simple case where a 2D random walk is
required, we consider the 2D Ising model in the presence of
an external magnetic fieldh. The Hamiltonian is given by

H52(
^ i , j &

s is j2h(
i 51

N

s i . ~14!

The order parameter is the magnetization, defined asM 8
5( i 51

N s i , and we denote the exchange energy asE8
52(^ i , j &s is j . The algorithm works as before, except that
the random walk is now performed in both the energyE8 and
the order parameterM 8, and a 2D histogramH(E8,M 8) is
accumulated.

With the estimate of the density of statesg(E8,M 8), the
partition function can be computed as

Z~T,h!5 (
E8,M8

g~E8,M 8!e2(E82hM8)/kBT. ~15!

From the partition function we can obtain thermodynamic
quantities for all values of the temperature and magnetic
field. For example, the mean magnetization of the system can
be computed as

M ~T,h!5
(E8,M8M 8g~E8,M 8!e2(E82hM8)/kBT

(E8,M8g~E8,M 8!e2(E82hM8)/kBT
. ~16!

M (T,h) is shown in Fig. 8 as a function of the external
magnetic fieldh, for different values of the temperatureT.
Note that for fixedT,Tc the Ising model has a first-order
phase transition ath50. Standard MC methods generate
hysteresis in the magnetization curve at lowT ~shown as the
solid line in Fig. 8!, because of metastable states that appear

near first-order phase transitions. This metastability hinders
studies of first-order phase transitions using standard MC
methods.

VI. DISCUSSION AND CONCLUSION

We have described an efficient algorithm to calculate the
density of states directly for large systems. By modifying the
estimate at each step of the random walk in energy space and
carefully controlling the modification factor, we can deter-
mine the density of states very accurately. Using the density
of states, we can then calculate thermodynamic quantities at
essentially any temperature. An important advantage of this
approach is that we can also calculate the Helmholtz free
energy and entropy, quantities that are not directly available

Fig. 7. Thermodynamic quantities calculated from the density of states for theQ58 Potts model forL54, 8, and 16:~a! internal energy,~b! specific heat,~c!
Helmholtz free energy, and~d! entropy.

Fig. 8. Magnetization per site for theL516 Ising model as a function of
applied field forT51.0/kB,Tc ~circle!, T52.3/kB'Tc ~upright triangle!,
T53.0/kB.Tc ~inverted triangle! obtained with Wang-Landau sampling,
and the hysteresis curve obtained with the Metropolis algorithm atT
51.0/kB ~solid line!. The dotted line is a guide to the eye.
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from conventional MC simulations. The method is applicable
to a wide range of systems and is easy to implement. Al-
though we have described its implementation in terms of
single spin-flip sampling, it is straightforward to use other
types of sampling for cases in which it will further accelerate
the simulation.

Applications to the 2DQ58 Potts model and to the 2D
Ising model show that the method is effective for systems
that exhibit first-order or second-order phase transitions. Our
presentation concentrated on the random walk in energy
space~and order-parameter space!; however, the idea is very
general and can be applied to any parameters. The energy
levels of the models treated here are discrete, and the total
number of possible energies is known before the simulation,
but in general such information is not available. For models
where all the possible energy levels cannot be fitted in the
computer memory or the energy is continuous, for example,
the Heisenberg model, we must bin the energy. Statistical
and systematic errors in the density of states, and thus of the
thermodynamic quantities, are controlled by the flatness of
the histogram at the end of each iteration and the final modi-
fication factorf final . These errors can be decreased by requir-
ing a more strict condition for a flat histogram and by using
a ln(ffinal) that is closer to zero.

In this paper, we only applied the Wang-Landau algorithm
to simple models on small lattices, but the method is also
efficient for large systems and has proven to be useful in the
studies of general, complex systems with rough landscapes
~see references given in Sec. I!. However, more investigation
is needed to better determine under which circumstances
the method offers substantial advantages over other
approaches.57
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