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1. Introduction. The promise of artificial intelligence has been a topic of both
public and private interest for decades. Starting in the 1950s, there has been great
hope that classical artificial intelligence techniques based on logic, knowledge repre-
sentation, reasoning, and planning would result in revolutionary software that could,
among other things, understand language, control robots, and provide expert advice.
Although advances based on such techniques may be in store in the future, many re-
searchers have started to doubt these classical approaches, choosing instead to focus
their efforts on the design of systems based on statistical techniques, such as in the
rapidly evolving and expanding field of machine learning.
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Machine learning and the intelligent systems that have been borne out of it—
such as search engines, recommendation platforms, and speech and image recognition
software—have become an indispensable part of modern society. Rooted in statis-
tics and relying heavily on the efficiency of numerical algorithms, machine learning
techniques capitalize on the world’s increasingly powerful computing platforms and
the availability of datasets of immense size. In addition, as the fruits of its efforts
have become so easily accessible to the public through various modalities—such as the
cloud—interest in machine learning is bound to continue its dramatic rise, yielding
further societal, economic, and scientific impacts.

One of the pillars of machine learning is mathematical optimization, which, in this
context, involves the numerical computation of parameters for a system designed to
make decisions based on as yet unseen data. That is, based on currently available data,
these parameters are chosen to be optimal with respect to a given learning problem.
The success of certain optimization methods for machine learning has inspired great
numbers of researchers in various communities to tackle even more challenging ma-
chine learning problems and to design new methods that are more widely applicable.

The purpose of this paper is to provide a review and commentary on the past,
present, and future of the use of numerical optimization algorithms in the context of
machine learning applications. A major theme of this work is that large-scale machine
learning represents a distinctive setting in which traditional nonlinear optimization
techniques typically falter, and so should be considered secondary to alternative classes
of approaches that respect the statistical nature of the underlying problem of interest.

Overall, this paper attempts to provide answers for the following questions:
1. How do optimization problems arise in machine learning applications, and

what makes them challenging?
2. What have been the most successful optimization methods for large-scale

machine learning, and why?
3. What recent advances have been made in the design of algorithms, and what

are open questions in this research area?
We answer the first question with the aid of two case studies. The first, a study

of text classification, represents an application in which the success of machine learn-
ing has been widely recognized and celebrated. The second, a study of perceptual
tasks such as speech or image recognition, represents an application in which machine
learning still has had great success, but in a much more enigmatic manner that leaves
many questions unanswered. These case studies also illustrate the variety of optimiza-
tion problems that arise in machine learning: the first involves convex optimization
problems—derived from the use of logistic regression or support vector machines—
while the second typically involves highly nonlinear and nonconvex problems—derived
from the use of deep neural networks.

With these case studies in hand, we turn our attention to the latter two ques-
tions on optimization algorithms, the discussions around which represent the bulk of
the paper. Whereas traditional gradient-based methods may be effective for solving
small-scale learning problems in which a batch approach may be used, in the con-
text of large-scale machine learning it has been a stochastic algorithm—namely, the
stochastic gradient method (SG) proposed by Robbins and Monro [130]—that has
been the core strategy of interest. Due to this central role played by SG, we discuss
its fundamental theoretical and practical properties within a few contexts of inter-
est. We also discuss recent trends in the design of optimization methods for machine
learning, organizing them according to their relationship to SG. We discuss (i) noise
reduction methods that attempt to borrow from the strengths of batch methods, such
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as their fast convergence rates and ability to exploit parallelism; (ii) methods that
incorporate approximate second-order derivative information with the goal of deal-
ing with nonlinearity and ill-conditioning; and (iii) methods for solving regularized
problems designed to avoid overfitting and allow for the use of high-dimensional mod-
els. Rather than contrast SG and other methods based on the results of numerical
experiments—which might bias our review toward a limited test set and implemen-
tation details—we focus our attention on fundamental computational trade-offs and
theoretical properties of optimization methods.

We close the paper with a look back at what has been learned, as well as additional
thoughts about the future of optimization methods for machine learning.

2. Machine Learning Case Studies. Optimization problems arise throughout
machine learning. We provide two case studies that illustrate their role in the selection
of prediction functions in state-of-the-art machine learning systems. We focus on cases
that involve very large datasets and for which the number of model parameters to be
optimized is also large. By remarking on the structure and scale of such problems,
we provide a glimpse into the challenges that make them difficult to solve.

2.1. Text Classification via Convex Optimization. The assignment of natural
language text to predefined classes based on their contents is one of the fundamental
tasks of information management [56]. Consider, for example, the task of determin-
ing whether a text document is one that discusses politics. Educated humans can
make a determination of this type unambiguously, say, by observing that the docu-
ment contains the names of well-known politicians. Early text classification systems
attempted to consolidate knowledge from human experts by building on such obser-
vations to formally characterize the word sequences that signify a discussion about a
topic of interest (e.g., politics). Unfortunately, however, concise characterizations of
this type are difficult to formulate. Rules about which word sequences do or do not
signify a topic need to be refined when new documents arise that cannot be classified
accurately based on previously established rules. The need to coordinate such a grow-
ing collection of possibly contradictory rules limits the applicability of such systems
to relatively simple tasks.

By contrast, the statistical machine learning approach begins with the collection
of a sizable set of examples {(x1, y1), . . . , (xn, yn)}, where for each i ∈ {1, . . . , n}
the vector xi represents the features of a text document (e.g., the words it includes)
and the scalar yi is a label indicating whether the document belongs (yi = 1) or not
(yi = −1) to a particular class (i.e., topic of interest). With such a set of examples, one
can construct a classification program, defined by a prediction function h, and measure
its performance by counting how often the program prediction h(xi) differs from the
correct prediction yi. In this manner, it seems judicious to search for a prediction
function that minimizes the frequency of observed misclassifications, otherwise known
as the empirical risk of misclassification:

(2.1) Rn(h) =
1

n

n∑
i=1

� [h(xi) �= yi], where � [A] =

{
1 if A is true,

0 otherwise.

The idea of minimizing such a function gives rise to interesting conceptual issues.
Consider, for example, a function that simply memorizes the examples, such as

(2.2) hrote(x) =

{
yi if x = xi for some i ∈ {1, . . . , n},
±1 (arbitrarily) otherwise.
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This prediction function clearly minimizes (2.1), but it offers no performance guar-
antees on documents that do not appear in the examples. To avoid such rote mem-
orization, one should aim to find a prediction function that generalizes the concepts
that may be learned from the examples.

One way to achieve good generalized performance is to choose among a carefully
selected class of prediction functions, perhaps satisfying certain smoothness conditions
and enjoying a convenient parametric representation. How such a class of functions
may be selected is not straightforward; we discuss this issue in more detail in sec-
tion 2.3. For now, we only mention that common practice for choosing between pre-
diction functions belonging to a given class is to compare them using cross-validation
procedures that involve splitting the examples into three disjoint subsets: a training
set, a validation set, and a testing set. The process of optimizing the choice of h by min-
imizing Rn in (2.1) is carried out on the training set over the set of candidate prediction
functions, the goal of which is to pinpoint a small subset of viable candidates. The gen-
eralized performance of each of these remaining candidates is then estimated using the
validation set, and the best performing is chosen as the selected function. The testing
set is only used to estimate the generalized performance of this selected function.

Such experimental investigations have, for instance, shown that the bag of words
approach works very well for text classification [56, 81]. In such an approach, a
text document is represented by a feature vector x ∈ R

d whose components are
associated with a prescribed set of vocabulary words; i.e., each nonzero component
indicates that the associated word appears in the document. (The capabilities of
such a representation can also be increased by augmenting the set of words with
entries representing short sequences of words.) This encoding scheme leads to very
sparse vectors. For instance, the canonical encoding for the standard RCV1 dataset
[94] uses a vocabulary of d = 47,152 words to represent news stories that typically
contain fewer than 1,000 words. Scaling techniques can be used to give more weight
to distinctive words, while scaling to ensure that each document has ‖x‖ = 1 can be
used to compensate for differences in document lengths [94].

Thanks to such a high-dimensional sparse representation of documents, it has been
deemed empirically sufficient to consider prediction functions of the form h(x;w, τ) =
wTx − τ . Here, wTx is a linear discriminant parameterized by w ∈ R

d and τ ∈ R

is a bias that provides a way to compromise between precision and recall.1 The
accuracy of the predictions could be determined by counting the number of times
that sign(h(x;w, τ)) matches the correct label, i.e., 1 or −1. However, while such a
prediction function may be appropriate for classifying new documents, formulating
an optimization problem around it to choose the parameters (w, τ) is impractical in
large-scale settings due to the combinatorial structure introduced by the sign function,
which is discontinuous. Instead, one typically employs a continuous approximation
through a loss function that measures a cost for predicting h when the true label is y;
e.g., one may choose a log-loss function of the form �(h, y) = log(1+exp(−hy)). More-
over, one obtains a class of prediction functions via the addition of a regularization
term parameterized by a scalar λ > 0, leading to a convex optimization problem:

(2.3) min
(w,τ)∈Rd×R

1

n

n∑
i=1

�(h(xi;w, τ), yi) +
λ

2
‖w‖22.

1Precision and recall, defined as the probabilities P[y = 1|h(x) = 1] and P[h(x) = 1|y = 1],
respectively, are convenient measures of classifier performance when the class of interest represents
only a small fraction of all documents.
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This problem may be solved multiple times for a given training set with various
values of λ > 0, with the ultimate solution (w∗, τ∗) being the one that yields the best
performance on a validation set.

Many variants of problem (2.3) have also appeared in the literature. For example,
the well-known support vector machine problem [38] amounts to using the hinge loss
�(h, y) = max(0, 1 − hy). Another popular feature is to use an �1-norm regularizer,
namely, λ‖w‖1, which favors sparse solutions and therefore restricts attention to a
subset of vocabulary words. Other more sophisticated losses can also target a specific
precision/recall trade-off or deal with hierarchies of classes; e.g., see [65, 49]. The
choice of loss function is usually guided by experimentation.

In summary, both theoretical arguments [38] and experimental evidence [81] indi-
cate that a carefully selected family of prediction functions and such high-dimensional
representations of documents lead to good performance while avoiding overfitting—
recall (2.2)—of the training set. The use of a simple surrogate, such as (2.3), facilitates
experimentation and has been very successful for a variety of problems even beyond
text classification. Simple surrogate models are, however, not the most effective in
all applications. For example, for certain perceptual tasks, the use of deep neural
networks—which lead to large-scale, highly nonlinear, and nonconvex optimization
problems—has produced great advances that are unmatched by approaches involving
simpler, convex models. We discuss such problems next.

2.2. Perceptual Tasks via Deep Neural Networks. Just like text classification
tasks, perceptual tasks such as speech and image recognition are not well performed
in an automated manner using computer programs based on sets of prescribed rules.
For instance, the infinite diversity of writing styles easily defeats attempts to concisely
specify which pixel combinations represent the digit four ; see Figure 2.1. One may
attempt to design heuristic techniques to handle such eclectic instantiations of the
same object, but as previous attempts to design such techniques have often failed,
computer vision researchers are increasingly embracing machine learning techniques.

Fig. 2.1 No known prescribed rules express all pixel combinations that represent the digit four.

During the past five years, spectacular applicative successes on perceptual prob-
lems have been achieved by machine learning techniques through the use of deep neural
networks (DNNs). Although there are many kinds of DNNs, most recent advances
have been made using essentially the same types that were popular in the 1990s and
almost forgotten in the 2000s [111]. What have made recent successes possible are
the availability of much larger datasets and greater computational resources.

Because DNNs were initially inspired by simplified models of biological neu-
rons [134, 135], they are often described with jargon borrowed from neuroscience.
For the most part, this jargon turns into a rather effective language for describing
a prediction function h whose value is computed by applying successive transforma-
tions to a given input vector xi ∈ R

d0 . These transformations are made in layers. For
example, a canonical fully connected layer performs the computation

(2.4) x
(j)
i = s(Wj x

(j−1)
i + bj) ∈ R

dj ,
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where x
(0)
i = xi, the matrix Wj ∈ R

dj×dj−1 and vector bj ∈ R
dj contain the jth layer

parameters, and s is a component-wise nonlinear activation function. Popular choices
for the activation function include the sigmoid function s(x) = 1/(1 + exp(−x)) and
the hinge function s(x) = max{0, x} (often called a rectified linear unit (ReLU) in
this context). In this manner, the ultimate output vector x(J)

i leads to the prediction
function value h(xi;w), where the parameter vector w collects all the parameters
{(W1, b1), . . . , (WJ , bJ)} of the successive layers.

Similar to (2.3), an optimization problem in this setting involves the collection of
a training set {(x1, y1) . . . (xn, yn)} and the choice of a loss function � leading to

(2.5) min
w∈Rd

1

n

n∑
i=1

�(h(xi;w), yi).

However, in contrast to (2.3), this optimization problem is highly nonlinear and non-
convex, making it intractable to solve to global optimality. That being said, machine
learning experts have made great strides in the use of DNNs by computing approx-
imate solutions by gradient-based methods. This has been made possible by the
conceptually straightforward, yet crucial observation that the gradient of the objec-
tive in (2.5) with respect to the parameter vector w can be computed by the chain
rule using algorithmic differentiation [71]. This differentiation technique is known in
the machine learning community as back propagation [134, 135].

The number of layers in a DNN and the size of each layer are usually determined
by performing comparative experiments and evaluating the system performance on
a validation set, as in the procedure in section 2.1. A contemporary fully connected
neural network for speech recognition typically has five to seven layers. This amounts
to tens of millions of parameters to be optimized, the training of which may require
up to thousands of hours of speech data (representing hundreds of millions of training
examples) and weeks of computation on a supercomputer. Figure 2.2 illustrates the
word error rate gains achieved by using DNNs for acoustic modeling in three state-
of-the-art speech recognition systems. These gains in accuracy are so significant that
DNNs are now used in all the main commercial speech recognition products.

Fig. 2.2 Word error rates reported by three different research groups on three standard speech recog-
nition benchmarks. For all three groups, deep neural networks (DNNs) significantly out-
perform the traditional Gaussian mixture models (GMMs) [50]. These experiments were
performed between 2010 and 2012 and were instrumental in the recent revival of DNNs.

At the same time, convolutional neural networks (CNNs) have proved to be very
effective for computer vision and signal processing tasks [87, 24, 88, 85]. Such a
network is composed of convolutional layers, wherein the parameter matrix Wj is a
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Fig. 2.3 Architecture for image recognition. The 2012 ILSVRC winner consists of eight layers [85].
Each layer performs a linear transformation (specifically, convolutions in layers C1–C5
and matrix multiplication in layers F6–F8) followed by nonlinear transformations (recti-
fication in all layers, contrast normalization in C1–C2, and pooling in C1–C2 and C5).
Regularization with dropout noise is used in layers F6–F7.

Fig. 2.4 Historical top5 error rate of the annual winner of the ImageNet image classification chal-
lenge. A convolutional neural network (CNN) achieved a significant performance improve-
ment over all traditional methods in 2012. The following years have cemented CNNs as
the current state of the art in visual object recognition [85, 129].

circulant matrix and the input x
(j−1)
i is interpreted as a multichannel image. The

product Wjx
(j−1)
i then computes the convolution of the image by a trainable filter

while the activation functions—which are piecewise linear functions as opposed to
sigmoids—can perform more complex operations that may be interpreted as image
rectification, contrast normalization, or subsampling. Figure 2.3 represents the archi-
tecture of the winner of the landmark 2012 ImageNet Large Scale Visual Recognition
Competition (ILSVRC) [148]. The figure illustrates a CNN with five convolutional
layers and three fully connected layers [85]. The input vector represents the pixel
values of a 224 × 224 image, while the output scores represent the odds that the
image belongs to each of 1,000 categories. This network contains about 60 million
parameters, the training of which on a few million labeled images takes a few days on
a dual GPU workstation.

Figure 2.4 illustrates the historical error rates of the winner of the 2012 ILSVRC.
In this competition, a classification is deemed successful if the correct category ap-
peared among the top five categories returned by the system. The large performance
gain achieved in 2012 was confirmed in the following years, and today CNNs are
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considered the tool of choice for visual object recognition [129]. They are currently
deployed by numerous Internet companies for image search and face recognition.

The successes of DNNs in modern machine learning applications are undeniable.
Although the training process requires extreme skill and care—e.g., it is crucial to ini-
tialize the optimization process with a good starting point and to monitor its progress
while correcting conditioning issues as they appear [89]—the mere fact that one can
do anything useful with such large, highly nonlinear, and nonconvex models is re-
markable.

2.3. Formal Machine Learning Procedure. Through our case studies, we have
illustrated how a process of machine learning leads to the selection of a prediction
function h through solving an optimization problem. Moving forward, it is necessary
to formalize our presentation by discussing in greater detail the principles behind
the selection process, stressing the theoretical importance of uniform laws of large
numbers as well as the practical importance of structural risk minimization.

For simplicity, we continue to focus on the problems that arise in the context of
supervised classification; i.e., we focus on the optimization of prediction functions for
labeling unseen data based on information contained in a set of labeled training data.
Such a focus is reasonable as many unsupervised and other learning techniques reduce
to optimization problems of comparable form; see, e.g., [155].

Fundamentals. Our goal is to determine a prediction function h : X → Y from
an input space X to an output space Y such that, given x ∈ X , the value h(x) offers an
accurate prediction about the true output y. That is, our goal is to choose a prediction
function that avoids rote memorization and instead generalizes the concepts that can
be learned from a given set of examples. To do this, one should choose the prediction
function h by attempting to minimize a risk measure over an adequately selected
family of prediction functions [157], call it H.

To formalize this idea, suppose that the examples are sampled from a joint
probability distribution function P (x, y) that simultaneously represents the distri-
bution P (x) of inputs as well as the conditional probability P (y|x) of the label y
being appropriate for an input x. (With this view, one often refers to the examples as
samples; we use both terms throughout the rest of the paper.) Rather than one that
merely minimizes the empirical risk (2.1), one should seek to find h that yields a small
expected risk of misclassification over all possible inputs, i.e., an h that minimizes

(2.6) R(h) = P[h(x) �= y] = E[� [h(x) �= y]],

where P[A] and E[A], respectively, denote the probability and expected value of A.
Such a framework is variational since we are optimizing over a set of functions, and
it is stochastic since the objective function involves an expectation.

While one may desire to minimize the expected risk (2.6), in practice one must
attempt to do so without explicit knowledge of P . Instead, the only tractable option
is to construct a surrogate problem that relies solely on the examples {(xi, yi)}ni=1.
Overall, there are two main issues that must be addressed: (i) how to choose the
parameterized family of prediction functions H, and (ii) how to determine (and find)
the particular prediction function h ∈ H that is optimal.

Choice of Prediction Function Family. The family of functions H should be
determined with three potentially competing goals in mind. First, H should contain
prediction functions that are able to achieve a low empirical risk over the training
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set, so as to avoid bias or underfitting the data. This can be achieved by selecting a
rich family of functions or by using a priori knowledge to select a well-targeted family.
Second, the gap between expected risk and empirical risk, namely, R(h) − Rn(h),
should be small over all h ∈ H. Generally, this gap decreases when one uses more
training examples, but, due to potential overfitting, it increases when one uses richer
families of functions (see below). This latter fact puts the second goal at odds with the
first. Third, H should be selected so that one can efficiently solve the corresponding
optimization problem, the difficulty of which may increase when one employs a richer
family of functions and/or a larger training set.

Our observation about the gap between expected and empirical risk can be un-
derstood by recalling certain laws of large numbers. For instance, when the expected
risk represents a misclassification probability as in (2.6), the Hoeffding inequality [75]
guarantees that for any fixed prediction function h ∈ H, the probability of drawing n
examples {(x1, y1), . . . , (xn, yn)} such that

|R(h)−Rn(h)| ≤

√
1

2n
log

(
2

η

)

is greater than 1−η. This bound offers the intuitive explanation that the gap decreases
as one uses more training examples. However, this view is insufficient for our purposes
since, in the context of machine learning, the prediction function h is not fixed but
depends on the training sample! Rather, h is the variable over which one is optimizing.

For this reason, one often turns to uniform laws of large numbers and the concept
of the Vapnik–Chervonenkis (VC) dimension of H, a measure of the capacity of such
a family of functions [157]. For the intuition behind this concept, consider, e.g., a
binary classification scheme in R

2 where one assigns a label of 1 for points above a
polynomial and −1 for points below. The set of linear polynomials has a low capacity
in the sense that it is only capable of accurately classifying training points that can
be separated by a line; e.g., in two variables, a linear classifier has a VC dimension of
three. A set of high-degree polynomials, on the other hand, has a high capacity since
it can accurately separate training points that are interspersed; the VC dimension of
a polynomial of degree D in d variables is

(
d+D
d

)
. That being said, the gap between

empirical and expected risk can be larger for a set of high-degree polynomials since
the high capacity allows them to overfit a given set of training data.

Mathematically, with the VC dimension measuring capacity, one can establish
one of the most important results in learning theory: with dH defined as the VC
dimension of H, one has with probability at least 1− η that

(2.7) sup
h∈H
|R(h)−Rn(h)| ≤ O

(√
1

2n
log

(
2

η

)
+

dH
n

log

(
n

dH

))
.

This bound gives a more accurate picture of the dependence of the gap on the choice
of H. For example, it shows that for a fixed dH, uniform convergence is obtained
by increasing the number of training points n. However, it also shows that, for a
fixed n, the gap can widen for larger dH. Indeed, to maintain the same gap, one must
increase n at the same rate if dH is increased. The uniform convergence embodied in
this result is crucial in machine learning since one wants to ensure that the prediction
system performs well with any data provided to it. In section 4.4, we employ a
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slight variant of this result to discuss computational trade-offs that arise in large-
scale learning.2

Interestingly, one quantity that does not enter in (2.7) is the number of parameters
that distinguish a particular member function h of the familyH. In some settings such
as logistic regression, this number is essentially the same as dH, which might suggest
that the task of optimizing over h ∈ H is more cumbersome as dH increases. However,
this is not always the case. Certain families of functions are amenable to minimization
despite having a very large or even infinite number of parameters [156, section 4.11].
For example, support vector machines [38] were designed to take advantage of this
fact [156, Theorem 10.3].

All in all, while bounds such as (2.7) are theoretically interesting and provide
useful insight, they are rarely used directly in practice since, as we have suggested in
sections 2.1 and 2.2, it is typically easier to estimate the gap between empirical and
expected risk with cross-validation experiments. We now present ideas underlying a
practical framework that respects the trade-offs mentioned above.

Structural Risk Minimization. An approach for choosing a prediction function
that has proved to be widely successful in practice is structural risk minimization [158,
156]. Rather than choose a generic family of prediction functions—over which it
would be difficult both to optimize and to estimate the gap between empirical and
expected risks—one chooses a structure, i.e., a collection of nested function families.
For instance, such a structure can be formed as a collection of subsets of a given
family H in the following manner: given a preference function Ω, choose various
values of a hyperparameter C, according to each of which one obtains the subset
HC := {h ∈ H : Ω(h) ≤ C}. Given a fixed number of examples, increasing C reduces
the empirical risk (i.e., the minimum of Rn(h) over h ∈ HC), but, after some point, it
typically increases the gap between expected and empirical risks. This phenomenon
is illustrated in Figure 2.5.

Other ways to introduce structures are to consider a regularized empirical risk
Rn(h) + λΩ(h) (an idea introduced in problem (2.3), which may be viewed as the
Lagrangian for minimizing Rn(h) subject to Ω(h) ≤ C), to enlarge the dictionary in
a bag-of-words representation, to increase the degree of a polynomial model function,
or to add to the dimension of an inner layer of a DNN.

Given such a setup, one can avoid estimating the gap between empirical and
expected risk by splitting the available data into subsets: a training set used to
produce a subset of candidate solutions, a validation set used to estimate the expected
risk for each such candidate, and a testing set used to estimate the expected risk
for the candidate that is ultimately chosen. Specifically, over the training set, one
minimizes an empirical risk measure Rn over HC for various values of C. This results
in a handful of candidate functions. The validation set is then used to estimate the
expected risk corresponding to each candidate solution, after which one chooses the
function yielding the lowest estimated risk value. Assuming a large enough range
for C has been used, one often finds that the best solution does not correspond to the
largest value of C considered; again, see Figure 2.5.

Another, albeit indirect, avenue toward risk minimization is to employ an algo-
rithm for minimizing Rn, but terminate the algorithm early, i.e., before an actual

2We also note that considerably better bounds hold when one can collect statistics on actual
examples, e.g., by determining gaps dependent on an observed variance of the risk or by considering
uniform bounds restricted to families of prediction functions that achieve a risk within a certain
threshold of the optimum [55, 102, 26].
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Fig. 2.5 Illustration of structural risk minimization. Given a set of n examples, a decision function
family H, and a relative preference function Ω, the figure illustrates a typical relationship
between the expected and empirical risks corresponding to a prediction function obtained
by an optimization algorithm that minimizes an empirical risk Rn(h) subject to Ω(h) ≤ C.
The optimal empirical risk decreases when C increases. Meanwhile, the deviation between
empirical and expected risk is bounded above by a quantity—which depends on H and Ω—
that increases with C. While not shown in the figure, the value of C that offers the best
guarantee on the expected risk increases with n, i.e., the number of examples; recall (2.7).

Fig. 2.6 Illustration of early stopping. Prematurely stopping the optimization of the empirical risk
Rn often results in a better expected risk R. In this manner, the stopping time plays a
similar role as the hyperparameter C in the illustration of structural risk minimization in
Figure 2.5.

minimizer of Rn is found. In this manner, the role of the hyperparameter is played
by the training time allowed, according to which one typically finds the relationships
illustrated in Figure 2.6. Theoretical analyses related to the idea of early stopping
are much more challenging than those for other forms of structural risk minimization.
However, it is worthwhile to mention these effects since early stopping is a popular
technique in practice, and is often essential due to computational budget limitations.

Overall, the structural risk minimization principle has proved useful for many
applications, and it can be viewed as an alternative to the approach of employing
expert human knowledge mentioned in section 2.1. Rather than encoding knowledge
as formal classification rules, one encodes it via preferences for certain prediction
functions over others, then explores the performance of various prediction functions
that have been optimized under the influence of such preferences.
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3. Overview of Optimization Methods. We now turn our attention to the main
focus of our study, namely, numerical algorithms for solving optimization problems
that arise in large-scale machine learning. We begin by formalizing our problems
of interest, which can be seen as generic statements of problems of the type de-
scribed in section 2 for minimizing expected and empirical risks. We then provide
an overview of two main classes of optimization methods—stochastic and batch—that
can be applied to solve such problems, emphasizing some of the fundamental reasons
why stochastic methods have inherent advantages. We close this section with a pre-
view of some of the advanced optimization techniques that are discussed in detail in
later sections, which borrow ideas from both stochastic and batch methods.

3.1. Formal Optimization Problem Statements. As seen in section 2, opti-
mization problems in machine learning arise through the definition of prediction and
loss functions that appear in measures of expected and empirical risk that one aims
to minimize. Our discussions revolve around the following definitions.

Prediction and Loss Functions. Rather than consider a variational optimization
problem over a generic family of prediction functions, we assume that the prediction
function h has a fixed form and is parameterized by a real vector w ∈ R

d over which
the optimization is to be performed. Formally, for some given h(·; ·) : Rdx×Rd → R

dy ,
we consider the family of prediction functions

H := {h(·;w) : w ∈ R
d}.

We aim to find the prediction function in this family that minimizes the losses incurred
from inaccurate predictions. For this purpose, we assume a given loss function � :
R

dy × R
dy → R to be one that, given an input-output pair (x, y), yields the loss

�(h(x;w), y) when h(x;w) and y are the predicted and true outputs, respectively.

Expected Risk. Ideally, the parameter vector w is chosen to minimize the ex-
pected loss that would be incurred from any input-output pair. To state this idea
formally, we assume that losses are measured with respect to a probability distribution
P (x, y) representing the true relationship between inputs and outputs. That is, we
assume that the input-output space Rdx×R

dy is endowed with P : Rdx×R
dy → [0, 1]

and the objective function we wish to minimize is

(3.1) R(w) =

∫
Rdx×R

dy

�(h(x;w), y) dP (x, y) = E[�(h(x;w), y)].

We say that R : Rd → R yields the expected risk (i.e., expected loss) given a parameter
vector w with respect to the probability distribution P .

Empirical Risk. While it may be desirable to minimize (3.1), such a goal is
untenable when one does not have complete information about P . Thus, in practice,
one seeks the solution of a problem that involves an estimate of the expected risk R.
In supervised learning, one has access (either all at once or incrementally) to a set
of n ∈ N independently drawn input-output samples {(xi, yi)}ni=1 ⊆ R

dx × R
dy , with

which one may define the empirical risk function Rn : Rd → R by

(3.2) Rn(w) =
1

n

n∑
i=1

�(h(xi;w), yi).

Generally speaking, minimization of Rn may be considered the practical optimization
problem of interest. For now, we consider the unregularized measure (3.2), remarking
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that the optimization methods that we discuss in the subsequent sections can be
applied readily when a smooth regularization term is included. (We leave a discussion
of nonsmooth regularizers until section 8.)

Note that, in section 2, the functions R and Rn represented misclassification
error ; see (2.1) and (2.6). However, these new definitions of R and Rn measure the
loss as determined by the function �. We use these latter definitions for the rest of
the paper.

Simplified Notation. The expressions (3.1) and (3.2) show explicitly how the
expected and empirical risks depend on the loss function, sample space, or sample
set, etc. However, when discussing optimization methods, we will often employ a
simplified notation that also offers some avenues for generalizing certain algorithmic
ideas. In particular, let us represent a sample (or set of samples) by a random seed ξ;
e.g., one may imagine a realization of ξ as a single sample (x, y) from R

dx × R
dy , or

a realization of ξ might be a set of samples {(xi, yi)}i∈S . In addition, let us refer to
the loss incurred for a given (w, ξ) as f(w; ξ), i.e.,

(3.3) f is the composition of the loss function � and the prediction function h.

In this manner, the expected risk for a given w is the expected value of this composite
function taken with respect to the distribution of ξ:

(3.4) (Expected Risk) R(w) = E[f(w; ξ)].

In a similar manner, when given a set of realizations {ξ[i]}ni=1 of ξ corresponding to
a sample set {(xi, yi)}ni=1, let us define the loss incurred by the parameter vector w
with respect to the ith sample as

(3.5) fi(w) := f(w; ξ[i]),

and then write the empirical risk as the average of the sample losses:

(3.6) (Empirical Risk) Rn(w) =
1

n

n∑
i=1

fi(w).

For future reference, we use ξ[i] to denote the ith element of a fixed set of realizations
of a random variable ξ, whereas, starting in section 4, we will use ξk to denote the
kth element of a sequence of random variables.

3.2. Stochastic vs. Batch Optimization Methods. Let us now introduce some
fundamental optimization algorithms for minimizing risk. For the moment, since it
is the typical setting in practice, we introduce two algorithm classes in the context
of minimizing the empirical risk measure Rn in (3.6). Note, however, that much of
our later discussion will focus on the performance of algorithms when considering the
true measure of interest, namely, the expected risk R in (3.4).

Optimization methods for machine learning fall into two broad categories. We re-
fer to them as stochastic and batch. The prototypical stochastic optimization method
is the stochastic gradient method (SG) [130], which, in the context of minimizing Rn

and with w1 ∈ R
d given, is defined by

(3.7) wk+1 ← wk − αk∇fik(wk).

Here, for all k ∈ N := {1, 2, . . .}, the index ik (corresponding to the seed ξ[ik], i.e.,
the sample pair (xik , yik)) is chosen randomly from {1, . . . , n} and αk is a positive
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stepsize. Each iteration of this method is thus very cheap, involving only the compu-
tation of the gradient ∇fik(wk) corresponding to one sample. The method is notable
in that the iterate sequence is not determined uniquely by the function Rn, the start-
ing point w1, and the sequence of stepsizes {αk}, as it would be in a deterministic
optimization algorithm. Rather, {wk} is a stochastic process whose behavior is deter-
mined by the random sequence {ik}. Still, as we shall see in our analysis in section 4,
while each direction −∇fik(wk) might not be one of descent from wk (in the sense of
yielding a negative directional derivative for Rn from wk), if it is a descent direction
in expectation, then the sequence {wk} can be guided toward a minimizer of Rn.

For many in the optimization research community, a batch approach is a more
natural and well-known idea. The simplest such method in this class is the steepest
descent algorithm—also referred to as the gradient, batch gradient, or full gradient
method—which is defined by the iteration

(3.8) wk+1 ← wk − αk∇Rn(wk) = wk −
αk

n

n∑
i=1

∇fi(wk).

Computing the step −αk∇Rn(wk) in such an approach is more expensive than com-
puting the step −αk∇fik(wk) in SG, though one may expect that a better step is
computed when all samples are considered in an iteration.

Stochastic and batch approaches offer different trade-offs in terms of per-iteration
costs and expected per-iteration improvement in minimizing empirical risk. Why,
then, has SG risen to such prominence in the context of large-scale machine learning?
Understanding the reasoning behind this requires careful consideration of the com-
putational trade-offs between stochastic and batch methods, as well as a deeper look
into their abilities to guarantee improvement in the underlying expected risk R. We
start to investigate these topics in the next subsection.

We remark in passing that the stochastic and batch approaches mentioned here
have analogues in the simulation and stochastic optimization communities, where they
are referred to as stochastic approximation (SA) and sample average approximation
(SAA), respectively [63].

3.3. Motivation for Stochastic Methods. Before discussing the strengths of
stochastic methods such as SG, one should not lose sight of the fact that batch ap-
proaches possess some intrinsic advantages. First, when one has reduced the stochastic
problem of minimizing the expected risk R to focus exclusively on the deterministic
problem of minimizing the empirical risk Rn, the use of full gradient information at
each iterate opens the door for many deterministic gradient-based optimization meth-
ods. That is, in a batch approach, one has at one’s disposal the wealth of nonlinear
optimization techniques that have been developed over the past decades, including
not only the full gradient method (3.8), but also accelerated gradient, conjugate gra-
dient, quasi-Newton, and inexact Newton methods [114]. (See sections 6 and 7 for
discussion of these techniques.) Second, due to the sum structure of Rn, a batch
method can easily benefit from parallelization since the bulk of the computation lies
in evaluations of Rn and ∇Rn. Calculations of these quantities can even be done in
a distributed manner.

Despite these advantages, there are intuitive, practical, and theoretical reasons
for following a stochastic approach. Let us motivate them by contrasting the hallmark
SG iteration (3.7) with the full batch gradient iteration (3.8).
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The paper by Robbins and Monro [130] represents a landmark in the history of
numerical optimization methods. Together with the invention of back propagation
[134, 135], it also represents one of the most notable developments in the field of machine
learning. The SG method was first proposed in [130], not as a gradient method, but as
a Markov chain.

Viewed more broadly, the works by Robbins and Monro [130] and Kalman [83]
mark the beginning of the field of stochastic approximation, which studies the behavior
of iterative methods that use noisy signals. The initial focus on optimization led to
the study of algorithms that track the solution of the ordinary differential equation
ẇ = −∇F (w). Stochastic approximation theory has had a major impact in signal
processing and in areas closer to the subject of this paper, such as pattern recognition
[4] and neural networks [20].

After receiving his Ph.D. Herbert Robbins became a lecturer at New York Univer-
sity, where he coauthored with Richard Courant the popular book What is Mathemat-
ics? [39], which is still in print after more than seven decades [40]. Robbins went on to
become one of the most prominent mathematicians of the second half of the twentieth
century, known for his contributions to probability, algebra, and graph theory.

Inset 3.1 Herbert Robbins and stochastic approximation.

Intuitive Motivation. On an intuitive level, SG employs information more effi-
ciently than a batch method. To see this, consider a situation in which a training
set, call it S, consists of ten copies of a set Ssub. A minimizer of empirical risk for
the larger set S is clearly given by a minimizer for the smaller set Ssub, but if one
were to apply a batch approach to minimize Rn over S, then each iteration would
be ten times more expensive than if one only had one copy of Ssub. On the other
hand, SG performs the same computations in both scenarios, in the sense that the
stochastic gradient computations involve choosing elements from Ssub with the same
probabilities. In reality, a training set typically does not consist of exact duplicates of
sample data, but in many large-scale applications the data does involve a good deal
of (approximate) redundancy. This suggests that using all of the sample data in every
optimization iteration is inefficient.

A similar conclusion can be drawn by recalling the discussion in section 2 related
to the use of training, validation, and testing sets. If one believes that working with
only, say, half of the data in the training set is sufficient to make good predictions
on unseen data, then one may argue against working with the entire training set in
every optimization iteration. Repeating this argument, working with only a quarter
of the training set may be useful at the start, or even with only an eighth of the data,
and so on. In this manner, we arrive at the motivation for the idea that working with
small samples, at least initially, can be quite appealing.

Practical Motivation. The intuitive benefits just described have been observed
repeatedly in practice, where one often finds very real advantages of SG in many
applications. As an example, Figure 3.1 compares the performance of a batch L-
BFGS method [97, 113] (see section 6) and the SG method (3.7) with a constant
stepsize (i.e., αk = α for all k ∈ N) on a binary classification problem using a logistic
loss objective function and the data from the RCV1 dataset mentioned in section 2.1.
The figure plots the empirical risk Rn as a function of the number of accesses of a
sample from the training set, i.e., the number of evaluations of a sample gradient
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Fig. 3.1 Empirical risk Rn as a function of the number of accessed data points (ADPs) for a batch
L-BFGS method and the SG method (3.7) on a binary classification problem with a logistic
loss objective and the RCV1 dataset. SG was run with a fixed stepsize of α = 4.

∇fik(wk). Each set of n consecutive accesses is called an epoch. The batch method
performs only one step per epoch, while SG performs n steps per epoch. The plot
shows the behavior over the first ten epochs. The advantage of SG is striking and
representative of typical behavior in practice. (One should note, however, that to
obtain such efficient behavior, it was necessary to run SG repeatedly using different
choices for the stepsize α until a good choice was identified for this particular problem.
We discuss theoretical and practical issues related to the choice of stepsize in our
analysis in section 4.)

At this point, it is worthwhile to mention that the fast initial improvement
achieved by SG, followed by a drastic slowdown after one or two epochs, is com-
mon in practice and fairly well understood. An intuitive way to explain this behavior
is by considering the following example due to Bertsekas [15].

Example 3.1. Suppose that each fi in (3.6) is a convex quadratic with minimal
value at zero and minimizers wi,∗ evenly distributed in [−1, 1] such that the minimizer
of Rn is w∗ = 0; see Figure 3.2. At w1 
 −1, SG will, with certainty, move to the
right (toward w∗). Indeed, even if a subsequent iterate lies slightly to the right of the
minimizer w1,∗ of the “leftmost” quadratic, it is likely (but not certain) that SG will
continue moving to the right. However, as iterates near w∗, the algorithm enters a
region of confusion in which there is a significant chance that a step will not move
toward w∗. In this manner, progress will slow significantly. Only with more complete
gradient information could the method know with certainty how to move toward w∗.

w1 −1 w1,* 1

Fig. 3.2 Simple illustration to motivate the fast initial behavior of the SG method for minimizing
empirical risk (3.6), where each fi is a convex quadratic. This example is adapted from
[15].
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Despite the issues illustrated by this example, we shall see in section 4 that one
can nevertheless ensure convergence by employing a sequence of diminishing stepsizes
to overcome any oscillatory behavior of the algorithm.

Theoretical Motivation. One can also cite theoretical arguments for a preference
for SG over a batch approach. Let us now give a preview of these arguments, which
are studied in more depth and further detail in section 4.

• It is well known that a batch approach can minimize Rn at a fast rate; e.g.,
if Rn is strongly convex (see Assumption 4.5) and one applies a batch gradient
method, then there exists a constant ρ ∈ (0, 1) such that, for all k ∈ N, the
training error satisfies

(3.9) Rn(wk)−R∗
n ≤ O(ρk),

where R∗
n denotes the minimal value of Rn. The rate of convergence exhibited

here is referred to as R-linear convergence in the optimization literature [117]
and geometric convergence in the machine learning research community; we
shall simply refer to it as linear convergence. From (3.9), one can conclude
that, in the worst case, the total number of iterations in which the training
error can be above a given ε > 0 is proportional to log(1/ε). This means
that, with a per-iteration cost proportional to n (due to the need to compute
∇Rn(wk) for all k ∈ N), the total work required to obtain ε-optimality for a
batch gradient method is proportional to n log(1/ε).
• The rate of convergence of a basic stochastic method is slower than for a batch
gradient method; e.g., if Rn is strictly convex and each ik is drawn uniformly
from {1, . . . , n}, then, for all k ∈ N, the SG iterates defined by (3.7) satisfy
the sublinear convergence property (see Theorem 4.7)

(3.10) E[Rn(wk)−R∗
n] = O(1/k).

However, it is crucial to note that neither the per-iteration cost nor the right-
hand side of (3.10) depends on the sample set size n. This means that the
total work required to obtain ε-optimality for SG is proportional to 1/ε. Ad-
mittedly, this can be larger than n log(1/ε) for moderate values of n and ε,
but, as discussed in detail in section 4.4, the comparison favors SG when one
moves to the big data regime where n is large and one is merely limited by a
computational time budget.
• Another important feature of SG is that, in a stochastic optimization setting,
it yields the same convergence rate as in (3.10) for the error in expected risk,
R − R∗, where R∗ is the minimal value of R. Specifically, by applying the
SG iteration (3.7), but with ∇fik(wk) replaced by ∇f(wk; ξk) with each ξk
drawn independently according to the distribution P , one finds that

(3.11) E[R(wk)−R∗] = O(1/k);

again a sublinear rate, but on the expected risk. Moreover, in this context,
a batch approach is not even viable without the ability to compute ∇R.
Of course, this represents a different setting than one in which only a finite
training set is available, but it reveals that if n is large with respect to k,

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMIZATION METHODS FOR LARGE-SCALE MACHINE LEARNING 241

then the behavior of SG in terms of minimizing the empirical risk Rn or
the expected risk R is practically indistinguishable up to iteration k. This
property cannot be claimed by a batch method.

In summary, there are intuitive, practical, and theoretical arguments in favor
of stochastic over batch approaches in optimization methods for large-scale machine
learning. For these reasons, and since SG is used so pervasively by practitioners, we
frame our discussions about optimization methods in the context of their relationship
with SG. We do not claim, however, that batch methods have no place in practice. For
one thing, if Figure 3.1 were to consider a larger number of epochs, then one would
see the batch approach eventually overtake the stochastic method and yield a lower
training error. This motivates why many recently proposed methods try to combine
the best properties of batch and stochastic algorithms. Moreover, the SG iteration
is difficult to parallelize and requires excessive communication between nodes in a
distributed computing setting, providing further impetus for the design of new and
improved optimization algorithms.

3.4. Beyond SG: Noise Reduction and Second-Order Methods. Looking for-
ward, one of the main questions being asked by researchers and practitioners alike is:
what lies beyond SG that can serve as an efficient, reliable, and easy-to-use optimiza-
tion method for the kinds of applications discussed in section 2?

To answer this question, we depict in Figure 3.3 methods that aim to improve
upon SG as lying on a two-dimensional plane. At the origin of this organizational
scheme is SG, representing the base from which all other methods may be compared.

Fig. 3.3 Schematic of a two-dimensional spectrum of optimization methods for machine learning.
The horizontal axis represents methods designed to control stochastic noise; the second
axis, methods that deal with ill-conditioning.

From the origin along the horizontal axis, we place methods that are neither
purely stochastic nor purely batch, but which attempt to combine the best properties
of both approaches. For example, observing the iteration (3.7), one quickly realizes
that there is no particular reason to employ information from only one sample point
per iteration. Instead, one can employ a minibatch approach in which a small subset
of samples, call it Sk ⊆ {1, . . . , n}, is chosen randomly in each iteration, leading to

(3.12) wk+1 ← wk −
αk

|Sk|
∑
i∈Sk

∇fi(wk).

Such an approach falls under the framework set out by Robbins and Monro [130]
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and allows some degree of parallelization to be exploited in the computation of mini-
batch gradients. In addition, one often finds that, due to the reduced variance of the
stochastic gradient estimates, the method is easier to tune in terms of choosing the
stepsizes {αk}. Such a minibatch SG method has been widely used in practice.

Along this horizontal axis, one finds other methods as well. In our investigation,
we classify two main groups as dynamic sample size and gradient aggregation methods,
both of which aim to improve the rate of convergence from sublinear to linear. These
methods do not simply compute minibatches of fixed size, nor do they compute full
gradients in every iteration. Instead, they dynamically replace or incorporate new
gradient information in order to construct a more reliable step with smaller variance
than an SG step. For this reason, we refer to the methods along the horizontal axis
as noise reduction methods. We will discuss methods of this type in section 5.

Along the second axis in Figure 3.3 are algorithms that, in a broad sense, at-
tempt to overcome the adverse effects of high nonlinearity and ill-conditioning. For
such algorithms, we use the term second-order methods, which encompasses a va-
riety of strategies; see section 6. We will discuss well-known inexact Newton and
quasi-Newton methods, as well as (generalized) Gauss–Newton methods [14, 141], the
natural gradient method [5], and scaled gradient iterations [152, 54].

We caution that the schematic representation of methods presented in Figure 3.3
should not be taken too literally since it is not possible to truly organize algorithms
so simply, or to include all methods along only two such axes. For example, one
could argue that iterate averaging methods do not belong neatly in the category
of second-order methods, even though we place them there, and one could argue
that gradient methods with momentum [123] or acceleration [107, 108] do belong in
this category, even though we discuss them separately in section 7. Nevertheless,
Figure 3.3 provides a useful road map as we describe and analyze a large collection
of optimization methods of various forms and characteristics. Moreover, our two-
dimensional roadmap is useful in that it suggests that optimization methods do not
need to exist along the coordinate axes only; e.g., a batch Newton method is placed
at the lower-right corner, and one may consider various combinations of second-order
and noise reduction schemes.

4. Analyses of Stochastic Gradient Methods. In this section, we provide in-
sights into the behavior of an SG method by establishing its convergence properties
and worst-case iteration complexity bounds. A preview of such properties was given
in (3.10)–(3.11), but now we prove these and other interesting results in detail, all
within the context of a generalized SG algorithm. We start by analyzing our SG
algorithm when it is invoked to minimize a strongly convex objective function, where
it is possible to establish a global rate of convergence to the optimal objective value.
This is followed by analyses when our SG algorithm is employed to minimize a generic
nonconvex objective. To emphasize the generality of the results proved in this sec-
tion, we remark that the objective function under consideration could be the expected
risk (3.4) or the empirical risk (3.6); i.e., we refer to the objective function F : Rd → R,
which represents either

F (w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(w) = E[f(w; ξ)]

or

Rn(w) =
1

n

n∑
i=1

fi(w).

(4.1)
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Our analyses apply equally to both objectives; the only difference lies in the way that
one picks the stochastic gradient estimates in the method.3

We define our generalized SG method as Algorithm 4.1. The algorithm merely
presumes that three computational tools exist: (i) a mechanism for generating a
realization of a random variable ξk (with {ξk} representing a sequence of jointly
independent random variables); (ii) given an iterate wk ∈ R

d and the realization
of ξk, a mechanism for computing a stochastic vector g(wk, ξk) ∈ R

d; and (iii) given
an iteration number k ∈ N, a mechanism for computing a scalar stepsize αk > 0.

Algorithm 4.1 Stochastic Gradient (SG) Method

1: Choose an initial iterate w1.
2: for k = 1, 2, . . . do
3: Generate a realization of the random variable ξk.
4: Compute a stochastic vector g(wk, ξk).
5: Choose a stepsize αk > 0.
6: Set the new iterate as wk+1 ← wk − αkg(wk, ξk).
7: end for

The generality of Algorithm 4.1 can be seen in various ways. First, the value
of the random variable ξk need only be viewed as a seed for generating a stochastic
direction; as such, a realization of it may represent the choice of a single training
sample as in the simple SG method stated as (3.7), or may represent a set of samples
as in the minibatch SG method (3.12). Second, g(wk, ξk) could represent a stochastic
gradient—i.e., an unbiased estimator of∇F (wk), as in the classical method of Robbins
and Monro [130]—or it could represent a stochastic Newton or quasi-Newton direction;
see section 6. That is, our analyses cover the choices

(4.2) g(wk, ξk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇f(wk; ξk),

1

nk

nk∑
i=1

∇f(wk; ξk,i),

Hk
1

nk

nk∑
i=1

∇f(wk; ξk,i),

where, for all k ∈ N, one has flexibility in the choice of minibatch size nk and symmet-
ric positive definite scaling matrix Hk. No matter what choice is made, we shall come
to see that all of our theoretical results hold as long as the expected angle between
g(wk, ξk) and ∇F (wk) is sufficiently positive. Third, Algorithm 4.1 allows various
choices of the stepsize sequence {αk}. Our analyses focus on two choices, one involv-
ing a fixed stepsize and one involving diminishing stepsizes, as both are interesting in

3Picking samples uniformly from a finite training set, replacing them in the set for each iteration,
corresponds to sampling from a discrete distribution giving equal weight to every sample. In this
case, the SG algorithm in this section optimizes the empirical risk F = Rn. Alternatively, picking
samples in each iteration according to the distribution P , the SG algorithm optimizes the expected
risk F = R. One could also imagine picking samples without replacement until one exhausts a finite
training set. In this case, the SG algorithm here can be viewed as optimizing either Rn or R, but
only until the training set is exhausted. After that point, our analysis no longer apply. Generally
speaking, the analysis of such incremental algorithms often requires specialized techniques [15, 72].
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theory and in practice. Finally, we note that Algorithm 4.1 also covers active learning
techniques in which the iterate wk influences the sample selection.4

Notwithstanding all of this generality, we henceforth refer to Algorithm 4.1 as SG.
The particular instance (3.7) will be referred to as simple SG or basic SG, whereas
the instance (3.12) will be referred to as minibatch SG.

Beyond our convergence and complexity analyses, a complete appreciation for the
properties of SG is not possible without highlighting its theoretical advantages over
batch methods in terms of computational complexity. Thus, we include in section 4.4
a discussion of the trade-offs between rate of convergence and computational effort
among prototypical stochastic and batch methods for large-scale learning.

4.1. Two Fundamental Lemmas. Our approach for establishing convergence
guarantees for SG is built upon an assumption of smoothness of the objective function.
(Alternative foundations are possible; see Appendix A.) This, and an assumption
about the first and second moments of the stochastic vectors {g(wk, ξk)}, lead to two
fundamental lemmas from which all of our results will be derived.

Our first assumption is formally stated as follows. Recall that, as already men-
tioned in (4.1), F can represent either expected or empirical risk.

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective func-
tion F : R

d → R is continuously differentiable and the gradient function of F ,
namely, ∇F : Rd → R

d, is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (w)−∇F (w)‖2 ≤ L‖w − w‖2 for all {w,w} ⊂ R
d.

Intuitively, Assumption 4.1 ensures that the gradient of F does not change arbi-
trarily quickly with respect to the parameter vector. Such an assumption is essential
for convergence analyses of most gradient-based methods; without it, the gradient
would not provide a good indicator for how far to move to decrease F . An important
consequence of Assumption 4.1 is that

(4.3) F (w) ≤ F (w) +∇F (w)T (w −w) + 1
2L‖w − w‖22 for all {w,w} ⊂ R

d.

This inequality is proved in Appendix B, but note that it also follows immediately
if F is twice continuously differentiable and the Hessian function ∇2F : Rd → R

d×d

satisfies ‖∇2F (w)‖2 ≤ L for all w ∈ R
d.

Under Assumption 4.1 alone, we obtain the following lemma. In the result, we
use Eξk [·] to denote an expected value taken with respect to the distribution of the
random variable ξk given wk. Therefore, Eξk [F (wk+1)] is a meaningful quantity since
wk+1 depends on ξk through the update in step 6 of Algorithm 4.1.

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1) satisfy the
following inequality for all k ∈ N:

(4.4) Eξk [F (wk+1)]−F (wk) ≤ −αk∇F (wk)
T
Eξk [g(wk, ξk)]+

1
2α

2
kLEξk [‖g(wk, ξk)‖22].

4We have assumed that the elements of the random variable sequence {ξk} are independent in
order to avoid requiring certain machinery from the analysis of stochastic processes. Viewing ξk as
a seed instead of a sample during iteration k makes this restriction minor. However, it is worthwhile
to mention that all of the results in this section still hold if, instead, {ξk} forms an adapted (nonan-
ticipating) stochastic process and expectations taken with respect to ξk are replaced by expectations
taken with respect to the conditional distribution of ξk given {ξ1, . . . , ξk−1}.
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Proof. By Assumption 4.1, the iterates generated by SG satisfy

F (wk+1)− F (wk) ≤ ∇F (wk)
T (wk+1 − wk) +

1
2L‖wk+1 − wk‖22

≤ −αk∇F (wk)
T g(wk, ξk) +

1
2α

2
kL‖g(wk, ξk)‖22.

Taking expectations in these inequalities with respect to the distribution of ξk, and
noting that wk+1—but not wk—depends on ξk, we obtain the desired bound.

This lemma shows that, regardless of how SG arrived at wk, the expected decrease
in the objective function yielded by the kth step is bounded above by a quantity
involving (i) the expected directional derivative of F at wk along −g(xk, ξk), and
(ii) the second moment of g(xk, ξk). For example, if g(wk, ξk) is an unbiased estimate
of ∇F (wk), then it follows from Lemma 4.2 that

(4.5) Eξk [F (wk+1)]− F (wk) ≤ −αk‖∇F (wk)‖22 + 1
2α

2
kLEξk [‖g(wk, ξk)‖22].

We shall see that convergence of SG is guaranteed as long as the stochastic directions
and stepsizes are chosen such that the right-hand side of (4.4) is bounded above by a
deterministic quantity that asymptotically ensures sufficient descent in F . One can
ensure this in part by stating additional requirements on the first and second moments
of the stochastic directions {g(wk, ξk)}. In particular, in order to limit the harmful
effect of the last term in (4.5), we restrict the variance of g(wk, ξk), i.e.,

(4.6) Vξk [g(wk, ξk)] := Eξk [‖g(wk, ξk)‖22]− ‖Eξk [g(wk, ξk)]‖22 .

Assumption 4.3 (first and second moment limits). The objective function and
SG (Algorithm 4.1) satisfy the following conditions:

(a) The sequence of iterates {wk} is contained in an open set over which F is
bounded below by a scalar Finf .

(b) There exist scalars μG ≥ μ > 0 such that, for all k ∈ N,

∇F (wk)
T
Eξk [g(wk, ξk)] ≥ μ‖∇F (wk)‖22 and(4.7a)

‖Eξk [g(wk, ξk)]‖2 ≤ μG‖∇F (wk)‖2.(4.7b)

(c) There exist scalars M ≥ 0 and MV ≥ 0 such that, for all k ∈ N,

(4.8) Vξk [g(wk, ξk)] ≤M +MV ‖∇F (wk)‖22.

The first condition, Assumption 4.3(a), merely requires the objective function to
be bounded below over the region explored by the algorithm. The second requirement,
Assumption 4.3(b), states that, in expectation, the vector −g(wk, ξk) is a direction of
sufficient descent for F from wk with a norm comparable to the norm of the gradient.
The properties in this requirement hold immediately with μG = μ = 1 if g(wk, ξk)
is an unbiased estimate of ∇F (wk), and are maintained if such an unbiased estimate
is multiplied by a positive definite matrix Hk that is conditionally uncorrelated with
g(wk, ξk) given wk and whose eigenvalues lie in a fixed positive interval for all k ∈ N.
The third requirement, Assumption 4.3(c), states that the variance of g(wk, ξk) is
restricted, but in a relatively minor manner. For example, if F is a convex quadratic
function, then the variance is allowed to be nonzero at any stationary point for F and
is allowed to grow quadratically in any direction.

Taken together, Assumption 4.3, combined with the definition (4.6), requires that
the second moment of g(wk, ξk) satisfies

(4.9) Eξk [‖g(wk, ξk)‖22] ≤M +MG‖∇F (wk)‖22 with MG := MV + μ2
G ≥ μ2 > 0.
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In fact, all of our analyses in this section would hold if this bound on the second
moment were to be assumed directly. (We have stated Assumption 4.3 in the form
above merely to facilitate our discussion in section 5.)

The following lemma builds on Lemma 4.2 under the additional conditions now
set forth in Assumption 4.3.

Lemma 4.4. Under Assumptions 4.1 and 4.3, the iterates of SG (Algorithm 4.1)
satisfy the following inequalities for all k ∈ N:

Eξk [F (wk+1)]− F (wk) ≤ −μαk‖∇F (wk)‖22 + 1
2α

2
kLEξk [‖g(wk, ξk)‖22](4.10a)

≤ −(μ− 1
2αkLMG)αk‖∇F (wk)‖22 + 1

2α
2
kLM.(4.10b)

Proof. By Lemma 4.2 and (4.7a), it follows that

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
T
Eξk [g(wk, ξk)] +

1
2α

2
kLEξk [‖g(wk, ξk)‖22]

≤ −μαk‖∇F (wk)‖22 + 1
2α

2
kLEξk [‖g(wk, ξk)‖22],

which is (4.10a). Assumption 4.3, giving (4.9), then yields (4.10b).

As mentioned, this lemma reveals that regardless of how the method arrived at the
iterate wk, the optimization process continues in a Markovian manner in the sense
that wk+1 is a random variable that depends only on the iterate wk, the seed ξk,
and the stepsize αk and not on any past iterates. This can be seen in the fact that
the difference Eξk [F (wk+1)] − F (wk) is bounded above by a deterministic quantity.
Note also that the first term in (4.10b) is strictly negative for small αk and suggests
a decrease in the objective function by a magnitude proportional to ‖∇F (wk)‖22.
However, the second term in (4.10b) could be large enough to allow the objective
value to increase. Balancing these terms is critical in the design of SG methods.

4.2. SG for Strongly Convex Objectives. The most benign setting for analyzing
the SG method is in the context of minimizing a strongly convex objective function.
For the reasons described in Inset 4.1, when not considering a generic nonconvex
objective F , we focus on the strongly convex case and only briefly mention the (not
strongly) convex case on certain occasions.

We formalize a strong convexity assumption as follows.

Assumption 4.5 (strong convexity). The objective function F : R
d → R is

strongly convex in that there exists a constant c > 0 such that

(4.11) F (w) ≥ F (w) +∇F (w)T (w − w) + 1
2c‖w − w‖22 for all (w,w) ∈ R

d × R
d.

Hence, F has a unique minimizer, denoted as w∗ ∈ R
d with F∗ := F (w∗).

A useful fact from convex analysis (proved in Appendix B) is that, under Assump-
tion 4.5, one can bound the optimality gap at a given point in terms of the squared
�2-norm of the gradient of the objective at that point:

(4.12) 2c(F (w)− F∗) ≤ ‖∇F (w)‖22 for all w ∈ R
d.

We use this inequality in several proofs. We also observe that, from (4.3) and (4.11),
the constants in Assumptions 4.1 and 4.5 must satisfy c ≤ L.

We now state our first convergence theorem for SG, describing its behavior when
minimizing a strongly convex objective function when employing a fixed stepsize. In
this case, it will not be possible to prove convergence to the solution, but only to
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All of the convergence rate and complexity results presented in this paper relate to
the minimization of strongly convex functions. This is in contrast with a large portion
of the literature on optimization methods for machine learning, in which much effort is
made to strengthen convergence guarantees for methods applied to functions that are
convex, but not strongly convex. We have made this choice for a few reasons. First, it
leads to a focus on results that are relevant to actual machine learning practice, since
in many situations when a convex model is employed—such as in logistic regression—
it is often regularized by a strongly convex function to facilitate the solution process.
Second, there exists a variety of situations in which the objective function is not globally
(strongly) convex, but is so in the neighborhood of local minimizers, meaning that our
results can represent the behavior of the algorithm in such regions of the search space.
Third, one can argue that related results when minimizing non-strongly-convex models
can be derived as extensions of the results presented here [3], making our analyses a
starting point for deriving a more general theory.

We have also taken a pragmatic approach in the types of convergence guarantees
that we provide. In particular, in our analyses, we focus on results that reveal the prop-
erties of SG iterates in expectation. The stochastic approximation literature, on the
other hand, often relies on martingale techniques to establish almost sure convergence
[66, 131] under the same assumptions [21]. For our purposes, we omit these compli-
cations since, in our view, they do not provide significant additional insights into the
forces driving convergence of the method.

Inset 4.1 Perspectives on SG analyses.

a neighborhood of the optimal value. (Intuitively, this limitation should be clear
from (4.10b) since the first term on the right-hand side decreases in magnitude as
the solution is approached—i.e., as ∇F (wk) tends to zero—but the last term remains
constant. Thus, after some point, a reduction in the objective cannot be expected.)
We use E[·] to denote an expected value taken with respect to the joint distribution
of all random variables. For example, since wk is completely determined by the real-
izations of the independent random variables {ξ1, ξ2, . . . , ξk−1}, the total expectation
of F (wk) for any k ∈ N can be taken as

E[F (wk)] = Eξ1Eξ2 . . .Eξk−1
[F (wk)].

The theorem shows that if the stepsize is not too large, then, in expectation, the
sequence of function values {F (wk)} converges near the optimal value.

Theorem 4.6 (strongly convex objective, fixed stepsize). Under Assumptions 4.1,
4.3, and 4.5 (with Finf = F∗), suppose that the SG method (Algorithm 4.1) is run with
a fixed stepsize, αk = ᾱ for all k ∈ N, satisfying

0 < ᾱ ≤ μ

LMG
.(4.13)

Then the expected optimality gap satisfies the following inequality for all k ∈ N:

(4.14)

E[F (wk)− F∗] ≤
ᾱLM

2cμ
+ (1− ᾱcμ)

k−1

(
F (w1)− F∗ −

ᾱLM

2cμ

)
k→∞−−−−→ ᾱLM

2cμ
.
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Proof. Using Lemma 4.4 with (4.13) and (4.12), we have for all k ∈ N that

Eξk [F (wk+1)]− F (wk)] ≤ −(μ− 1
2 ᾱLMG)ᾱ‖∇F (wk)‖22 + 1

2 ᾱ
2LM

≤ − 1
2 ᾱμ‖∇F (wk)‖22 + 1

2 ᾱ
2LM

≤ −ᾱcμ(F (wk)− F∗) + 1
2 ᾱ

2LM.

Subtracting F∗ from both sides, taking total expectations, and rearranging, this yields

E[F (wk+1)− F∗] ≤ (1− ᾱcμ)E[F (wk)− F∗] + 1
2 ᾱ

2LM.

Subtracting the constant ᾱLM/(2cμ) from both sides, one obtains

E[F (wk+1)− F∗]−
ᾱLM

2cμ
≤ (1− ᾱcμ)E[F (wk)− F∗] +

ᾱ2LM

2
− ᾱLM

2cμ

= (1− ᾱcμ)

(
E[F (wk)− F∗]−

ᾱLM

2cμ

)
.(4.15)

Observe that (4.15) is a contraction inequality since, by (4.13) and (4.9),

(4.16) 0 < ᾱcμ ≤ cμ2

LMG
≤ cμ2

Lμ2
=

c

L
≤ 1.

The result thus follows by applying (4.15) repeatedly through iteration k ∈ N.

If g(wk, ξk) is an unbiased estimate of ∇F (wk), then μ = 1, and if there is no
noise in g(wk, ξk), then we may presume that MG = 1 (due to (4.9)). In this case,
(4.13) reduces to ᾱ ∈ (0, 1/L], a classical stepsize requirement of interest for a steepest
descent method.

Theorem 4.6 illustrates the interplay between the stepsizes and bound on the vari-
ance of the stochastic directions. If there were no noise in the gradient computation
or if noise were to decay with ‖∇F (wk)‖22 (i.e., if M = 0 in (4.8) and (4.9)), then
one could obtain linear convergence to the optimal value. This is a standard result
for the full gradient method with a sufficiently small positive stepsize. On the other
hand, when the gradient computation is noisy, one clearly loses this property. One can
still use a fixed stepsize and be sure that the expected objective values will converge
linearly to a neighborhood of the optimal value, but, after some point, the noise in
the gradient estimates prevent further progress; recall Example 3.1. It is apparent
from (4.14) that selecting a smaller stepsize worsens the contraction constant in the
convergence rate, but allows one to arrive closer to the optimal value.

These observations provide a foundation for a strategy often employed in practice
in which SG is run with a fixed stepsize, and, if progress appears to stall, a smaller
stepsize is selected and the process is repeated. A straightforward instance of such an
approach can be motivated with the following sketch. Suppose that α1 ∈ (0, μ

LMG
] is

chosen as in (4.13) and the SG method is run with this stepsize from iteration k1 = 1
until iteration k2, where wk2 is the first iterate at which the expected suboptimality
gap is smaller than twice the asymptotic value in (4.14), i.e., E[F (wk2 )−F∗] ≤ 2Fα1 ,
where Fα := αLM

2cμ . Suppose further that, at this point, the stepsize is halved and

the process is repeated; see Figure 4.1. This leads to the stepsize schedule {αr+1} =
{α12

−r}, index sequence {kr}, and bound sequence {Fαr} = {αrLM
2cμ } ↘ 0 such that,
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Fig. 4.1 Depiction of the strategy of halving the stepsize α when the expected suboptimality gap is
smaller than twice the asymptotic limit Fα. In the figure, the segment B–B′ has one third
of the length of A–A′. This is the amount of decrease that must be made in the exponential
term in (4.14) by raising the contraction factor to the power of the number of steps during
which one maintains a given constant stepsize; see (4.18). Since the contraction factor is
(1−αcμ), the number of steps must be proportional to α. Therefore, whenever the stepsize
is halved, one must maintain it twice as long. Overall, doubling the number of iterations
halves the suboptimality gap each time, yielding an effective rate of O(1/k).

for all r ∈ {2, 3, . . .},

(4.17) E[F (wkr+1 )− F∗] ≤ 2Fαr , where E[F (wkr )− F∗] ≈ 2Fαr−1 = 4Fαr .

In this manner, the expected suboptimality gap converges to zero.
However, this does not occur by halving the stepsize in every iteration, but only

once the gap itself has been cut in half from a previous threshold. To see what might
be the appropriate effective rate of stepsize decrease, we may invoke Theorem 4.6,
from which it follows that to achieve the first bound in (4.17) one needs

(4.18)

(1− αrcμ)
(kr+1−kr)(4Fαr − Fαr ) ≤ Fαr

=⇒ kr+1 − kr ≥
log(1/3)

log(1− αrcμ)
≈ log(3)

αrcμ
= O(2r).

In other words, each time the stepsize is cut in half, double the number of iterations
are required. This is a sublinear rate of stepsize decrease—e.g., if {kr} = {2r−1},
then αk = α1/k for all k ∈ {2r}—which, from {Fαr} = {αrLM

2cμ } and (4.17), means
that a sublinear convergence rate of the suboptimality gap is achieved.

In fact, these conclusions can be obtained in a more rigorous manner that also
allows more flexibility in the choice of stepsize sequence. The following result harks
back to the seminal work of Robbins and Monro [130], where the stepsize requirement
takes the form

(4.19)

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞.

Theorem 4.7 (strongly convex objective, diminishing stepsizes). Under Assump-
tions 4.1, 4.3, and 4.5 (with Finf = F∗), suppose that the SG method (Algorithm 4.1)
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is run with a stepsize sequence such that, for all k ∈ N,

(4.20) αk =
β

γ + k
for some β >

1

cμ
and γ > 0 such that α1 ≤

μ

LMG
.

Then, for all k ∈ N, the expected optimality gap satisfies

(4.21) E[F (wk)− F∗] ≤
ν

γ + k
,

where

(4.22) ν := max

{
β2LM

2(βcμ− 1)
, (γ + 1)(F (w1)− F∗)

}
.

Proof. By (4.20), the inequality αkLMG ≤ α1LMG ≤ μ holds for all k ∈ N.
Hence, along with Lemma 4.4 and (4.12), one has for all k ∈ N that

Eξk [F (wk+1)]− F (wk) ≤ −(μ− 1
2αkLMG)αk‖∇F (wk)‖22 + 1

2α
2
kLM

≤ − 1
2αkμ‖∇F (wk)‖22 + 1

2α
2
kLM

≤ −αkcμ(F (wk)− F (w∗)) + 1
2α

2
kLM.

Subtracting F∗ from both sides, taking total expectations, and rearranging, this yields

(4.23) E[F (wk+1)− F∗] ≤ (1− αkcμ)E[F (wk)− F∗] + 1
2α

2
kLM.

We now prove (4.21) by induction. First, the definition of ν ensures that it holds for
k = 1. Then, assuming (4.21) holds for some k ≥ 1, it follows from (4.23) that

E[F (wk+1)− F∗] ≤
(
1− βcμ

k̂

)
ν

k̂
+

β2LM

2k̂2
(with k̂ := γ + k)

=

(
k̂ − βcμ

k̂2

)
ν +

β2LM

2k̂2

=

(
k̂ − 1

k̂2

)
ν −

(
βcμ− 1

k̂2

)
ν +

β2LM

2k̂2︸ ︷︷ ︸
nonpositive by the definition of ν

≤ ν

k̂ + 1
,

where the last inequality follows because k̂2 ≥ (k̂ + 1)(k̂ − 1).

Let us now remark on what can be learned from Theorems 4.6 and 4.7.

Role of Strong Convexity. Observe the crucial role played by the strong convex-
ity parameter c > 0, the positivity of which is needed to argue that (4.15) and (4.23)
contract the expected optimality gap. However, the strong convexity constant im-
pacts the stepsizes in different ways in Theorems 4.6 and 4.7. In the case of constant
stepsizes, the possible values of ᾱ are constrained by the upper bound (4.13) that
does not depend on c. In the case of diminishing stepsizes, the initial stepsize α1 is
subject to the same upper bound (4.20), but the stepsize parameter β must be larger
than 1/(cμ). This additional requirement is critical to ensure the O(1/k) convergence
rate. How critical? Consider, e.g., [105], in which the authors provide a simple ex-
ample (with unbiased gradient estimates and μ = 1) involving the minimization of
a deterministic quadratic function with only one optimization variable in which c is
overestimated, which results in β being underestimated. In the example, even after
109 iterations, the distance to the solution remains greater than 10−2.
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Role of the Initial Point. Also observe the role played by the initial point, which
determines the initial optimality gap, namely, F (w1)−F∗. When using a fixed stepsize,
the initial gap appears with an exponentially decreasing factor; see (4.14). In the case
of diminishing stepsizes, the gap appears prominently in the second term defining ν
in (4.22). However, with an appropriate initialization phase, one can easily diminish
the role played by this term.5 For example, suppose that one begins by running SG
with a fixed stepsize ᾱ until one (approximately) obtains a point, call it w1, with
F (w1) − F∗ ≤ ᾱLM/(2cμ). A guarantee for this bound can be argued from (4.14).
Starting here with α1 = ᾱ, the choices for β and γ in Theorem 4.7 yield

(γ + 1)E[F (w1)− F∗] ≤ βα−1
1

α1LM

2cμ
=

βLM

2cμ
<

β2LM

2(βcμ− 1)
,

meaning that the value for ν is dominated by the first term in (4.22).
On a related note, we claim that for practical purposes the initial stepsize should

be chosen as large as allowed, i.e., α1 = μ/(LMG). Given this choice of α1, the best
asymptotic regime with decreasing stepsizes (4.21) is achieved by making ν as small
as possible. Since we have argued that only the first term matters in the definition
of ν, this leads to choosing β = 2/(cμ). Under these conditions, one has

(4.24) ν =
β2LM

2(βcμ− 1)
=

2

μ2

(
L

c

)(
M

c

)
.

We shall see the (potentially large) ratios L/c and M/c arise again later.

Trade-Offs of (Mini-)Batching. As a final observation about what can be learned
from Theorems 4.6 and 4.7, let us take a moment to compare the theoretical perfor-
mance of two fundamental algorithms—the simple SG iteration (3.7) and the mini-
batch SG iteration (3.12)—when these results are applied for minimizing empirical
risk, i.e., when F = Rn. This provides a glimpse into how such results can be used
to compare algorithms in terms of their computational trade-offs.

The most elementary instance of our SG algorithm is simple SG, which, as we have
seen, consists of picking a random sample index ik at each iteration and computing

(4.25) g(wk, ξk) = ∇fik(wk).

By contrast, instead of picking a single sample, minibatch SG consists of randomly
selecting a subset Sk of the sample indices and computing

(4.26) g(wk, ξk) =
1

|Sk|
∑
i∈Sk

∇fi(wk) .

To compare these methods, let us assume for simplicity that we employ the same
number of samples in each iteration so that the minibatches are of constant size, i.e.,
|Sk| = nmb. There are then two distinct regimes to consider, namely, when nmb 
 n
and when nmb ≈ n. Our goal here is to use the results of Theorems 4.6 and 4.7 to
show that, in the former scenario, the theoretical benefit of minibatching can appear
to be somewhat ambiguous, meaning that one must leverage certain computational

5In fact, the bound (4.21) slightly overstates the asymptotic influence of the initial optimality
gap. Applying Chung’s lemma [36] to the contraction equation (4.23) shows that the first term in
the definition of ν effectively determines the asymptotic convergence rate of E[F (wk) − F∗].
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tools to benefit from minibatching in practice. As for the scenario when nmb ≈ n,
the comparison is more complex due to a trade-off between per-iteration costs and
overall convergence rate of the method (recall section 3.3). We leave a more formal
treatment of this scenario, specifically with the goals of large-scale machine learning
in mind, for section 4.4.

Suppose then that the minibatch size is nmb 
 n. The computation of the
stochastic direction g(wk, ξk) in (4.26) is clearly nmb times more expensive than in
(4.25). In return, the variance of the direction is reduced by a factor of 1/nmb.
(See section 5.2 for further discussion of this fact.) That is, with respect to our
analysis, the constants M and MV that appear in Assumption 4.3 (see (4.8)) are
reduced by the same factor, becoming M/nmb and MV /nmb for minibatch SG. It is
natural to ask whether this reduction in the variance pays for the higher per-iteration
cost.

Consider, for instance, the case of employing a sufficiently small constant stepsize
ᾱ > 0. For minibatch SG, Theorem 4.6 leads to

E[F (wk)− F∗] ≤
ᾱLM

2cμ nmb
+ [1− ᾱcμ]

k−1

(
F (w1)− F∗ −

ᾱLM

2cμ nmb

)
.

Using the simple SG method with stepsize ᾱ/nmb leads to a similar asymptotic gap:

E[F (wk)− F∗] ≤
ᾱLM

2cμ nmb
+

[
1− ᾱcμ

nmb

]k−1 (
F (w1)− F∗ −

ᾱLM

2cμ nmb

)
.

The worse contraction constant (indicated using square brackets) means that one
needs to run nmb times more iterations of the simple SG algorithm to obtain an
equivalent optimality gap. That said, since the computation in a simple SG iteration
is nmb times cheaper, this amounts to effectively the same total computation as for
the minibatch SG method. A similar analysis employing the result of Theorem 4.7
can be performed when decreasing stepsizes are used.

These observations suggest that the methods can be comparable. However, an
important consideration remains. In particular, the convergence theorems require
that the initial stepsize be smaller than μ/(LMG). Since (4.9) shows that MG ≥ μ2,
the largest this stepsize can be is 1/(μL). Therefore, one cannot simply assume that
the minibatch SG method is allowed to employ a stepsize that is nmb times larger than
the one used by SG. In other words, one cannot always compensate for the higher
per-iteration cost of a minibatch SG method by selecting a larger stepsize.

One can, however, realize the benefits of minibatching in practice since it offers
the important opportunities for software optimization and parallelization; e.g., using
sizable minibatches is often the only way to fully leverage a GPU processor. Dynamic
minibatch sizes can also be used as a substitute for decreasing stepsizes; see section 5.2.

4.3. SG for General Objectives. As mentioned in our case study of DNNs in
section 2.2, many important machine learning models lead to nonconvex optimization
problems, which are currently having a profound impact in practice. Analyzing the SG
method when minimizing nonconvex objectives is more challenging than in the convex
case since such functions may possess multiple local minima and other stationary
points. Still, we show in this subsection that one can provide meaningful guarantees
for the SG method in nonconvex settings.

Paralleling section 4.2, we present two results—one for employing a fixed positive
stepsize and one for diminishing stepsizes. We maintain the same assumptions about
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the stochastic directions g(wk, ξk), but do not assume convexity of F . As before, the
results in this section still apply to a wide class of methods since g(wk, ξk) could be
defined as a (minibatch) stochastic gradient or a Newton-like direction; recall (4.2).

Our first result describes the behavior of the sequence of gradients of F when fixed
stepsizes are employed. Recall from Assumption 4.3 that the sequence of function
values {F (wk)} is assumed to be bounded below by a scalar Finf .

Theorem 4.8 (nonconvex objective, fixed stepsize). Under Assumptions 4.1 and
4.3, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize, αk = ᾱ
for all k ∈ N, satisfying

(4.27) 0 < ᾱ ≤ μ

LMG
.

Then, the expected sum-of-squares and average-squared gradients of F corresponding
to the SG iterates satisfy the following inequalities for all K ∈ N:

E

[
K∑

k=1

‖∇F (wk)‖22

]
≤ KᾱLM

μ
+

2(F (w1)− Finf)

μᾱ
(4.28a)

and therefore E

[
1

K

K∑
k=1

‖∇F (wk)‖22

]
≤ ᾱLM

μ
+

2(F (w1)− Finf)

Kμᾱ
(4.28b)

K→∞−−−−→ ᾱLM

μ
.

Proof. Taking the total expectation of (4.10b) and using (4.27),

E[F (wk+1)]− E[F (wk)] ≤ −(μ− 1
2 ᾱLMG)ᾱE[‖∇F (wk)‖22] + 1

2 ᾱ
2LM

≤ − 1
2μᾱE[‖∇F (wk)‖22] + 1

2 ᾱ
2LM.

Summing both sides of this inequality for k ∈ {1, . . . ,K} and recalling Assump-
tion 4.3(a) gives

Finf − F (w1) ≤ E[F (wK+1)]− F (w1) ≤ − 1
2μᾱ

K∑
k=1

E[‖∇F (wk)‖22] + 1
2Kᾱ2LM.

Rearranging yields (4.28a), and dividing further by K yields (4.28b).

If M = 0, meaning that there is no noise or that noise reduces proportionally to
‖∇F (wk)‖22 (see (4.8) and (4.9)), then (4.28a) captures a classical result for the full
gradient method applied to nonconvex functions, namely, that the sum of squared
gradients remains finite, implying that {‖∇F (wk)‖2} → 0. In the presence of noise
(i.e., M > 0), Theorem 4.8 illustrates the interplay between the stepsize ᾱ and the
variance of the stochastic directions. While one cannot bound the expected optimality
gap as in the convex case, inequality (4.28b) bounds the average norm of the gradi-
ent of the objective function observed on {wk} visited during the first K iterations.
This quantity gets smaller when K increases, indicating that the SG method spends
increasingly more time in regions where the objective function has a (relatively) small
gradient. Moreover, the asymptotic result that one obtains from (4.28b) illustrates
that noise in the gradients inhibits further progress, as in (4.14) for the convex case.
The average norm of the gradients can be made arbitrarily small by selecting a small
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254 LÉON BOTTOU, FRANK E. CURTIS, AND JORGE NOCEDAL

stepsize, but doing so reduces the speed at which the norm of the gradient approaches
its limiting distribution.

We now turn to the case when the SG method is applied to a nonconvex objective
with a decreasing sequence of stepsizes satisfying the classical conditions (4.19). While
not the strongest result that one can prove in this context—and, in fact, we prove a
stronger result below—the following theorem is perhaps the easiest to interpret and
remember. Hence, we state it first.

Theorem 4.9 (nonconvex objective, diminishing stepsizes). Under Assumptions
4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence
satisfying (4.19). Then

(4.29) lim inf
k→∞

E[‖∇F (wk)‖22] = 0 .

The proof of this theorem follows based on the results given in Theorem 4.10
below. A “lim inf” result of this type should be familiar to those knowledgeable
about the nonlinear optimization literature. After all, such a result is all that can
be shown for certain important methods, such as the nonlinear conjugate gradient
method [114]. The intuition that one should gain from the statement of Theorem 4.9
is that for the SG method with diminishing stepsizes, the expected gradient norms
cannot stay bounded away from zero.

The following result characterizes more precisely the convergence property of SG.

Theorem 4.10 (nonconvex objective, diminishing stepsizes). Under Assumptions
4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize se-

quence satisfying (4.19). Then, with AK :=
∑K

k=1 αk,

lim
K→∞

E

[
K∑

k=1

αk‖∇F (wk)‖22

]
<∞(4.30a)

and therefore E

[
1

AK

K∑
k=1

αk‖∇F (wk)‖22

]
K→∞−−−−→ 0.(4.30b)

Proof. The second condition in (4.19) ensures that {αk} → 0, meaning that,
without loss of generality, we may assume that αkLMG ≤ μ for all k ∈ N. Then,
taking the total expectation of (4.10b),

E[F (wk+1)]− E[F (wk)] ≤ −(μ− 1
2αkLMG)αk E[‖∇F (wk)‖22] + 1

2α
2
kLM

≤ − 1
2μαkE[‖∇F (wk)‖22] + 1

2α
2
kLM .

Summing both sides of this inequality for k ∈ {1, . . . ,K} gives

Finf−E[F (w1)] ≤ E[F (wK+1)]−E[F (w1)] ≤ − 1
2μ

K∑
k=1

αkE[‖∇F (wk)‖22]+ 1
2LM

K∑
k=1

α2
k .

Dividing by μ/2 and rearranging the terms, we obtain

K∑
k=1

αkE[‖∇F (wk)‖22] ≤
2(E[F (w1)]− Finf)

μ
+

LM

μ

K∑
k=1

α2
k .

The second condition in (4.19) implies that the right-hand side of this inequality
converges to a finite limit when K increases, proving (4.30a). Then, (4.30b) follows
since the first condition in (4.19) ensures that AK →∞ as K →∞.
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Theorem 4.10 establishes results about a weighted sum-of-squares and a weighted
average of squared gradients of F similar to those in Theorem 4.8. However, un-
like (4.28b), the conclusion (4.30b) states that the weighted average norm of the
squared gradients converges to zero even if the gradients are noisy, i.e., if M > 0.
The fact that (4.30b) only specifies a property of a weighted average (with weights
dictated by {αk}) is only of minor importance since one can still conclude that the
expected gradient norms cannot asymptotically stay far from zero.

We can now see that Theorem 4.9 is a direct consequence of Theorem 4.10, for if
(4.29) did not hold, it would contradict Theorem 4.10.

The next result gives a stronger conclusion than Theorem 4.9, at the expense of
only showing a property of the gradient of F at a randomly selected iterate.

Corollary 4.11. Suppose the conditions of Theorem 4.10 hold. For any K ∈ N,
let k(K) ∈ {1, . . . ,K} represent a random index chosen with probabilities proportional

to {αk}Kk=1. Then, ‖∇F (wk(K))‖2
K→∞−−−−→ 0 in probability.

Proof. Using Markov’s inequality and (4.30a), for any ε > 0, we can write

P{‖∇F (wk)‖2 ≥ ε} = P{‖∇F (wk)‖22 ≥ ε2} ≤ ε−2
E[Ek[‖∇F (wk)‖22] ]

K→∞−−−−→ 0 ,

which is the definition of convergence in probability.

Finally, we present the following result (with proof in Appendix B) to illustrate
that stronger convergence results also follow under additional regularity conditions.

Corollary 4.12. Under the conditions of Theorem 4.10, if we further assume
that the objective function F is twice differentiable, and that the mapping w �→
‖∇F (w)‖22 has Lipschitz-continuous derivatives, then

lim
k→∞

E[‖∇F (wk)‖22] = 0.

4.4. Work Complexity for Large-Scale Learning. Our discussion thus far has
focused on the convergence properties of SG when minimizing a given objective func-
tion representing either expected or empirical risk. However, our investigation would
be incomplete without considering how these properties impact the computational
workload associated with solving an underlying machine learning problem. As pre-
viewed in section 3, there are arguments that a more slowly convergent algorithm such
as SG, with its sublinear rate of convergence, is more efficient for large-scale learning
than (full, batch) gradient-based methods that have a linear rate of convergence. The
purpose of this section is to present these arguments in further detail.

As a first attempt for setting up a framework in which one might compare op-
timization algorithms for large-scale learning, one might be tempted to consider the
situation in which one has a given training set size n and asks what type of algorithm—
e.g., a simple SG or batch gradient method—would provide the best guarantees in
terms of achieving a low expected risk. However, such a comparison is difficult to
make when one cannot determine the precise trade-off between per-iteration costs
and the overall progress of the optimization method that one can guarantee.

An easier way to approach the issue is to consider a big data scenario with an
infinite supply of training examples, but a limited computational time budget. One
can then ask whether running a simple optimization algorithm such as SG works
better than running a more sophisticated batch optimization algorithm. We use such
an approach next, following the work in [22, 23].
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Suppose that both the expected risk R and the empirical risk Rn attain their
minima with parameter vectors w∗ ∈ argminR(w) and wn ∈ argminRn(w), respec-
tively. In addition, let w̃n be the approximate empirical risk minimizer returned
by a given optimization algorithm when the time budget Tmax is exhausted. The
trade-offs associated with this scenario can be formalized as choosing the family
of prediction functions H, the number of examples n, and the optimization accu-
racy ε := E[Rn(w̃n) − Rn(wn)] in order to minimize, within time Tmax, the total
error

(4.31) E[R(w̃n)] = R(w∗)︸ ︷︷ ︸
Eapp(H)

+ E[R(wn)−R(w∗)]︸ ︷︷ ︸
Eest(H, n)

+ E[R(w̃n)−R(wn)]︸ ︷︷ ︸
Eopt(H, n, ε)

.

To minimize this error, one needs to balance the contributions from each of the three
terms on the right-hand side. For instance, if one decides to make the optimization
more accurate—i.e., reducing ε in the hope of also reducing the optimization error
Eopt(H, n, ε) (evaluated with respect to R rather than Rn)—one might need to make
up for the additional computing time by (i) reducing the sample size n, potentially
increasing the estimation error Eest(H, n), or (ii) simplifying the function family H,
potentially increasing the approximation error Eapp(H).

Useful guidelines for achieving an optimal balance between these errors can be
obtained by setting aside the choice of H and carrying out a worst-case analysis
of the influence of the sample size n and optimization tolerance ε, which together
only influence the estimation and optimization errors. This simplified setup can be
formalized in terms of the macroscopic optimization problem

(4.32) min
n,ε
E(n, ε) = E[R(w̃n)−R(w∗)] s.t. T (n, ε) ≤ Tmax.

The computing time T (n, ε) depends on the details of the optimization algorithm in
interesting ways. For example, the computing time of a batch algorithm increases lin-
early (at least) with the number of examples n, whereas, crucially, the computing time
of a stochastic algorithm is independent of n. With a batch optimization algorithm,
one could consider increasing ε in order to make time to use more training examples.
However, with a stochastic algorithm, one should always use as many examples as
possible because the per-iteration computing time is independent of n.

To be specific, let us compare the solutions of (4.32) for prototypical stochastic
and batch methods—namely, simple SG and a batch gradient method—using simpli-
fied forms for the worst cases of the error function E and the time function T . For the
error function, a direct application of the uniform laws of large numbers [155] yields

E(n, ε) = E[R(w̃n)−R(w∗)] = E[R(w̃n)−Rn(w̃n)]︸ ︷︷ ︸ + E[Rn(w̃n)−Rn(wn)]︸ ︷︷ ︸
= O

(√
log(n)/n

)
= ε

+ E[Rn(wn)−Rn(w∗)]︸ ︷︷ ︸ + E[Rn(w∗)−R(w∗)]︸ ︷︷ ︸,
≤ 0 = O

(√
log(n)/n

)
which leads to the upper bound

(4.33) E(n, ε) = O
(√

log(n)

n
+ ε

)
.
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The inverse-square-root dependence on the number of examples n that appears here
is typical of statistical problems. However, even faster convergence rates for reduc-
ing these terms with respect to n can be established under specific conditions. For
instance, when the loss function is strongly convex [91] or when the data distribution
satisfies certain assumptions [154], it is possible to show that

E(n, ε) = O
(
log(n)

n
+ ε

)
.

To simplify further, let us work with the asymptotic (i.e., for large n) equivalence

(4.34) E(n, ε) ∼ 1

n
+ ε,

which is the fastest rate that remains compatible with elementary statistical results.6

Under this assumption, noting that the time constraint in (4.32) will always be active
(since one can always lower ε, and hence E(n, ε), by giving more time to the opti-
mization algorithm), and recalling the worst-case computing time bounds introduced
in section 3.3, one arrives at the following conclusions.

• A simple SG method can achieve ε-optimality with a computing time of
Tstoch(n, ε) ∼ 1/ε. Hence, within the time budget Tmax, the accuracy achieved
is proportional to 1/Tmax, regardless of the n. This means that, to minimize
the error E(n, ε), one should simply choose n as large as possible. Since the
maximum number of examples that can be processed by SG during the time
budget is proportional to Tmax, it follows that the optimal error is propor-
tional to 1/Tmax.
• A batch gradient method can achieve ε-optimality with a computing time of
Tbatch(n, ε) ∼ n log(1/ε). This means that, within the time budget Tmax, it
can achieve ε-optimality by processing n ∼ Tmax/ log(1/ε) examples. One
now finds that the optimal error is not necessarily achieved by choosing n
as large as possible, but rather by choosing ε (which dictates n) to mini-
mize (4.34). Differentiating E(n, ε) ∼ log(1/ε)/Tmax+ ε with respect to ε and
setting the result equal to zero, one finds that optimality is achieved with
ε ∼ 1/Tmax, from which it follows that the optimal error is proportional to
log(Tmax)/Tmax + 1/Tmax.

These results are summarized in Table 4.1. Even though a batch approach pos-
sesses a better dependency on ε, this advantage does not make up for its dependence
on n. This is true even though we have employed (4.34), the most favorable rate that
one may reasonably assume. In conclusion, we have found that a stochastic optimiza-
tion algorithm performs better in terms of expected error, and, hence, makes a better
learning algorithm in the sense considered here. These observations are supported by
practical experience (recall Figure 3.1 in section 3.3).

A Lower Bound. The results reported in Table 4.1 are also notable because
the SG algorithm matches a lower complexity bound that has been established for
any optimization method employing a noisy oracle. To be specific, in the widely
employed model for studying optimization algorithms proposed by Nemirovsky and

6For example, suppose that one is estimating the mean of a distribution P defined on the real line
by minimizing the risk R(μ) =

∫
(x− μ)2dP (x). The convergence rate (4.34) amounts to estimating

the distribution mean with a variance proportional to 1/n. A faster convergence rate would violate
the Cramer–Rao bound.
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258 LÉON BOTTOU, FRANK E. CURTIS, AND JORGE NOCEDAL

Table 4.1 The first row displays the computing times of idealized batch and stochastic optimization
algorithms. The second row gives the corresponding solutions of (4.32), assuming (4.34).

Batch Stochastic

T (n, ε) ∼ n log

(
1

ε

)
1

ε

E∗ ∼ log(Tmax)

Tmax
+

1

Tmax

1

Tmax

Yudin [106], one assumes that information regarding the objective function is acquired
by querying an oracle, ignoring the computational demands of doing so. Using such a
model, it has been established, e.g., that the full gradient method applied to minimize
a strongly convex objective function is not optimal in terms of the accuracy that can
be achieved within a given number of calls to the oracle, but that one can achieve an
optimal method through acceleration techniques; see section 7.2.

The case when only gradient estimates are available through a noisy oracle has
been studied, e.g., in [1, 128]. Roughly speaking, these investigations show that, again
when minimizing a strongly convex function, no algorithm that performs k calls to
the oracle can guarantee accuracy better than Ω(1/k). As we have seen, SG achieves
this lower bound up to constant factors. This analysis applies for the optimization of
both expected risk and empirical risk.

4.5. Commentary. Although the analysis presented in section 4.4 can be quite
compelling, it would be premature to conclude that SG is a perfect solution for large-
scale machine learning problems. There is, in fact, a large gap between asymptotical
behavior and practical realities. Next, we discuss issues related to this gap.

Fragility of the Asymptotic Performance of SG. The convergence speed given,
e.g., by Theorem 4.7, holds when the stepsize constant β exceeds a quantity inversely
proportional to the strong convexity parameter c (see (4.20)). In some settings, de-
termining such a value is relatively easy, such as when the objective function includes
a squared �2-norm regularizer (e.g., as in (2.3)), in which case the regularization pa-
rameter provides a lower bound for c. However, despite the fact that this can work
well in practice, it is not completely satisfactory because one should reduce the regu-
larization parameter when the number of samples increases. It is therefore desirable
to design algorithms that adapt to local convexity properties of the objective, so as
to avoid having to place cumbersome restrictions on the stepsizes.

SG and Ill-Conditioning. The analysis of section 4.4 is compelling since, as long
as the optimization problem is reasonably well-conditioned, the constant factors favor
the SG algorithm. In particular, the minimalism of the SG algorithm allows for very
efficient implementations that either fully leverage the sparsity of training examples
(as in the case study on text classification in section 2.1) or harness the computational
power of GPU processors (as in the case study on DNNs in section 2.2). In contrast,
state-of-the-art batch optimization algorithms often carry more overhead. However,
this advantage is eroded when the conditioning of the objective function worsens.
Again, consider Theorem 4.7. This result involves constant factors that grow with
both the condition number L/c and the ratio M/c. Both of these ratios can be
improved greatly by adaptively rescaling the stochastic directions based on matrices
that capture local curvature information of the objective function; see section 6.
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Opportunities for Distributed Computing. Distributing the SG step compu-
tation can potentially reduce the computing time by a constant factor equal to the
number of machines. However, such an improvement is difficult to realize. The SG
algorithm is notoriously difficult to distribute efficiently because it accesses the shared
parameter vector w with relatively high frequency. Consequently, even though it is
very robust to additional noise and can be run with very relaxed synchronization
[112, 45], distributed SG algorithms suffer from large communication overhead. Since
this overhead is potentially much larger than the additional work associated with
minibatch and other methods with higher per-iteration costs, distributed computing
offers new opportunities for the success of such methods for machine learning.

Alternatives with Faster Convergence. As mentioned above, [1, 128] establish
lower complexity bounds for optimization algorithms that only access information
about the objective function through noisy estimates of F (wk) and ∇F (wk) acquired
in each iteration. The bounds apply, e.g., when SG is employed to minimize the
expected risk R using gradient estimates evaluated on samples drawn from the dis-
tribution P . However, an algorithm that optimizes the empirical risk Rn has access
to an additional piece of information: it knows when a gradient estimate is evalu-
ated on a training example that has already been visited during previous iterations.
Recent gradient aggregation methods (see section 5.3) make use of this information
and improve upon the lower bound in [1] for the optimization of the empirical risk
(though not for the expected risk). These algorithms enjoy linear convergence with
low computing times in practice. Another avenue for improving the convergence rate
is to employ a dynamic sampling approach (see section 5.2), which, as we shall see,
can match the optimal asymptotic efficiency of SG in big data settings.

5. Noise Reduction Methods. The theoretical arguments in the previous sec-
tion, together with extensive computational experience, have led many in the machine
learning community to view SG as the ideal optimization approach for large-scale ap-
plications. We argue, however, that this is far from settled. SG suffers from, among
other things, the adverse effect of noisy gradient estimates. This prevents it from
converging to the solution when fixed stepsizes are used and leads to a slow, sublinear
rate of convergence when a diminishing stepsize sequence {αk} is employed.

To address this limitation, methods endowed with noise reduction capabilities
have been developed. These methods, which reduce the errors in the gradient es-
timates and/or iterate sequence, have proved to be effective in practice and enjoy
attractive theoretical properties. Recalling the schematic of optimization methods in
Figure 3.3, we depict these methods on the horizontal axis given in Figure 5.1.

The first two classes of methods that we consider achieve noise reduction in a
manner that allows them to possess a linear rate of convergence to the optimal value
using a fixed stepsize. The first type, dynamic sampling methods, achieve noise
reduction by gradually increasing the minibatch size used in the gradient computation,
thus employing increasingly more accurate gradient estimates as the optimization
process proceeds. Gradient aggregation methods, on the other hand, improve the
quality of the search directions by storing gradient estimates corresponding to samples
employed in previous iterations, updating one (or some) of these estimates in each
iteration, and defining the search direction as a weighted average of these estimates.

The third class of methods that we consider, iterate averaging methods, accom-
plish noise reduction not by averaging gradient estimates, but by maintaining an
average of iterates computed during the optimization process. Employing a more ag-
gressive stepsize sequence—of order O(1/

√
k) rather than O(1/k), which is appealing
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Convergence results for SG and its variants are occasionally established using regret
bounds as an intermediate step [164, 144, 54]. Regret bounds can be traced to Novikoff’s
analysis of the Perceptron [115] and to Cover’s universal portfolios [41]. To illustrate,
suppose that one aims to minimize a convex expected risk measure R(w) = E[f(w; ξ)]
over w ∈ R

d with minimizer w∗ ∈ R
d. At a given iterate wk, one obtains by convexity

of f(w; ξk) (recall (A.1)) that

‖wk+1 − w∗‖2 − ‖wk −w∗‖2 ≤ −2αk(f(wk; ξk)− f(w∗; ξk)) + α2
k‖∇f(wk; ξk)‖22.

Following [164], assuming that ‖∇f(wk; ξk)‖22 ≤ M and ‖wk − w∗‖22 < B for some
constants M > 0 and B > 0 for all k ∈ N, one finds that

α−1
k+1‖wk+1−w∗‖22 − α−1

k ‖wk−w∗‖22
≤ − 2(f(wk; ξk)− f(w∗; ξk)) + αkM + (α−1

k+1 − α−1
k )‖wk − w∗‖22

≤ − 2(f(wk; ξk)− f(w∗; ξk)) + αkM + (α−1
k+1 − α−1

k )B.

Summing for k = {1, . . . ,K} with stepsizes αk = 1/
√
k leads to the regret bound

(4.35)

(
K∑

k=1

f(wk; ξk)

)
≤
(

K∑
k=1

f(w∗; ξk)

)
+M

√
K + o(

√
K),

which bounds the losses incurred from {wk} compared to those yielded by the fixed
vector w∗. Such a bound is remarkable because its derivation holds for any sequence of
noise variables {ξk}. This means that the average loss observed during the execution
of the SG algorithm is never much worse than the best average loss one would have
obtained if the optimal parameter w∗ were known in advance. Further assuming that
the noise variables are independent and using a martingale argument [34] leads to more
traditional results of the form

E

[
1

K

K∑
k=1

F (wk)

]
≤ F∗ +O

(
1√
K

)
.

As long as one makes the same independent noise assumption, results obtained with
this technique cannot be fundamentally different from the results that we have estab-
lished. However, one should appreciate that the regret bound (4.35) itself remains
meaningful when the noise variables are dependent or even adversarial. Such results
reveal interesting connections between probability theory, machine learning, and game
theory [143, 34].

Inset 4.2 Regret bounds.

in itself—it is this sequence of averaged iterates that converges to the solution. These
methods are closer in spirit to SG and their rate of convergence remains sublinear,
but it can be shown that the variance of the sequence of average iterates is smaller
than the variance of the SG iterates.

To formally motivate a concept of noise reduction, we begin this section by dis-
cussing a fundamental result that stipulates a rate of decrease in noise that allows an
SG-type method to converge at a linear rate. We then show that a dynamic sampling
method that enforces such noise reduction enjoys optimal complexity bounds, as de-
fined in section 4.4. Next, we discuss three gradient aggregation methods—SVRG,
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• 
• 
• 

•
•
•

Fig. 5.1 View of the schematic from Figure 3.3 with a focus on noise reduction methods.

SAGA, and SAG—the first of which can be viewed as a bridge between methods that
control errors in the gradient with methods like SAGA and SAG in which noise re-
duction is accomplished in a more subtle manner. We conclude with a discussion of
the practical and theoretical properties of iterate averaging methods.

5.1. Reducing Noise at a Geometric Rate. Let us recall the fundamental in-
equality (4.4), which we restate here for convenience:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
T
Eξk [g(wk, ξk)] +

1
2α

2
kLEξk [‖g(wk, ξk)‖22].

(Recall that, as stated in (4.1), the objective F could stand for the expected risk R or
the empirical risk Rn.) It is intuitively clear that if −g(wk, ξk) is a descent direction
in expectation (making the first term on the right-hand side negative), and if we are
able to decrease Eξk [‖g(wk, ξk)‖22 fast enough (along with ‖∇F (wk)‖22), then the effect
of having noisy directions will not impede a fast rate of convergence. From another
point of view, we can expect such behavior if, in Assumption 4.3, we suppose instead
that the variance of g(wk, ξk) vanishes sufficiently quickly.

We formalize this intuitive argument by considering the SG method with a fixed
stepsize and showing that the sequence of expected optimality gaps vanishes at a
linear rate as long as the variance of the stochastic vectors, denoted by Vξk [g(wk, ξk)]
(recall (4.6)), decreases geometrically.

Theorem 5.1 (strongly convex objective, noise reduction). Suppose that Assump-
tions 4.1, 4.3, and 4.5 (with Finf = F∗) hold, but with (4.8) refined to the existence of
constants M ≥ 0 and ζ ∈ (0, 1) such that, for all k ∈ N,

(5.1) Vξk [g(wk, ξk)] ≤Mζk−1.

In addition, suppose that the SG method (Algorithm 4.1) is run with a fixed stepsize,
αk = ᾱ for all k ∈ N, satisfying

(5.2) 0 < ᾱ ≤ min

{
μ

Lμ2
G

,
1

cμ

}
.

Then, for all k ∈ N, the expected optimality gap satisfies

(5.3) E[F (wk)− F∗] ≤ ωρk−1,
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where

ω := max{ ᾱLM
cμ , F (w1)− F∗}(5.4a)

and ρ := max{1− ᾱcμ
2 , ζ} < 1.(5.4b)

Proof. By Lemma 4.4 (specifically, (4.10a)), we have

Eξk [F (wk+1)]− F (wk) ≤ −μᾱ‖∇F (wk)‖22 + 1
2 ᾱ

2LEξk [‖g(wk, ξk)‖22].

Hence, from (4.6), (4.7b), (5.1), (5.2), and (4.12), we have

Eξk [F (wk+1)]− F (wk) ≤ −μᾱ‖∇F (wk)‖22 + 1
2 ᾱ

2L
(
μ2
G‖∇F (wk)‖22 +Mζk−1

)
≤ −(μ− 1

2 ᾱLμ
2
G)ᾱ‖∇F (wk)‖22 + 1

2 ᾱ
2LMζk−1

≤ − 1
2μᾱ‖∇F (wk)‖22 + 1

2 ᾱ
2LMζk−1

≤ −ᾱcμ(F (wk)− F∗) + 1
2 ᾱ

2LMζk−1.

Adding and subtracting F∗ and taking total expectations, this yields

(5.5) E[F (wk+1)− F∗] ≤ (1− ᾱcμ)E[F (wk)− F∗] + 1
2 ᾱ

2LMζk−1.

We now use induction to prove (5.3). By the definition of ω, it holds for k = 1.
Then, assuming it holds for k ≥ 1, we have from (5.5), (5.4a), and (5.4b) that

E[F (wk+1)− F∗] ≤ (1− ᾱcμ)ωρk−1 + 1
2 ᾱ

2LMζk−1

= ωρk−1

(
1− ᾱcμ+

ᾱ2LM

2ω

(
ζ

ρ

)k−1
)

≤ ωρk−1

(
1− ᾱcμ+

ᾱ2LM

2ω

)
≤ ωρk−1

(
1− ᾱcμ+

ᾱcμ

2

)
= ωρk−1

(
1− ᾱcμ

2

)
≤ ωρk,

as desired.

Consideration of the typical magnitudes of the constants μ, L, μG, and c in (5.2)
reveals that the admissible range of values of ᾱ is large, i.e., the restriction on the
stepsize ᾱ is not unrealistic in practical situations.

Now, a natural question to ask is whether one can design efficient optimization
methods for attaining the critical bound (5.1) on the variance of the stochastic direc-
tions. We show next that a dynamic sampling method is one such approach.

5.2. Dynamic Sample Size Methods. Consider the iteration

(5.6) wk+1 ← wk − ᾱg(wk, ξk),

where the stochastic directions are computed for some τ > 1 as

(5.7) g(wk, ξk) :=
1

nk

∑
i∈Sk

∇f(wk; ξk,i) with nk := |Sk| = �τk−1�.
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That is, consider a minibatch SG iteration with a fixed stepsize in which the minibatch
size used to compute unbiased stochastic gradient estimates increases geometrically
as a function of the iteration counter k. To show that such an approach can fall under
the class of methods considered in Theorem 5.1, suppose that the samples represented
by the random variables {ξk,i}i∈Sk

are drawn independently according to P for all
k ∈ N. If we assume that each stochastic gradient ∇f(wk; ξk,i) has an expectation
equal to the true gradient∇F (wk), then (4.7a) holds with μG = μ = 1. If, in addition,
the variance of each such stochastic gradient is equal and is bounded by M ≥ 0, then
for arbitrary i ∈ Sk we have (see [61, p. 183])

(5.8) Vξk [g(wk, ξk)] ≤
Vξk [∇f(wk; ξk,i)]

nk
≤ M

nk
.

This bound, when combined with the rate of increase in nk given in (5.7), yields (5.1).
We have thus shown that if one employs a minibatch SG method with (unbiased)
gradient estimates computed as in (5.7), then by Theorem 5.1, one obtains linear
convergence to the optimal value of a strongly convex function. We state this formally
as the following corollary to Theorem 5.1.

Corollary 5.2. Let {wk} be the iterates generated by (5.6)–(5.7) with unbiased
gradient estimates, i.e., Eξk,i

[∇f(wk; ξk,i)] = ∇F (wk) for all k ∈ N and i ∈ Sk. Then
the variance condition (5.1) is satisfied, and if all other assumptions of Theorem 5.1
hold, then the expected optimality gap vanishes linearly in the sense of (5.3).

The reader may question whether it is meaningful to describe a method as linearly
convergent if the per-iteration cost increases without bound. In other words, it is
not immediately apparent that such an algorithm is competitive with a classical SG
approach even though the desired reduction in the gradient variance is achieved.
To address this question, let us estimate the total work complexity of the dynamic
sampling algorithm, defined as the number of evaluations of the individual gradients
∇f(wk; ξk,i) required to compute an ε-optimal solution, i.e., to achieve

(5.9) E[F (wk)− F∗] ≤ ε.

We have seen that the simple SG method (3.7) requires one such evaluation per
iteration, and that its rate of convergence for diminishing stepsizes (i.e., the only
setup in which convergence to the solution can be guaranteed) is given by (4.21).
Therefore, as previously mentioned, the number of stochastic gradient evaluations
required by the SG method to guarantee (5.9) is O(ε−1). We now show that the
method (5.6)–(5.7) can attain the same complexity.

Theorem 5.3. Suppose that the dynamic sampling SG method (5.6)–(5.7) is run
with a stepsize ᾱ satisfying (5.2) and some τ ∈ (1, (1− ᾱcμ

2 )−1]. In addition, suppose
that Assumptions 4.1, 4.3, and Assumption 4.5 (with Finf = F∗) hold. Then the total
number of evaluations of a stochastic gradient of the form ∇f(wk; ξk,i) required to
obtain (5.9) is O(ε−1).

Proof. We have that the conditions of Theorem 5.1 hold with ζ = 1/τ . Hence,
we have from (5.3) that there exists k ∈ N such that (5.9) holds for all k ≥ k. We

can then use ωρk−1 ≤ ε to write (k − 1) log ρ ≤ log(ε/ω), which along with ρ ∈ (0, 1)
(recall (5.4b)) implies that

(5.10) k − 1 ≥
⌈
log(ε/ω)

log ρ

⌉
=

⌈
log(ω/ε)

− log ρ

⌉
.
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Let us now estimate the total number of sample gradient evaluations required
up to iteration k. We claim that, without loss of generality, we may assume that
log(ω/ε)/(− log ρ) is integer-valued and that (5.10) holds at equality. Then, by (5.7),

the number of sample gradients required in iteration k is �τk−1�, where

τk−1 = τ
log(ω/ε)
− log ρ

= exp
(
log

(
τ

log(ω/ε)
− log ρ

))
= exp

((
log(ω/ε)

− log ρ

)
log τ

)
= (exp(log(ω/ε)))

log τ
− log ρ

=
(ω
ε

)θ

with θ :=
log τ

− log ρ
.

Therefore, the total number of sample gradient evaluations for the first k iterations is

k∑
j=1

�τ j−1� ≤ 2

k∑
j=1

τ j−1 = 2

(
τk − τ

τ − 1

)
= 2

(
τ(ω/ε)θ − τ

τ − 1

)
≤ 2

(ω
ε

)θ
(

1

1− 1/τ

)
.

In fact, since τ ≤ (1− ᾱcμ
2 )−1, it follows from (5.4b) that ρ = ζ = τ−1, which implies

that θ = 1. Specifically, with τ = (1− σ( ᾱcμ
2 ))−1 for some σ ∈ [0, 1], then θ = 1 and

k∑
j=1

�τ j−1� ≤ 4ω

σεᾱcμ
,

as desired.

The discussion so far has focused on dynamic sampling strategies for a gradient
method, but these ideas also apply for second-order methods that incorporate the
matrix H as in (4.2).

This leads to the following question: given the rate of convergence of a batch op-
timization algorithm on strongly convex functions (i.e., linear, superlinear, etc.), what
should be the sampling rate so that the overall algorithm is efficient in the sense that
it results in the lowest computational complexity? To answer this question, certain
results have been established [120]: (i) if the optimization method has a sublinear rate
of convergence, then there is no sampling rate that makes the algorithm “efficient”;
(ii) if the optimization algorithm is linearly convergent, then the sampling rate must
be geometric (with restrictions on the constant in the rate) for the algorithm to be
“efficient”; (iii) for superlinearly convergent methods, increasing the sample size at a
rate that is slightly faster than geometric will yield an “efficient” method.

5.2.1. Practical Implementation. We now address the question of how to design
practical algorithms that enjoy the theoretical benefits of noise reduction through the
use of increasing sample sizes.

One approach is to follow the theoretical results described above and tie the rate
of growth in the sample size nk = |Sk| to the rate of convergence of the optimization
iteration [62, 77]. Such an approach, which presets the sampling rate before running
the optimization algorithm, requires some experimentation. For example, for the
iteration (5.6), one needs to find a value of the parameter τ > 1 in (5.7) that yields
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good performance for the application at hand. In addition, one may want to delay the
application of dynamic sampling to prevent the full sample set from being employed
too soon (or at all). Such heuristic adaptations could be difficult in practice.

An alternative is to consider mechanisms for choosing the sample sizes not accord-
ing to a prescribed sequence, but adaptively according to information gathered during
the optimization process. One avenue that has been explored along these lines has
been to design techniques that produce descent directions sufficiently often [30, 73].
Such an idea is based on two observations. First, one can show that any direction
g(wk, ξk) is a descent direction for F at wk if, for some χ ∈ [0, 1), one has

(5.11) δ(wk, ξk) := ‖g(wk, ξk)−∇F (wk)‖2 ≤ χ‖g(wk, ξk)‖2.

To see this, note that ‖∇F (wk)‖2 ≥ (1− χ)‖g(wk, ξk)‖2, which after squaring (5.11)
implies

∇F (wk)
T g(wk, ξk) ≥ 1

2 (1− χ2)‖g(wk, ξk)‖22 + ‖∇F (wk)‖22
≥ 1

2 (1− χ2 + (1− χ)2)‖g(wk, ξk)‖22
≥ (1− χ)‖g(wk, ξk)‖22.

The second observation is that while one cannot cheaply verify the inequality in
(5.11) because it involves the evaluation of ∇F (wk), one can estimate the left-hand
side δ(wk, ξk) and then choose nk so that (5.11) holds sufficiently often.

Specifically, if we assume that g(wk, ξk) is an unbiased gradient estimate, then

E[δ(wk, ξk)
2] = E[‖g(wk, ξk)−∇F (wk)‖22] = Vξk [g(wk, ξk)].

This variance is expensive to compute, but one can approximate it with a sample
variance. For example, if the samples are drawn without replacement from a set of
(very large) size nk, then one has the approximation

Vξk [g(wk, ξk)] ≈
trace(Cov({∇f(wk; ξk,i)}i∈Sk

))

nk
=: ϕk.

An adaptive sampling algorithm thus tests the following condition in place of (5.11):

(5.12) ϕk ≤ χ2‖g(wk, ξk)‖22.

If this condition is not satisfied, then one may consider increasing the sample size—
either immediately in iteration k or in a subsequent iteration—to a size that one might
predict would satisfy such a condition. This technique is algorithmically attractive,
but does not guarantee that the sample size nk increases at a geometric rate. One
can, however, employ a backup [30, 73]: if (5.12) increases the sampling rate more
slowly than a preset geometric sequence, then a growth in the sample size is imposed.

Dynamic sampling techniques are not yet widely used in machine learning, and we
suspect that the practical technique presented here might serve merely as a starting
point for further investigations. Ultimately, an algorithm that performs like SG at
the start and transitions to a regime of reduced variance in an efficient manner could
prove to be a very powerful method for large-scale machine learning.

5.3. Gradient Aggregation. The dynamic sample size methods described in the
previous subsection require a careful balance in order to achieve the desired linear
rate of convergence without jeopardizing per-iteration costs. Alternatively, one can
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266 LÉON BOTTOU, FRANK E. CURTIS, AND JORGE NOCEDAL

attempt to achieve an improved rate by asking a different question: rather than
compute increasingly more new stochastic gradient information in each iteration, is it
possible to achieve a lower variance by reusing and/or revising previously computed
information? After all, if the current iterate has not been displaced too far from
previous iterates, then stochastic gradient information from previous iterates may
still be useful. In addition, if one maintains indexed gradient estimates in storage,
then one can revise specific estimates as new information is collected. Ideas such as
these lead to concepts of gradient aggregation. In this subsection, we present ideas for
gradient aggregation in the context of minimizing a finite sum such as an empirical
risk measure Rn, for which they were originally designed.

Gradient aggregation algorithms for minimizing finite sums that possess cheap
per-iteration costs have a long history. For example, Bertsekas [13] and coauthors
have proposed incremental gradient methods, the randomized versions of which can
be viewed as instances of a basic SG method for minimizing a finite sum. However,
the basic variants of these methods only achieve a sublinear rate of convergence. By
contrast, the methods on which we focus in this section are able to achieve a linear
rate of convergence on strongly convex problems. This improved rate is achieved
primarily by either an increase in computation or an increase in storage.

5.3.1. SVRG. The first method we consider operates in cycles. At the beginning
of each cycle, an iterate wk is available at which the algorithm computes a batch
gradient ∇Rn(wk) =

1
n

∑n
i=1∇fi(wk). Then, after initializing w̃1 ← wk, a set of m

inner iterations indexed by j with an update w̃j+1 ← w̃j − αg̃j are performed, where

(5.13) g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk))

and ij ∈ {1, . . . , n} is chosen at random. This formula has a simple interpreta-
tion. Since the expected value of ∇fij (wk) over all possible ij ∈ {1, . . . , n} is equal
to ∇Rn(wk), one can view ∇fij (wk) − ∇Rn(wk) as the bias in the gradient esti-
mate ∇fij (wk). Thus, in every iteration, the algorithm randomly draws a stochastic
gradient ∇fij (w̃j) evaluated at the current inner iterate w̃j and corrects it based
on a perceived bias. Overall, g̃j represents an unbiased estimator of ∇Rn(w̃j), but
with a variance that one can expect to be smaller than if one were simply to chose
g̃j = ∇fij (w̃j) (as in simple SG). This is the reason that the method is referred to as
the stochastic variance reduced gradient (SVRG) method.

A formal description of a few variants of SVRG is presented as Algorithm 5.1.
For both options (b) and (c), it has been shown that when applied to minimize a
strongly convex Rn, Algorithm 5.1 can achieve a linear rate of convergence [82]. More
precisely, if the stepsize α and the length of the inner cycle m are chosen so that

ρ :=
1

1− 2αL

(
1

mcα
+ 2Lα

)
< 1,

then, given that the algorithm has reached wk, one obtains

E[Rn(wk+1)−Rn(w∗)] ≤ ρE[Rn(wk)−Rn(w∗)]

(where expectation is taken with respect to the random variables in the inner cycle).
It should be emphasized that the resulting linear convergence rate applies to the
outer iterates {wk}, where each step from wk to wk+1 requires 2m+ n evaluations of
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component gradients: step 7 requires two stochastic gradient evaluations, while step 3
requires n (a full gradient). Therefore, one iteration of SVRG is much more expensive
than one of SG, and in fact is comparable to a full gradient iteration.

Algorithm 5.1 SVRG Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ R
d, stepsize α > 0, and positive integer m.

2: for k = 1, 2, . . . do
3: Compute the batch gradient ∇Rn(wk).
4: Initialize w̃1 ← wk.
5: for j = 1, . . . ,m do
6: Chose ij uniformly from {1, . . . , n}.
7: Set g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)).
8: Set w̃j+1 ← w̃j − αg̃j .
9: end for

10: Option (a): Set wk+1 = w̃m+1.
11: Option (b): Set wk+1 = 1

m

∑m
j=1 w̃j+1.

12: Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.
13: end for

In practice, SVRG appears to be quite effective in certain applications compared
with SG if one requires high training accuracy. For the first epochs, SG is more effi-
cient, but once the iterates approach the solution the benefits of the fast convergence
rate of SVRG can be observed. Without explicit knowledge of L and c, the lengths
of the inner cycle m and the stepsize α are typically both chosen by experimentation.

5.3.2. SAGA. The second method we consider employs an iteration that is closer
in form to SG in that it does not operate in cycles, nor does it compute batch gra-
dients (except possibly at the initial point). Instead, in each iteration, it computes
a stochastic vector gk as the average of stochastic gradients evaluated at previous
iterates. Specifically, in iteration k, the method will have stored ∇fi(w[i]) for all
i ∈ {1, . . . , n}, where w[i] represents the latest iterate at which ∇fi was evaluated.
An integer j ∈ {1, . . . , n} is then chosen at random and the stochastic vector is set by

(5.14) gk ← ∇fj(wk)−∇fj(w[j]) +
1

n

n∑
i=1

∇fi(w[i]).

Taking the expectation of gk with respect to all choices of j ∈ {1, . . . , n}, one again has
that E[gk] = ∇Rn(wk). Thus, the method employs unbiased gradient estimates, but
with variances that are expected to be less than the stochastic gradients that would
be employed in a basic SG routine. A precise algorithm employing (5.14), referred to
as SAGA [46], is given in Algorithm 5.2.

Beyond its initialization phase, the per-iteration cost of Algorithm 5.2 is the same
as in a basic SG method. However, it has been shown that the method can achieve a
linear rate of convergence when minimizing a strongly convex Rn. Specifically, with
α = 1/(2(cn+ L)), one can show that

E[‖wk − w∗‖22] ≤
(
1− c

2(cn+ L)

)k (
‖w1 − w∗‖22 +

nD

cn+ L

)
,

where D := Rn(w1)−∇Rn(w∗)T (w1 − w∗)−Rn(w∗).

Of course, attaining such a result requires knowledge of the strong convexity constant c
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Algorithm 5.2 SAGA Method for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ R
d and stepsize α > 0.

2: for i = 1, . . . , n do
3: Compute ∇fi(w1).
4: Store ∇fi(w[i])← ∇fi(w1).
5: end for
6: for k = 1, 2, . . . do
7: Choose j uniformly in {1, . . . , n}.
8: Compute ∇fj(wk).
9: Set gk ← ∇fj(wk)−∇fj(w[j]) +

1
n

∑n
i=1∇fi(w[i]).

10: Store ∇fj(w[j])← ∇fj(wk).
11: Set wk+1 ← wk − αgk.
12: end for

and Lipschitz constant L. If c is not known, then the stepsize can instead be chosen
to be α = 1/(3L) and a similar convergence result can be established; see [46].

Alternative initialization techniques could be used in practice, which may be more
effective than evaluating all the gradients {∇fi}ni=1 at the initial point. For example,
one could perform one epoch of simple SG, or one could assimilate iterates one-by-one
and compute gk using only the gradients available up to that point.

One important drawback of Algorithm 5.2 is the need to store n stochastic gra-
dient vectors, which would be prohibitive in many large-scale applications. Note,
however, that if the component functions are of the form fi(wk) = f̂(xT

i wk), then

∇fi(wk) = f̂ ′(xT
i wk)xi.

That is, when the feature vectors {xi} are already available in storage, one need only

store the scalar f̂ ′(xT
i wk) in order to construct ∇fi(wk) at a later iteration. Such a

functional form of fi occurs in logistic and least squares regression.
Algorithm 5.2 has its origins in the stochastic average gradient (SAG) algorithm

[139, 90], where the stochastic direction is defined as

(5.15) gk ←
1

n

(
∇fj(wk)−∇fj(w[j]) +

n∑
i=1

∇fi(w[i])

)
.

Although this gk is not an unbiased estimator of ∇Rn(wk), the method enjoys a linear
rate of convergence. One finds that the SAG algorithm is a randomized version of the
incremental aggregated gradient (IAG) method proposed in [17] and analyzed in [72],
where the index j of the component function updated at every iteration is chosen
cyclically. Interestingly, randomizing this choice yields good practical benefits.

5.3.3. Commentary. Although the gradient aggregation methods discussed in
this section enjoy a faster rate of convergence than SG (i.e., linear vs. sublinear), they
should not be regarded as clearly superior to SG. After all, following similar analysis
as in section 4.4, the computing time for SG can be shown to be T (n, ε) ∼ κ2/ε with
κ := L/c. (In fact, a computing time of κ/ε is often observed in practice.) On the
other hand, the computing times for SVRG, SAGA, and SAG are

T (n, ε) ∼ (n+ κ) log(1/ε),
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which grows with the number of examples n. Thus, following similar analysis as
in section 4.4, one finds that, for very large n, gradient aggregation methods are
comparable to batch algorithms and therefore cannot beat SG in this regime. For
example, if κ is close to 1, then SG is clearly more efficient, since within a single epoch
it reaches the optimal testing error [25]. On the other hand, there exists a regime
with κ� n in which gradient aggregation methods may be superior, and perhaps even
easier to tune. At present, it is not known how useful gradient aggregation methods
will prove to be in the future of large-scale machine learning. That being said, they
certainly represent a class of optimization methods of interest due to their clever use
of past information.

5.4. Iterate Averaging Methods. Since its inception, it has been observed that
SG generates noisy iterate sequences that tend to oscillate around minimizers dur-
ing the optimization process. Hence, a natural idea is to compute a corresponding
sequence of iterate averages that would automatically possess less noisy behavior.
Specifically, for minimizing a continuously differentiable F with unbiased gradient
estimates, the idea is to employ the iteration

(5.16)

wk+1 ← wk − αkg(wk, ξk)

and w̃k+1 ←
1

k + 1

k+1∑
j=1

wj ,

where the averaged sequence {w̃k} has no effect on the computation of the SG iterate
sequence {wk}. Early hopes were that this auxiliary averaged sequence might possess
better convergence properties than the SG iterates themselves. However, such im-
proved behavior was found to be elusive when using classical stepsize sequences that
diminished with a rate of O(1/k) [124].

A fundamental advancement in the use of iterate averaging came with the work of
Polyak [125], which was subsequently advanced with Juditsky [126]; see also the work
of Ruppert [136] and Nemirovski and Yudin [106]. Here, the idea remains to employ
the iteration (5.16), but with stepsizes diminishing at a slower rate of O(1/(ka)) for
some a ∈ (12 , 1). When minimizing strongly convex objectives, it follows from this
choice that E[‖wk−w∗‖22] = O(1/(ka)), while E[‖w̃k−w∗‖22] = O(1/k). What is inter-
esting, however, is that in certain cases this combination of long steps and averaging
yields an optimal constant in the latter rate (for the iterate averages) in the sense
that no rescaling of the steps—through multiplication with a positive definite matrix
(see (6.2) in the next section)—can improve the asymptotic rate or constant. This
shows that, due to averaging, the adverse effects caused by ill-conditioning disappear.
(In this respect, the effect of averaging has been characterized as being similar to that
of using a second-order method in which the Hessian approximations approach the
Hessian of the objective at the minimizer [125, 22]; see section 6.2.1.) This asymptotic
behavior is difficult to achieve in practice, but is possible in some circumstances with
careful selection of the stepsize sequence [161].

Iterate averaging has since been incorporated into various schemes in order to
allow longer steps while maintaining desired rates of convergence. Examples include
the robust SA and mirror descent SA methods presented in [105], as well as Nesterov’s
primal-dual averaging method proposed in [109, section 6]. This latter method is
notable for this section as it employs gradient aggregation and yields an O(1/k) rate
of convergence for the averaged iterate sequence.
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6. Second-Order Methods. In section 5, we looked beyond classical SG to meth-
ods that are less affected by noise in the stochastic directions. Another manner in
which one can move beyond classical SG is to address the adverse effects of high non-
linearity and ill-conditioning of the objective function through the use of second-order
information. As we shall see, these methods improve convergence rates of batch meth-
ods or the constants involved in the sublinear convergence rate of stochastic methods.

A common way to motivate second-order algorithms is to observe that first-order
methods, such as SG and the full gradient method, are not scale invariant. Consider,
for example, the full gradient iteration for minimizing a continuously differentiable
function F : Rd → R, namely,

(6.1) wk+1 ← wk − αk∇F (wk).

An alternative iteration is obtained by applying a full gradient approach after a lin-
ear transformation of variables, i.e., by considering minw̃ F (Bw̃) for some symmetric
positive definite matrix B. The full gradient iteration for this problem has the form

w̃k+1 ← w̃k − αkB∇F (Bw̃k),

which, after scaling by B and defining {wk} := {Bw̃k}, corresponds to the iteration

(6.2) wk+1 ← wk − αkB
2∇F (wk).

Comparing (6.2) with (6.1), it is clear that the behavior of the algorithm will be
different under this change of variables. For instance, when F is a strongly convex
quadratic with unique minimizer w∗, the full gradient method (6.1) generally requires
many iterations to approach the minimizer, but from any initial point w1 the iter-
ation (6.2) with B = (∇2F (w1))

−1/2 and α1 = 1 will yield w2 = w∗. These latter
choices correspond to a single iteration of Newton’s method [52]. In general, it is
natural to seek transformations that perform well in theory and in practice.

Another motivation for second-order algorithms comes from the observation that
each iteration of the form (6.1) or (6.2) chooses the subsequent iterate by first com-
puting the minimizer of a second-order Taylor series approximation qk : Rd → R of F
at wk, which has the form

(6.3) qk(w) = F (wk) +∇F (wk)
T (w − wk) +

1
2 (w − wk)

TB−2(w − wk).

The full gradient iteration corresponds to B−2 = I, while Newton’s method corre-
sponds to B−2 = ∇2F (wk) (assuming this Hessian is positive definite). Thus, in
general, a full gradient iteration works with a model that is only first-order accurate,
while Newton’s method applies successive local rescalings based on minimizing an
exact second-order Taylor model of F at each iterate.

Deterministic (i.e., batch) methods are known to benefit from the use of second-
order information; e.g., Newton’s method achieves a quadratic rate of convergence
if w1 is sufficiently close to a strong minimizer [52]. On the other hand, stochastic
methods like the SG method in section 4 cannot achieve a convergence rate that is
faster than sublinear, regardless of the choice of B; see [1, 104]. (More on this in
section 6.2.1.) Therefore, it is natural to ask, can there be a benefit to incorporating
second-order information in stochastic methods? We address this question through-
out this section by showing that the careful use of successive rescalings based on
(approximate) second-order derivatives can be beneficial between the stochastic and
batch regimes.
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We begin this section by considering a Hessian-free Newton method that employs
exact second-order information, but in a judicious manner that exploits the stochas-
tic nature of the objective function. We then describe methods that attempt to
mimic the behavior of a Newton algorithm through first-order information computed
over sequences of iterates; these include quasi-Newton, Gauss–Newton, and related
algorithms that employ only diagonal rescalings. We also discuss the natural gradi-
ent method, which defines a search direction in the space of realizable distributions,
rather than in the space of the real parameter vector w. While Newton’s method is
invariant to linear transformations of the variables, the natural gradient method is
invariant with respect to more general invertible transformations.

We depict the methods of interest in this section on the downward axis illustrated
in Figure 6.1. We use double-sided arrows for the methods that can be effective
throughout the spectrum between the stochastic and batch regimes. Single-sided
arrows are used for those methods that one might consider to be effective only with
at least a moderate batch size in the stochastic gradient estimates. We explain these
distinctions as we describe the methods.

Fig. 6.1 View of the schematic from Figure 3.3 with a focus on second-order methods. The dotted
arrows indicate the effective regime of each method: the first three methods can employ
minibatches of any size, whereas the last two methods are efficient only for moderate-to-
large minibatch sizes.

6.1. Hessian-Free Inexact Newton Methods. Due to its scale invariance prop-
erties and its ability to achieve a quadratic rate of convergence in the neighborhood
of a strong local minimizer, Newton’s method represents an ideal in terms of opti-
mization algorithms. It does not scale well with the dimension d of the optimization
problem, but there are variants that can scale well while also being able to deal with
nonconvexity.

When minimizing a twice-continuously differentiable F , a Newton iteration is

wk+1 ← wk + αksk,(6.4a)

where sk satisfies ∇2F (wk)sk = −∇F (wk).(6.4b)

This iteration demands much in terms of computation and storage. However, rather
than solve the Newton system (6.4b) exactly through matrix factorization techniques,
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one can instead only solve it inexactly through an iterative approach such as the
conjugate gradient (CG) method [69]. By ensuring that the linear solves are accu-
rate enough, such an inexact Newton-CG method can enjoy a superlinear rate of
convergence [47].

In fact, the computational benefits of inexact Newton-CG go beyond its ability
to maintain classical convergence rate guarantees. Like many iterative linear system
techniques, CG applied to (6.4b) does not require access to the Hessian itself, only
Hessian-vector products [121]. It is in this sense that such a method may be called
Hessian-free. This is ideal when such products can be coded directly without having
to form an explicit Hessian, as Example 6.1 below demonstrates. Each product is at
least as expensive as a gradient evaluation, but as long as the number of products—one
per CG iteration—is not too large, the improved rate of convergence can compensate
for the extra per-iteration work required over a simple full gradient method.

Example 6.1. Consider the function of the parameter vector w = (w1, w2) given
by F (w) = exp(w1w2). Let us define, for any d ∈ R

2, the function

φ(w; d) = ∇F (w)T d = w2 exp(w1w2)d1 + w1 exp(w1w2)d2.

Computing the gradient of φ with respect to w, we have

∇wφ(w; d) = ∇2F (w)d =

[
w2

2 exp(w1w2)d1 + (exp(w1w2) + w1w2 exp(w1w2))d2
(exp(w1w2) + w1w2 exp(w1w2))d1 + w2

1 exp(w1w2)d2

]
.

We have thus obtained, for any d ∈ R
2, a formula for computing ∇2F (w)d that does

not require ∇2F (w) explicitly. Note that by storing the scalars w1w2 and exp(w1w2)
from the evaluation of F , the additional costs of computing the gradient-vector and
Hessian-vector products are small.

The idea illustrated in this example can be applied in general; e.g., see also
Example 6.2 below. For a smooth objective function F , one can compute ∇2F (w)d
at a cost that is a small multiple of the cost of evaluating ∇F , and without forming
the Hessian, which would require O(d2) storage. The savings in computation come at
the expense of the storage of some additional quantities, as explained in Example 6.1.

In machine learning applications, including those involving multinomial logistic
regression and DNNs, Hessian-vector products can be computed in this manner, and
an inexact Newton-CG method can be applied. A concern is that, in certain cases,
the cost of the CG iterations may render such a method uncompetitive with alter-
native approaches, such as an SG method or a limited memory BFGS method (see
section 6.2), which have small computational overhead. Interestingly, however, the
structure of the risk measures (3.1) and (3.2) can be exploited so that the resulting
method has lighter computational overheads, as described next.

6.1.1. Subsampled Hessian-Free Newton Methods. The motivation for the
method we now describe stems from the observation that, in inexact Newton meth-
ods, the Hessian matrix need not be as accurate as the gradient to yield an effective
iteration. Translated into the context of large-scale machine learning applications,
this means that the iteration is more tolerant to noise in the Hessian estimate than
it is to noise in the gradient estimate.

Based on this idea, the technique we state here employs a smaller sample for
defining the Hessian than for the stochastic gradient estimate. Following similar
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notation as introduced in section 5.2, let the stochastic gradient estimate be

∇fSk
(wk; ξk) =

1

|Sk|
∑
i∈Sk

∇f(wk; ξk,i)

and let the stochastic Hessian estimate be

(6.5) ∇2fSH
k
(wk; ξ

H
k ) =

1

|SHk |
∑
i∈SH

k

∇2f(wk; ξk,i),

where SHk is conditionally uncorrelated with Sk given wk. If one chooses the sub-
sample size |SHk | small enough, then the cost of each product involving the Hessian
approximation can be reduced significantly, thus reducing the cost of each CG iter-
ation. On the other hand, one should choose |SHk | large enough that the curvature
information captured through the Hessian-vector products is productive. If done ap-
propriately, Hessian subsampling is robust and effective [2, 28, 122, 132]. An inexact
Newton method that incorporates this technique is outlined in Algorithm 6.1. The al-
gorithm is stated with a backtracking (Armijo) line search [114], though other stepsize
selection techniques could be considered as well.

Algorithm 6.1 Subsampled Hessian-Free Inexact Newton Method

1: Choose an initial iterate w1.
2: Choose constants ρ ∈ (0, 1), γ ∈ (0, 1), η ∈ (0, 1), and maxcg ∈ N.
3: for k = 1, 2, . . . do
4: Generate realizations of ξk and ξHk corresponding to Sk and SHk .
5: Compute sk by applying Hessian-free CG to solve

(6.6) ∇2fSH
k
(wk; ξ

H
k )s = −∇fSk

(wk; ξk)

until maxcg iterations have been performed or a trial solution yields

‖rk‖2 := ‖∇2fSH
k
(wk; ξ

H
k )s+∇fSk

(wk; ξk)‖2 ≤ ρ‖∇fSk
(wk; ξk)‖2.

6: Set wk+1 ← wk+αksk, where αk ∈ {γ0, γ1, γ2, . . . } is the largest element with

(6.7) fSk
(wk+1; ξk) ≤ fSk

(wk; ξk) + ηαk∇fSk
(wk; ξk)

T sk.

7: end for

As previously mentioned, the (subsampled) Hessian-vector products required in
Algorithm 6.1 can be computed efficiently in the context of many machine learning
applications. For instance, one such case in the following.

Example 6.2. Consider a binary classification problem where the training func-
tion is given by the logistic loss with an �2-norm regularization parameterized by λ > 0:

(6.8) Rn(w) =
1

n

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

A (subsampled) Hessian-vector product can be computed efficiently by observing that

∇2fSH
k
(wk; ξ

H
k )d =

1

|SHk |
∑
i∈SH

k

exp(−yiwTxi)

(1 + exp(−yiwTxi))2
(xT

i d)xi + λd.
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To quantify the step computation cost in an inexact Newton-CG framework such
as Algorithm 6.1, let gcost be the cost of computing a gradient estimate ∇fSk

(wk; ξk)
and let factor×gcost denote the cost of one Hessian-vector product. If the maximum
number of CG iterations, maxcg, is performed for every outer iteration, then the step
computation cost in Algorithm 6.1 is

maxcg ×factor× gcost + gcost.

In a deterministic inexact Newton-CG method for minimizing the empirical risk Rn,
i.e., when |SHk | = |Sk| = n for all k ∈ N, the factor is at least 1 and maxcg would
typically be chosen as 5, 20, or more, leading to an iteration that is many times the cost
of an SG iteration. However, in a stochastic framework using Hessian subsampling,
the factor can be chosen to be sufficiently small such that maxcg ×factor ≈ 1, leading
to a per-iteration cost proportional to that of SG.

Implicit in this discussion is the assumption that the gradient sample size |Sk|
is large enough that taking subsamples for the Hessian estimate is sensible. If, by
contrast, the algorithm were to operate in the stochastic regime of SG, where |Sk| is
small and gradients are very noisy, then it may be necessary to choose |SHk | > |Sk|
so that Hessian approximations do not corrupt the step. In such circumstances, the
method would be far less attractive than SG. Therefore, the subsampled Hessian-free
Newton method outlined here is only recommended when Sk is large. This is why, in
Figure 6.1, the Hessian-free Newton method is illustrated only with an arrow to the
right, i.e., in the direction of larger sample sizes.

Convergence of Algorithm 6.1 is easy to establish when minimizing a strongly
convex empirical risk measure F = Rn when Sk ← {1, . . . , n} for all k ∈ N, i.e.,
when full gradients are always used. In this case, a benefit of employing CG to
solve (6.6) is that it immediately improves upon the direction employed in a steepest
descent iteration. Specifically, when initialized at zero, it produces in its first iteration
a scalar multiple of the steepest descent direction −∇F (wk), and further iterations
monotonically improve upon this step (in terms of minimizing a quadratic model of
the form in (6.3)) until the Newton step is obtained, which is achieved in at most
d iterations of CG (in exact arithmetic). Therefore, by using any number of CG
iterations, convergence can be established using standard techniques to choose the
stepsize αk [114]. When exact Hessians are also used, the rate of convergence can be
controlled through the accuracy with which the systems (6.4b) are solved. Defining
rk := ∇2F (wk)sk+∇F (wk) for all k ∈ N, the iteration can enjoy a linear, superlinear,
or quadratic rate of convergence by controlling ‖rk‖2, where for the superlinear rates
one must have {‖rk‖2/‖∇F (wk)‖2} → 0 [47].

When the Hessians are subsampled (i.e., SHk ⊂ Sk for all k ∈ N), it has not been
shown that the rate of convergence is faster than linear; nevertheless, the reduction
in the number of iterations required to produce a good approximate solution is often
significantly lower than if no Hessian information is used in the algorithm.

6.1.2. Dealing with Nonconvexity. Hessian-free Newton methods are routinely
applied for the solution of nonconvex problems. In such cases, it is common to employ
a trust region [37] instead of a line search and to introduce an additional condition in
step 5 of Algorithm 6.1: terminate CG if a candidate solution sk is a direction of neg-
ative curvature, i.e., sTk∇2fSH

k
(wk; ξ

H
k )sk < 0 [149]. A number of more sophisticated

strategies have been proposed throughout the years with some success, but none have
proved to be totally satisfactory oruniversally accepted.
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Instead of coping with indefiniteness, one can focus on strategies for ensuring
positive (semi)definite Hessian approximations. One of the most attractive ways of
doing this in the context of machine learning is to employ a (subsampled) Gauss–
Newton approximation to the Hessian, which is a matrix of the form

(6.9) GSH
k
(wk; ξ

H
k ) =

1

|SHk |
∑
i∈SH

k

Jh(wk, ξk,i)
TH�(wk, ξk,i)Jh(wk, ξk,i).

Here, the matrix Jh captures the stochastic gradient information for the prediction
function h(x;w), whereas the matrix H� only captures the second-order information
for the (convex) loss function �(h, y); see section 6.3 for a detailed explanation. As
before, one can directly code the product of this matrix times a vector without forming
the matrix components explicitly. This approach has been applied successfully in the
training of DNNs [12, 101].

We mention in passing that there has been much discussion about the role that
negative curvature and saddle points play in the optimization of DNNs; see, e.g.,
[44, 70, 35]. Numerical tests designed to probe the geometry of the objective function
in the neighborhood of a minimizer when training a DNN have shown the presence
of negative curvature. It is believed that the inherent stochasticity of the SG method
allows it to navigate efficiently through this complex landscape, but it is not known
whether classical techniques to avoid approaching saddle points will prove to be suc-
cessful for either batch or stochastic methods.

6.2. Stochastic Quasi-Newton Methods. One of the most important develop-
ments in the field of nonlinear optimization came with the advent of quasi-Newton
methods. These methods construct approximations to the Hessian using only gradient
information, and are applicable for convex and nonconvex problems. Versions that
scale well with the number of variables, such as limited memory methods, have proved
to be effective in a wide range of applications where the number of variables can be
in the millions. It is therefore natural to ask whether quasi-Newton methods can be
extended to the stochastic setting arising in machine learning. Before we embark on
this discussion, let us review the basic principles underlying quasi-Newton methods,
focusing on the most popular scheme, namely, BFGS [27, 60, 68, 146].

In the spirit of Newton’s method (6.4), the BFGS iteration for minimizing a twice
continuously differentiable function F has the form

(6.10) wk+1 ← wk − αkHk∇F (wk),

where Hk is a symmetric positive definite approximation of (∇2F (wk))
−1. This form

of the iteration is consistent with (6.4), but the distinguishing feature of a quasi-
Newton scheme is that the sequence {Hk} is updated dynamically by the algorithm
rather than through a second-order derivative computation at each iterate. Specif-
ically, in the BFGS method, the new inverse Hessian approximation is obtained by
defining the iterate and gradient displacements

sk := wk+1 − wk and vk := ∇F (wk+1)−∇F (wk),

then setting

(6.11) Hk+1 ←
(
I − vks

T
k

sTk vk

)T

Hk

(
I − vks

T
k

sTk vk

)
+

sks
T
k

sTk vk
.
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One important aspect of this update is that it ensures that the secant equation
H−1

k+1sk = vk holds, meaning that a second-order Taylor expansion is satisfied along
the most recent displacement (though not necessarily along other directions).

A remarkable fact about the BFGS iteration (6.10)–(6.11) is that it enjoys a
local superlinear rate of convergence [51], and this with only first-order information
and without the need for any linear system solves (which are required by Newton’s
method for it to be quadratically convergent). However, a number of issues need to
be addressed to have an effective method in practice. For one thing, the update (6.11)
yields dense matrices, even when the exact Hessians are sparse, restricting its use to
small and midsize problems. A common solution for this restriction is to employ a
limited memory scheme, leading to a method such as L-BFGS [97, 113]. A key feature
of this approach is that the matrices {Hk} need not be formed explicitly; instead, each
product of the form Hk∇F (wk) can be computed using a formula that only requires
recent elements of the sequence of displacement pairs {(sk, vk)} that have been saved
in storage. Such an approach incurs per-iteration costs of order O(d), and delivers
practical performance that is significantly better than a full gradient iteration, though
the rate of convergence is only provably linear.

6.2.1. Deterministic to Stochastic. Let us consider the extension of a quasi-
Newton approach from the deterministic to the stochastic setting arising in machine
learning. The iteration now takes the form

(6.12) wk+1 ← wk − αkHkg(wk, ξk).

Since we are interested in large-scale problems, we assume that (6.12) implements an
L-BFGS scheme, which avoids the explicit construction of Hk. A number of questions
arise when considering (6.12). We list them now with some proposed solutions.

Theoretical Limitations. The convergence rate of a stochastic iteration such
as (6.12) cannot be faster than sublinear [1]. Given that SG also has a sublinear
rate of convergence, what benefit, if any, could come from incorporating Hk into
(6.12)? This is an important question. As it happens, one can see a benefit of Hk

in terms of the constant that appears in the sublinear rate. Recall that for the SG
method (Algorithm 4.1), the constant depends on L/c, which in turn depends on
the conditioning of {∇2F (wk)}. This is typical of first-order methods. In contrast,
one can show [25] that if the sequence of Hessian approximations in (6.12) satisfies
{Hk} → ∇2F (w∗)−1, then the constant is independent of the conditioning of the
Hessian. Although constructing Hessian approximations with this property might
not be viable in practice, this fact suggests that stochastic quasi-Newton methods
could be better equipped to cope with ill-conditioning than SG.

Additional Per-Iteration Costs. The SG iteration is very inexpensive, requir-
ing only the evaluation of g(wk, ξk). The iteration (6.12), on the other hand, also
requires the product Hkg(wk, ξk), which is known to require 4md operations, where
m is the memory in the L-BFGS updating scheme. Assuming for concreteness that
the cost of evaluating g(wk, ξk) is exactly d operations (using only one sample) and
that the memory parameter is set to the typical value of m = 5, one finds that the
stochastic quasi-Newton method is 20 times more expensive than SG. Can the iter-
ation (6.12) yield fast enough progress as to offset this additional per-iteration cost?
To address this question, one need only observe that the calculation just mentioned
focuses on the gradient g(wk, ξk) being based on a single sample. However, when em-
ploying minibatch gradient estimates, the additional cost of the iteration (6.12) is only
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marginal. (Minibatches of size 256 are common in practice.) The use of minibatches
may therefore be considered essential when one contemplates the use of a stochastic
quasi-Newton method. This minibatch need not be large, as in the Hessian-free New-
ton method discussed in the previous section, but it should not be less than, say, 20
or 50, in light of the additional costs of computing the matrix-vector products.

Conditioning of the Scaling Matrices. The BFGS formula (6.11) for updat-
ing Hk involves differences in gradient estimates computed in consecutive iterations.
In stochastic settings, the gradients {g(wk, ξk)} are noisy estimates of {∇F (wk)}.
This can cause the updating process to yield poor curvature estimates, which may
have a detrimental rather than beneficial effect on the quality of the computed steps.
Since BFGS, like all quasi-Newton schemes, is an overwriting process, the effects of
even a single bad update may linger for numerous iterations. How could such effects
be avoided in the stochastic regime? There have been various proposals to avoid dif-
ferencing noisy gradient estimates. One possibility is to employ the same sample when
computing gradient differences [18, 142]. An alternative approach that allows greater
freedom in the choice of the stochastic gradient is to decouple the step computation
(6.12) and the Hessian update. In this manner, one can employ a larger sample, if
necessary, when computing the gradient displacement vector. We discuss these ideas
further in section 6.2.2.

It is worthwhile to note that if the gradient estimate g(wk, ξk) does not have high
variance, then standard BFGS updating can be applied without concern. Therefore, in
the rest of this section, we focus on algorithms that employ noisy gradient estimates
in the step computation (6.12). This means, e.g., that we are not considering the
potential to tie the method to the noise reduction techniques described in section 5,
though such an idea is natural and could be effective in practice.

6.2.2. Algorithms. A straightforward adaptation of L-BFGS only involves the
replacement of deterministic gradients with stochastic gradients throughout the iter-
ative process. The displacement pairs might then be defined as

(6.13) sk := wk+1 − wk and vk := ∇fSk
(wk+1, ξk)−∇fSk

(wk, ξk).

Note the use of the same seed ξk in the two gradient estimates, in order to address the
issues related to noise mentioned above. If each fi is strongly convex, then sTk vk > 0,
and positive definiteness of the updates is also maintained. Such an approach is
sometimes referred to as online L-BFGS [142, 103].

One disadvantage of this method is the need to compute two, as opposed to
only one, gradient estimates per iteration: one to compute the gradient displacement
(namely, g(wk+1, ξk)) and another (namely, g(wk+1, ξk+1)) to compute the subsequent
step. This is not too onerous, at least as long as the per-iteration improvement
outweighs the extra per-iteration cost. A more worrisome feature is that updating
the inverse Hessian approximations with every step may not be warranted, and may
even be detrimental when the gradient displacement is based on a small sample, since
it could easily represent a poor approximation of the action of the true Hessian of F .

An alternative strategy, which might better represent the action of the true Hes-
sian even when g(wk, ξk) has high variance, is to employ an alternative vk. In partic-
ular, since ∇F (wk+1)−∇F (wk) ≈ ∇2F (wk)(wk+1 − wk), one could define

(6.14) vk := ∇2fSH
k
(wk; ξ

H
k )sk,

where ∇2fSH
k
(wk; ξ

H
k ) is a subsampled Hessian and |SHk | is large enough to provide
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278 LÉON BOTTOU, FRANK E. CURTIS, AND JORGE NOCEDAL

useful curvature information. As in the case of Hessian-free Newton from section 6.1.1,
the product (6.14) can be performed without explicitly constructing ∇2fSH

k
(wk; ξ

H
k ).

Regardless of the definition of vk, when |SHk | is much larger than |Sk|, the cost
of quasi-Newton updating is excessive due to the cost of computing vk. To address
this issue, the computation of vk can be performed only after a sequence of itera-
tions, to amortize costs. This leads to the idea of decoupling the step computation
from the quasi-Newton update. This approach, which we refer to for convenience as
SQN, performs a sequence of iterations of (6.12) with Hk fixed, then computes a new
displacement pair (sk, vk) with sk defined as in (6.13) and vk set using one of the
strategies outlined above. This pair replaces one of the old pairs in storage, which in
turn defines the limited memory BFGS step.

To formalize all of these alternatives, we state the general stochastic quasi-Newton
method presented as Algorithm 6.2, with some notation borrowed from Algorithm 6.1.
In the method, the step computation is based on a collection of m displacement
pairs P = {sj, vj} in storage and the current stochastic gradient ∇fSk

(wk; ξk), where
the matrix-vector product in (6.12) can be computed through a two-loop recursion
[113, 114]. To demonstrate the generality of the method, we note that the online
L-BFGS method sets SHk ← Sk and update pairs = true in every iteration. In
SQN using (6.14), on the other hand, |SHk | should be chosen larger than |Sk| and one
sets update pairs = true only every, say, 10 or 20 iterations.

Algorithm 6.2 Stochastic Quasi-Newton Framework

1: Choose an initial iterate w1 and initialize P ← ∅.
2: Choose a constant m ∈ N.
3: Choose a stepsize sequence {αk} ⊂ R++.
4: for k = 1, 2, . . . do
5: Generate realizations of ξk and ξHk corresponding to Sk and SHk .
6: Compute ŝk = Hkg(wk, ξk) using the two-loop recursion based on the set P .
7: Set sk ← −αkŝk.
8: Set wk+1 ← wk + sk.
9: if update pairs then

10: Compute sk and vk (based on the sample SHk ).
11: Add the new displacement pair (sk, vk) to P .
12: If |P| > m, then remove eldest pair from P .
13: end if
14: end for

To guarantee that the BFGS update is well defined, each displacement pair (sj , vj)
must satisfy sTj vj > 0. In deterministic optimization, this issue is commonly addressed
by either performing a line search (involving exact gradient computations) or mod-
ifying the displacement vectors (e.g., through damping) so that sTj vj > 0, in which
case one does ensure that (6.11) maintains positive definite approximations. How-
ever, these mechanisms have not been fully developed in the stochastic regime when
exact gradient information is unavailable and the gradient displacement vectors are
noisy. Simple ways to overcome these difficulties are to replace the Hessian matrix
with a Gauss–Newton approximation or to introduce a combination of damping and
regularization (say, through the addition of simple positive definite matrices).

There remains much to be explored in terms of stochastic quasi-Newton methods
for machine learning applications. Experience has shown that some gains in perfor-
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mance can be achieved, but the full potential of the quasi-Newton schemes discussed
above (and potentially others) is not yet known.

6.3. Gauss–Newton Methods. The Gauss–Newton method is a classical ap-
proach for nonlinear least squares, i.e., minimization problems in which the objective
function is a sum of squares. This method readily applies for optimization prob-
lems arising in machine learning involving a least squares loss function, but the idea
generalizes for other popular loss functions as well. The primary advantage of Gauss–
Newton is that it constructs an approximation to the Hessian using only first-order
information, and this approximation is guaranteed to be positive semidefinite, even
when the full Hessian itself may be indefinite. The price to pay for this convenient
representation is that it ignores second-order interactions between elements of the
parameter vector w, which might mean a loss of curvature information that could be
useful for the optimization process.

Classical Gauss–Newton. Let us introduce the classical Gauss–Newton approach
by considering a situation in which, for a given input-output pair (x, y), the loss
incurred by a parameter vector w is measured via a squared norm discrepancy between
h(x;w) ∈ R

d and y ∈ R
d. Representing the input-output pair being chosen randomly

via the subscript ξ, we may thus write

f(w; ξ) = �(h(xξ;w), yξ) =
1
2‖h(xξ;w)− yξ‖22.

Writing a second-order Taylor series model of this function in the vicinity of parameter
vector wk would involve its gradient and Hessian at wk, and minimizing the resulting
model (recall (6.3)) would lead to a Newton iteration. Alternatively, a Gauss–Newton
approximation of the function is obtained by making an affine approximation of the
prediction function inside the quadratic loss function. Letting Jh(·; ξ) represent the
Jacobian of h(xξ; ·) with respect to w, we have the approximation

h(xξ;w) ≈ h(xξ;wk) + Jh(wk; ξ)(w − wk),

which leads to

f(w; ξ) ≈ 1
2‖h(xξ;wk) + Jh(wk; ξ)(w − wk)− yξ‖22

= 1
2‖h(xξ;wk)− yξ‖22 + (h(xξ;wk)− yξ)

TJh(wk; ξ)(w − wk)

+ 1
2 (w − wk)

TJh(wk; ξ)
TJh(wk; ξ)(w − wk).

In fact, this approximation is similar to a second-order Taylor series model, except that
the terms involving the second derivatives of the prediction function h with respect to
the parameter vector have been dropped. The remaining second-order terms are those
resulting from the positive curvature of the quadratic loss �. This leads to replacing
the subsampled Hessian matrix (6.5) by the Gauss–Newton matrix

(6.15) GSH
k
(wk; ξ

H
k ) =

1

|SHk |
∑
i∈SH

k

Jh(wk; ξk,i)
T Jh(wk; ξk,i) .

Since the Gauss–Newton matrix only differs from the true Hessian by terms that
involve the factors h(xξ;wk) − yξ, these two matrices are the same when the loss is
equal to zero, i.e., when h(xξ;wk) = yξ.
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A challenge in the application of a Gauss–Newton scheme is that the Gauss–
Newton matrix is often singular or nearly singular. In practice, this is typically han-
dled by regularizing it by adding to it a positive multiple of the identity matrix. For
least squares loss functions, the inexact Hessian-free Newton methods of section 6.1
and the stochastic quasi-Newton methods of section 6.2 with gradient displacement
vectors defined as in (6.14) can be applied with (regularized) Gauss–Newton approxi-
mations. This has the benefit that the scaling matrices are guaranteed to be positive
definite.

The computational cost of the Gauss–Newton method depends on the dimension-
ality of the prediction function. When the prediction function is scalar-valued, the
Jacobian matrix Jh is a single row whose elements are already being computed as an
intermediate step in the computation of the stochastic gradient ∇f(w; ξ). However,
this is no longer true when the dimensionality is larger than one since then computing
the stochastic gradient vector ∇f(w; ξ) does not usually require the explicit compu-
tation of all rows of the Jacobian matrix. This happens, for instance, in DNNs when
one uses back propagation [134, 135].

Generalized Gauss–Newton. Gauss–Newton ideas can also be generalized for
other standard loss functions [141]. To illustrate, let us consider a slightly more
general situation in which loss is measured by a composition of an arbitrary convex loss
function �(h, y) and a prediction function h(x;w). Combining the affine approximation
of the prediction function h(xξ;w) with a second-order Taylor expansion of the loss
function � leads to the generalized Gauss–Newton matrix

(6.16) GSH
k
(wk; ξ

H
k ) =

1

|SHk |
∑
i∈SH

k

Jh(wk; ξk,i)
TH�(wk; ξk,i) Jh(wk; ξk,i)

(recall (6.9)), where H�(wk; ξ) =
∂2�
∂h2 (h(xξ;wk), yξ) captures the curvature of the loss

function �. This can be seen as a generalization of (6.15) in which H� = I.
When training a DNN, one may exploit this generalized strategy by redefin-

ing � and h so that as much as possible of the network’s computation is formally
performed by � rather than by h. If this can be done in such a way that con-
vexity of � is maintained, then one can faithfully capture second-order terms for �
using the generalized Gauss–Newton scheme. Interestingly, in many useful situa-
tions, this strategy gives simpler and more elegant expressions for H�. For instance,
probability estimation problems often reduce to using logarithmic losses of the form
f(w; ξ) = − log(h(xξ;w)). The generalized Gauss–Newton matrix then reduces to

GSH
k
(wk; ξ

H
k ) =

1

|SHk |
∑
i∈SH

k

Jh(wk; ξk,i)
T 1

h(w; ξk,i)2
Jh(wk; ξk,i)

=
1

|SHk |
∑
i∈SH

k

∇f(w; ξk,i)∇f(w; ξk,i)T ,(6.17)

which does not require explicit computation of the Jacobian Jh.

6.4. Natural Gradient Method. We have seen that Newton’s method is invari-
ant to linear transformations of the parameter vector w. By contrast, the natural
gradient method [5, 6] aims to be invariant with respect to all differentiable and
invertible transformations. The essential idea consists of formulating the gradient de-
scent algorithm in the space of prediction functions rather than specific parameters.
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Of course, the actual computation takes place with respect to the parameters, but ac-
counts for the anisotropic relation between the parameters and the decision function.
That is, in parameter space, the natural gradient algorithm will move the parameters
more quickly along directions that have a small impact on the decision function, and
more cautiously along directions that have a large impact on the decision function.

We remark at the outset that many authors [119, 99] propose quasi-natural-
gradient methods that are strikingly similar to the quasi-Newton methods described
in section 6.2. The natural gradient approach therefore offers a different justifica-
tion for these algorithms, one that involves qualitatively different approximations. It
should also be noted that research on the design of methods inspired by the natural
gradient is ongoing and may lead to markedly different algorithms [33, 76, 100].

Information Geometry. In order to directly formulate the gradient descent in
the space of prediction functions, we must elucidate the geometry of this space.
Amari’s work on information geometry [6] demonstrates this for parametric density
estimation. The space H of prediction functions for such a problem is a family of
densities hw(x) parametrized by w ∈ W and satisfying the normalization condition∫

hw(x) dx = 1 for all w ∈ W .

Assuming sufficient regularity, the derivatives of such densities satisfy the identity

(6.18) ∀t > 0,

∫
∂thw(x)

∂wt
dx =

∂t

∂wt

∫
hw(x) dx =

∂t1

∂wt
= 0.

To elucidate the geometry of the space H, we seek to quantify how the density hw

changes when one adds a small quantity δw to its parameter. We achieve this in a
statistically meaningful way by observing the Kullback–Leibler (KL) divergence

(6.19) DKL(hw‖hw+δw) = Ehw

[
log

(
hw(x)

hw+δw(x)

)]
,

where Ehw denotes the expectation with respect to the distribution hw. Note that
(6.19) only depends on the values of the two density functions hw and hw+δw and
therefore is invariant with respect to any invertible transformation of the parameter w.
Approximating the divergence with a second-order Taylor expansion, one obtains

DKL(hw‖hw+δw) = Ehw [log(hw(x)) − log(hw+δw(x))]

≈ −δwT
Ehw

[
∂ log(hw(x))

∂w

]
− 1

2δw
T
Ehw

[
∂2 log(hw(x))

∂w2

]
δw,

which, after observing that (6.18) implies that the first-order term is null, yields

(6.20) DKL(hw‖hw+δw) ≈ 1
2δw

TG(w)δw.

This is a quadratic form defined by the Fisher information matrix
(6.21)

G(w) := −Ehw

[
∂2 log(hw(x))

∂w2

]
= −Ehw

[(
∂ log(hw(x))

∂w

)(
∂ log(hw(x))

∂w

)T
]
,

where the latter equality follows again from (6.18). The second form of G(w) is often
preferred because it makes clear that the Fisher information matrixG(w) is symmetric
and always positive semidefinite, though not necessarily positive definite.
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The relation (6.20) means that the KL divergence behaves locally like a norm
associated with G(w). Therefore, every small region of H looks like a small region
of a Euclidean space. However, as we traverse larger regions of H, we cannot ignore
that the matrix G(w) changes. Such a construction defines a Riemannian geometry.7

Suppose, for instance, that we move along a smooth path connecting two densities,
call them hw0 and hw1 . A parametric representation of the path can be given by a
differentiable function, for which we define

φ : t ∈ [0, 1] �→ φ(t) ∈ W with φ(0) = w0 and φ(1) = w1.

We can compute the length of the path by viewing it as a sequence of infinitesimal
segments [φ(t), φ(t + dt)] whose length is given by (6.20), i.e., the total length is

Dφ =

∫ 1

0

√(
dφ

dt
(t)

)T

G(φ(t))

(
dφ

dt
(t)

)
dt.

An important tool for the study of Riemannian geometries is the characteriza-
tion of its geodesics, i.e., the shortest paths connecting two points. In a Euclidean
space, the shortest path between two points is always the straight line segment con-
necting them. In a Riemannian space, on the other hand, the shortest path between
two points can be curved and does not need to be unique. Such considerations are
relevant to optimization since every iterative optimization algorithm can be viewed
as attempting to follow a particular path connecting the initial point w0 to the op-
timum w∗. In particular, following the shortest path is attractive because it means
that the algorithm reaches the optimum after making the fewest number of changes
to the optimization variables, hopefully requiring the least amount of computation.

Natural Gradient. Let us now assume that the space H of prediction functions
{hw : w ∈ W} has a Riemannian geometry locally described by an identity of the
form (6.20). We seek an algorithm that minimizes a functional F : hw ∈ H �→
F (hw) = F (w) ∈ R and is invariant with respect to differentiable invertible transfor-
mations of the parameters represented by the vector w.

Each iteration of a typical iterative optimization algorithm computes a new iterate
hwk+1

on the basis of information pertaining to the current iterate hwk
. Since we can

only expect this information to be valid in a small region surrounding hwk
, we restrict

our attention to algorithms that make a step from hwk
to hwk+1

of some small length
ηk > 0. The number of iterations needed to reach the optimum then depends directly
on the length of the path followed by the algorithm, which is desired to be as short
as possible. Unfortunately, it is rarely possible to exactly follow a geodesic using only
local information. We can, however, formulate the greedy strategy that

(6.22) hwk+1
= argmin

h∈H
F (h) s.t. D(hwk

‖h) ≤ η2k,

and use (6.20) to reformulate this problem in terms of the parameters:

(6.23) wk+1 = argmin
w∈W

F (w) s.t. 1
2 (w − wk)

TG(wk) (w − wk) ≤ η2k .

7The objective of information geometry [6] is to exploit the Riemannian structure of parametric
families of density functions to gain geometrical insights into the fundamental statistical phenomena.
The natural gradient algorithm is only a particular aspect of this broader goal [5].
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The customary derivation of the natural gradient algorithm handles the constraint in
(6.23) using a Lagrangian formulation with Lagrange multiplier 1/αk. In addition,
since ηk is assumed small, it replaces F (w) in (6.23) by the first-order approximation
F (wk) +∇F (wk)

T (w − wk). These two choices lead to the expression

wk+1 = argmin
w∈W

∇F (wk)
T (w − wk) +

1

2αk
(w − wk)

TG(wk)(w − wk),

the optimization of the right-hand side of which leads to the natural gradient iteration

(6.24) wk+1 = wk − αkG
−1(wk)∇F (wk).

We can also replace F (w) in (6.23) by a noisy first-order approximation, leading
to a stochastic natural gradient iteration where ∇F (wk) in (6.24) is replaced by a
stochastic gradient estimate.

Both batch and stochastic versions of (6.24) resemble the quasi-Newton update
rules discussed in section 6.2. Instead of multiplying the gradient by the inverse of an
approximation of the Hessian (which is not necessarily positive definite), it employs
the positive semidefinite matrix G(wk) that expresses the local geometry of the space
of prediction functions. In principle, this matrix does not even take into account the
objective function F . However, as we shall now describe, one finds that these choices
are all closely related in practice.

Practical Natural Gradient. Because the discovery of the natural gradient al-
gorithm is closely associated with information geometry, nearly all its applications
involve density estimation [5, 33] or conditional probability estimation [119, 76, 99]
using objective functions that are closely connected to the KL divergence. Natural
gradient in this context is closely related to Fisher’s scoring algorithm [118]. For
instance, in the case of density estimation, the objective is usually the negative log
likelihood

F (w) =
1

n

n∑
i=1

− log(hw(xi)) ≈ constant +DKL(P‖hw),

where {x1, . . . , xn} represent independent training samples from an unknown distribu-
tion P . Recalling the expression of the Fisher information matrix (6.21) then clarifies
its connection with the Hessian, as one finds that

G(w) = −Ehw

[
∂2 log(hw(x))

∂w2

]
and ∇2F (w) = −EP

[
∂2 log(hw(x))

∂w2

]
.

These two expressions do not coincide in general because the expectations involve
different distributions. However, when the natural gradient algorithm approaches
the optimum, the parametric density hwk

ideally approaches the true distribution P ,
in which case the Fisher information matrix G(wk) approaches the Hessian matrix
∇2F (wk). This means that the natural gradient algorithm and Newton’s method
perform very similarly as optimality is approached.

Although it is occasionally possible to determine a convenient analytic expres-
sion [33, 76], the numerical computation of the Fisher information matrix G(wk) in
large learning systems is generally very challenging. Moreover, estimating the expec-
tation (6.21) with, say, a Monte Carlo approach is usually prohibitive due to the cost
of sampling the current density estimate hwk

.
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Several authors [119, 99] suggest using instead a subset of training examples and
computing a quantity of the form

G̃(wk) =
1

|Sk|
∑
i∈Sk

(
∂ log(hw(xi))

∂w

∣∣∣∣
wk

)(
∂ log(hw(xi))

∂w

∣∣∣∣
wk

)T

.

Although such algorithms are essentially equivalent to the generalized Gauss–Newton
schemes described in section 6.3, the natural gradient perspective comes with an
interesting insight into the relationship between the generalized Gauss–Newton matrix
(6.17) and the Hessian matrix (6.5). Similar to the equality (6.21), these two matrices
would be equal if the expectation was taken with respect to the model distribution
hw instead of the empirical sample distribution.

6.5. Methods that Employ Diagonal Scalings. The methods that we have dis-
cussed so far in this section are forced to overcome the fact that when employing an
iteration involving an R

d ×R
d scaling matrix, one needs to ensure that the improved

per-iteration progress outweighs the added per-iteration cost. We have seen that these
added costs can be as little as 4md operations and therefore amount to a moderate
multiplicative factor on the cost of each iteration.

A strategy to further reduce this multiplicative factor, while still incorporating
second-order-type information, is to restrict attention to diagonal or block-diagonal
scaling matrices. Rather than perform a more general linear transformation through
a symmetric positive definite matrix (i.e., corresponding to a scaling and rotation of
the direction), the incorporation of a diagonal scaling matrix only has the effect of
scaling the individual search direction components. This can be efficiently achieved
by multiplying each coefficient of the gradient vector by the corresponding diagonal
term of the scaling matrix, or, when the prediction function is linear, by adaptively
renormalizing the input pattern coefficients [133].

Computing Diagonal Curvature. A first family of algorithms that we consider
directly computes the diagonal terms of the Hessian or Gauss–Newton matrix, then
divides each coefficient of the stochastic gradient vector g(wk, ξk) by the corresponding
diagonal term. Since the computation overhead of this operation is very small, it
becomes important to make sure that the estimation of the diagonal terms of the
curvature matrix is very efficient.

For instance, in the context of DNNs, [12] describes a back-propagation algo-
rithm to efficiently compute the diagonal terms of the squared Jacobian matrix
Jh(wk; ξk)

TJh(wk; ξk) that appears in the expression of the Gauss–Newton matrix
(6.15). Each iteration of the proposed algorithm picks a training example, computes
the stochastic gradient g(wk, ξk), updates a running estimate of the diagonal coeffi-
cients of the Gauss–Newton matrix by[

Gk

]
i
= (1− λ)

[
Gk−1

]
i
+ λ

[
Jh(wk; ξk)

T Jh(wk; ξk)
]
ii

for some 0 < λ < 1,

then performs the scaled stochastic weight update

[
wk+1

]
i
=
[
wk

]
i
−
(

α[
Gk

]
i
+ μ

)[
g(wk, ξk)

]
i
.

The small regularization constant μ > 0 is introduced to handle situations where
the Gauss–Newton matrix is singular or nearly singular. Since the computation of
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the diagonal of the squared Jacobian has a cost that is comparable to the cost of
the computation of the stochastic gradient, each iteration of this algorithm is roughly
twice as expensive as a first-order SG iteration. The experience described in [12] shows
that improvement in per-iteration progress can be sufficient to modestly outperform
a well-tuned SG algorithm.

After describing this algorithm in later work [89, section 9.1], the authors make
two comments that illustrate well how this algorithm was used in practice. They first
observe that the curvature only changes very slowly in the particular type of neural
network considered. Due to this observation, a natural idea is to further reduce the
computational overhead of the method by estimating the ratios α/([Gk+1]i + μ) only
once every few epochs, for instance, using a small subset of examples as in (6.15).
The authors also mention that, as a rule of thumb, this diagonal scheme typically
improves the convergence speed by a factor of only three relative to SG. Therefore,
it might be more enlightening to view such an algorithm as a scheme to periodically
retune a first-order SG approach rather than as a complete second-order method.

Estimating Diagonal Curvature. Instead of explicitly computing the diagonal
terms of the curvature matrix, one can follow the template of section 6.2 and directly
estimate the diagonal [Hk]i of the inverse Hessian using displacement pairs {(sk, vk)}
as defined in (6.13). For instance, [18] proposes to compute the scaling terms [Hk]i
with the running average

[
Hk+1

]
i
= (1− λ)

[
Hk

]
i
+ λProj

([
sk
]
i[

vk
]
i

)
,

where Proj(·) represents a projection onto a predefined positive interval. It was later
found that a direct application of (6.13) after a parameter update introduces a corre-
lated noise that ruins the curvature estimate [19, section 3]. Moreover, correcting this
problem made the algorithm perform substantially worse because the chaotic behavior
of the rescaling factors [Hk]i makes the choice of the stepsize α very difficult.

These problems can be addressed with a combination of two ideas [19, section 5].
The first idea consists of returning to estimating the diagonal of the Hessian instead of
the diagonal of this inverse, which amounts to working with the ratio [vk]i/[sk]i instead
of [sk]i/[vk]i. The second idea ensures that the effective stepsizes are monotonically
decreasing by replacing the running average by the sum

[
Gk+1

]
i
=
[
Gk

]
i
+ Proj

([
vk
]
i[

sk
]
i

)
.

This effectively constructs a separate diminishing stepsize sequence α/[Gk]i for each
coefficient of the parameter vector. Keeping the curvature estimates in a fixed positive
interval ensures that the effective stepsizes decrease at the rate O(1/k) as prescribed
by Theorem 4.7, while taking the local curvature into account. This combination was
shown to perform very well when the input pattern coefficients have very different
variances [19], something that often happens, e.g., in text classification problems.

Diagonal Rescaling without Curvature. The algorithms described above often
require some form of regularization to handle situations where the Hessian matrix is
(nearly) singular. To illustrate why this is needed, consider, e.g., optimization of the

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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convex objective function

F (w1, w2) =
1
2w

2
1 + log(ew2 + e−w2),

for which one finds

∇F (w1, w2) =

[
w1

tanh(w2)

]
and ∇2F (w1, w2) =

[
1 0

0 1/cosh2(w2)

]
.

Performing a first-order gradient method update from a starting point of (3, 3) yields
the negative gradient step −∇F ≈ [−3,−1], which unfortunately does not point
toward the optimum, namely, the origin. Moreover, rescaling the step with the inverse
Hessian actually gives a worse update direction −(∇2F )−1∇F ≈ [−3,−101] whose
large second component requires a small stepsize to keep the step well contained.
Batch second-order optimization algorithms can avoid having to guess a good stepsize
by using, e.g., line search techniques. Stochastic second-order algorithms, on the other
hand, cannot rely on such procedures as easily.

This problem is of great concern in situations where the objective function is
nonconvex. For instance, optimization algorithms for DNNs must navigate around
saddle points and handle near-singular curvature matrices. It is therefore tempting to
consider diagonal rescaling techniques that simply ensure equal progress along each
axis, rather than attempt to approximate curvature very accurately.

For instance, RMSprop [152] estimates the average magnitude of each element
of the stochastic gradient vector g(wk, ξk) by maintaining the running averages[

Rk

]
i
= (1− λ)

[
Rk−1

]
i
+ λ

[
g(wk, ξk)

]2
i
.

The rescaling operation then consists in dividing each component of g(wk, ξk) by the
square root of the corresponding running average, ensuring that the expected second
moment of each coefficient of the rescaled gradient is close to the unity:[

wk+1

]
i
=
[
wk

]
i
− α√[

Rk

]
i
+ μ

[
g(wk, ξk)

]
i
.

This surprisingly simple approach has been shown to be very effective for the optimiza-
tion of DNNs. Various improvements have been proposed [162, 84] on an empirical
basis. The theorertical explanation of this performance on nonconvex problems is still
the object of active research [43].

The popular Adagrad algorithm [54] can be viewed as a member of this family
that replaces the running average by a sum:[

Rk

]
i
=
[
Rk−1

]
i
+
[
g(wk, ξk)

]2
i
.

In this manner, the approach constructs a sequence of diminishing effective stepsizes
α/
√
[Rk]i + μ for each coefficient of the parameter vector. This algorithm was ini-

tially proposed and analyzed for the optimization of (not necessarily strongly) convex
functions for which SG theory suggests diminishing stepsizes that scale with O(1/

√
k).

Adagrad is also known to perform well on deep learning networks, but one often
finds that its stepsizes decrease too aggressively early in the optimization [162].

Structural Methods. The performance of DNN training can of course be im-
proved by employing better optimization algorithms. However, it can also be im-
proved by changing the structure of the network in a manner that facilitates the
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optimization [80, 74]. We now describe one of these techniques, batch normalization
[80], and discuss its relationship to diagonal second-order methods.

Consider a particular fully connected layer in a DNN of the form discussed in

section 2.2. Using the notation of (2.4), the vector x
(j)
i represents the input values

of layer j when the network is processing the ith training example. Omitting the

layer index for simplicity, let x̂i = (x
(j)
i , 1) denote the input vector augmented with

an additional unit coefficient and let ŵr = (Wr1, . . . ,Wrdj−1 , br) be the rth row of the
matrix Wj augmented with the rth coefficient of the bias vector bj . The layer outputs
are then obtained by applying the activation function to the quantities sr = ŵT

r x̂i for
r ∈ {1, . . . , dj}. Assuming for simplicity that all other parameters of the network are
kept fixed, we can write

F (ŵ1, . . . , ŵdj ) =
1

n

n∑
i=1

�(h(ŵT
1 x̂i, ŵ

T
2 x̂i, . . . , ŵ

T
dj
x̂i), yi),

where h(s1, . . . , sdj) encapsulates all subsequent layers in the network. The diagonal
block of the Gauss–Newton matrix (6.16) corresponding to the parameters ŵr then
has the form

(6.25) G[r] =
1

|S|
∑
i∈S

[(
dh

dsr

)T (
∂2�

∂h2

)(
dh

dsr

)]
x̂ix̂

T
i ,

which can be viewed as a weighted second moment matrix of the augmented input
vectors {x̂i}i∈S . In particular, this matrix is perfectly conditioned if the weighted
distribution of the layer inputs is white, i.e., they have zero mean and a unit covariance
matrix. This could be achieved by first preprocessing the inputs by an affine transform
that whitens their weighted distribution.

Two simplifications can drastically reduce the computational cost of this oper-
ation. First, we can ignore the bracketed coefficient in (6.25) and assume that we
can use the same whitening transformation for all outputs r ∈ {1, . . . , dj}. Second,
we can ignore the input cross-correlations and simply ensure that each input variable
has zero mean and unit variance by replacing the input vector coefficients x̂i[t] for
each t ∈ {1, . . . , dj−1} by the linearly transformed values αtx̂i[t] + βt. Despite these
simplifications, this normalization operation is very likely to improve the second-order
properties of the objective function. An important detail here is the computation of
the normalization constants αt and βt. Estimating the mean and the standard de-
viation of each input with a simple running average works well if one expects these
quantities to change very slowly. This is unfortunately not true in recent neural
networks.8

Batch normalization [80] defines a special kind of neural network layer that per-
forms this normalization using statistics collected with the current minibatch of exam-
ples. The back-propagation algorithm that computes the gradients must, of course, be
adjusted to account for the on-the-fly computation of the normalization coefficients.
Assuming that one uses sufficiently large minibatches, computing the statistics in this
manner ensures that the normalization constants are very fresh. This comes at the

8This used to be true in the 1990s because neural networks were using bounded activation
functions such as the sigmoid s(x) = 1/(1 + e−x). However, many recent results were achieved
using the ReLU activation function s(x) = max{0, x}, which is unbounded and homogeneous. The
statistics of the intermediate variables in such a network can change extremely quickly during the
first phases of the optimization process [86].
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price of making the output of the neural network on a particular training pattern
dependent on the other patterns in the minibatch. Since these other examples are
a priori random, this amounts to generating additional noise in the SG optimization.
Although the variance of this noise is poorly controlled, inserting batch normalization
layers in various points of a DNN is extremely effective and is now standard prac-
tice. Whether one can achieve the same improvement with more controlled techniques
remains to be seen.

7. Other Popular Methods. Some optimization methods for machine learning
are not well characterized as being within the two-dimensional schematic introduced in
section 3.4 (see Figure 3.3), yet they represent fundamentally unique approaches that
offer theoretical and/or practical advantages. The purpose of this section is to discuss
a few such ideas, namely, gradient methods with momentum, accelerated gradient
methods, and coordinate descent methods. For ease of exposition, we introduce these
techniques under the assumption that one is minimizing a continuously differentiable
(not necessarily convex) function F : Rn → R and that full gradients can be computed
in each iteration. Then, after each technique is introduced, we discuss how they may
be applied in stochastic settings.

7.1. Gradient Methods with Momentum. Gradient methods with momentum
are procedures in which each step is chosen as a combination of the steepest descent
direction and the most recent iterate displacement. Specifically, with an initial point
w1, scalar sequences {αk} and {βk} that are either predetermined or set dynamically,
and w0 := w1, these methods are characterized by the iteration

(7.1) wk+1 ← wk − αk∇F (wk) + βk(wk − wk−1).

Here, the right-hand term is referred to as the momentum term, which, recursively,
maintains the algorithm’s movement along previous search directions.

The iteration (7.1) can be motivated in various ways; e.g., it is named after the
fact that it represents a discretization of a certain second-order ordinary differential
equation with friction. Of course, when βk = 0 for all k ∈ N, it reduces to the steepest
descent method. When αk = α and βk = β for some constants α > 0 and β > 0 for
all k ∈ N, it is referred to as the heavy ball method [123], which is known to yield
a superior rate of convergence as compared to steepest descent with a fixed stepsize
for certain functions of interest. For example, when F is a strictly convex quadratic
with minimum and maximum eigenvalues given by c > 0 and L ≥ c, respectively,
steepest descent and the heavy ball method each yield a linear rate of convergence (in
terms of the distance to the solution converging to zero) with contraction constants,
respectively, given by

(7.2)
κ− 1

κ+ 1
and

√
κ− 1√
κ+ 1

, where κ :=
L

c
≥ 1.

Choosing (α, β) to achieve these rates requires knowledge of (c, L), which might be
unavailable. Still, even without this knowledge, the heavy ball method often outper-
forms steepest descent.

Additional connections with (7.1) can be made when F is a strictly convex
quadratic. In particular, if (αk, βk) is chosen optimally for all k ∈ N, in the sense that
the pair is chosen to solve

(7.3) min
(α,β)

F (wk − α∇F (wk) + β(wk − wk−1)),
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then (7.1) is exactly the linear CG algorithm. While the heavy ball method is a
stationary iteration (in the sense that the pair (α, β) is fixed), the CG algorithm is
nonstationary and its convergence behavior is relatively more complex; in particular,
the step-by-step behavior of CG depends on the eigenvalue distribution of the Hessian
of F [69]. That said, in contrast to the heavy ball method, CG has a finite conver-
gence guarantee. This, along with the fact that problems with favorable eigenvalue
distributions are quite prevalent, has lead to the great popularity of CG in a variety
of situations. More generally, nonlinear CG methods, which also follow the procedure
in (7.1), can be viewed as techniques that approximate the optimal values defined
by (7.3) when F is not quadratic.

An alternative view of the heavy ball method is obtained by expanding (7.1):

wk+1 ← wk − α

k∑
j=1

βk−j∇F (wj);

thus, each step can be viewed as an exponentially decaying average of past gradients.
By writing the iteration this way, one can see that the steps tend to accumulate
contributions in directions of persistent descent, while directions that oscillate tend
to be cancelled, or at least remain small.

This latter interpretation provides some intuitive explanation as to why a stochas-
tic heavy ball method, and SG methods with momentum in general, might be suc-
cessful in various settings. In particular, their practical performance has made them
popular in the community working on training DNNs [150]. Replacing the true gra-
dient with a stochastic gradient in (7.1), one obtains an iteration that, over the long
run, tends to continue moving in directions that the stochastic gradients suggest are
ones of improvement, whereas movement is limited along directions along which con-
tributions of many stochastic gradients cancel each other out. Theoretical guarantees
about the inclusion of momentum in stochastic settings are elusive, and although
practical gains have been reported [92, 150], more experimentation is needed.

7.2. Accelerated Gradient Methods. A method with an iteration similar to
(7.1), but with its own unique properties, is the accelerated gradient method proposed
by Nesterov [107]. Written as a two-step procedure, it involves the updates

(7.4)
w̃k ← wk + βk(wk − wk−1)

and wk+1 ← w̃k − αk∇F (w̃k),

which lead to the condensed form

(7.5) wk+1 ← wk − αk∇F (wk + βk(wk − wk−1)) + βk(wk − wk−1).

In this manner, it is easy to compare the approach with (7.1). In particular, one can
describe their difference as being a reversal in the order of computation. In (7.1),
one can imagine taking the steepest descent step and then applying the momentum
term, whereas (7.5) results when one follows the momentum term first, then applies
a steepest descent step (with the gradient evaluated at w̃k, not at wk).

While this difference may appear to be minor, it is well known that (7.5) with
appropriately chosen αk = α > 0 for all k ∈ N and {βk} ↗ 1 leads to an optimal
iteration complexity when F is convex and continuously differentiable with a Lips-
chitz continuous gradient. Specifically, while in such cases a steepest descent method
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converges with a distance to the optimal value decaying with a rate O( 1k ), the iter-
ation (7.5) converges with a rate O( 1

k2 ), which is provably the best rate that can be
achieved by a gradient method. Unfortunately, no intuitive explanation as to how
Nesterov’s method achieves this optimal rate has been widely accepted. Still, one
cannot deny the analysis and the practical gains that the technique has offered.

Acceleration ideas have been applied in a variety of other contexts as well, in-
cluding for the minimization of nonsmooth convex functions; see [96]. For now, we
merely mention that when applied in stochastic settings—with stochastic gradients
employed in place of full gradients—one can only hope that acceleration might im-
prove the constants in the convergence rate offered in Theorem 4.7; i.e., the rate itself
cannot be improved [1].

7.3. Coordinate Descent Methods. Coordinate descent (CD) methods are
among the oldest in the optimization literature. As their name suggests, they operate
by taking steps along coordinate directions: one attempts to minimize the objective
with respect to a single variable while all others are kept fixed, then other variables
are updated similarly in an iterative manner. Such a simple idea is easy to implement,
so it is not surprising that CD methods have a long history in many settings. Their
limitations have been documented and well understood for many years (more on these
below), but one can argue that their advantages were not fully recognized until recent
work in machine learning and statistics demonstrated their ability to take advantage
of certain structures commonly arising in practice.

The CD method for minimizing F : Rd → R is given by the iteration

(7.6) wk+1 ← wk − αk∇ikF (wk)eik , where ∇ikF (wk) :=
∂F

∂wik
(wk),

wik represents the ikth element of the parameter vector, and eik represents the ikth
coordinate vector for some ik ∈ {1, . . . , d}. In other words, the solution estimates wk+1

and wk differ only in their ikth element as a result of a move in the ikth coordinate
from wk.

Specific versions of the CD method are defined by the manner in which the se-
quences {αk} and {ik} are chosen. In some applications, it is possible to choose αk as
the global minimizer of F from wk along the ikth coordinate direction. An important
example of this, which has contributed to the recent revival of CD methods, occurs
when the objective function has the form F (w) = q(w) + ‖w‖1, where q is a convex
quadratic. Here, the exact minimization along each coordinate is not only possible,
but desirable as it promotes the generation of sparse iterates; see also section 8. More
often, an exact one-dimensional minimization of F is not practical, in which case one
is typically satisfied with αk yielding a sufficient reduction in F from wk. For exam-
ple, so-called second-order CD methods compute αk as the minimizer of a quadratic
model of F along the ikth coordinate direction.

Concerning the choice of ik, one could select it in each iteration in at least three
different ways: by cycling through {1, . . . , d}; by cycling through a random reorder-
ing of these indices (with the indices reordered after each set of d steps); or simply
by choosing an index randomly with replacement in each iteration. Randomized CD
algorithms (represented by the latter two strategies) have superior theoretical prop-
erties compared to the cyclic method (represented by the first strategy) as they are
less likely to choose an unfortunate series of coordinates; more on this below. How-
ever, it remains an open question as to whether such randomized algorithms are more
effective in typical applications.
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We mention in passing that it is also natural to consider a block-coordinate de-
scent method in which a handful of elements is chosen in each iteration. This is
particularly effective when the objective function is (partially) block separable, which
occurs in matrix factorization problems and least squares and logistic regression when
each sample only depends on a few features. Clearly, in such settings, there are great
advantages of a block-coordinate descent approach. However, since their basic prop-
erties are similar to the case of using a single index in each iteration, we focus on the
iteration (7.6).

Convergence Properties. Contrary to what intuition might suggest, a CD
method is not guaranteed to converge when applied to minimize any given contin-
uously differentiable function. Powell [127] gives an example of a nonconvex continu-
ously differentiable function of three variables for which a cyclic CD method, with αk

chosen by exact one-dimensional minimization, cycles without converging to a solu-
tion, i.e., at any limit point the gradient of F is nonzero. Although one can argue that
failures of this type are unlikely to occur in practice, particularly for a randomized
CD method, they show the weakness of the myopic strategy in a CD method that con-
siders only one variable at a time. This is in contrast with the full gradient method,
which guarantees convergence to stationarity even when the objective is nonconvex.

On the other hand, if the objective F is strongly convex, the CD method will
not fail and one can establish a linear rate of convergence. The analysis is very
simple when using a constant stepsize and we present one such result to provide some
insights into the trade-offs that arise with a CD approach. Let us assume that ∇F is
coordinate-wise Lipschitz continuous in the sense that, for all w ∈ R

d, i ∈ {1, . . . , d},
and Δwi ∈ R, there exists a constant Li > 0 such that

(7.7) |∇iF (w +Δwiei)−∇iF (w)| ≤ Li|Δwi|.

We then define the maximum coordinate-wise Lipschitz constant as

L̂ := max
i∈{1,...,d}

Li.

Loosely speaking, L̂ is a bound on the curvature of the function along all coordinates.

Theorem 7.1. Suppose that the objective function F : R
d → R is continu-

ously differentiable, strongly convex with constant c > 0, and has a gradient that is
coordinate-wise Lipschitz continuous with constants {L1, . . . , Ld}. In addition, sup-

pose that αk = 1/L̂ and that ik is chosen independently and uniformly from {1, . . . , d}
for all k ∈ N. Then, for all k ∈ N, the iteration (7.6) yields

(7.8) E[F (wk+1)]− F∗ ≤
(
1− c

dL̂

)k

(F (w1)− F∗).

Proof. As Assumption 4.1 leads to (4.3), coordinate-wise Lipschitz continuity of
∇F yields

F (wk+1) ≤ F (wk) +∇ikF (wk)(w
ik
k+1 − wik

k ) + 1
2 L̂(w

ik
k+1 − wik

k )2.

Thus, with the stepsize chosen as αk = 1/L̂, it follows that

F (wk+1)− F (wk) ≤ − 1
̂L
∇ikF (wk)

2 + 1

2̂L
∇ikF (wk)

2 = − 1

2̂L
∇ikF (wk)

2.
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Taking expectations with respect to the distribution of ik, one obtains

Eik [F (wk+1)]− F (wk) ≤ − 1

2̂L
Eik [∇ikF (wk)

2]

= − 1

2̂L

(
1
d

d∑
i=1

∇iF (wk)
2

)
= − 1

2̂Ld
‖∇F (wk)‖22.

Subtracting F∗, taking total expectations, recalling (4.12), and applying the above
inequality repeatedly over the first k ∈ N iterations yields (7.8), as desired.

A brief overview of the convergence properties of other CD methods under the
assumptions of Theorem 7.1 and in other settings is also worthwhile. First, it is
interesting to compare the result of Theorem 7.1 with a result obtained using the
deterministic Gauss–Southwell rule, in which ik is chosen in each iteration according
to the largest (in absolute value) component of the gradient. Using this approach, one
obtains a similar result in which c is replaced by ĉ, the strong convexity parameter
as measured by the �1-norm [116]. Since c

n ≤ ĉ ≤ c, the Gauss–Southwell rule can
be up to n times faster than a randomized strategy, but in the worst case it is no
better (and yet is more expensive due to the need to compute the full gradient vector
in each iteration). Alternative methods have also been proposed in which, in each
iteration, the index ik is chosen randomly with probabilities proportional to Li or
according to the largest ratio |∇iF (wk)|/

√
Li [93, 110]. These strategies also lead to

linear convergence rates with constants that are better in some cases.

Favorable Problem Structures. Theorem 7.1 shows that a simple randomized
CD method is linearly convergent with constant dependent on the parameter dimen-
sion d. At first glance, this appears to imply that such a method is less efficient than a
standard full gradient method. However, in situations in which d coordinate updates
can be performed at a cost similar to the evaluation of one full gradient, the method
is competitive with a full gradient method both theoretically and in practice. Classes
of problems in this category include those in which the objective function is

(7.9) F (w) =
1

n

n∑
j=1

F̃j(x
T
j w) +

d∑
i=1

F̂i(w
i),

where, for all j ∈ {1, . . . , n}, the function F̃j is continuously differentiable and de-

pendent on the sparse data vector xj , and, for all i ∈ {1, . . . , d}, the function F̂i is a
(nonsmooth) regularization function. Such a form arises in least squares and logistic
regression; see also section 8.

For example, consider an objective function of the form

f(w) =
1

2
‖Xw − y‖22 +

d∑
i=1

F̂i(w
i) with X =

[
x1 · · · xn

]
,

which might be the original function of interest or might represent a model of (7.9)
in which the first term is approximated by a convex quadratic model. In this setting,

∇ikf(wk+1) = xT
ik
rk+1 + F̂ ′

ik
(wik

k+1) with rk+1 := Awk+1 − b,

where, with wk+1 = wk + βkeik , one may observe that rk+1 = rk + βkxik . That
is, since the residuals {rk} can be updated with cost proportional to the number of
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nonzeros in xik , call it nnz(xik ), the overall cost of computing the search direction in
iteration k + 1 is also O(nnz(xik )). On the other hand, an evaluation of the entire
gradient incurs a cost of O(

∑n
i=1 nnz(xi)).

Overall, there exist various types of objective functions for which minimization
by a CD method (with exact gradient computations) can be effective. These include
objectives that are (partially) block separable (which arise in dictionary learning and
nonnegative matrix factorization problems), have structures that allow for the efficient
computation of individual gradient components, or are diagonally dominant in the
sense that each step along a coordinate direction yields a reduction in the objective
proportional to that which would have been obtained by a step along the steepest
descent direction. Additional settings in which CD methods are effective are online
problems where gradient information with respect to a group of variables becomes
available in time, in which case it is natural to update these variables as soon as
information is received.

Stochastic Dual Coordinate Ascent. What about stochastic CD methods? As
an initial thought, one might consider the replacement of ∇ikF (wk) in (7.6) with
a stochastic approximation, but this is not typical since one can usually as easily
compute a d-dimensional stochastic gradient to apply an SG method. However, an
interesting setting for the application of stochastic CD methods arises when one con-
siders approaches to minimize a convex objective function of the form (7.9) by max-
imizing its dual. In particular, defining the convex conjugate of F̃j as F̃ 

j (u) :=

maxw(w
T u− F̃j(w)), the Fenchel–Rockafellar dual of (7.9) when F̂i(·) = λ

2 (·)2 for all
i ∈ {1, . . . , d} is given by

Fdual(v) =
1

n

n∑
j=1

−F̃ 
j (−vj)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
j=1

vjxj

∥∥∥∥∥∥
2

2

.

The stochastic dual coordinate ascent (SDCA) method [145] applied to a function of
this form has an iteration similar to (7.6), except that negative gradient steps are
replaced by gradient steps due to the fact that one aims to maximize the dual. At
the conclusion of a run of the algorithm, the corresponding primal solution can be
obtained as w ← 1

λn

∑n
j=1 vjxj . The per-iteration cost of this approach is on par with

that of an SG method.

Parallel CD Methods. We close this section by noting that CD methods are also
attractive when one considers the exploitation of parallel computation. For example,
consider a multicore system in which the parameter vector w is stored in shared mem-
ory. Each core can then execute a CD iteration independently and in an asynchronous
manner, where if d is large compared to the number of cores, then it is unlikely that
two cores are attempting to update the same variable at the same time. Since, during
the time it takes a core to perform an update, the parameter vector w has likely
changed (due to updates produced by other cores), each update is being made based
on slightly stale information. However, convergence of the method can be proved, and
it improves when one can bound the degree of staleness of each update. For further
information and insight into these ideas, we refer the reader to [16, 98].

8. Methods for Regularized Models. Our discussion of structural risk minimiza-
tion (see section 2.3) highlighted the key role played by regularization functions in
the formulation of optimization problems for machine learning. The optimization
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methods that we presented and analyzed in the subsequent sections (sections 3–7)
are all applicable when the objective function involves a smooth regularizer, such as
the squared �2-norm. In this section, we expand our investigation by considering op-
timization methods that handle the regularization as a distinct entity, in particular,
when that function is nonsmooth. One such regularizer that deserves special attention
is the �1-norm, which induces sparsity in the optimal solution vector. For machine
learning, sparsity can be beneficial since it leads to simpler models, and hence can be
seen as a form of feature selection, i.e., for biasing the optimization toward solutions
where only a few elements of the parameter vector are nonzero.

Broadly, this section focuses on the nonsmooth optimization problem

(8.1) min
w∈Rd

Φ(w) := F (w) + λΩ(w),

where F : Rd → R includes the composition of a loss and prediction function, λ > 0
is a regularization parameter, and Ω : Rd → R is a convex, nonsmooth regularization
function. Specifically, we pay special attention to methods for solving the problem

(8.2) min
w∈Rd

φ(w) := F (w) + λ‖w‖1.

As discussed in section 2, it is often necessary to solve a series of such problems over a
sequence of values for the parameter λ. For further details in terms of problem (8.2),
we refer the reader to [147, 9] for examples in a variety of applications. However, in
our presentation of optimization methods, we assume that λ has been prescribed and
is fixed. We remark in passing that (8.2) has as a special case the well-known LASSO
problem [151] when F (w) = ‖Aw − b‖22 for some A ∈ R

n×d and b ∈ R
n.

Although nondifferentiable, the regularized �1 problem (8.2) has a structure that
can be exploited in the design of algorithms. The algorithms that have been proposed
can be grouped into classes of first- or second-order methods and distinguished as
those that minimize the nonsmooth objective either directly, as in a proximal gradient
method, or by approximately minimizing a sequence of more complicated models, such
as in a proximal Newton method.

There exist other sparsity-inducing regularizers besides the �1-norm, including
group-sparsity-inducing regularizers that combine �1- and �2-norms taken with respect
to groups of variables [147, 9], as well as the nuclear norm for optimization over
spaces of matrices [32]. While we do not discuss other such regularizers in detail, our
presentation of methods for �1-norm regularized problems represents how methods for
alternative regularizers can be designed and characterized.

As in the previous sections, we introduce the algorithms in this section under the
assumptions that F is continuously differentiable and that full, batch gradients can
be computed for it in each iteration, commenting on stochastic method variants once
the motivating ideas have been described.

8.1. First-Order Methods for Generic Convex Regularizers. The fundamental
algorithm in unconstrained smooth optimization is the gradient method. For solving
problem (8.1), the proximal gradient method represents a similar fundamental ap-
proach. Given an iterate wk, a generic proximal gradient iteration, with αk > 0, is
given by

(8.3) wk+1 ← arg min
w∈Rd

(
F (wk) +∇F (wk)

T (w − wk) +
1

2αk
‖w − wk‖22 + λΩ(w)

)
.
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The term proximal refers to the presence of the third term in the minimization problem
on the right-hand side, which encourages the new iterate to be close to wk. Notice
that if the regularization (i.e., last) term were not present, then (8.3) would exactly
recover the gradient method update wk+1 ← wk − αk∇F (wk); hence, as before, we
refer to αk as the stepsize parameter. On the other hand, if the regularization term is
present, then, similar to the gradient method, each new iterate is found by minimizing
a model formed by a first-order Taylor series expansion of the objective function plus a
simple scaled quadratic. Overall, the only thing that distinguishes a proximal gradient
method from the gradient method is the regularization term, which is left untouched
and included explicitly in each step computation.

To show how an analysis similar to those seen in previous sections can be used to
analyze (8.3), we prove the following theorem, in which we show that if F is strongly
convex and its gradient function is Lipschitz continuous, then the iteration yields a
global linear rate of convergence to the optimal objective value provided that the
stepsizes are sufficiently small.

Theorem 8.1. Suppose that F : Rd → R is continuously differentiable, strongly
convex with constant c > 0, and has a gradient that is Lipschitz continuous with
constant L > 0. In addition, suppose that αk = α ∈ (0, 1/L] for all k ∈ N. Then, for
all k ∈ N, the iteration (8.3) yields

Φ(wk+1)− Φ(w∗) ≤ (1− αc)k(Φ(w1)− Φ(w∗)),

where w∗ ∈ R
d is the unique global minimizer of Φ in (8.1).

Proof. Since αk = α ∈ (0, 1/L], it follows from (4.3) that

Φ(wk+1) = F (wk+1) + λΩ(wk+1)

≤ F (wk) +∇F (wk)
T (wk+1 − wk) +

1
2L‖wk+1 − wk‖22 + λΩ(wk+1)

≤ F (wk) +∇F (wk)
T (wk+1 − wk) +

1
2α‖wk+1 − wk‖22 + λΩ(wk+1)

≤ F (wk) +∇F (wk)
T (w − wk) +

1
2α‖w − wk‖22 + λΩ(w) for all w ∈ R

d,

where the last inequality follows since wk+1 is defined by (8.3). Representing w =
wk + d, we obtain

Φ(wk+1) ≤ F (wk) +∇F (wk)
T d+ 1

2α‖d‖
2
2 + λΩ(wk + d)

≤ F (wk) +∇F (wk)
T d+ 1

2c‖d‖
2
2 − 1

2c‖d‖
2
2 +

1
2α‖d‖

2
2 + λΩ(wk + d)

≤ F (wk + d) + λΩ(wk + d)− 1
2 c‖d‖

2
2 +

1
2α‖d‖

2
2

= Φ(wk + d) + 1
2 (

1
α − c)‖d‖22,

which for d = −αc(wk − w∗) means that

Φ(wk+1) ≤ Φ(wk − αc(wk − w∗)) + 1
2 (

1
α − c)‖αc(wk − w∗)‖22

= Φ(wk − αc(wk − w∗)) + 1
2αc

2(1− αc)‖wk − w∗‖22.(8.4)

On the other hand, since the c-strongly convex function Φ satisfies (e.g., see [108,
pp. 63–64])

(8.5)
Φ(τw + (1− τ)w) ≤ τΦ(w) + (1− τ)Φ(w)− 1

2cτ(1 − τ)‖w − w‖22
for all (w,w, τ) ∈ R

d × R
d × [0, 1],
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we have (considering w = wk, w = w∗, and τ = αc ∈ (0, 1] in (8.5)) that

Φ(wk − αc(wk − w∗)) ≤ αcΦ(w∗) + (1− αc)Φ(wk)− 1
2c(αc)(1 − αc)‖wk − w∗‖22

= αcΦ(w∗) + (1− αc)Φ(wk)− 1
2αc

2(1− αc)‖wk − w∗‖22.(8.6)

Combining (8.6) with (8.4) and subtracting Φ(w∗), it follows that

Φ(wk+1)− Φ(w∗) ≤ (1− αc)(Φ(wk)− Φ(w∗)).

The result follows by applying this inequality repeated over the first k ∈ N itera-
tions.

One finds in Theorem 8.1 an identical result as for a gradient method for minimiz-
ing a smooth strongly convex function. As in such methods, the choice of the stepsize
α is critical in practice; the convergence guarantees demand that it be sufficiently
small, but a value that is too small might unduly slow the optimization process.

The proximal gradient iteration (8.3) is practical only when the proximal mapping

proxλΩ,αk
(w̃) := arg min

w∈Rn

(
λΩ(w) +

1

2αk
‖w − w̃‖22

)
can be computed efficiently. This can be seen in the fact that the iteration (8.3) can
equivalently be written as wk+1 ← proxλΩ,αk

(wk − αk∇F (wk)), i.e., the iteration is
equivalent to applying a proximal mapping to the result of a gradient descent step.
Situations when the proximal mapping is inexpensive to compute include when Ω is
the indicator function for a simple set, such as a polyhedral set, when it is the �1-norm,
or, more generally, when it is separable.

A stochastic version of the proximal gradient method can be obtained, not sur-
prisingly, by replacing ∇F (wk) in (8.3) by a stochastic approximation g(wk, ξk). The
iteration remains cheap to perform (since F (wk) can be ignored as it does not affect
the computed step). The resulting method attains similar behavior as an SG method;
analyses can be found, e.g., in [140, 8].

We now turn our attention to the most popular nonsmooth regularizer, namely,
the one defined by the �1 norm.

8.1.1. Iterative Soft-Thresholding Algorithm (ISTA). In the context of solving
the �1-norm regularized problem (8.2), the proximal gradient method is

(8.7) wk+1 ← arg min
w∈Rd

(
F (wk) +∇F (wk)

T (w − wk) +
1

2αk
‖w − wk‖22 + λ‖w‖1

)
.

The optimization problem on the right-hand side of this expression is separable and
can be solved in closed form. The solution can be written component-wise as

(8.8) [wk+1]i ←

⎧⎪⎨⎪⎩
[wk − αk∇F (wk)]i + αkλ if [wk − αk∇F (wk)]i < −αkλ,

0 if [wk − αk∇F (wk)]i ∈ [−αkλ, αkλ],

[wk − αk∇F (wk)]i − αkλ if [wk − αk∇F (wk)]i > αkλ.

One also finds that this iteration can be written, with (·)+ := max{·, 0}, as

(8.9) wk+1 ← Tαkλ(wk − αk∇F (wk)), where [Tαkλ(w̃)]i = (|w̃i| − αkλ)+sgn(w̃i).

In this form, Tαkλ is referred to as the soft-thresholding operator, which leads to the
name iterative soft-thresholding algorithm (ISTA) being used for (8.7)–(8.8) [53, 42].
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It is clear from (8.8) that the ISTA iteration induces sparsity in the iterates. If
the steepest descent step with respect to F yields a component with absolute value
less than αkλ, then that component is set to zero in the subsequent iterate; otherwise,
the operator still has the effect of shrinking components of the solution estimates in
terms of their magnitudes. When only a stochastic estimate g(wk, ξk) of the gradient
is available, it can be used instead of ∇F (wk).

A variant of ISTA with acceleration (recall section 7.2), known as FISTA [10], is
popular in practice. We also mention that effective techniques have been developed for
computing the stepsize αk, in ISTA or FISTA, based on an estimate of the Lipschitz
constant of ∇F or on curvature measured in recent iterations [10, 159, 11].

8.1.2. Bound-Constrained Methods for �1-Norm Regularized Problems. By
observing the structure created by the �1-norm, one finds that an equivalent smooth
reformulation of problem (8.2) is easily derived. In particular, by writing w = u− v,
where u plays the positive part of w while v plays the negative part, problem (8.2) can
equivalently be written as

(8.10) min
(u,v)∈Rd×Rd

φ̃(u, v) s.t. (u, v) ≥ 0, where φ̃(u, v) = F (u−v)+λ

d∑
i=1

(ui+vi).

Now, with a bound-constrained problem in hand, one has at one’s disposal a variety
of optimization methods that have been developed in the optimization literature.

The fundamental iteration for solving bound-constrained optimization problems
is the gradient projection method. In the context of (8.10), the iteration reduces to
(8.11)[
uk+1

vk+1

]
← P+

([
uk

vk

]
− αk

[
∇uφ̃(uk, vk)

∇vφ̃(uk, vk)

])
= P+

([
uk − αk∇F (uk − vk)− αkλe
vk + αk∇F (uk − vk)− αkλe

])
,

where P+ projects onto the nonnegative orthant and e ∈ R
d is a vector of ones.

Interestingly, the gradient projection method can also be derived from the per-
spective of a proximal gradient method where the regularization term Ω is chosen to
be the indicator function for the feasible set (a box). In this case, the mapping Tαkλ

is replaced by the projection operator onto the bound constraints, causing the corre-
sponding proximal gradient method to coincide with the gradient projection method.
In the light of this observation, one should expect the iteration (8.11) to inherit the
property of being globally linearly convergent when F satisfies the assumptions of
Theorem 8.1. However, since the variables in (8.10) have been split into positive and
negative parts, this property is maintained only if the iteration maintains comple-
mentarity of each iterate pair, i.e., if [uk]i[vk]i = 0 for all k ∈ N and i ∈ {1, . . . , d}.
This behavior is also critical for the practical performance of the method in general,
since, without it, the algorithm would not generate sparse solutions. In particular,
maintaining this property allows the algorithm to be implemented in such a way that
one effectively only needs d optimization variables.

A natural question that arises is whether the iteration (8.11) actually differs from
an ISTA iteration, especially given that both are built upon proximal gradient ideas.
In fact, the iterations can lead to the same update, but do not always do so. Consider,
for example, an iterate wk = uk − vk such that for i ∈ {1, . . . , d} one finds [wk]i > 0
with [uk]i = [wk]i and [vk]i = 0. (A similar look, with various signs reversed, can be
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taken when [wk]i < 0.) If [wk − αk∇F (wk)]i > αkλ, then (8.8) and (8.11) yield

[wk+1]i ← [wk − αk∇F (wk)]i − αkλ > 0

and [uk+1]i ← [uk − αk∇F (wk)]i − αkλ > 0.

However, it is important to note the step taken in the negative part; in particular, if
[∇F (wk)]i ≤ λ, then [vk+1]i ← 0, but, if [∇F (wk)]i > λ, then [vk+1]i ← αk∇F (wk)−
αkλ, in which case the lack of complementarity between uk+1 and vk+1 should be
rectified. A more significant difference arises when, e.g., [wk − αk∇F (wk)]i < −αkλ,
in which case (8.8) and (8.11) yield

[wk+1]i ← [wk − αk∇F (wk)]i + αkλ < 0,

[uk+1]i ← 0,

and [vk+1]i ← [vk + αk∇F (wk)]i − αkλ > 0.

The pair ([uk+1]i, [vk+1]i) are complementary, but [wk+1]i and [−vk+1]i differ by
[wk]i > 0.

Several first-order [59, 58] and second-order [138] gradient projection methods
have been proposed to solve (8.2). Such algorithms should be preferred over similar
techniques for general bound-constrained optimization, e.g., those in [163, 95], since
such general techniques may be less effective due to not exploiting the structure of
the reformulation (8.10) of (8.2).

A stochastic projected gradient method, with ∇F (wk) replaced by g(wk, ξk), has
similar convergence properties as a standard SG method; e.g., see [105]. These prop-
erties apply in the present context, but also apply when a proximal gradient method
is used to solve (8.1) when Ω represents the indicator function of a box constraint.

8.2. Second-Order Methods. We now turn our attention to methods that, like
Newton’s method for smooth optimization, are designed to solve regularized prob-
lems through successive minimization of second-order models constructed along the
iterate sequence {wk}. As in a proximal gradient method, the smooth function F is
approximated by a Taylor series and the regularization term is kept unchanged. We
focus on two classes of methods for solving (8.2): proximal Newton and orthant-based
methods.

Both classes of methods fall under the category of active-set methods. One
could also consider the application of an interior-point method to solve the bound-
constrained problem (8.10) [114]. This, by its nature, constitutes a second-order
method that would employ Hessians of F or corresponding quasi-Newton approxima-
tions. However, a disadvantage of the interior-point approach is that, by staying away
from the boundary of the feasible region, it does not promote the fast generation of
sparse solutions, which is in stark contrast with the methods described below.

8.2.1. Proximal Newton Methods. We use the term proximal Newton to refer
to techniques that directly minimize the nonsmooth function arising as the sum of a
quadratic model of F and the regularizer. In particular, for solving problem (8.2), a
proximal Newton method is one that constructs, at each k ∈ N, a model

(8.12) qk(w) = F (wk)+∇F (wk)
T (w−wk)+

1

2
(w−wk)

THk(w−wk)+λ‖w‖1 ≈ φ(w),

where Hk represents ∇2F (wk) or a quasi-Newton approximation of it. This model
has a similar form to the one in (8.7), except that the simple quadratic is replaced
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by the quadratic form defined by Hk. A proximal Newton method would involve
(approximately) minimizing this model to compute a trial iterate w̃k, then a stepsize
αk > 0 would be taken from a predetermined sequence or chosen by a line search to
ensure that the new iterate wk+1 ← wk + αk(w̃k − wk) yields Φ(wk+1) < Φ(wk).

Proximal Newton methods are more challenging to design, analyze, and imple-
ment than proximal gradient methods. That being said, they can perform better in
practice once a few key challenges are addressed. The three ingredients below have
proved to be essential in ensuring the practical success and scalability of a proximal
Newton method. For simplicity, we assume throughout that Hk has been chosen to
be positive definite.

Choice of Subproblem Solver. The model qk inherits the nonsmooth structure
of φ, which has the benefit of allowing a proximal Newton method to cross mani-
folds of nondifferentiability while simultaneously promoting sparsity of the iterates.
However, the method needs to overcome the fact that the model qk is nonsmooth,
which makes the subproblem for minimizing qk challenging. Fortunately, with the
particular structure created by a quadratic plus an �1-norm term, various methods
are available for minimizing such a nonsmooth function. For example, CD is par-
ticularly well suited in this context [153, 79] since the global minimizer of qk along
a CD direction can be computed analytically. Such a minimizer often occurs at a
point of nondifferentiability (namely, when a component is zero), thus ensuring that
the method will generate sparse iterates. Updating the gradient of the model qk af-
ter each CD step can also be performed efficiently, even if Hk is given as a limited
memory quasi-Newton approximation [137]. Numerical experiments have shown that
employing a CD iteration is more efficient in certain applications than employing, say,
an ISTA iteration to minimize qk, though the latter is also a viable strategy in some
applications.

Inaccurate Subproblem Solves. A proximal Newton method needs to overcome
the fact that, in large-scale settings, it is impractical to minimize qk accurately for all
k ∈ N. Hence, it is natural to consider the computation of an inexact minimizer of qk.
The issue then becomes: what are practical, yet theoretically sufficient termination
criteria when computing an approximate minimizer of the nonsmooth function qk? A
common suggestion in the literature has been to use the norm of the minimum-norm
subgradient of qk at a given approximate minimizer. However, this measure is not
continuous, making it inadequate for these purposes.9 Interestingly, the norm of an
ISTA step is an appropriate measure. In particular, letting istak(w) represent the
result of an ISTA step applied to qk from w, the value ‖istak(w) − w‖2 satisfies the
following two key properties: (i) it equals zero if and only if w is a minimizer of qk,
and (ii) it varies continuously over Rd.

Complete and sufficient termination criteria are then as follows: a trial point w̃k

represents a sufficiently accurate minimizer of qk if, for some η ∈ [0, 1), one finds

‖istak(w̃k)− w̃k‖2 ≤ η‖ista(wk)− wk‖2 and qk(w̃k) < qk(wk).

The latter condition, requiring a decrease in qk, must also be imposed since the ISTA
criterion alone does not exert sufficient control to ensure convergence. Employing
such criteria, it has been observed to be efficient to perform the minimization of qk

9Consider the one-dimensional case of having qk(w) = |w|. The minimum-norm subgradient of
qk has a magnitude of 1 at all points, except at the minimizer w∗ = 0; hence, this norm does not
provide a measure of proximity to w∗.
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inaccurately at the start, and to increase the accuracy of the model minimizers as one
approaches the solution. A superlinear rate of convergence for the overall proximal
Newton iteration can be obtained by replacing η by ηk, where {ηk} ↘ 0, along with
imposing a stronger descent condition on the decrease in qk [31].

Elimination of Variables. Due to the structure created by the �1-norm regular-
izer, it can be effective in some applications to first identify a set of active variables—
i.e., variables that are predicted to be equal to zero at a minimizer for qk—then
compute an approximate minimizer of qk over the remaining free variables. Specif-
ically, supposing that a set Ak ⊆ {1, . . . , d} of active variables has been identified,
one may compute an (approximate) minimizer of qk by (approximately) solving the
reduced-space problem

(8.13) min
w∈Rd

qk(w) s.t. [w]i = 0, i ∈ Ak.

Moreover, during the minimization process for this problem, one may have reason to
believe that the process may be improved by adding or removing elements from the
active set estimate Ak. In any case, performing the elimination of variables imposed
in (8.13) has the effect of reducing the size of the subproblem, and can often lead to
fewer iterations being required in the overall proximal Newton method. How should
the active set Ak be defined? A technique that has become popular recently is to use
sensitivity information, as discussed in more detail in the next subsection.

8.2.2. Orthant-Based Methods. Our second class of second-order methods is
based on the observation that the �1-norm regularized objective φ in problem (8.2)
is smooth in any orthant in R

d. Based on this observation, orthant-based methods
construct, at every iteration, a smooth quadratic model of the objective, then produce
a search direction by minimizing this model. After performing a line search designed
to reduce the objective function, a new orthant is selected and the process is repeated.
This approach can be motivated by the success of second-order gradient projection
methods for bound-constrained optimization, which at every iteration employ a gra-
dient projection search to identify an active set and perform a minimization of the
objective function over a space of free variables to compute a search direction.

The selection of an orthant is typically done using sensitivity information. Specif-
ically, with the minimum norm subgradient of φ at w ∈ R

d, which is given component-
wise for all i ∈ {1, . . . , d} by

ĝi(w) =

⎧⎪⎨⎪⎩
[∇F (w)]i + λ if wi > 0 or {wi = 0 and [∇F (w)]i + λ < 0},
[∇F (w)]i − λ if wi < 0 or {wi = 0 and [∇F (w)]i − λ > 0},
0 otherwise,

(8.14)

the active orthant for an iterate wk is characterized by the sign vector

(8.15) ζk,i =

{
sgn([wk]i) if [wk]i �= 0,

sgn(−[ĝ(wk)]i) if [wk]i = 0.

Along these lines, let us also define the subsets of {1, . . . , d} given by

Ak = {i : [wk]i = 0 and |[∇F (wk)]i| ≤ λ}(8.16)

and Fk = {i : [wk]i �= 0} ∪ {i : [wk]i = 0 and |[∇F (wk)]i| > λ} ,(8.17)

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMIZATION METHODS FOR LARGE-SCALE MACHINE LEARNING 301

where Ak represents the indices of variables that are active and kept at zero, while
Fk represents those that are free to move.

Given these quantities, an orthant-based method proceeds as follows. First, one
computes the (approximate) solution dk of the (smooth) quadratic problem

min
d∈Rn

ĝ(wk)
T d+ 1

2d
THkd

s.t. di = 0, i ∈ Ak,

where Hk represents ∇2F (xk) or an approximation of it. Then, the algorithm per-
forms a line search—over a path contained in the current orthant—to compute the
next iterate. For example, one option is a projected backtracking line search along
dk, which involves computing the largest αk in a decreasing geometric sequence so

F (Pk(wk + αkdk)) < F (wk).

Here, Pk(w) projects w ∈ R
d onto the orthant defined by ζk, i.e.,

(8.18) [Pk(w)]i =

{
wi if sgn(wi) = ζk,i,

0 otherwise.

In this way, the initial and final points of an iteration lie in the same orthant. Orthant-
based methods have proved to be quite useful in practice; e.g., see [7, 29].

Commentary. Proximal Newton and orthant-based methods represent two ef-
ficient classes of second-order active-set methods for solving the �1-norm regular-
ized problem (8.2). The proximal Newton method is reminiscent of the sequential
quadratic programming method (SQP) for constrained optimization; they both solve
a complex subproblem that yields a useful estimate of the optimal active set. Al-
though solving the piecewise quadratic model (8.12) is very expensive in general, the
CD method has proven to be well suited for this task and allows the proximal Newton
method to be applied to very large problems [78]. Orthant-based methods have been
shown to be equally useful, but in a more heuristic way, since some popular imple-
mentations lack convergence guarantees [58, 29]. Stochastic variants of both proximal
Newton and orthant-based schemes can be devised in natural ways and generally in-
herit the properties of stochastic proximal gradient methods as long as the Hessian
approximations are forced to possess eigenvalues within a positive interval.

9. Summary and Perspectives. Mathematical optimization is one of the founda-
tions of machine learning, touching almost every aspect of the discipline. In particular,
numerical optimization algorithms, the main subject of this paper, have played an in-
tegral role in the transformational progress that machine learning has experienced
over the past two decades. In our study, we highlight the dominant role played by
the stochastic gradient (SG) method of Robbins and Monro [130], whose success de-
rives from its superior work complexity guarantees. A concise, yet broadly applicable
convergence and complexity theory for the SG method is presented here, providing
insight into how these guarantees have translated into practical gains.

Although the title of this paper suggests that our treatment of optimization meth-
ods for machine learning is comprehensive, much more could be said about this rapidly
evolving field. Perhaps most importantly, we have neither discussed nor analyzed at
length the opportunities offered by parallel and distributed computing, which may
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alter our perspectives in the years to come. In fact, it has already been widely ac-
knowledged that the SG method, despite its other benefits, may not be the best suited
method for emerging computer architectures.

This leads to our discussion of a spectrum of methods that have the potential to
surpass the SG method in the next generation of optimization methods for machine
learning. These methods, such as those built on noise reduction and second-order
techniques, offer the ability to attain improved convergence rates, overcome the ad-
verse effects of high nonlinearity and ill-conditioning, and exploit parallelism and
distributed architectures in new ways. There are important methods that are not
included in our presentation—such as the alternating direction method of multipliers
(ADMM) [57, 64, 67] and the expectation-maximization (EM) method and its variants
[48, 160]—but our study covers many of the core algorithmic frameworks in optimiza-
tion for machine learning, with emphasis on methods and theoretical guarantees that
have the largest impact on practical performance.

With the great strides that have been made and the various avenues for continued
contributions, numerical optimization promises to continue to have a profound impact
on the rapidly growing field of machine learning.

Appendix A. Convexity and Analyses of SG. Our analyses of the SG method
in section 4 can be characterized as relying primarily on smoothness in the sense
of Assumption 4.1. This has advantages and disadvantages. On the positive side,
it allows us to prove convergence results that apply equally for the minimization of
convex and nonconvex functions, the latter of which has been rising in importance in
machine learning; recall section 2.2. It also allows us to present results that apply
equally to situations in which the stochastic vectors are unbiased estimators of the
gradient of the objective, or when such estimators are scaled by a symmetric positive
definite matrix; recall (4.2). A downside, however, is that it requires us to handle the
minimization of nonsmooth models separately, which we do in section 8.

As an alternative, a common tactic employed by many authors is to leverage con-
vexity instead of smoothness, allowing for the establishment of guarantees that can be
applied in smooth and nonsmooth settings. For example, a typical approach for an-
alyzing SG-based methods is to commence with the following fundamental equations
related to squared distances to the optimum:

‖wk+1 − w∗‖22 − ‖wk − w∗‖22 = 2(wk+1 − wk)
T (wk − w∗) + ‖wk+1 − wk‖22

= −2αkg(wk, ξk)
T (wk − w∗) + α2

k‖g(wk, ξk)‖22.(A.1)

Assuming that Eξk [g(wk, ξk)] = ĝ(wk) ∈ ∂F (wk), one then obtains

Eξk [‖wk+1 − w∗‖22]− ‖wk − w∗‖22
= − 2αkĝ(wk)

T (wk − w∗) + α2
kEξk [‖g(wk, ξk)‖22],(A.2)

which has certain similarities with (4.10a). One can now introduce an assumption
of convexity to bound the first term on the right-hand side in this expression; in
particular, convexity offers the subgradient inequality

ĝ(wk)
T (wk − w∗) ≥ F (wk)− F (w∗) ≥ 0,

while strong convexity offers the stronger condition (4.11). Combined with a suitable
assumption on the second moment of the stochastic subgradients to bound the second
term in the expression, the entire right-hand side can be adequately controlled through
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judicious stepsize choices. The resulting analysis then has many similarities with that
presented in section 4, especially if one introduces an assumption about Lipschitz
continuity of the gradients of F in order to translate results on decreases in the
distance to the solution in terms of decreases in F itself. The interested reader will
find a clear exposition of such results in [105].

Note, however, that one can see in (A.2) that analyses based on distances to the
solution do not carry over easily to nonconvex settings or when (quasi-)Newton-type
steps are employed. In such situations, without explicit knowledge of w∗, one cannot
easily ensure that the first term on the right-hand side can be bounded appropriately.

Appendix B. Proofs.

Inequality (4.3). Under Assumption 4.1, one obtains

F (w) = F (w) +

∫ 1

0

∂F (w + t(w −w))

∂t
dt

= F (w) +

∫ 1

0

∇F (w + t(w − w))T (w − w) dt

= F (w) +∇F (w)T (w − w) +

∫ 1

0

[∇F (w + t(w − w))−∇F (w)]
T
(w − w) dt

≤ F (w) +∇F (w)T (w − w) +

∫ 1

0

L‖t(w − w)‖2‖w − w‖2 dt,

from which the desired result follows.

Inequality (4.12). Given w ∈ R
d, the quadratic model

q(w) := F (w) +∇F (w)T (w − w) + 1
2c‖w − w‖22

has the unique minimizer w∗ := w − 1
c∇F (w) with q(w∗) = F (w) − 1

2c‖∇F (w)‖22.
Hence, the inequality (4.11) with w = w∗ and any w ∈ R

d yields

F∗ ≥ F (w) +∇F (w)T (w∗ − w) + 1
2c‖w∗ − w‖22 ≥ F (w) − 1

2c‖∇F (w)‖22,

from which the desired result follows.

Corollary 4.12. Define G(w) := ‖∇F (w)‖22 and let LG be the Lipschitz constant
of ∇G(w) = 2∇2F (w)∇F (w). Then,

G(wk+1)−G(wk) ≤ ∇G(wk)
T (wk+1 − wk) +

1
2LG‖wk+1 − wk‖22

≤ −αk∇G(wk)
T g(wk, ξk) +

1
2α

2
kLG‖g(wk, ξk)‖22.

Taking the expectation with respect to the distribution of ξk, one obtains from As-
sumptions 4.1 and 4.3 and inequality (4.9) that

Eξk [G(wk+1]−G(wk)

≤ − 2αk∇F (wk)
T∇2F (wk)

TEξk [g(wk, ξk)] +
1
2α

2
kLGEξk [‖g(wk, ξk)‖22]

≤ 2αk‖∇F (wk)‖2‖∇2F (wk)‖2‖Eξk [g(wk, ξk)]‖2 + 1
2α

2
kLGEξk [‖g(wk, ξk)‖22]

≤ 2αkLμG‖∇F (wk)‖22 + 1
2α

2
kLG(M +MV ‖∇F (wk)‖22).
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Taking the total expectation simply yields

(B.1)
E[G(wk+1)]− E[G(wk)]

≤ 2αkLμGE[‖∇F (wk)‖22] + 1
2α

2
kLG(M +MV E[‖∇F (wk)‖22]).

Recall that Theorem 4.10 establishes that the first component of this bound is the
term of a convergent sum. The second component of this bound is also the term of
a convergent sum since

∑∞
k=1 α

2
k converges and since α2

k ≤ αk for sufficiently large
k ∈ N, meaning that again the result of Theorem 4.10 can be applied. Therefore, the
right-hand side of (B.1) is the term of a convergent sum. Let us now define

S+
K =

K∑
k=1

max(0,E[G(wk+1)]− E[G(wk)])

and S−
K =

K∑
k=1

max(0,E[G(wk)]− E[G(wk+1)]).

Since the bound (B.1) is positive and forms a convergent sum, the nondecreasing
sequence S+

K is upper bounded and therefore converges. Since, for any K ∈ N, one
has G(wK) = G(w0)+S+

K−S
−
K ≥ 0, the nondecreasing sequence S−

K is upper bounded
and therefore also converges. ThereforeG(wK) converges and Theorem 4.9 means that
this limit must be zero.
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