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 New Insights and Faster Computations
 for the Graphical Lasso

 Daniela M. Witten, Jerome H. Friedman, and Noah Simon

 We consider the graphical lasso formulation for estimating a Gaussian graphical
 model in the high-dimensional setting. This approach entails estimating the inverse co
 variance matrix under a multivariate normal model by maximizing the t\ -penalized
 log-likelihood. We present a very simple necessary and sufficient condition that can be
 used to identify the connected components in the graphical lasso solution. The condi
 tion can be employed to determine whether the estimated inverse covariance matrix will

 be block diagonal, and if so, then to identify the blocks. This in turn can lead to drastic
 speed improvements, since one can simply apply a standard graphical lasso algorithm
 to each block separately. Moreover, the necessary and sufficient condition provides in
 sight into the graphical lasso solution: the set of connected nodes at any given tuning
 parameter value is a superset of the set of connected nodes at any larger tuning param
 eter value. This article has supplementary material online.

 Key Words: Convex optimization; Gene expression; Inverse covariance estimation; l\
 penalty; Networks; Sparsity.

 1. INTRODUCTION

 In recent years, there has been a great deal of interest in inverse covariance estimation

 in the high-dimensional setting, in which the number of features p greatly exceeds the

 number of observations n. Particular interest has focused upon estimating a sparse inverse

 covariance matrix—that is, obtaining an estimate of the inverse covariance matrix in which

 some elements are exactly equal to zero. This is of interest because under the simple setting

 where the rows of an n x p data matrix X are independent and distributed N(0, £), a zero

 in an off-diagonal element of Z_1 corresponds to a pair of variables that are conditionally

 independent. Thus, under the multivariate Gaussian assumption, estimation of a sparse

 inverse covariance matrix can be thought of as a way to estimate a graphical model for the

 data. In the graphical model interpretation, each feature is represented by a node, and each
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 nonzero off-diagonal element in the inverse covariance matrix is represented by an edge

 between the corresponding pair of nodes.

 A natural way to estimate X-1 is by maximizing the log-likelihood of the data. Under

 the Gaussian model, the log-likelihood takes the form

 logdetX-1 — tr(S£_1), (1.1)

 where S = XTX/n is an estimate of the covariance matrix of the data. Define 0 = Z-1.

 Then maximizing (1.1) with respect to 0 leads to the maximum likelihood estimate 0 =

 S , which will in general contain no elements exactly equal to zero. Moreover, when
 p > n, S will be singular and so the maximum likelihood estimate cannot be computed.

 Yuan and Lin (2007) proposed that rather than maximizing the log-likelihood (1.1), one

 should instead maximize the penalized log-likelihood

 log det 0 — tr(S0) — A. || 01| i (1.2)

 over nonnegative definite matrices 0. Here, k is a nonnegative tuning parameter. We will

 refer to the problem (1.2) as the graphical lasso (Friedman, Hastie, and Tibshirani 2007).

 Using (1.2) has two major advantages over (1.1): the solution is positive definite for all

 k > 0 even if S is singular, and also when k is sufficiently large, the estimate 0 will

 be sparse due to the lasso-type penalty on the elements of 0 (Tibshirani 1996). A great

 number of algorithms have been proposed for solving the graphical lasso problem (1.2)

 (among others, Friedman, Hastie, and Tibshirani 2007; Yuan and Lin 2007; Banerjee, El

 Ghaoui, and D'Aspremont 2008; D'Aspremont, Banerjee, and El Ghaoui 2008; Rothman,

 Levina, and Zhu 2008; Yuan 2008; Lu 2009; Scheinberg, Ma, and Goldfarb 2010). We note

 that some authors have considered a slight variant of (1.2) in which the diagonal elements

 of 0 are not penalized.

 Here, we present a necessary and sufficient condition for a set of nodes to form a con

 nected component in the graphical model—that is, for the solution to the graphical lasso

 problem to be block diagonal, subject to some rearrangement of the features. To our sur

 prise, this condition appears to have been overlooked in the extensive literature on solving

 problem (1.2). However, it was independently discovered by Mazumder and Hastie (2011).

 The condition directly results in a very simple check that can be employed before solving

 (1.2), in order to achieve massive computational gains. We derive the necessary and suffi

 cient condition in Section 2. Two algorithms based on this condition are given in Section 3,

 and we present timing results in Section 4. The discussion is in Section 5.

 2. A NECESSARY AND SUFFICIENT CONDITION

 By the Karush-Kuhn-Tucker conditions (KKT conditions; see, e.g., Boyd and Van

 denberghe 2004), a necessary and sufficient condition for 0 to maximize (1.2) is that it
 satisfies

 0"1 -S-Xr(0) =0,  (2.1)
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 894  D. M. Witten, J. H. Friedman, and N. Simon

 where T(x) is the subgradient of \x\, applied componentwise to the elements of a matrix.

 That is, T(0) is a p x p matrix whose (i, j) element is r(0,7), the subgradient of 1

 r(0,7) = 1 if &ij > 0, r (©!;) = — 1 if 0,7 < 0, and r(0(J ) takes on a value between —1
 and 1 if ©,7 = 0.

 Theorem 1 states that if it is known a priori that the solution to the graphical lasso

 problem is block diagonal, then the solution can be obtained by solving a smaller graphical

 lasso problem on each individual block. The proof follows by inspection of (1.2).

 Theorem 1. If the solution to (1.2) takes the form 0 = ^0I then (1.2) can be
 solved by separately maximizing

 logdet0i — tr(Si©i) — A.||0i ||i (2.2)

 with respect to © i, and

 logdet©2 — tr(S2©2) - ^II©2111 (2.3)

 with respect to @2, where Si and S2 are the submatrices of S corresponding to ©1 and
 ©2.

 Clearly, one can extend Theorem 1 by induction to any number of blocks.

 Now, let C\, C2, ...,Ck denote a partition of the p features, i.e. Q f~l Q< = 0 for all

 k^k', and Ci U C2 U • • • U Ck = {1,.. •, p}- Without loss of generality, assume that the

 features are ordered such that if 1 e Ck, i' e Ck>, k < k', then i < i'. Furthermore, we let

 |Cfc | denote the number of features in Q. We now present our main theorem.

 Theorem 2. A necessary and sufficient condition for the solution to the graphical

 lasso problem to be block diagonal with blocks C1, C2, ...,Ck is that |S,-,-'| < k for all

 i € Ck, i' G C^, k ^ k'.

 Proof: First, we will show that if the solution to the graphical lasso problem is block

 diagonal with blocks C1, C2, ...,Ck, then \Sa< \ < k for all i eCk, i' eCk',k/ k'. To see

 this, note that if the solution is block diagonal and the ;th and i'th features are in separate

 blocks, then ©,-,-/ = (0~ '),■;< = 0 since the inverse of a block diagonal matrix is also block

 diagonal with the same block structure. By inspection of (2.1), this implies that |5,,/| < k.

 Now we must show that if |S,/'| < k for all i eCk, i' eCk',k^ k', then the solution to

 the graphical lasso problem is block diagonal. Consider the matrix

 /©l \
 ©2

 0 =  (2.4)

 V ©/r /

 that is, 0 is a block diagonal matrix with K blocks. We construct the &th block, 0^, to

 solve the graphical lasso problem (1.2) applied only to the | C* | x | Ck | symmetric submatrix

 of S consisting of the features in Ck- We claim that if |5,-,-'| < k for all i e Ck, i' £ Ck',

 k / k', then 0 satisfies the KKT conditions (2.1). This can be seen by inspection: the
 (/, i') equation of (2.1) is satisfied by the (i, i') element of 0, for i e Ck, i' e Ck', k ^ k',

This content downloaded from 
������������134.102.107.82 on Fri, 21 Apr 2023 11:50:32 UTC������������� 

All use subject to https://about.jstor.org/terms
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 since = (0 ' ),-,-/ = 0. Moreover, the ftth block of 0 satisfies the corresponding system

 of equations within (2.1), by construction. Since the KKT conditions are necessary and

 sufficient for a solution, it follows that 0 does indeed solve the graphical lasso problem.
 □

 The following corollary is a direct consequence of Theorem 2, applied with C\ = {i}

 and C2 = {1,2,...,/ — 1,i + 1,

 Corollary 1. A necessary and sufficient condition for the ith node to be fully uncon

 nected from all other nodes in the solution to (1.2) is that \ Sa> \ < A for all i' ^ i.

 This corollary implies that one can simply screen the off-diagonal elements in a given

 column of S in order to determine whether the corresponding node in the solution to the

 graphical lasso problem is unconnected from all other nodes. The sufficiency of the condi

 tion in Corollary 1 was reported in theorem 4 of Banerjee, El Ghaoui, and D'Aspremont
 (2008).

 3. TWO NEW ALGORITHMS FOR THE GRAPHICAL LASSO

 We can combine Corollary 1 with Theorem 1 in order to obtain Algorithm 1. Standard

 algorithms for solving the graphical lasso problem require 0(p3) operations (Friedman,

 Hastie, and Tibshirani 2007). Note that Step 1 of Algorithm 1 can be performed in at most

 0(p2) operations. Then Step 3 can be performed in 0{p — q)3 operations. In other words,

 by applying Algorithm 1, the total computational burden has been reduced from 0(p3) to

 at most 0(p2 + (p — q)3). This is a great improvement if p — q is substantially smaller

 than p, that is, if many of the nodes are fully unconnected from all other nodes in the

 graphical lasso solution.

 Algorithm 1 A fast algorithm based on Corollary 1

 1. Identify the fully unconnected nodes in the graphical lasso solution, that is, {i: <
 A, i' = 1,..., i — 1, i + 1,.,., p}. Let q denote the number of fully unconnected nodes.

 2. Without loss of generality, assume that the features are ordered such that the q fully

 unconnected features precede the p — q other features.

 3. The solution to the graphical lasso problem (1.2) takes the form
 , 1

 0 =

 Sn+X  \

 1

 Sqq+X
 \

 (2.5)

 where 09+i solves the graphical lasso problem applied only to the square symmetric
 (p-q)x(p-q) submatrix of S consisting of the features that are not fully unconnected
 from all other features.
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 896  D. M. Witten, J. H. Friedman, and N. Simon

 Algorithm 2 A fast algorithm based on Theorem 2

 1. LetAdenotea p x p matrix whose off-diagonal elements are of the form A,y = l|s ,|>i

 and whose diagonal elements equal one.

 2. Identify the K > 1 connected components of the graph for which A is the adjacency
 matrix. For each k = 1,..., K, let Ck denote the set of indices of the features in the £th

 connected component.

 3. Without loss of generality, assume that the features are ordered such that if i e Ck,

 i' e C^, and k < k', then i < i'.

 4. The solution to the graphical lasso problem (1.2) takes the form

 /0l \

 V Ok/

 where &k solves the graphical lasso problem applied only to the square symmetric

 submatrix of S consisting of the features whose indices are in Q. Note that if Q =

 {«'}—that is, the /th node is completely unconnected from all other nodes—then &k is

 a scalar equal to 1 /(Su + X).

 An even faster algorithm can be obtained by combining Theorem 2 with Theorem 1,

 and is given in Algorithm 2.

 In Step 1 of Algorithm 2, the adjacency matrix A can be computed in (9(p2) operations.

 Then in Step 2, the connected components of the graph can be computed in at most (9(p2)

 operations. In Step 4, the graphical lasso problem must be solved K times, once on each of

 the |Ck| x |Ck| submatrices of S corresponding to features whose indices are in Ck- This

 will require 0(J2k=l l^tl3) operations. Therefore, applying Algorithm 2 leads to a reduc

 tion in computational complexity from &(p3) to 0(p2 + J2k-i ICtl3)- This is potentially
 a massive improvement if K is large, or if |Ci |,..., \Ck | are small relative to p.

 In general, we expect Algorithm 2 to be faster than Algorithm 1, since the former ex

 ploits all block diagonal structure in the graphical lasso solution rather than only the fully

 unconnected nodes. However, in certain cases, the solution to the graphical lasso may be

 block diagonal with all but the largest block composed of individual fully unconnected

 nodes. In this case, Algorithm 1 may be faster than Algorithm 2, since Step 1 of Algo

 rithm 1 is faster than Steps 1 and 2 of Algorithm 2, and the remaining steps are the same.

 4. TIMING RESULTS

 In a small simulation study, we explored the computational improvements that can result

 from Algorithms 1 and 2. We generated data with n independent observations distributed

 jV(0, £), where E is a p x p matrix that takes one of three forms: (1) £ = I, (2) £ is a

 block diagonal matrix, with a single (p/2) x (p/2) block with all off-diagonal elements
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 equal to 0.5, and all diagonal elements of X equal 1, and (3) all off-diagonal elements of £

 equal 0.5, and all diagonal elements equal 1. We used n = 20 and considered three values

 of p: p — 500,1000, 2000. We chose the tuning parameter in each simulation in order to

 achieve a desired "sparsity level," measured by the fraction of completely unconnected

 nodes in the graphical lasso solution. The three sparsity levels considered were 0.2, 0.5,
 and 0.9.

 In order to solve (1.2), we used the glasso package in R (Friedman, Hastie, and Tib

 shirani 2011; R Development Core Team 2011), which is based upon the algorithm pro

 posed by Friedman, Hastie, and Tibshirani (2007). Three versions of the glasso package

 were compared. Version 1.4 does not make use of the results in this article. Version 1.6

 employs Algorithm 1, and version 1.7 employs Algorithm 2.

 We also included in our comparisons the lasso-based neighborhood selection approach

 of Meinshausen and Biihlmann (2006) for estimating a graphical model. This approach en

 tails estimating the nonzero edges of the ith variable by simply performing an t\ -penalized

 regression of the /'th column of X onto all of the other columns. It was shown by Yuan and

 Lin (2007), and discussed further by Friedman, Hastie, and Tibshirani (2007), that this can

 be seen as an approximation to the problem (1.2). In the timing comparisons reported by

 Friedman, Hastie, and Tibshirani (2007), the Meinshausen and Biihlmann (2006) approx

 imation is substantially faster than the exact solution to the graphical lasso problem (1.2);

 however, those timing results were performed without the speed-ups to the graphical lasso

 algorithm described here. We used the implementation of the Meinshausen and Biihlmann

 (2006) algorithm contained in version 1.4 of the glasso package for our timing compar

 isons. Note that the same tuning parameter was used to perform the exact graphical lasso

 algorithm and the approximate Meinshausen and Biihlmann (2006) algorithm.

 Timing results for the three simulations are shown in Tables 1-3. All timings were

 carried out on a AMD Opteron 848 2.20 GHz processor.

 We first compare the speed of Algorithm 1 to the standard graphical lasso algorithm that

 does not use the results in this article (version 1.6 versus version 1.4). Using Algorithm 1

 resulted in massive reductions in computational time. In general, the speed-up factor due

 to Algorithm 1 will increase as the tuning parameter is increased, and will also increase

 as the number of nodes in the model (p) is increased for a given fraction of unconnected
 nodes.

 Algorithm 2 led to substantial speed increases over Algorithm 1 in Simulation 1 when

 20% or 50% of nodes were unconnected, and slightly smaller speed increases over Algo
 rithm 1 in Simulation 2 when 20% or 50% of nodes were unconnected. It did not lead to an

 improvement over Algorithm 1 in Simulation 3, since in that case the true £ is dense and

 so the connected nodes in the graphical lasso solution mostly belong to a single connected

 component rather than multiple connected components. (Recall that Algorithm 2 provides

 an improvement over Algorithm 1 only if the connected nodes in the graphical lasso solu

 tion belong to distinct connected components.) Regardless of the simulation set-up, when

 90% of nodes were unconnected then Algorithm 1 tended to be a bit faster than Algo

 rithm 2. This is because computing the graphical lasso solution on the 10% of nodes that

 are not unconnected is so fast that the time required to identify all connected components

 in the graphical lasso solution, as in Algorithm 2, is not worthwhile.
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 898 D. M. Witten, J. H. Friedman, and N. Simon

 Table 1. Timing comparisons for computing the graphical lasso solution using three versions of the glasso
 package: without the results in this article (version 1.4), using Algorithm 1 (version 1.6), and using
 Algorithm 2 (version 1.7). The tuning parameter A was chosen so that 20% of nodes in the graphical
 lasso solution are unconnected. Means (and standard errors) were computed over 20 replicates, and are
 reported in seconds. Timings for the Meinshausen and Buhlmann (2006) (MB) approximation are also
 reported.

 Simulation 1  Simulation 2  Simulation 3

 p = 500  Version 1.4  5.601 (0.24)  11.254(0.727)  10.229 (0.284)
 Version 1.6  3.145 (0.133)  4.947 (0.241)  5.999 (0.243)
 Version 1.7  1.198 (0.139)  4.728 (0.39)  6.714 (0.238)

 MB approximation  1.498 (0.069)  1.234 (0.035)  1.217(0.036)

 p = 1000  Version 1.4  45.039(1.905)  91.831 (5.286)  81.783 (2.843)
 Version 1.6  25.311 (1.33)  44.638 (2.82)  58.465 (2.879)
 Version 1.7  11.975 (0.901)  39.111 (2.337)  60.656 (2.602)

 MB approximation  11.294(0.36)  8.687 (0.085)  9.29 (0.282)

 p = 2000  Version 1.4  338.926 (7.859)  787.872 (44.312)  676.375 (21.802)
 Version 1.6  186.753 (7.366)  409.218 (22.067)  346.913 (9.922)
 Version 1.7  85.123 (4.178)  343.652 (23.57)  404.491 (4.934)

 MB approximation  70.177 (2.479)  71.561 (1.264)  73.773 (1.922)

 Strikingly, when the graphical lasso is performed with a large tuning parameter value,

 then the algorithms proposed in this article lead to such massive speed improvements

 that computing the exact graphical lasso solution is much faster even than computing the

 Meinshausen and Buhlmann (2006) approximate solution (Tables 2 and 3).

 5. DISCUSSION

 We have presented a necessary and sufficient condition for the solution to the graphical

 lasso problem to be block diagonal. This condition leads to a simple check that can be

 Table 2. As in Table 1, but with X chosen so that 50% of nodes are unconnected.

 Simulation 1  Simulation 2  Simulation 3

 p = 500  Version 1.4  5.865 (0.129)  7.779 (0.389)  7.934 (0.32)
 Version 1.6  0.553 (0.02)  0.762 (0.046)  0.64 (0.024)
 Version 1.7  0.162(0.005)  0.944(0.107)  0.874 (0.025)

 MB approximation  1.133 (0.029)  1.211 (0.041)  1.155 (0.031)

 p = 1000  Version 1.4  46.614 (1.615)  73.371 (4.123)  77.58 (3.674)
 Version 1.6  7.282 (0.17)  14.068 (0.708)  9.779 (0.42)
 Version 1.7  0.615 (0.015)  14.829 (1.611)  11.149(0.539)

 MB approximation  8.679 (0.223)  9.458 (0.318)  8.982 (0.251)

 p — 2000  Version 1.4  330.943 (7.859)  583.787 (37.084)  468.915 (17.78)
 Version 1.6  58.494 (1.179)  99.675 (7.591)  76.579 (3.042)
 Version 1.7  2.302 (0.032)  92.461 (12.207)  81.758 (2.363)

 MB approximation  70.876 (1.691)  73.523 (1.799)  70.707 (1.431)
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 New Insights for the Graphical Lasso 899

 Table 3. As in Table 1, but with X chosen so that 90% of nodes are unconnected.

 Simulation 1  Simulation 2  Simulation 3

 p = 500  Version 1.4  5.503 (0.171)  6.594 (0.497)  4.262 (0.21)
 Version 1.6  0.102(0.002)  0.11 (0.002)  0.099 (0.002)
 Version 1.7  0.104(0.002)  0.112(0.002)  0.131 (0.002)

 MB approximation  1.498 (0.038)  1.701 (0.075)  1.839 (0.087)

 p = 1000  Version 1.4  43.346 (2.205)  48.706 (2.96)  39.047 (1.245)
 Version 1.6  0.398 (0.004)  0.433 (0.005)  0.403 (0.003)
 Version 1.7  0.46 (0.006)  0.499 (0.01)  0.535 (0.007)

 MB approximation  10.564 (0.272)  11.221 (0.573)  12.548 (0.675)

 p = 2000  Version 1.4  215.078 (5.11)  351.06(9.346)  301.123 (7.548)
 Version 1.6  1.808 (0.012)  1.95 (0.02)  1.792 (0.013)
 Version 1.7  1.888 (0.024)  2.251 (0.032)  2.342 (0.015)

 MB approximation  73.3 (1.784)  75.687 (2.695)  70.516(2.165)

 applied to the empirical covariance matrix before a standard graphical lasso algorithm is

 employed, in order to drastically reduce computations.

 Using this quick check, one can estimate graphical models on datasets that were previ

 ously prohibitively large, such as large genomic datasets. For instance, it now takes only a

 few minutes to estimate a graphical model from a gene expression dataset with p — 30,000

 genes, provided that one is interested in a model in which most of the genes are not con

 nected (as one would likely want for the sake of interpretability). In this case, the main

 computational burden simply involves scanning through the elements of the p x p em

 pirical covariance matrix in order to identify off-diagonal elements that are less than A in
 absolute value.

 The necessary and sufficient condition presented here also leads to new insights into

 the graphical lasso solution. Given two tuning parameters A] and A2, A] < I2, the set of

 unconnected nodes (i.e., individual nodes that are connected to no other node) with tun

 ing parameter A] is a subset of the set of unconnected nodes with tuning parameter A2.

 (However, no such claim can be made about the set of nonzero edges—i.e., an edge that is

 nonzero in the graphical model with tuning parameter k\ may equal zero in the graphical

 model with tuning parameter A.2, and vice-versa.) Furthermore, the nodes in a connected

 component of the graphical lasso solution with tuning parameter Ai will remain uncon

 nected from all nodes not in that connected component as the tuning parameter increases.

 SUPPLEMENTARY MATERIALS

 R package for graphical lasso without results in this paper: R package glassol.4
 is version 1.4 of the glasso package available on CRAN, which does not make use of

 the results in this article, (glasso 1.4_1.0.tar.gz)

 R package for graphical lasso with Algorithm 1: R package glassol.6 is version
 1.6 of the glasso package available on CRAN, which makes use of Algorithm 1.
 (glasso 1.6_1.0.tar.gz)
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 R package for graphical lasso with Algorithm 2: R-package glassol.7 is version
 1.7 of the glasso package available on CRAN, which makes use of Algorithm 2.
 (glasso 1,7_ 1.0.tar.gz)

 R script to perform timing comparisons: R script to perform timing comparisons re

 ported in Tables 1-3. (TimingComparisons.R)
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