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nja Žnidaršič a,∗,  Anuška  Ferligojb,  Patrick  Doreianc,b

Faculty of Organizational Sciences, University of Maribor, Slovenia
Faculty of Social Sciences, University of Ljubljana, Slovenia
Department of Sociology, University of Pittsburgh, USA

 r  t  i  c  l  e  i n  f  o

eywords:
etwork
ctor non-response
lockmodeling
issing data

a  b  s  t  r  a  c  t

Discerning  the  essential  structure  of  social  networks  is a  major  task.  Yet,  social  network  data  usually
contain  different  types  of  errors,  including  missing  data  that  can  wreak  havoc  during  data  analyses.  Block-
modeling  is one  technique  for delineating  network  structure.  While  we  know  little  about  its  vulnerability
to  missing  data  problems,  it is  reasonable  to expect  that  it is  vulnerable  given  its  positional  nature.  We
mputation focus  on  actor  non-response  and treatments  for this.  We  examine  their  impacts  on  blockmodeling  results
using  simulated  and  real  networks.  A set  of  ‘known’  networks  are  used,  errors  due  to  actor  non-response
are  introduced  and  are  then  treated  in  different  ways.  Blockmodels  are  fitted  to  these  treated  networks
and compared  to  those  for the  known  networks.  The  outcome  indicators  are  the  correspondence  of  both
position  memberships  and  identified  blockmodel  structures.  Both  the amount  and type  of  non-response,
and  considered  treatments,  have  an  impact  on  delineated  blockmodel  structures.
. Introduction

Surveys and questionnaires are the most used techniques for
athering network data (Marsden, 2005, 2011; Wasserman and
aust, 1994). Because all methods have the potential for introduc-
ng different types of errors, including measurement errors, it is
ecessary to consider the implications of these errors in two ways.
ne is to consider how certain types of error can be reduced (a very
ood thing in its own right) and the other is to assess the impact
f errors on the results obtained from using network analytic tools
given that measurement error is likely to be present). Of course,
he two are not unrelated even though we focus here on the second
ssessment.

Our concern here is when all data from some egos regarding
heir alters in the network are missing and the implications
his has for blockmodeling approaches to the study of network
tructure. The paper is organized as follows: Section 2 considers
riefly errors in research designs regarding social networks with
n emphasis on actor non-response. Blockmodeling of binary

etworks is discussed briefly in Section 3 and Section 4 presents
ossible non-response treatments. Section 5 describes how these
reatments are used in our simulation study. Our results, in terms
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of the stability of blockmodels, are presented in Section 6. We
finish with a summary of the results (Section 7) together with
some recommendations for further work.

2. Actor non-response

A broader set of error sources is shown in Fig. 1. The first cut is to
distinguish boundary specification problems, questionnaire design,
and errors due to respondents.

Boundary specification problems concern rules of inclusion
for actors in studied networks (Laumann et al., 1983; Doreian
and Woodard, 1994; Kossinets, 2006). Network instruments are
another source for introducing errors. Three different ques-
tion formats are often considered when designing instruments
for collecting social network data: (i) free or fixed choice
designs (Holland and Leinhardt, 1973; Kossinets, 2006); (ii)
using recall or recognition of actors (Hlebec, 1993; Brewer,
2000; Brewer and Webster, 2000; Hlebec and Ferligoj, 2001;
Bell et al., 2007); and (iii) seeking data for directed or sym-
metric ties (Stork and Richards, 1992; Ferligoj and Hlebec,
1999).

Errors due to actors (beyond those due to poor instrument

design) can be divided also into three categories: (i) complete
actor non-response; (ii) non-response regarding specific ties
(Rumsey, 1993; Borgatti et al., 2006; Huisman and Steglich, 2008;
Huisman, 2009; Žnidaršič et al., submitted for publication); and
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2010a,b); in an R-package called Blockmodeling (Žiberna, 2008);
and in UCINET (Borgatti et al., 2002).

To study the consequences of non-response (Section 5) we
confine our attention to structural equivalence, the most popular

1

Fig. 1. Scheme of errors in research designs.

iii) measurement errors in recorded ties (Holland and Leinhardt,
973; Feld and Carter, 2002).

Rather than deal with all forms of errors due to actors, we con-
ne our attention to complete actor non-response (regardless of
he source). As noted above, non-response in social networks may
ppear in two forms. Item or tie non-response (Žnidaršič et al.,
ubmitted for publication) occurs, when an actor participates in
he research but the data on particular tie(s) are absent, because the
ctor does not indicate the presence or absence of particular ties.
he right panel of Fig. 2 shows tie non-response by three actors {C,
, K} (marked with gray squares with NA labels). In contrast, actor
on-response occurs when all data from some actors are missing.
his is shown in the left panel of Fig. 2 where the same three actors
efused to respond or were excluded by design. The rows of missing
ies are denoted with gray squares and NA labels.

Let n denote the number of vertices in a network and m the
umber of actors providing no responses. Each non-respondent

mplies (n − 1) missing ties. The actor response rate is (1 − m/n).
t is straightforward to show that the ‘relational response rate’
the proportion of potentially observed ties that are measured)
s also (1 − m/n) (Knoke and Yang, 2008). For the (n − m) respon-
ents, there are (n − m)(n − m − 1) measured ties. Assuming that
ata are obtained for all of them, the proportion of these fully
bserved network ties is (n − m)(n − m − 1)/n(n − 1). There are
n − m)m descriptions of ties between respondents and non-
espondents and their proportion is equal to (n − m)m/n(n − 1).
he number of missing ties is m(n − 1) and their propor-
ion is m(n − 1)/n(n − 1) = m/n. They consist of: (i) missing ties
etween non-respondents and respondents (the proportion of
hese ties is m(n − m)/n(n − 1)) and (ii) completely missing ties
whose proportion is m(m − 1)/n(n − 1)). The schematic represen-
ation of these types of ties is presented in the left panel in
ig. 3.

For example, if n = 15 and m = 3: both the actor response rate
nd the relational response rate is 0.8; the proportion of fully
escribed ties is 0.63; the proportion of described ties between
espondents and non-respondents is 0.17; the proportion of miss-
ng ties between non-respondents and respondents is 0.17; and
he proportion of completely missing ties is 0.03. The right panel
n Fig. 3 shows these proportions for a network where n = 15 and

 ≤ m ≤ 10. The relational response rate declines linearly with the
umber of actors not responding (m), consistent with Knoke and
ang (2008).  The proportions of the fully observed part of the net-
ork decline in a more extreme way. The proportion of missing ties

ncreases in a non-linear fashion. The curve for the observed part
f the network has a different non-linear pattern as m increases.
he right panel of Fig. 3 suggests that non-response can be a major
roblem, one that gets worse as it increases.
In reviewing the network literature, Stork and Richards (1992)
eport response rates varying from 65% to 90%. Costenbader and
alente (2003) report, based on sample of 59 networks, a wider
orks 34 (2012) 438– 450 439

range between 51% and 100%.1 The extreme kind of examples
shown on the right of Fig. 3 are possible in empirical research.

The effects of actor non-response on network properties such as
network density, average vertex degree, out-degree or in-degree,
clustering coefficients, transitivity, assortivity, and geodesic dis-
tances have been examined. (See, for example: Stork and Richards,
1992; Costenbader and Valente, 2003; Kossinets, 2006; Huisman,
2009.) Our concern regarding the impact of actor non-response
focuses on a different network property. Robins et al. (2004:258)
point out that “many network studies are based on the premise
that in order to understand some social phenomenon of inter-
est, it is necessary to understand the arrangement of network ties
into larger network structures and sub-structures”. Blockmodeling
(Doreian et al., 2005), one way  of delineating the wider structures
and substructures of a network, may  be particularly vulnerable to
the presence of non-response and, if so, results from it using could
be misleading.

3. Blockmodeling

The results of blockmodeling procedures are partitions of the
actors into clusters (called positions), and, simultaneously, par-
titions of the ties into blocks which are determined by the ties
between actors in positions (Wasserman and Faust, 1994; Doreian
et al., 2005). The actors within a cluster should have the same
(or a very similar) pattern of ties based on a selected equivalence.
The resulting blockmodel is a smaller representation of a network
which captures its essential structure. This ‘reduced’ graph is an
image of the network. The units in this image are positions made
up of equivalent actors and the arcs (summarizing blocks) represent
ties between positions.

Blockmodel partitioning is based on some type of equivalence
with structural equivalence still being the most commonly used
type. Units are structurally equivalent if they are connected to the
rest of the network in identical ways. Batagelj et al. (1992b) proved
that for structural equivalence there are only two  possible ideal
blocks: null (no ties between actors in a block, covered with zeroes
in matrix representation), and complete (ties between all pairs of
actors in a block).

Regular equivalence, a generalization of structural equivalence,
is one where units are equivalent if they link in equivalent ways
to other units that are also equivalent (White and Reitz, 1983).
For regular equivalence only null and regular block (which have at
least one 1 in each row and in each column) are possible (Batagelj
et al., 1992a).  The concept of generalized equivalence (Doreian et al.,
2005) is defined by a set of allowed blocks where the set of com-
plete, null and regular blocks can be widened to row-dominant,
column-dominant, row-regular, column-regular and other (also
newly constructed) types of blocks.2

Batagelj et al. (1992a,b) distinguish indirect and direct block-
modeling approaches. The direct approach implies fitting a set of
permitted block types to a network. This is done by minimizing
a compatible criterion function which compares the agreement
between ideal blocks and empirical blocks. Both direct and indirect
approaches have been implemented in Pajek (Batagelj and Mrvar,
They excluded four networks from their analysis because their response rates
were lower than 50%.

2 Space limitations preclude a full listing of more block types but readers are
referred to Doreian et al. (2005: Chapter 7, especially Table 7.1 and Figure 7.1.)
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Fig. 2. Types of non-response in networks: actor non-response (left) and item non-response (right). Missing (or absent) data are denoted with gray squares and label NA.
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Fig. 3. Scheme of types of ties in network with actor no

quivalence in SNA and use the direct approach.3 The broad
esign of our study of the sensitivity of blockmodeling to treat-
ents for non-response is straightforward. We  start with a given

known) network that is either real or is generated using a specific
et of parameters. We  then introduce a controlled amount of
ctor non-response and treat the resulting network data for this
on-response. Given the known network, we know also the true
lockmodel. Blockmodels obtained by fitting the ‘treated’ network
ata are compared to the known true blockmodel. Two  ways of
omparing a pair of blockmodels are described next.

.1. Comparison of two blockmodels
We  compare a pair of blockmodels in two different ways. The
rst uses the Adjusted Rand Index (Hubert and Arabie, 1985) to
easure the differences between the two partitions in terms of

3 The stability of blockmodeling for other types of equivalences were also studied
Žnidaršič,  2012).
onse (left) and proportions of types of ties in network.

their composition. Equally important – perhaps more important
– is whether the identified blocks, given the positions for the
treated network, correspond (or not) to the block types in the true
blockmodel. Further, the correct block types need to be in their
correct blockmodel locations. This is measured by a second index
calculated as the proportion (or percent) of incorrectly located
blocks.

3.1.1. The Adjusted Rand Index (ARI)
One widely used and popular index for comparing partitions or,

more precisely, measuring the concordance between them is the
Rand Index (Hubert and Arabie, 1985; Saporta and Youness, 2002).
Its computation is based on how pairs of units are placed in two
partitions U and V of the same data set of size n. The total number( )

of possible combinations of pairs is

n
2

and they can be classified

into four groups as presented in Table 1. The frequencies in the four
cells of the table are denoted by a, b, c and d.
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Table 1
The joint classification of pairs of units in two partitions.

Partition V Partition U

Pair in same group Pair in different groups
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means that all ties between respondents and non-respondents (as
reported by one actor) are removed from the analysis. The result is
the smaller network as shown in Fig. 4(b).
Pair in same group a b
Pair in different groups c d

The Rand Index is the fraction of agreement and is computed as:

I = a + d

a + b + c + d
= a + d(

n
2

) (1)

he distribution of the Rand Index is far from normal and depends
n “the number of clusters, their proportions and separability
Saporta and Youness, 2002:347).” The Rand Index has some imper-
ections so that the expected value of the Rand Index of two  random
artitions does not take a constant value (Santos and Embrechts,
009; Vinh et al., 2009). There is agreement in the literature that

 correction (or normalization) for chance is necessary and that
he Adjusted Rand Index is preferable (Yeung and Ruzzo, 2001;
teinley, 2004; Warrens, 2008; Santos and Embrechts, 2009; Vinh
t al., 2009). The ARI is computed as

RI = Rand Index − Expected Index

Maximum Index − Expected Index
=

=

(
n
2

)
(a + d) − ((a + b) (a + c) + (c + d) (b + d))

(
n
2

)2

− ((a + b) (a + c) + (c + d) (b + d))

(2)

ts expected value is 0 and its maximal value is 1. Based on extensive
imulations, Steinley (2004) presented some general guidelines
or interpreting values of the ARI for determining the agreement
etween two  partitions: (i) ARI ≥ 0.9 indicates excellent agreement;
ii) 0.9 > ARI ≥ 0.8 suggests good agreement; (iii) 0.8 > ARI ≥ 0.65 can
e viewed as moderate agreement; and (iv) ARI ≤ 0.65 indicates
oor agreement.

.1.2. The proportion of incorrect blocks
The second index for comparing blockmodels is the proportion

f incorrect block types in a blockmodel compared to a reference
lockmodel where all block types and their locations are known.

Let I1 be the image of the true (original) blockmodel and I2
he image of a blockmodel obtained from a network having non-
esponse measurement errors. Consider the following example for
wo blockmodels:

1 =
[

com null
null com

]
I2 =

[
com null
null null

]
(3)

he proportion of incorrect blocks (ErrB) is the number of block
isagreements (defined in relation to the known blocks and their

ocations in the reference blockmodel) divided by the number of
locks in the blockmodel4:
rrB = number of block disagreements

number of blocks in a blockmodel
= 1

4
(4)

4 We assume that the two blockmodels have the same number of positions and
ence blocks. If an established blockmodel has a different number of positions than
he  reference blockmodel, we regard it as a very poor blockmodel and do not con-
ider this further.
orks 34 (2012) 438– 450 441

If the two  blockmodels agree perfectly about block types then
ErrB = 0. However, when the two  images disagree regarding the
locations of block types then ErrB > 0. In our example, I2 differs
from the image matrix, I1, of the reference blockmodel and the
proportion of incorrect blocks is 0.25 (see Eq. (4)). According to our
empirical evidence we will say that blockmodels are acceptable if
ErrB will be below 0.2.

These two indices provide a clear and intuitively straightforward
way  of measuring the correspondence of two  blockmodels. Their
relevance is suggested by the importance of two  central ideas of
social network analysis (SNA) noted by Doreian (2008:3). “The first
is that the structure of a social network, as a whole, is important to
collective outcomes at the level of the network. The second is that
the location occupied in a network is important for outcomes at
the actor level”. In terms of blockmodeling networks, the image of
the network captures the network level and the locations of actors
are reflected in position memberships. Both have to be depicted
accurately to examine these two  basic network ideas empirically.

4. Missing data treatments

Stork and Richards (1992) suggest that the presence of non-
respondents for collected network data can be treated in three
different ways: (i) using a complete-case analysis, (ii) using an
available-case analysis, and (iii) imputing data values as replace-
ments of the missing data. The field of missing data approaches is
developing quickly and the procedures can be roughly classified
into four categories (Schafer and Graham, 2002): (i) complete-case
analysis, (ii) reweighting, (iii) (single) imputations, and (iv) (max-
imum likelihood) model-based methods (e.g. EM algorithm). We
expand the list of Stork and Richards to consider five different
missing data treatments: the complete-case approach, imputations
based on modal values, imputations by reconstruction, combina-
tion of reconstruction and imputation based on modal values and
null tie imputations. The impacts of these procedures on delineated
blockmodels are discussed in Section 6.5

4.1. The complete-case approach

With no outgoing ties for each non-respondent, there are
rows of missing ties in the matrix representation of the observed
network. Consider the example shown in Fig. 4(a) having three non-
respondents B2, B6, and G1 (denoted with gray color and label NA).
Note that some of the respondents (e.g. B1 and B5) report ties to
other non-respondents. From the right panel of Fig. 4(a) there is an
apparent blockmodel structure with two complete blocks on the
diagonal and two null blocks off the diagonal.

The complete-case approach, known also as ‘listwise’ deletion
of actors (Huisman and Steglich, 2008), removes not only the rows
for the non-respondents but also their columns. Removing columns
5 There exists a wide area of other approaches to missing data in social net-
works we do not consider here. Exponential random graph (p*) models (Robins
et al., 2004) are an example of (likelihood) model-based treatments. Other pos-
sible non-response data treatments include: a reconstruction procedure where ties
between non-respondents are imputed randomly with a probability proportional
to  the network density (Huisman, 2009); imputation by preferential attachment
where the probability of a tie from actor i to actor j depends on the indegree of actor
j  (Huisman and Steglich, 2008) and ‘hot deck’ imputations where actor attributes
are used. Huisman (2009) used both categorical data (about actors) and structural
properties to locate a completely observed donor actor as a source to substitute ties
for a non-responding actor. We do not consider actor attributes here.
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Fig. 4. Network with three non-respondents (B2, B6 a

Robins et al. (2004) argue that this approach amounts to respec-
fying the network boundary: non-respondents are removed to
reate a smaller network. The complete case analysis might be valid
hen non-respondents are missing completely at random. How-

ver, if this does not hold then the results may  be biased because
he sample of remaining actors may  be unrepresentative (Schafer
nd Graham, 2002). Stork and Richards (1992:197) argue that the
omplete approach “seriously weakens any analysis at the system
evel”.

.2. Imputations

Imputations of ties in social networks replace missing ties by
stimates to create an apparently full data set. There are four
ypes of simple imputation procedures where each missing value is
mputed only once (Schafer and Graham, 2002; Huisman, 2009): (i)
mputation of unconditional means; (ii) imputations from uncon-
itional distributions; (iii) imputing using conditional means; and
iv) imputating using conditional distributions. Here, we  focus on
he first group of imputations. Huisman (2009) outlines three possi-

le methods for imputing unconditional means in social networks.
nly two of those methods are relevant here6.

6 The third possibility of imputing unconditional means is the average number of
utgoing relations of an actor or ‘person mean’. For complete actor non-response,
here all outgoing ties are missing, this method is inapplicable.
) and three treatments for dealing with missing data.

4.2.1. Using the total mean and the null tie imputation
The first method uses the average number of ties in the net-

work. This is the ‘total mean’ of the observed ties which is also
the density of a network. For binary networks this means imput-
ing zeros instead of missing ties in sparse networks and ones
in dense networks. Some threshold is required for this impu-
tation. Huisman used 0.5 as the threshold in his simulation
study. We  note that Costenbader and Valente (2003) reported
network densities between 0.01 and 0.49 for a sample of 59
networks.

Frequently used non-response data treatment is null tie impu-
tation where zeroes are imputed instead of missing ties also in the
case of denser networks.

4.2.2. Using means of incoming ties
The third option imputes the average value of incoming ties of an

actor which is known also as the ‘item mean’. For binary networks
this implies imputing ones if actors are popular given their received
ties. Operationally, this also requires a threshold. When this is set at
0.5, a tie is imputed if the actor is chosen by at least half of respon-
dent actors (Fig. 4(d)). More precisely, for each missing outgoing
tie xij (i /= j) of the non-respondent i, the mean value of all avail-

able incoming ties of actor j is imputed. For binary networks, this
implies the imputation of the modal values of the incoming ties and
this procedure is termed ‘imputations based on modal (indegree)
values’ in this paper.
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Fig. 5. Boy–girl network of liking ties (left), two  partitions b

.2.3. Reconstruction
Reconstruction of the missing outgoing ties of non-respondents

ccurs when they are replaced by the observed incoming ties to
hose actors (Stork and Richards, 1992; Huisman, 2009). The result
s that ties involving non-respondents and respondents become
ymmetric. Stork and Richards (1992) argued that reconstruction
s not the same as imputation because, in the reconstruction proce-
ure, no new ties are added. The reconstruction simply allows that
he relationship between two persons, in essence, can be measured
y using one report of the tie.

We  note that the reconstruction procedure can be viewed in
wo different ways: (i) in the case of undirected networks it
s an ‘available case approach’ which uses both the completely
escribed ties between respondents and the partially described ties
etween respondents and non-respondents into account (Stork and
ichards, 1992), (ii) in case of directed networks it is an imputation
rocedure because the missing tie is estimated from the opposite
ie (Huisman, 2009).

However, for two non-respondents the reconstruction of ties
etween them is not possible. Some additional imputations are
equired to record data for them. In the simplest case, those unavail-
ble ties (marked as NA in Fig. 4(c)) have zeroes imputed.7 Two
riteria must be met  before attempting to reconstruct ties (Stork
nd Richards, 1992): (i) respondents and non-respondents should
ot systematically differ from each other and (ii) partially observed
ies between respondents and non-respondents should be reliable
escriptions of the relationships involving them.

.2.4. Reconstruction plus imputations based on modal
indegree) values

It is possible to combine the reconstruction procedure with
mputations based on modal indegree values for ties between non-
espondents. More precisely, if actors i and j are non respondents,
he tie xij between them cannot be replaced with reconstruction
ties between non-respondents are presented as NA in Fig. 4(c)).
herefore, the modal value of incoming ties of actor j (modal value
f column j) is computed and imputed instead of missing tie xij.8

. The design of our simulation study
To investigate the vulnerability of blockmodels to different
umbers of non-responding actors, along with various ways of

7 A more satisfactory imputation is presented in Section 4.2.4.
8 There are also other possibilities for imputing ties between non-respondents.

or example, Huisman (2009) suggested random imputations where the probability
f  a tie is proportional to the observed network density. We  do not consider this
lternative here.
n structural equivalence (middle) and image matrix (right).

treating such missing data, we  used simulation to study complete
actor non-response where all outgoing ties of at least one actor
are missing. We  use the following terms: a whole network that is
known; a measured network which is obtained from the whole net-
work by removing all outgoing ties for some actors; and a measured
and treated network obtained by treating actor non-responses in a
measured network.

Section 5.1 describes the overall design of the simulations;
Section 5.2 describes three types of whole networks; Section 5.3
outlines the introduction of non-response missing data and Section
5.4 presents five ways of treating the introduced missing data.

5.1. A scheme for simulations

For each whole binary network (presented in Section 5.2) block-
models are established. Next, non-response is created using three
different mechanisms (presented in Section 5.3), and five different
non-response treatments are applied (Section 5.4). Blockmodels
of whole and treated networks were compared using both indices
presented in Section 3.1.

5.2. Whole networks

We use two types – real and simulated – whole networks. The
real networks are used as demonstration examples before turning
to the full simulation study.

5.2.1. Real whole networks
5.2.1.1. A gender based network of liking ties. The first real network
presents a liking relationship between boys and girls in a classroom
(used by Doreian et al., 2005:237) and is presented in Fig. 5 (left).
There are two clear gender based subgroups, each with many inter-
nal ties (see the middle panel of Fig. 5). The best fitting model using
structural equivalence having two  clusters is shown in Fig. 5 (right).
There are 12 inconsistencies and they are all null ties within the two
diagonal blocks. (This served as a prototype for the near-symmetric
blockmodel structure in Section 5.2.2.)

5.2.1.2. A student note borrowing network. Data for a note borrow-
ing network for 15 undergraduate students attending lectures of a
course were collected by Hlebec (1993) and used by Batagelj et al.
(2004:460). The students were asked: “From whom would you bor-
row learning materials?” The number of choices was not fixed. This
network is presented in Fig. 6 (left) together with a fitted block-
model using structural equivalence (shown in the middle panel

of Fig. 6). There are three clusters (positions) labeled C1, C2, and
C3. Boys are represented by squares and the girls by circles. Posi-
tion memberships in the network diagram on the left of Fig. 6 are
indicated by the shading of the vertices. The fitted blockmodel is
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Fig. 6. A borrowing network (left), three partitions based

n the right in Fig. 6 (and is the prototype for the non-symmetric
lockmodel structure and used for the third simulated model type).

.2.2. Simulated whole networks

.2.2.1. A near-symmetric blockmodel structure. The starting simu-
ated whole networks were constructed based on a specified image

atrix with a given number of positions. Only complete and null
locks were fitted given structural equivalence. A two-cluster par-
ition for a network with 10 actors with five actors in each cluster
as used. The cluster membership is denoted by (1, 1, 1, 1, 1, 2, 2,

, 2, 2). The image is shown in the left panel of Fig. 5. Ties were con-
tructed to be consistent with this image matrix and were added
ith different combination of probabilities for complete blocks and
ull blocks (e.g. the probability of ties in a complete block was set to
.9 and in null blocks it was  set to 0.0, 0.1 or 0.2). Ten networks were
enerated for each combination of probabilities of ties in complete
nd null blocks (left panel in Table 2). This created 140 different
hole networks. Every constructed network was checked to see if

he structure obtained with blockmodeling procedure was  consis-
ent with the structure shown in Fig. 5 (right). The extent to which

 network is symmetric was measured by reciprocity (Huisman,
009) and was calculated for each whole network. The descrip-
ive statistics for this measure over the 140 whole networks are
Min  = 0.50, Q1 = 0.70, Me  = 0.79, Q3 = 0.88, Max  = 1.00) and confirm
hat these networks were highly symmetric.

.2.2.2. The first non-symmetric blockmodel structure. The second
tructure for a simulated whole network is based on the image
atrix in right panel of Fig. 6 with an additional complete block

n the diagonal. Note that the top right ideal block in right panel of

ig. 6 is null and the lower left ideal block is complete. The mem-
ership of the three-cluster partition for a network with 15 vertices

s denoted by (1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3). The construc-
ion of the whole networks was done in the same manner as for

able 2
elected probabilities of ties in complete and null blocks for simulation of whole
etworks.

Blockmodel structure

Near-symmetric Non-symmetric

Block type Block type

Complete Null Complete Null

1 0.1, 0.2 1 0.1, 0.2
0.95  0.0, 0.1, 0.2 0.9 0.0, 0.1, 0.2
0.9  0.0, 0.1, 0.2 0.8 0.0, 0.1, 0.2
0.8  0.0, 0.1, 0.2
0.7 0.0, 0.1, 0.2
ructural equivalence (middle) and image matrix (right).

the near-symmetric structure with regard to null and complete
blocks. Again, 10 networks were constructed for each combina-
tion of probabilities in different blocks (right panel in Table 2). The
descriptive statistics for reciprocity across the 80 whole networks
are (Min = 0.46, Q1 = 0.55, Me = 0.61, Q3 = 0.66, Max = 0.73).

5.2.2.3. The second non-symmetric blockmodel structure. The third
structure for whole networks was constructed based on the image
matrix shown in right panel of Fig. 6. Again, there are three clusters
with the same cluster membership as the networks with the first
non-symmetric blockmodel structure. The only difference is the
presence of a null block on the diagonal. Ten networks were gen-
erated for each combination of probabilities of ties in null and in
complete block. The summary description of the reciprocity mea-
sures ranges from 0.26 to 0.57 with a median of 0.42 (Q1 = 0.37,
Q3 = 0.46). Replacing a diagonal complete block with a null block
created networks with slightly lower reciprocity measures than for
the networks from the first example of non-symmetric blockmodel
structure.

5.3. Generating non-response missing data

Three different actor non-response mechanisms (or regimes for
generating non-response missing data) were used. Each regime
defines the probabilities that actors become non-respondents.
These probabilities were: (i) actors are selected at random to
become non-respondents, (ii) the probability of actors becoming
non-respondents is proportional to 1/(outdegree + 1)2, and (iii) the
probability of actors becoming non-respondents is proportional to
1/(indegree + 1)2 (Huisman and Steglich, 2008; Huisman, 2009).

In Section 6, only results for randomly selected non-respondents
are presented.9 The random selection of non-respondents is unre-
lated to the network or actor characteristics and can be labeled as
MCAR according to Rubin (1976).  Huisman and Steglich (2008:302)
argue that this model for missing data “may be realistic when there
is no reason to assume that actors differ in their propensity to fill
in network questionnaires”.

The number of non-respondents for the simulated whole net-
works based on near-symmetric blockmodel structure with 10
actors described in Section 5.2.2 ranges from 1 to 5 (with the pro-
portion of non-response taking the values 0.1, 0.2, 0.3, 0.4 and 0.5).
For simulating networks with three positions and 15 actors (two
examples of non-symmetric blockmodel structures), the number

of non-respondents ranges from 1 to 6 (with proportion of non-
response taking the values 0.07, 0.13, 0.20, 0.27, 0.33, 0.40).

9 Results for non-random missing mechanisms are due to small network sizes
similar to random missing mechanism and can be found in Žnidaršič (2012).
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.4. Treatments of missing non-response data

We treated the missing non-response data in five ways: with
he complete-case approach; reconstruction; null tie imputation;
mputation based on modal (indegree) values; and combination of
econstruction plus imputations based on a modal values (for ties
etween two non-respondents).

It is hard to state in advance the order of these approaches
n terms of being radical with regard to treating missing data.
rom one viewpoint, the most radical of the five approaches is the
omplete-case approach because using it discards the most data.
et, the extent to which ‘substitute’ data are used to replace miss-

ng data can be regarded as a criterion for being radical. Under this
iew, the complete-case approach is the least radical. Rather than
ry to resolve this issue ahead of time, we examine the impacts of all
reatments with regard to their impact of the returned blockmodels
ollowing their use.

. Results of simulation study

Results of the simulation study are presented in Fig. 7 for two
ymmetric blockmodel structures and in Fig. 8 for three non-
ymmetric blockmodel structures. First results of two real networks
re given. In the following subsections only results of MCAR missing
echanism are presented. Detailed results for non-random missing
echanisms can be found in Žnidaršič  (2012).

.1. Simulation study for two real networks

.1.1. A boy–girl liking ties network
In the boy–girl liking ties network (Section 5.2.1), non-

espondents were selected randomly as described in Section 5.3.
ive different treatments of non-response data (described in
ections 4 and 5.4)  were used and, for every measured and treated
etwork, a blockmodel was established and compared with struc-
ure shown in Fig. 5. The resulting factorial design has 75 cells
three non-response missing mechanisms, five treatments of non-
esponse, and five numbers of actors with non-response). Within
ach cell, the generation of incomplete data was repeated 10 times
or networks with one missing actor, 30 times for combinations of
wo missing actors and 100 times10 for combinations of three or

ore non-respondents. For our purposes here, only excellent and
ood agreements are acceptable for deciding that two blockmodel
artitions have the same position memberships. If mARI < 0.8 then
he correspondence of the position memberships is unacceptable.11

Fig. 7 (upper panel) presents the results for the boy–girl liking
ies network when non-responding actors were selected at random.
oxplots for the Adjusted Rand Index the Proportion of incorrect
lock types are shown in the left and right panels respectively.
ithin each panel, boxplots for five missing data treatments NTI

null tie imputation), RE (reconstruction), MO  (imputation based
n modal (indegree) values), REMO (reconstruction plus imputa-

ion based on modal (indegree) values), and CC (complete-case
pproach) are shown. Each subset of boxplots represents results
or different number of non-respondents (from 1 to 5). The stars *

10 The number of generated incomplete data networks increases with higher pro-
ortions of non-respondents because the number of all possible combinations of
ctors with non-response increases. For example, for a network where n = 10 there

re:

(
10
1

)
= 10 possibilities for selecting one non-respondent;

(
10
2

)
= 45 pos-

ibilities for selecting two non-respondents;

(
10
3

)
= 120 and so on.

11 As a reminder of the guidelines for interpreting values of mARI (Steinley,
004)  are: excellent agreement (mARI ≥ 0.9); good (0.9 > mARI ≥ 0.8); moderate
0.8  > mARI ≥ 0.65); and poor (mARI ≤ 0.65).
orks 34 (2012) 438– 450 445

represent the mean values of indices and are connected with lines
within each treatment.

The results are unequivocal when there is only one non-
responding actor. For all treatments of non-response missing
data, there is perfect agreement with the whole network block-
model: mARI = 1 for all treatments, indicating complete agreement
between positions of actors, and mErrB = 0 so that all block types
are correctly identified and placed. Differences between the results
of treating missing data start to appear when there are at least
two  non-respondents. The results for the null tie imputations are
the worst because boxplots show the widest range of ARI values
for three to five non-respondents. All of the other missing data
treatments perform quite well. Of these four methods, the treat-
ment using modal (indegree) values affected the partitions the
most although the mARI > 0.8 and the blockmodel is stable for two
or more non-respondents. The blockmodels for networks treated
with the complete-case, reconstruction, and reconstruction plus
imputations based on modal (indegree) values all lead to excellent
agreements with the blockmodel for the whole network.

This network has a very strong structural signal: the near-
complete and null blocks are very clear. The whole network has
high reciprocity (with a reciprocity measure of 0.79). There is little
surprise that small amounts of missing data (one or two non-
respondents) do not prevent blockmodeling from identifying the
intrinsic network structure in terms of the composition of positions
and the identification of blocks. The strong signal also accounts for
the poor performance of the null tie imputation treatment because
it destroys reciprocity, particularly when there are three or more
non-respondents.

6.1.2. The student note borrowing network
The middle panel in Fig. 8 presents the simulation results for

the student note borrowing network (Section 5.2)  with less sym-
metric structure. Because this is a larger network (n = 15), we
consider a slightly wider range for the number of non-respondents
(1 ≤ m ≤ 6). For identifying the memberships of positions (ARI),
the null tie imputation method performs the worst. Overall, using
reconstruction and reconstruction plus imputation based on modal
(indegree) values come next with regard to poor performance when
there are three or more non-respondents. Use of modal (indegree)
values for imputations and the coupling of reconstruction with
modal imputation come next. The best performance comes with
the complete-case approach.

In terms of the identified blocks, all five treatment methods are
indistinguishable when there is one non-respondent. Consistent
with the ARI results, both the null imputation and reconstruction
treatments degrade the blockmodeling results the most. On aver-
age, 20% of block types are identified incorrectly. In part, the block
structure of Fig. 6 has a less clear structure than the one shown in
Fig. 5 and its reciprocity is lower (0.46).

6.2. Studies of simulated networks

While the two  real networks that were examined above pro-
vide some clues about the potential consequences of the presence
of certain forms of missing data, they do not provide an adequate
foundation for assessing the general impact of the presence of non-
respondents and, more importantly, the impact that treatments of
missing data may have on the results produced by blockmodel-
ing. For that we turn to simulating whole networks with known
properties (described in Section 5.2.2).
6.2.1. Results for the near-completely symmetric blockmodel
structure

The factorial design for this blockmodel has 75 cells, the same
as for the boy–girl liking ties network. The lower panel in Fig. 7
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Fig. 7. Boxplots for the Adjusted Rand Index (left) and the proportion of incorrect block types (right) for two  symmetric networks. Within each panel, boxplots for five
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issing data treatments NTI (null tie imputation), RE (reconstruction), MO  (imputat
odal  (indegree) values), and CC (complete-case approach) are given. Each subset o

tars  ‘*’ represent the mean values of indices and are connected with lines within e

ontains boxplots and the mean values for the ARI (on the left) and
he mean values for ErrB (on the right). In general, as the number of
on-respondents increases, the mARI values decline for all missing
ata treatments. When we have one non-respondents the results
rom all treatment methods are acceptable. However, for higher
umber of non-respondents differences in the results emerge for
ll treatments. For two non-respondents, the mean values of ARI
rop below 0.8 for imputations based on modal (indegree) val-
es and its agreement is unacceptable for all higher numbers of
on-respondents. Over the full range of non-respondents, there are
wo treatments that permit acceptable identification of position

emberships: reconstruction and the combined use of reconstruc-
ion and imputation using modal (indegree) values. Of the two, the
ormer performs slightly better.

The results from using the complete-case approach are unac-
eptable because more than one of four blocks is incorrectly
dentified (mErrB > 0.2). The null tie imputations and the impu-
ations based on mode become unacceptable for four and three
on-respondents, respectively. As for mARI, the results from
reating missing data with either reconstruction or the combi-
ation of reconstruction with using modal (indegree) values are
cceptable over the full range of non-respondents considered
ere.

Only reconstruction and reconstruction together with imputa-

ion based on modal (indegree) values are the best according to the
ARI and mErrB.  Fig. 7 also shows that the differences in ARI and

rrB values are the smallest, another indicator of lower blockmodel
nstability.
sed on modal (indegree) values), REMO (reconstruction plus imputations based on
plots represents results for different number of non-respondents (from 1 to 5). The
atment.

6.2.2. Results for the first non-symmetric blockmodel structure
Fig. 8 (upper panel) presents the boxplots of mARI and mErrB for

the blockmodel with all complete blocks on the diagonal and one
complete block out of diagonal. The complete-case treatment is
acceptable with regard to both position membership identification
and block type designation for all values of non-respondents. For
mARI, the other four treatments are borderline to the 0.8 threshold
for two non-respondents. All four trajectories of mean values of ARI
drop further as number of non-respondents increases and are not
acceptable. In contrast, all treatments are acceptable in terms of
mErrB for five non-respondents or less.

6.2.3. Results for the second non-symmetric blockmodel structure
All of the trajectories for mean values of ARI decline as number of

non-respondents increases. It is clear that only the complete-case
approach provides acceptable position membership identification
for all numbers of introduced non-respondents. The graphical dis-
play of results for randomly missing actors in the non-symmetric
blockmodel with a null diagonal block and all missing data treat-
ments is provided on lower panel of Fig. 8. However, the five
treatments form two groups. The first has the complete-case
approach and imputations based on modal (indegree) values and
the second has null tie imputation, reconstruction and the combina-
tion of reconstructions with using modal (indegree) values. The first

group of treatments performs better than the second group and,
more importantly, these differences are magnified as the number
of non-respondents increases. By having low proportions of incor-
rect block identifications, the imputation using modal (indegree)
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Fig. 8. Boxplots for the Adjusted Rand Index (left) and the proportion of incorrect block types (right) for three non-symmetric networks. Within each panel, boxplots for five
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tars  ‘*’ represent the mean values of indices and are connected with lines within e

alues and complete-case approach perform the best for all values
f non-respondents.

.3. Summary of all effects

Even though the networks studied in Section 6 are small and
uite simple in their block structures, the whole set of results is
omplex. Even so, it is clear that both the extent of actor non-
esponse and the ways in which this form of error is treated can

ave dramatic results on the stability of blockmodeling results

ollowing the various treatments. The non-response missing mech-
nism has lower effect on the stability ob blockmodeling compared
o the both the number of non-respondents and the used treatment,
sed on modal (indegree) values), REMO (reconstruction plus imputations based on
plots represents results for different number of non-respondents (from 1 to 6). The
eatment.

however its impact on the stability of partitions is higher than on
the stability of block structure.

We used ANOVA to investigate the effects of the number of non-
respondents (variable labeled as NR), treatment of non-response
data (T), non-response missing mechanism (MM) and type of the
symmetry of the network (S). Networks with one non-respondent
were excluded from this analysis because there is practically no
variation in both indices of blockmodeling comparison (ARI and
ErrB) and all treatments gave acceptable results. Five types of net-
works (two real networks and three simulated networks) were

described by using a variable called symmetry with three cate-
gories reflecting levels of reciprocity (see Section 5.2.2): one was
for the representatives of near-symmetric networks containing
the boy–girl liking ties network and simulated near-symmetric
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Table  3
Analyses of variance for the Adjusted Rand Index and the proportion of incorrect block types.

Adjusted Rand Index Proportion of incorrect block types

Effect Df1 F Partial �2 Effect Df2 F Partial �2

NR 4 119,131 0.1287 NR 4 74,425 0.0845
T  4 84,481 0.0949 S * T 8 30,802 0.0710
S  * T 8 33,703 0.0772 T 4 48,178 0.0564
S  * NR * T 28 2304 0.0196 S 2 54,094 0.0325
MM  * S * T 16 3001 0.0147 S * NR 7 14,137 0.0298
NR  * T 16 2392 0.0117 S * NR * T 28 2113 0.0180
S  * NR 7 3986 0.0086 NR * T 16 3049 0.0149
MM  * T 8 3410 0.0084 MM * S * T 16 1029 0.0051
MM  * S * NR * T 56 385 0.0066 MM * T 8 1383 0.0034
MM  * S * NR 14 1233 0.0053 MM 2 4568 0.0028
MM  * S 4 4230 0.0052 MM * NR 8 1101 0.0027
MM  * NR * T 32 497 0.0049 MM * NR * T 32 227 0.0022
MM  * NR 8 1081 0.0027 MM * S 4 1439 0.0018
MM  2 459 0.0003 MM * S * NR * T 56 81 0.0014
S  2 301 0.0002 MM * S * NR 14 226 0.0010
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esiduals degrees of freedom: Df2 = 3,224,790; NR: number of non-respondents; T
esponse) missing mechanism.

lockmodel structures (mean reciprocity of those networks is 0.78);
he second category has the variants of the first non-symmetric
etworks (mean reciprocity is 0.61); and the third category has the
tudent note borrowing network and the second simulated non-
ymmetric blockmodel structures (mean reciprocity is 0.42).

Table 3 contains the ANOVA results for the Adjusted Rand Index
left panel) and the proportion of incorrect blocks (right panel).

ain effects and all interactions (two, three-way, and four-way)
re ordered according to their partial �2 values (all p-values are
ery close to zero).

Without surprise, the number of non-respondents in a net-
ork has the highest effect on the Adjusted Rand Index (partial

2 = 0.1287). From previous figures it is clear that larger the num-
er of missing actors, lower the Adjusted Rand Index (ARI) and
herefore the identification of position membership of an actor.

The type of non-response treatment has the second highest
ffect (partial �2 = 0.0949) where the null tie imputations per-
ormed the worst and the complete-case the best overall. The third
argest effect on ARI is interaction between treatment and level
f symmetry of the network (partial �2 = 0.0772): for the more
ymmetric networks, the best treatments are the reconstruction
nd the reconstruction plus imputations based on modal (inde-
ree) values. The reverse holds for less symmetric networks where
he imputations based on modal (indegree) values are better than
oth reconstruction procedures. Symmetry alone has the lowest
ffect (partial �2 = 0.0002) compared to other main effects and it
as a strong effect only in combination with treatment as explained
efore.

The non-response missing mechanism has the highest effect
n interaction with both the number of non-respondents and
he treatment used (partial �2 = 0.0147) and in interaction with
reatment (partial �2 = 0.0084). According to similar graphs as
resented in Figs. 7 and 8 for non-random missing mechanisms
Žnidaršič, 2012) the following conclusions can be drawn: the
omplete-case approach performs slightly better with random
issing mechanism, the null tie imputations are better when non-

espondents are missing based on their outdegree, and on the
ther hand the reconstruction procedure performs worse in that
ase.

The second weakest effect is the main effect of non-response
issing mechanism (partial �2 = 0.0003). The differences in the

CAR non-response mechanism and both non-random missing
echanisms based on outdegree and indegree are not clearly vis-

ble because of small networks and similar (out- and in-) degree
istributions of actors in the networks.
ment (of missing non-response data); S: symmetry (of the networks); MM:  (non-

The largest effect on the proportion of incorrect block types
(right panel of Table 3) comes from the number of non-respondents
(partial �2 = 0.0845), as in the case of ARI. The higher number of non-
respondents leads to lower agreement between types and positions
of blocks in blockmodels.

Treatment alone has lower effect (partial �2 = 0.0564) than in
combination with symmetry (partial �2 = 0.0710). For the identifi-
cation of block types and their position in the blockmodel (ErrB) the
same conclusions are true as for identification of position member-
ship of an actor (ARI): the complete-case approach performs good
regardless of the symmetry of the network, for highly symmetric
network also both reconstruction procedures are successful, and
for highly non-symmetric network the imputation based on modal
(indegree) values work better.

Looking at Figs. 7 and 8 again, we see that the values of pro-
portion of incorrect block types are lower for the first simulated
non-symmetric blockmodel structure than for other networks. This
means that the effect of symmetry on blockmodel structure (ErrB)
is a little bit weaker than the effect of treatment. If we compare the
effects on ARI and ErrB we could say that the importance of sym-
metry is higher in identification of the blockmodel structure than
in the position membership of actors.

The non-response missing mechanism has the largest effect
in interaction with symmetry of networks and treatment (par-
tial �2 = 0.0051). For near-symmetric blockmodel structures there
are almost no differences in values of ErrB between three differ-
ent non-response mechanisms for all treatments. The values of
ErrB for the complete-case approach and the imputations based on
modal (indegree) values are a little bit higher in the case of the first
non-symmetric blockmodel structure and with non-respondents
selected based on their outdegree compared to other two missing
mechanisms.

7. Summary and recommendation

Providing a simple summary necessarily glosses over the diver-
sity of the obtained results. Table 4 provides a summary statement
for both the real networks and the three types of simulated
networks. The networks in Table 4 are arranged from the most sym-
metric (on the left) to the least symmetric type (on the right). Both
the correspondence of positions and the proportion of correctly

identified blocks by location are important measures that merit
attention. There were some cases where a partition/blockmodel
was  acceptable under one criterion but not the other. We  do not
discuss those cases here but note that the implications of them
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Table  4
Impact of non-response treatments on the stability of blockmodels.

Blockmodel Symmetric Non-symmetric

Boy–girl Simulated Simulated first Borrowing Simulated second

Treatment ARI ErrB ARI ErrB ARI ErrB ARI ErrB ARI ErrB

Complete case + + ◦ − + ◦ + + + +
Reconstruction + + + + ◦ + − − − −
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Mode imputations ◦ ◦ − − 

Null  tie imputations − − − −
Reconstruction + mode + + + + 

erit further examination. For each type of the network, the best
verall treatment based on both the Adjusted Rand Index (mARI)
nd proportion of incorrect block types (mErrB)  is presented by the
sign. The worst overall performance is represented by the − sign,
nd the moderate performances by the ◦ sign.

Based on the study and the summary given in Tables 3 and 4 the
ollowing recommendations can be given:

When choosing the type of blockmodel:
– Structural equivalence is very stable for up to 50% of non-

respondents. This is not the case for regular and generalized
equivalence (Žnidaršič, 2012).

During data collection:
– Report the percentage of actor non-response (together with the

size of the network).
– Report the missing ties by coding them as such, for example,

by NA, in the matrix representation of the network.
– Never replace absent ties with zeroes because null tie imputa-

tion was the worse treatment regarding both micro (position
membership) and macro level (block structure) depictions of
the network.

During data analysis (blockmodeling):
– Estimate the reciprocity of the fully observed network (see left

panel of Fig. 3) in order to decide about the best non-response
treatment. If the reciprocity is low then we suggest using the
complete-case approach or imputation based on modal (inde-
gree) values. If the reciprocity is high than the use of the
complete-case approach or one of reconstruction treatments
is suggested.

–  Do not use complete-case approach if the aim of the study is to
investigate the position of non-respondents in the network.

Of course, this study has some major limitations, especially
he small size of the networks that we considered. This was dic-
ated by computational constraints. The simulations were done
sing R in combination with Žiberna’s (2008) blockmodeling pack-
ge. For example, each simulation for the completely symmetric
lockmodel structure were run in a computer lab12 and ran for
pproximately three days. No doubt, the Žiberna program can be
eprogrammed to run more efficiently and this reprogramming
s underway. Other languages and faster machines may  be better
or the kinds of simulations considered here with the result that
arger networks, with a broader range of blockmodel structures, can
e considered. No doubt, the study of networks with other struc-
ures will reveal different performances than the outcomes shown
ere. What is not in doubt is that, when using blockmodeling,
on-response is a serious problem with regard to blockmodeling

utcomes (especially when not appropriately treated).

In addition to expanding the size of the networks that we con-
ider, it will be useful to consider other forms of equivalence beyond

12 The computers had an Intel Core 2 processor 1.86 GHz and 2.00 GB of RAM.
ultiple machines were often running at the same time.
− − ◦ ◦ ◦ +
− ◦ − − − −
◦ + ◦ ◦ − −

structural equivalence. The results are much worse than the results
for structural equivalence (Žnidaršič, 2012).

With small networks, a limited range of blockmodel types, and
only five non-response treatments, we have shown that actor non-
response is a serious problem. It is likely that we need to consider
some of the more complex ways of responding to non-response that
were discussed in Section 4. Also, both the approach taken here and
the results thus far are applicable to networks with multiple rela-
tions. Until these extensions are made, blockmodeling networks
to delineate their underlying structure is fraught with hazard and
attention to error in all of its forms is urgently needed. There are
both substantive and methodological implications that follow from
ignoring these problems.
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