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SUMMARY

Large-scale microarray gene expression data provide the possibility of constructing genetic networks or
biological pathways. Gaussian graphical models have been suggested to provide an effective method for
constructing such genetic networks. However, most of the available methods for constructing Gaussian
graphs do not account for the sparsity of the networks and are computationally more demanding or in-
feasible, especially in the settings of high dimension and low sample size. We introduce a threshold
gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting
of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a
procedure is computationally feasible and can easily incorporate prior biological knowledge about the
network structure. Simulation results indicate that the proposed method yields a better estimate of the
precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present
the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These
results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic
networks based on microarray gene expression data.

Keywords: Empirical Bayes thresholding; Graphical models; Microarray; Threshold gradient descent.

1. INTRODUCTION

The completion of the human genome project and the development of many high-throughput genomic
technologies make it possible to systematically define the organization and function of gene, protein and
metabolite networks. Large-scale microarray gene expression data provide the possibility of learning gene
regulation from expression profiles and constructing the gene regulatory networks and pathways or cellu-
lar networks (Ideker et al., 2001; Friedman, 2004). Early research has mainly focused on using clustering
analysis to identify coregulated genes (Tavazoie et al., 1999). Recently, some efforts have been devoted
to developing probabilistic models for modeling regulatory and cellular networks based on genome-wide
high-throughout data, including both Bayesian network modeling (Friedman, 2004; Segal et al., 2003)
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Gradient directed regularization for sparse Gaussian concentration graphs 303

and Gaussian graphical modeling (Schafer and Strimmer, 2005; Wille et al., 2004; Dobra et al., 2004).
The goal of such probabilistic modeling is to investigate the patterns of association in order to generate
biological insights plausibly related to the underlying biological and regulatory pathways.

Graphical models use graphs to represent dependencies among stochastic variables. The graphical ap-
proach yields dependence models that are easily visualized and presented. One specific graphical model
is the Gaussian graphical model, which assumes that the multivariate vector follows a multivariate normal
distribution with a particular structure of the inverse of the covariance matrix, often called the precision
or concentration matrix. For such Gaussian graphical models, it is usually assumed that the patterns of
variation in expression for a given gene will be predicted by those of a small subset of other genes. This
assumption leads to sparsity (i.e., many zeros) in the precision matrix of the multivariate distribution and
reduces the problem to well-known neighborhood selection or covariance selection problems (Dempster,
1972). In such a concentration graph modeling framework, the key idea is to use partial correlation as
a measure of independence of any two genes, rendering it straightforward to distinguish direct from in-
direct interactions. This is in contrast to the covariance graphical model where marginal correlations are
used. It has been demonstrated in the literature that many biochemical and genetic networks are not fully
connected (Tegner et al., 2003; Jeong et al., 2001; Gardner et al., 2003) and many genetic interaction
networks contain many genes with few interactions and a few genes with many interactions. Therefore,
the genetic networks are intrinsically sparse and the corresponding precision matrix should be sparse.

In the setting when the dimension of the random variable p is relatively small as compared to the
sample size n, many different procedures for model selection for the Gaussian precision graph models
have been proposed (Dempster, 1972; Edwards, 2000; Drton and Perlman, 2003). The standard approach
as described in Edwards (2000) is backward stepwise selection. However, as noted by Drton and Perlman
(2003), the overall error rate for the stepwise procedure is not controlled. Drton and Perlman (2003) fur-
ther developed a method for calculating simultaneous p-values for all pairs and partitioning these p-values
into a significant (S) set, an intermediate (I) set and a non-significance (N) set. This procedure, called the
SINful approach, controls the overall error rate for incorrect edge inclusion. All of these methods work
well when p is small. When p is large relative to the sample size, the method of Drton and Perlman
(2003) relies on the inverse of the sample covariance matrix, which could be too conservative. Moreover,
the inverse of the sample covariance matrix is not unique in the case when n < p. In addition, none of
these procedures take into account the potential sparsity of the precision matrix in the estimation step. As
the number of genes increases, reliable estimates of the conditional independencies or the precision ma-
trix require many more observations than are usually available from gene expression profiling. However,
incorporating the sparse nature of the graphs can help improve the estimate of the precision matrix and
therefore improve inferences of the Gaussian concentration graph structure based on such estimates, for
both the cases when p > n and when p < n.

There are several approaches in the literature to covariance selection problems in the context of mi-
croarray data analysis. Schafer and Strimmer (2005) proposed a naive approach to estimate the precision
matrix by using a boosted G-inverse, then determine which off-diagonal elements are zero by a thresh-
olding and false discovery procedure. The drawback of this approach is that the sparsity is not accounted
for when estimating the precision matrix, so the procedure is expected to perform poorly. Meinshausen
and Buhlmann (2006) proposed a gene-by-gene approach by using the least absolute shrinkage and selec-
tion operator (lasso) (Tibshirani, 1996) to find neighbors for each gene. Under a large set of assumptions,
they showed that the neighbors can be consistently identified when the sample size goes to infinity, which
is very rare for microarray gene expression data. Dobra et al. (2004) proposed a Bayesian approach by
converting the dependency networks into compositional networks using the Cholesky decomposition. The
graphs are then used to estimate the precision matrix. Since Cholesky decomposition of the precision ma-
trix naturally imposes ordering restriction of the variables, the procedure is computationally quite intensive
since it has to determine gene order in their model construction. Finally, Wille et al. (2004) proposed to
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304 H. LI AND J. GUI

infer Gaussian graphs based on tri-graphs by considering all partial correlations conditioning on only one
other variable. Strictly speaking, the resulting tri-graphs are not true Gaussian concentration graphs.

In this paper, we introduce a TGD regularization procedure (Friedman and Popescu, 2004) for penal-
ized estimation of a sparse precision matrix in the setting of Gaussian graphical models and demonstrate
its application to identifying genetic networks based on gene expression data. Such a regularization pro-
cedure aims to account for the sparsity of the precision matrix in the estimation stage. The procedure does
not depend on the Cholesky decomposition as in Dobra et al. (2004) and therefore does not have to deal
with the problem of ordering the variables in the Cholesky decomposition. After obtaining the estimate of
the precision matrix, we propose to apply a bootstrap procedure to further identify the edges of the graph.
When the sample size is larger than the dimensionality, we also introduce a procedure based on empiri-
cal Bayes thresholding (EBT) (Johnstone and Silverman, 2004) on the inverse of the sample covariance
matrix. Through simulations and application to real data sets, we demonstrate that this procedure is com-
putationally feasible for both large and small sample cases and provides biologically meaningful results.

The rest of the paper is organized as follows: we first briefly review the Gaussian concentration graph-
ical models. We then present an EBT procedure and a TGD procedure for estimating the sparse precision
matrix. Following the methods, we present simulation results and an application for inference of a gene
network for isoprenoid biosynthesis pathways in Arabidopsis thaliana. Finally, we briefly discuss the
methods and results and provide possible further extensions of the method.

2. GAUSSIAN GRAPHICAL MODELS

We assume that the gene expression data observed are randomly sampled observational or experimental
data from a multivariate normal probability model. Specifically, let X be a random normal p-dimensional
vector and X1, . . . , X p denote the p elements, where p is the number of genes. Let V = {1, . . . , p} be
the set of nodes (genes), and X (k) be the vector of gene expression levels for the kth sample. We assume
that

X ∼ Np(0, �) (2.1)

with positive definite variance–covariance matrix � = {σi j } and precision matrix � = �−1 = {ωi j }. This
model can also be summarized as a graph model. Let G = (V, E) be an undirected graph with vertex set
V = {1, . . . , p} and edge set E = {ei j }, where ei j = 1 or 0 according to whether vertices i and j ,
1 � i < j � p, are adjacent in G or not. The Gaussian graphical model consists of all p-variate normal
distributions Np(0, �), where � is unknown but where the precision matrix satisfies the following linear
restrictions:

ei j = 0 ⇒ ωi j = 0.

This model is also called a covariance selection model (Dempster, 1972) or a Gaussian concentration
graph model.

Let [−i] denote the set {1, 2, . . . , i − 1, i + 1, . . . , p}. In the Gaussian graphical model, it is well-
known that the partial regression coefficients of Xi on X j in the normal linear regression p(Xi |X[−i])
is −ωi j/ωi i , j ∈ [−i], and the i j th partial correlation between the i th and the j th gene is ρi j =
−ωi j/

√
ωi iω j j . For a given gene g, we define the neighbor of this gene as

neg = {j : ωg j �= 0, j ∈ [−g]},

which contains all the genes with a non-zero partial correlation with the gene g. From the multivariate
normal distribution theory, we have the following conditional independence result,

Xg ⊥ XG\(neg∪g)|Xneg .
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Gradient directed regularization for sparse Gaussian concentration graphs 305

3. EBT AND THRESHOLD GRADIENT DESCENT REGULARIZATION

We consider the estimation of the precision matrix � based on a sample of i .i .d. observations X (k) ∈
R p, k ∈ N = {1, . . . , n}, where the set N can be interpreted as indexing the samples on which we
observe the variables in V and X (k) is the kth observation. When the sample size is larger than the number
of variables, we first propose a procedure based on sample covariance matrix and EBT (Johnstone and
Silverman, 2004). We then propose to develop a penalized procedure for estimating � using the idea of
TGD (Friedman and Popescu, 2004) to take into account the sparse nature of the precision matrix for
genetic networks. After obtaining the estimate of the precision matrix, we propose to use a bootstrap
procedure to further select the edges of a graph.

3.1 Estimation based on EBT when n > p

When p < n, the maximum likelihood estimate (MLE) of the precision matrix, denoted by �̂, is simply
of the inverse of the sample covariance matrix. However, such an MLE is expected to include many small
values and therefore cannot be used directly to select edges of a graph. We propose to apply the EBT
procedure proposed in Johnstone and Silverman (2004) on �̂ in order to select the edges of a graph and
call this the MLE–EBT procedure. Specifically, starting from the MLE of �, and denoting its elements as
ω̂i j , we calculate the estimate of the partial correlation matrix

ρ̂i j = −ω̂i j√
ω̂i i ω̂ j j

.

We then perform Fisher’s Z -transformation on all the partial correlations and denote the Z -transformed
partial correlation as zi j , i.e.

zi j = 1

2
log

1 + ρ̂i j

1 − ρ̂i j
.

Following Johnstone and Silverman (2004), we assume the following model for zi j :

zi j = ξi j + εi j , εi j ∼ N (0, σ 2),

where ξi j is the Z -transformation of the true partial correlation ρi j , σ 2 is the error variance, and the
elements ξi j have a mixture of 0 and Laplace distribution,

fprior(ξ) = (1 − w)δ0(ξ) + w Laplace(ξ),

where w is the mixture probability and δ0(ξ) is the density with mass one at zero. From this model, one
can derive the posterior distribution of ξi j . Johnstone and Silverman (2004) suggested to threshold the
values of zi j by the posterior median of ξi j and they showed that the resulting estimate of ξi j is uniformly
bounded over all signals,

sup
2

p(p − 1)

∑
i j

E |ξ̂i j − ξi j |r � C0, 0 < r � 2,

for some constant C0.
After the EBT, we would expect that many of the elements of the precision matrix with very small

values of the partial correlations are thresholded to zero, corresponding to no edges of the Gaussian graph.
This MLE–EBT approach is similar in spirit to that in Schafer and Strimmer (2005) in the settings when
p < n.
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306 H. LI AND J. GUI

3.2 Regularized estimation by TGD on the off-diagonal elements

The MLE–EBT procedure proposed above only applies when p < n. Even in this case, the sparse nature
of the precision matrix is not accounted for in the MLE of �. In order to utilize the sparse property of the
precision matrix, we propose in this section to maximize the likelihood function based on model (2.1),
subject to constraint by ‘sparse’ precision matrix �. Let ωd ≡ {ω11, . . . , ωpp} denote the vector of the
diagonal elements of the matrix � and ωo ≡ {ωi j }i �= j denote the vector of q = p(p − 1)/2 off-diagonal
elements of the � matrix. The likelihood function can be written as

w(ωd , ωo) = n

2
log |�| − 1

2

n∑
k=1

X (k)
′
�X (k), (3.1)

where X (k) is the kth observation. We assume that the variables are standardized. When p < n, the MLE
of � is simply the inverse of the sample covariance matrix, and when n < p, the MLE of � is not unique.

In order to account for the sparsity of the precision matrix �, we define a loss function as the negative
of the log likelihood function (3.1),

l(ωd , ωo) = −w(ωd , ωo).

Based on equation (3.1), the gradient of the loss function with respect to � is

∂l

∂�
= n

2
�−1 − 1

2

n∑
k=1

X (k)X (k)
′
. (3.2)

From this we can obtain the gradient of the loss function over the off-diagonal elements ωo. Define
g(ωo) = (g1(ω

o), . . . , gq(ωo)) = −∇ωol(ωo, ωd) to be the negative gradient of l with respect to ωo.
To find an optimal path from all the paths from � = I to the MLE of � or to a precision matrix surface
formed by � = S− when p > n, we start from ν = 0, ωo = (0, . . . , 0), and ωd = (1, . . . , 1) and update
the elements ωo by the following gradient descent step,

ω̂o(ν + �ν) = ω̂o(ν) + �νh(ν),

where ω̂o(ν) is the ωo value corresponding to current ν, �ν > 0 is an infinitesimal increment, and h(ν)
is the direction in the parameter space tangent to the path evaluated at ω̂o(ν). This tangent vector at each
step represents a descent direction. In order to direct the path toward parameter points with diverse values,
following Friedman and Popescu (2004), we define h(ν) as

h(ν) = { f j (ν) · g j (ν), j = 1, . . . , q},
where

f j (ν) = I [|g j (ν)| � τ · max1�k�q |gk(ν)|],
where I [·] is an indicator function, and 0 � τ � 1 is a threshold parameter that regulates the diversity
of the values of f j (ν); larger values of τ lead to more diversity. g(ν) is the negative gradient evaluated
at ω̂o(ν) and current ωd . Therefore, τ is the parameter which controls the degree of penalty and sparsity
in the ωo, with τ = 1 giving the sparsest graphs. Instead of moving along the true gradient direction, the
threshold gradient update only moves along those elements with large values of the gradient. After ωo is
updated, we update the diagonal elements of �, ωd , by maximizing the log-likelihood function (3.1) with
ωo fixed at the current values, ω̂o. This is done by using Newton–Raphson iterations.

In summary, for any threshold value 0 � τ � 1 , the TGD regularization algorithm for the sparse
Gaussian graphical model involves the following six steps:

1. Set ωo(0) = 0, ωd(0) = 1, ν = 0.
2. Calculate g(ν) = −∂l/∂ωo for the current ωo and ωd .
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Gradient directed regularization for sparse Gaussian concentration graphs 307

3. Calculate f j (ν) = I [|g j (ν)| � τ · max1�k�q |gk(ν)|] and h(ν).
4. Update ωo(ν + ν) = ωo(ν) + ν · h(ν), ν = ν + ν.
5. Update parameters ωd by maximizing the log-likelihood using Newton–Raphson iterations with ωo

fixed at ωo(ν + �ν).
6. Repeat steps 2–5.

For a given τ , it is easy to see that the likelihood function increases as the iterations increase, and different
τ correspond to different paths for � from I to S−. It should be emphasized that for a given τ , the
threshold gradient iterations stop before it reaches S− and the number of gradient iterations at which to
stop the algorithm can be determined by cross-validation (see Section 3.3). In this paper, we only consider
the algorithm with τ = 1, which corresponds to the sparsest graph for a given TGD step, and call the
proposed procedure the direct TGD procedure. Such a procedure is expected to perform better for gene
expression data since most biological or genetic networks are expected to be vary sparse (Barabasi and
Oltvai, 2004).

3.3 Model selection by cross-validation and bootstrap

As the iterations continue, more and more non-zero elements are selected in the precision matrix and the
corresponding undirected graphs grow larger. The final model should provide the best balance between
coverage (correctly identified connections/total true connections) and false positives (incorrectly identified
connections/total identified connections) (Gardner et al., 2003). We propose to use K -fold cross-validation
for choosing the number of TGD iterations, ν, where for each ν, the K -fold cross-validated log-likelihood
criterion is defined as

CV(ν) = 1

K

K∑
k=1

⎛
⎝−nk log |�−k | +

∑
i∈Vk

X (i)�X (i)

⎞
⎠ ,

where nk is the size of the kth validation set Vk and �−k is the TGD estimate of the precision matrix
based on sample V \Vk evaluated at �̂(ν). Alternatively, we can use the Bayesian information criterion
(BIC) criteria for selecting ν, where the degrees of freedom can be defined as the number of non-zero
entries of the off-diagonal elements of the precision matrix. This is similar in spirit to the lasso in lin-
ear regression where the degrees of freedom is defined as the number of non-zero coefficients (Zou
et al., 2004).

Since the number of the off-diagonal elements in the precision matrix is often quite large compared to
the sample size, there is often considerable uncertainty in the edges chosen. As a final step in the proce-
dure, we propose to use the bootstrap method to determine the statistical accuracy and the importance of
each of the edges identified by the TGD procedure. In bootstrapping, B bootstrap data sets, X∗1, . . . , X∗B ,
are sampled with replacement from the original data set such that each bootstrap sample contains n obser-
vations. We then apply the TGD procedure to each bootstrap data set and examine which edges are in the
final models. One can then choose only the edges with high probability of being non-zero in the precision
matrix over the bootstrap samples.

4. SIMULATIONS

We performed simulations to investigate how well the proposed threshold gradient procedure estimates the
precision matrix and to compare the new estimate with the inverse of the sample covariance matrix, i.e. the
maximum likelihood estimator of the precision matrix. We also evaluated the performance of the proposed
procedure in the case when p > n.
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308 H. LI AND J. GUI

4.1 Estimation when p < n

We consider Gaussian precision graphs with 40 nodes and the following four precision matrices (�) with
different degrees of sparsity:

1. Very sparse precision matrix (�1): the numbers of true neighbors or edges for each gene range from
one to four.

2. Sparse precision matrix (�2): the numbers of true neighbors or edges for each gene range from five
to nine.

3. Less sparse precision matrix (�3): the numbers of true neighbors or edges for each gene range from
8 to 14.

4. Dense precision matrix (�4): the numbers of true neighbors or edges for each gene range from 14
to 35.

Specifically, we generate 40 points randomly on a [0, 1] × [0, 1] space and then calculate all the pairwise
distances between the points. For each point (corresponding to one gene), define the k neighbors as those
with k smallest distances to this gene. By choosing different numbers of k, we can obtain graphs for
models 1–4 with different degrees of sparsity. For the pairs with edges, the corresponding elements in
the precision matrix are first generated from uniform distribution between 0.5 and 1 or between −1 and
−0.5. For each row, the diagonal element is defined as a factor of the sum of the absolute values of the
elements of the given row. Finally, each row is divided by the corresponding diagonal element so that
the final precision matrix has diagonal elements of 1 and is positive definite. The factors chosen are 2,
1, 0.8, and 0.5 for models 1–4 to ensure that the precision matrices are positive definite and the final
partial correlations are in similar ranges for all four models. See Figure 1 for a heat map plot of the partial
correlation used for simulations for the four different models. It is clear that the precision matrix gets
denser from model 1 to model 4. The actual ranges of the partial correlations range between −0.2 and 0.2
for most values (see plots in the left panel of Figure 2).

For each of the precision matrices �, we simulated 120 i .i .d. N(0, �−1) 40-dimensional vectors, i.e.
sample sizes of 120 and dimensionality of 40. For each simulated data set, we estimated the precision
matrix using the proposed TGD, TGD–EBT, MLE, and MLE–EBT procedures. For the TGD procedure,
10-fold cross-validation was used for choosing the TGD iteration step. We repeate this procedure 100
times and computed the estimates of the following two loss functions:

l(�, �̂) = tr �−1�̂ − log |�−1�̂| − n,

l2(�, �̂) = tr(�−1�̂ − I )2,

where �̂ is an estimate of �. The first loss is called entropy loss and the second loss is called quadratic
loss (Lin and Perlman, 1985).

Figure 2 presents the box plots of the two loss functions for the four different estimation procedures
based on 100 simulation runs. The estimators we considered include the inverse of the sample covari-
ance matrix (i.e. the MLE), the EBT estimator using the MLE of the precision matrix (MLE–EBT), the
proposed TGD estimate, and the TGD estimate with EBT. Overall, we observed that the TGD estimate
with or without further EBT outperformed the MLE and MLE–EBT procedures in all cases for both loss
criteria and the improvements are substantial over MLE. In addition, the more sparse the precision matrix
is, the greater gain in risk reduction we have by using the proposed TGD-based estimates. Also, although
further EBT on MLEs, indeed, reduces the loss greatly, further EBT on the TGD estimates actually results
in increase in loss. One reason for such increases in loss is that the off-diagonal elements of the estimated
precision matrix are already very sparse and the assumptions of the EBT procedure of Johnstone and
Silverman (2004) may not hold. Based on this observation, the EBT will not be applied to TGD estimates
of the precision matrix in the following analyses.
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Gradient directed regularization for sparse Gaussian concentration graphs 309

Fig. 1. Heat map of the true partial correlation matrix for models 1–4 used in the simulations, where model 1 corre-
sponds to a sparse graph and model 4 corresponds to a dense graph. For each plot, the white dots indicate the non-zero
partial correlation between two genes and the two axes index the genes.

To further demonstrate that the TGD procedure gives sensible estimates of the partial correlations, we
plot in the left panel of Figure 3 the estimated partial correlations versus the true partial correlations for all
the true edges (i.e. those pairs with non-zero true partial correlations) and the estimated partial correlations
for those pairs with zero partial correlations (plots on the right panel). Clearly, the estimates of the partial
correlations from TGD correlate quite well with the true values for gene pairs with edges. In comparison,
the estimates are zeros for most of the conditionally independent pairs, especially for the case when the
graph is very sparse (model 1). In addition, as expected for estimates based on any regularized procedure,
we note that the estimates of the partial correlations from TGD are in general smaller than the true values.
In other words, the TGD procedure shrinks the estimates of partial correlations toward zero.

4.2 Estimation when p > n

Finally, we demonstrate that the proposed procedure is computationally feasible and provide sensible
results even when p > n. We simulated sparse graphs with n = 100 and p = 200. A similar procedure
was used for generating the precision matrix, and the resulting 286 non-zero off-diagonal elements range
from −0.56 to 0.48 with most values between −0.2 and 0.2.

In order to assess how the results change as the TGD iterations go, we plot in Figure 4 the sensitiv-
ity, specificity, and false-negative and false-positive (or false discovery) rates as a function of the TGD
interaction step, for a total of 10 000 steps (�ν is taken to be 10−4), where the sensitivity is defined as
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310 H. LI AND J. GUI

Fig. 2. Box plot of the loss functions based on 100 replications, where the left panel represents the entropy loss and
the right panel represents the quadratic loss.
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Gradient directed regularization for sparse Gaussian concentration graphs 311

Fig. 3. Scatter plots of true against the estimated partial correlations for models 1–4 over 100 replications. The left
panel represents the true edges and the right panel represents those with zero partial correlations.
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312 H. LI AND J. GUI

Fig. 4. Results based on simulation for Gaussian graphs with p = 200 and sample size of n = 100. For each plot, the
x-axis is the TGD step, and the y-axis is sensitivity (a), specificity (b), false discovery rate (c), and false-negative rate.
The dashed lines are ±1 SE based on 50 replications.

the proportion of the identified edges as being the true edges and the false discovery rate is defined as the
proportion of wrong edges among those identified by the TGD procedure. Specificity and false-negative
rates are similarly defined. First, as expected for very sparse graphs, we observe that the TGD procedure
results in very high specificity and very low false-negative rate, and both rates decrease as iterations go.
On the other hand, as the TGD iterations go, both the sensitivity and false discovery rate increase. For
example, for a false discovery rate of 20%, the sensitivity is about 60%, and for a discovery rate of 30%,
the sensitivity increases to about 65%. Based on BIC criteria, treating the number of non-zero off-diagonal
elements as the number of effective parameters, the algorithm stops at about the 8000th TGD step, which
corresponds to a sensitivity of about 65%. This example demonstrates that the TGD procedure behaves
well even when p > n.

5. APPLICATIONS TO ISOPRENOID PATHWAYS IN A. Thaliana

The isoprenoid biosynthetic pathway provides intermediates of many natural products including steroles,
chlorophylls, carotenoids, plastoquinone, and abscisic acid. It is now known that plants contain two path-
ways for the synthesis of the structural precursors of isoprenoids: the mevalonate (MVA) pathway, located
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Gradient directed regularization for sparse Gaussian concentration graphs 313

Fig. 5. Pathways identified by the TGD method for the 40 genes in the isoprenoid pathways, where the solid arrows
are the true pathways and the curved undirected lines are the estimated edges with bootstrap probability of greater
than 0.5 for the TGD method. For this plot, the left panel represents a subgraph of the gene module in the MEP
pathway and the right panel represents a subgraph of the gene module in the MVA pathway. The numbers on the
estimated edges are the bootstrap probabilities.

in the cytosol/endoplasmic reticulum, and the recently discovered methylerythritol 4-phosphate (MEP)
pathway, located in the plastids. The pathway in plastids, which is MVA independent, occurs and is re-
sponsible for the subsequent biosynthesis of plastidial terpenoids such as carotenoids and the side chains
of chlorophyll and plastoquinone (Wille et al., 2004). It is therefore important to understand the orga-
nization and regulation of this complex metabolic pathway, with the long-term goal of using the gen-
erated knowledge to undertake metabolic engineering strategies oriented to increase the production of
isoprenoids with pharmaceutical and food applications, and also to the design and development of new
antibiotics.

In order to better understand the pathway and gain insights into the cross-link between the two path-
ways at the transcriptional level, Wille et al. (2004) reported a data set including the gene expression
patterns monitored under various experimental conditions using 118 GeneChip microarrays. For the con-
struction of the genetic network, they focused on 40 genes, 16 of which were assigned to the cytosolic
MVA pathway, 19 assigned to the plastidal MEP pathway, and five genes encoding proteins located in
the mitochondria. See the solid lines of Figure 5 for the MVA and the MEP pathways and the genes
involved.

5.1 Results from the TGD procedure

In order to demonstrate whether the proposed TGD method can identify the known isoprenoid path-
ways of these 40 genes based on the 118 gene expression measurements, we first estimated the precision
matrix by the threshold gradient methods. Using 10-fold cross-validation, the TGD procedure resulted in
20 non-zero off-diagonal elements. We next used a bootstrap with the TGD procedure to estimate the
confidence of the edges. With bootstrap probability of 0.50 or higher, we identified 19 pairs of genes
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Fig. 6. Pathways identified by the tri-graph method by Wille et al. (2004) (left plot) and the SINful approach with
cutoff p-value of 0.50 (right plot) for the 40 genes in the isoprenoid pathways, where the solid arrows are the true
pathways and the curved undirected lines are the estimated edges. For each plot, the left pane includes a subgraph
of the gene module in the MEP pathway and the right panel includes a subgraph of the gene module in the MVA
pathway.

which are connected with high confidence, of which 12 pairs have a bootstrap probability of 0.80 or higher.
These 19 pairs are plotted on the true network in Figure 5. We find a module with strongly interconnected
genes in each of the two pathways. For the MEP pathway, 1-deoxyxylulose-5-phosphate synthase (DXPS),
1-deoxyxylulose-5-phosphate-reductoisomerase (DXR), 2-C-methylerythritol-4-phosphate cytidyltrans-
ferase (MCT), 4-(cytidine-5′-diphospho)-2-C-methylerythritol kinase (CMK), and 2-C-methylerythritol-
2,4-cyclodiphosphate synthase (MECPS) are connected as the true pathway. Similarly, the genes in the
MVA pathways, acetyl-CoA/acetyl-CoA C-acetyltransferase (AACT), 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGR), mevalonate kinase (MK), mevalonate 5-diphosphate decarboxylase (MPDC), and
Farnesyl diphosphate synthase (FPPS) are closely connected. In addition, there are also several genes in
the MEP pathway which are linked to proteins in the mitochondria.

It is interesting to note that although both the TGD method and the tri-graph method of Wille et al.
(2004) identified two closely connected genetic modules (see left plot of Figure 6), the method based
on tri-graph seems to include many more edges for each module and more cross-links between the two
pathways. While there is some evidence of cross-links between the two pathways, one should not expect
that the two pathways are so closely linked since genes of the two pathways belong to two different cell
compartments. One possible explanation of such a difference is that the tri-graph conditions only on one
other gene at each calculation and therefore cannot capture multigene effects when considering the partial
correlations for a given pair of genes.

5.2 Comparison with other methods

As a comparison, we applied the SINful procedure using the inverse of the sample covariance matrix and
the MLE–EBT procedure to the same data set. If we used p-value less than 0.10 for the SINful procedure,
we only identify 11 edges, all from the MEP pathway, and none of the edges in the MVA pathways were
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identified by either of the two methods. Even if the p-value is set to 0.50, many false edges between MEP
and MVA pathways are identified and even the tightly connected DXR–HDS [1-hydroxy-2-methyl-2-(E)-
butenyl-4-diphosphate synthase] module cannot be identified (see right plot of Figure 6). Similarly, the
MLE–EBT procedure also only identified a few edges and failed to identify the DXR–HDS module (not
shown).

6. DISCUSSION

We have proposed a TGD-based regularization procedure for performing penalized estimation for the
Gaussian graph models in order to account for the sparsity of the precision matrix. Such a procedure is
computationally feasible even when the number of variables is greater than the sample size. We have
demonstrated the method by simulations and application to identify the A. thaliana isoprenoid pathways
based on 40 genes and 118 experimental conditions. The results indicate that empirically defined asso-
ciations based on the sparse Gaussian graphs, indeed, link to functional activity in isoprenoid metabolic
pathways and many key biological interactions in the isoprenoid metabolic pathways are captured by
graphs constructed by our method. However, biologically speaking, it is important to keep in mind that
the Gaussian concentration graphs built based on our proposed method should properly be considered as
coexpression or coregulation networks and not as genetic regulatory networks per se.

We have demonstrated the importance of accounting for sparsity of the precision matrix in the estima-
tion stage, even in cases when the sample covariance matrix is invertible and the sample precision matrix
is unique. As clearly demonstrated by our simulations, by accounting for the sparsity in the estimation
stage, the estimate of the precision matrix is closer to the true matrix than the naive method of inverting
the sample covariance matrix. This is in contrast to the procedure proposed by Schafer and Strimmer
(2005) when such sparsity is not accounted for in the estimation stage. Our simulation also indicates that
the TGD procedure has no computational difficulty in high-dimensional settings when p > n for p in
the order of hundreds. When p is very large, the major computational burden is on updating the diagonal
elements when the off-diagonal elements are known and are sparse during the TGD iterations. In this
paper, we simply used Newton–Raphson iteration for updating the diagonal elements. For p = 200 and
n = 100, it took about 70 min to finish 10 000 TGD iterations on a desktop personal computer using R
(3.2 GHz and 1.0 G RAM). More efficient computation may be developed to fully utilize the sparsity of
the off-diagonal elements. Alternatively, one may only perform one-step Newton–Raphson updates during
each of the TGD steps. This deserves further investigation.

For sparse graphs, it is expected that the TGD procedure should give high specificity and low false-
negative rates. For the settings when p > n, one crucial step of the proposed TGD algorithm is to decide
when to stop the TGD iterations. In this paper, we used cross-validation based on the likelihood and found
that the algorithms tend to stop late and therefore result in relatively high false-positive rate and, of course,
also high sensitivity. On the other hand, the BIC criteria treating the number of non-zero off-diagonal
elements as the degrees of freedom often stop the iterations early and result in low false-positive rates
and also low sensitivity. How to stop the TGD iteration to obtain an optimal trade-off between sensitivity
and false discovery rate deserves further investigation. Some biological knowledge about the networks
can help. An alternative is to choose the graphs based on the power law of the numbers of the neighbors
which were often observed for biological or genetic networks (Barabasi and Oltvai, 2004).

An important area of future research is to improve the networks identified by the TGD–EBT procedure
by incorporating other biological information such as gene ontology or known biochemical pathways and
to develop methods that allow for non-linear relationships among the variables. One way of extending
the proposed method in order to incorporate prior known pathways information is to perform gradient-
based thresholding only on elements with uncertain edges. Suppose that we have known a certain genetic
pathway or network involving a set of ps genes, denoted by Vs . The prior knowledge about the underlying
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genetic or biological networks can be rephrased as certain edges in the graphs involving these ps genes
are definitely present. In order to ensure that the known edges are included in the graphs identified, we
can modify the TGD algorithm by setting thresholds on the negative gradients of the elements only in
the precision matrix that correspond to uncertain edges to ensure that the edges corresponding to the
known pathways have non-zero partial correlations. Since the proposed method is mainly aimed to identify
gene coexpression networks based on gene expression data, it would be interesting to extend the ideas in
this paper for integrating various sources of genomic data, such as sequences and transcriptional factors
binding data, with microarray gene expression data in order to obtain better understanding of complex
genetic networks, including genetic transcriptional networks.

The TGD regularization method was originally developed by Friedman and Popescu (2004) in the
context of classification and linear regression when sample size is large or the dimension of predictors is
high and was further extended for the Cox regression (Gui and Li, 2005). To our knowledge, this paper
is the first attempt to extend this procedure to estimate a sparse precision matrix in Gaussian graphical
models. As indicated by Friedman and Popescu (2004), for linear regression and classification problems,
the TGD procedure with τ = 1 gives similar results as Tibshirani’s lasso. However, for the estimation of
sparse Gaussian models, our proposed TGD procedure is very different from the lasso approach proposed
by Meinshausen and Buhlmann (2006), where they proposed to perform lasso for each gene using the
rest of the genes as predictors in a linear regression setting. In contrast, our TGD procedure considers the
sparse nature of the numbers of neighbors for all the genes simultaneously. The connection between these
two procedures is not clear.

In conclusion, we have proposed a TGD regularization procedure for estimating sparse Gaussian pre-
cision models and have demonstrated its application in generating gene networks based on microarray
gene expression data. This procedure will be quite useful in studying the associations among genes based
on gene expression data.
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