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SUMMARY

The inference of associations between environmental
factors and microbes and among microbes is critical
to interpreting metagenomic data, but compositional
bias, indirect associations resulting from common fac-
tors, and variance within metagenomic sequencing
data limit the discovery of associations. To account
for these problems, we propose metagenomic
Lognormal-Dirichlet-Multinomial (mLDM), a hierarchi-
cal Bayesian model with sparsity constraints, to
estimate absolute microbial abundance and simulta-
neously infer both conditionally dependent associa-
tions among microbes and direct associations
between microbes and environmental factors. We
empirically show the effectiveness of themLDMmodel
using synthetic data, data from the TARAOceans proj-
ect, and a colorectal cancer dataset. Finally, we apply
mLDM to 16S sequencing data from the western
English Channel and report several associations. Our
model can be used on both natural environmental
and human metagenomic datasets, promoting the
understanding of associations in the microbial
community.

INTRODUCTION

Understanding interactions among microbes and between mi-

crobes and their environment is a key research topic in microbial

ecology (Konopka, 2009). Most microbes cannot be cultured in

laboratories, making it difficult to gain an understanding of their

interactions with existing technologies. However, with the

advancement of high-throughput sequencing technology, we

are able to sequence 16S rRNA genes or whole metagenome

of uncultured microbes directly from samples at diverse times

or spots and, as a result, obtainmicrobial abundance information

(Wooley et al., 2010) for further exploration. Variousmicrobial da-

tasets from different environments, such as oceans, soils, and
C

humans have been published (Barberán et al., 2012; Proctor,

2015; Sogin et al., 2006) over the last few years. One of the major

challenges is to discover associations, usually referred to as

positive and negative relationships, among microbes and be-

tweenmicrobes and environmental factors, or EFs. Such associ-

ations could help us to unravel real interactions, including, for

example, commensalism, parasitism and competition in a com-

munity, resulting in a broad understanding of community-wide

dynamics.

Associations can bemeasured by different statistical methods

to investigate underlying relationships. Existing association

studies can be classified into two main categories. The first is

pairwise association calculation, such as Pearson’s correlation

coefficient (PCC) and Spearman’s rank correlation coefficient

(SCC), which directly computes the correlation between two

species. Local similarity association (LSA) also computes pair-

wise association, but its mechanism differs from the others,

and it calculates associations using the dynamic programming

(Ruan et al., 2006). The second is complex association calcula-

tion that estimates the relationships between one species and

the remaining species and/or EFs via multivariate regression-

based methods (Chen and Li, 2013; Faust and Raes, 2012; War-

ton et al., 2015). Methods of calculating pairwise association are

simple, fast and widely adopted (Chow et al., 2014; Eiler et al.,

2012; Gilbert et al., 2012; Qin et al., 2012; Schwab et al., 2014;

Steele et al., 2011), but such methods are not suitable for meta-

genomic datasets for the following two reasons. First, their

calculated values may not indicate real associations because

of compositional bias introduced when association is computed

using methods that assume data are unconstrained, while

ignoring dependence among the elements of compositional

data (Aitchison, 1982). More specifically, the abundance of

each microbe in metagenomic samples is usually normalized

as the compositional relative abundance by dividing its read

count over the total read count of a particular sample. Thus, after

normalization, the relative abundance xi is not independent from

the relative abundance of the rest of the microbes, regardless of

their underlying relationships as:

X
i

xi = 1/
X
jsi

covðxi; xjÞ= � VarðxiÞ:
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Compositional bias tends to bemore severe when some domi-

nant species exist. This is particularly widespread in the marine

microbial community (Caporaso et al., 2012; Chow et al.,

2013). Consequently, for association studies, it is desirable to

develop computational methods that bypass compositional

bias in order to enable the inference of associations in metage-

nomic sequencing data. Second, the observed read count of

one microbe may deviate from its true abundance based on a

given experimental protocol, in which a series of sample prepa-

ration, amplification (Acinas et al., 2005), and sequencing steps,

can lead to large variance of read counts. This variance within

metagenomic sequencing data is also ignored by pairwise asso-

ciation calculation methods.

Recent advances have been made in the development of sta-

tistical methods to study associations using sequencing data,

while taking compositional bias into account. For example,

CCREPE (Faust et al., 2012) estimates the compositionally

corrected p value for every association, allowing the extraction

of significant associations via pairwise association calculation.

Permutation and bootstrapping have also been used to generate

the null distribution of the association while considering composi-

tional bias, and the corrected p value is obtained by the pooled-

variance Z-test. However, the limited number of data samples

results in unreliable null distribution and corrected p values that

are sensitive to noise. SparCC (Friedman and Alm, 2012) infers

correlations among microbes by utilizing log-ratio transformation

to eliminate the effect of the total number of read counts, while

imposing sparsity of correlations among microbes. SPIEC-EASI

(Kurtz et al., 2015) uses the covariance of the centered log-ra-

tio-transformed data to approximate the covariance of log-trans-

formed absolute abundance of microbes and obtains condition-

ally dependent associations among microbes. Similar to

SPIEC-EASI, CCLasso (Fang et al., 2015) estimates the covari-

ance matrix via an alternating direction algorithm instead of the

graphical lasso. However, without considering environmental fac-

tors, many associations between and among microbes, as deter-

minedby thesemethods,may not be real. For example, Figure 1C

shows that two unrelated microbes (OTU-1 and OTU-2) may

appear to be associated just because they both respond to the

same environmental perturbation (EF-1). Lima-Mendez et al.

(2015) considered the effect of environmental factors by filtering

out indirect associations among OTUs. However, this method is

limited since only triples, i.e., two OTUs and one EF, are included

each time. The influence of EFs on OTU-OTU associations was

previously explored by Pascual Garcı́a et al. (2014) by testing

the statistical significance of associations among OTUs. A null

model based on the assumption that associations are indepen-

dent from either taxa or locations is constructed via the binary

presence-absence matrix, which records the presence or

absence of taxa in samples. However, the mere presence-

absence binary information in taxa of samples, not abundance,

is utilized; therefore, the results may be restricted.

RESULTS

Controlling for Bias, Indirect Effects, andVarianceUsing
a Hierarchical Bayesian Model
To address the shortcomings of the methods noted above, we

propose the metagenomic Lognormal-Dirichlet-Multinomial
130 Cell Systems 4, 129–137, January 25, 2017
(mLDM) model in this study (Figure 1). It is a typical hierarchical

Bayesian model (Agresti and Hitchcock, 2005; Ovaskainen

et al., 2010) that learns complex relationships underlying the

data. The sequencing process in which millions of DNA mole-

cules are randomly sampled from a DNA library for sequencing

(Metzker, 2010) can be modeled by a multinomial distribution.

In metagenomics, a DNA library consists of a large number of

amplified 16S or 18S rRNA gene sequences, and the relative

abundances of OTUs in a library, which are determined by their

real abundances in the environmental samples, can be modeled

by a Dirichlet distribution. Thus mLDM models read counts of

OTUs via Dirichlet-Multinomial distributions to estimate associa-

tions among OTUs considering the effect of EFs (Figure 1B). The

real abundances of OTUs are determined by associations, both

among OTUs and between OTUs and EFs, and consequently,

mLDM applies a lognormal distribution to parameterize these

two kinds of associations using two matrices, one denoting

conditionally dependent associations among microbes and the

other representing direct associations between microbes and

EFs. Finally, the two estimated parameters are visualized as an

OTU-OTU association network (Figure 1D) and an EF-OTU asso-

ciation network (Figure 1E), respectively.

Simulated Experiment on Synthetic Dataset
To show the effectiveness of the proposed mLDM model, we

conducted several experiments and compared mLDM with

several state-of-the-art models, including eight programs:

PCC, SCC, CCREPE, SparCC, CCLasso, glasso (graphical

lasso) (Friedman et al., 2008), SPIEC (multiple lasso [ml]), and

SPIEC (graphical lasso [gl]). SPIEC (ml) and SPIEC (gl) are two

different modules within SPIEC-EASI. The first five methods es-

timate associations via the calculation of correlations with PCC

as the baseline, and the last three compute the conditional

dependence with glasso as the baseline. In the next experi-

ment, we will estimate the following: (1) OTU-OTU associations

among all microbes (or OTUs) and (2) EF-OTU associations be-

tween environmental factors and microbes. Synthetic data can

be naturally produced via our generative process, as shown in

Figure 1B, based on five different graphical structures (random,

cluster, scale-free, hub, and band) for microbes parameterized

by Q, and randomly sparse association structure between

microbes and EFs parameterized by B. Receiver operating

characteristic (ROC) curves, area under the curve (AUC)

scores, and D1 distance, which is defined as the L1 distance

between estimated results and ground truth, are used for

evaluation.

First, we compared performances of all nine methods based

on the estimation of OTU-OTU and EF-OTU associations with

simulation parameters p = 50, Q = 5, and n = 500, corresponding

to 500 samples with 50 OTUs and five EFs. Figure 2A shows the

ROC curves of OTU-OTU association studies for five different

types of graphical structures. The corresponding AUC scores

and D
ð1Þ
1 distances are summarized in Table S1. From the ROC

curves, we learn that mLDM has larger true-positive rates than

any of the other methods when false-positive rates are small.

The AUC scores of mLDM are superior to those of all other

state-of-the-art methods across all five different graphical struc-

tures. A direct comparison between mLDM and glasso and

SPIEC-EASI, which both estimate conditionally dependent



Figure 1. Schematic of mLDM

(A) OTU andmeta data. OTU data consist of OTU read counts, andmeta data record values of environmental factors. The data were preprocessed by omitting the

missing values, filtering out OTUs with low frequency of occurrence, and removing abnormal samples.

(B) The mLDM graphical model accepts input from the OTU and meta data and estimates associations among microbes and between microbes and environ-

mental factors. MatrixQ represents conditionally dependent associations among microbes, and matrix B expresses direct associations between microbes and

environmental factors. These two matrices can be respectively visualized by two networks (D) and (E). Gray indicates experimentally measured variables, read

counts (xi), and environmental factors (mi), for sample i. The other variables in the model include B0, which represents the average effect of all factors that affect

microbial abundance but are not explicitly modeled; zi,, the latent variable that includes the influence onmicrobial abundance from the OTU-OTU associations; ai,

the absolute abundance of microbes; and hi, the relative abundance levels of microbes in the sample. N metagenomic samples are generated according to

variables within the box, which model the sequencing process (see STAR Methods for a full description of the model).

(C) Indirect microbial association between OTU-1 and OTU-2. mLDM could detect and remove the indirect association between OTU-1 and OTU-2 and identify

common environmental factor EF-1 that actually affects their abundance.

(D) Microbial association (OTU-OTU) network. ‘‘+’’ and ‘‘–‘‘ correspond to the positive (orange edges) and negative (blue edges) associations, respectively. Colors

of OTUs represent different taxa, and the same colors belong to identical taxa. The thickness of edges is correlated to the strength of associations.

(E) Environmental factor-microbe (EF-OTU) association network.
associations without considering the variance of metagenomic

data, shows that mLDMachieves the highest AUC scores across

all five graphical structures. We also observe that mLDM has

smallerD1 distances thanmost of the other methods, suggesting

that mLDM is able to accurately estimate the weight and sign of

conditionally dependent associations. On the cluster graph, the

ROC curves of SparCC and CCLasso increase more slowly than

those of mLDM at the beginning, but climb higher as the false-

positive rates become larger. This can be explained by the local

density of each standalone cluster in the graph. Under these

conditions, mLDM tends to shrink edges with lowweights, finally

retaining fewer edges than either SparCC or CCLasso. However,

we argue that an initial high true-positive rate, when the false-

positive rate is small, is very significant in biological applications,

essentially because a higher ratio of predicted associations will

be true.

Figure 2B shows the ROC curves for the estimated associa-

tions between EFs and OTUs (EF-OTU), where simulation
parameters are set the same as those shown in Figure 2A. The

corresponding AUC scores and D
ð2Þ
1 distances are shown in Ta-

ble S2. CCREPE, SparCC, CCLasso, and SPIEC do not estimate

EF-OTU associations; therefore, we comparedmLDMwith PCC,

SCC and glasso only. From the ROC curves, we observe that

mLDM has higher true-positive rates and lower false-positive

rates than the other four methods. From the AUC scores, we

observe that mLDM has better performance than the other

methods. For D
ð2Þ
1 distances, mLDM also performs better than

the other methods, with the exception of SCC, which does

slightly better in the Band graph. More comparisons (with Dir-

Multi, Dirichlet-multinomial regression [Chen and Li, 2013]) can

be found in Figure S4.

Next, to show the sensitivity of the computational models with

respect to different sample sizes, we fixed the number of mi-

crobes as p = 50 and the number of EFs as Q = 5 and simulated

metagenomic sequencing datasets with various sample sizes,

including n = 25, 50, 200, and 500. The AUC scores of the
Cell Systems 4, 129–137, January 25, 2017 131



Figure 2. Performance of Association Inference of Nine Methods on Synthetic Experiment

(A) Comparisons of ROC curves of computational methods for predicting OTU-OTU associations on five different graphical structures (random, cluster, scale-

free, hub and band). Average results of 20 simulations with the same parameters are displayed. Each simulated dataset consists of 500 samples (n = 500) with 50

OTUs (p = 50) and five environmental factors (Q = 5).

(B) Comparisons of ROC curves of computational methods for predicting EF-OTU associations on five graphical structures. Average results of 20 simulationswith

the same parameters are displayed.

(C) Comparisons of AUC scores of computational methods for predicting OTU-OTU associations using different numbers of samples (n = 25, 50, 200, and 500)

with the numbers of microbes and environmental factors fixed (p = 50 and Q = 5).

(D) Comparisons of AUC scores of computational methods for predicting EF-OTU associations using p = 50, Q = 5, n = 25, 50, 200, and 500.
estimated OTU-OTU associations by glasso, SPIEC (gl), SPIEC

(ml), and mLDM are plotted in Figure 2C. As expected, the

AUC scores of all fivemethods increasewhen the sample size in-

creases. Among these methods, mLDM gives the highest AUC

scores on all five graphical structures, which again proves that
132 Cell Systems 4, 129–137, January 25, 2017
mLDM can accurately estimate conditionally dependent associ-

ations. The AUC scores of the estimated EF-OTU associations

by PCC, SCC, glasso, and mLDM are shown in Figure 2D, and,

again, the AUC scores of mLDM are higher than those of PCC,

SCC, or glasso.



Performance on TARA Oceans Eukaryotic Data
To validate the performance of mLDM on discovering OTU-OTU

associations from real metagenomic sequencing data, we show

the results of mLDM, as well as eight other methods, on TARA

Oceans eukaryotic data (Lima-Mendez et al., 2015). The eukary-

otic abundance profiles were estimated by sequencing and clus-

tering the V9 region of eukaryotic 18 s rRNA genes. A subset for

evaluations was extracted from datasets established by the orig-

inal authors. This subset consists of 67 OTUs with 28 known

genus-level interactions and 17 EFs from 221 samples.

It should be noted that the known interactions are at genus

level, and thus we evaluated the results at genus level. Since

the exact OTU-OTU associations at species level are unidenti-

fied, we further specified that a predicted association between

two OTUs would match a known genus-level interaction if the

two OTUs belonged to two interacting genera. Since this is not

a ground truth dataset because of its incompleteness, we re-

ported the numbers of matched genus-level associations among

the top-N predicted associations (with the highest weights) of all

methods, as listed in Table S3. It can be seen that mLDM is su-

perior to other programs in terms of the number of matched as-

sociations for six cases, demonstrating its power of association

inference. SCC is competitive with mLDM when N%40, but its

performance decreases as N increases. Both CCLasso and

SparCC tend to report a dense association network, which in-

cludes a large number of false-positive associations, as shown

in Figures 3E and 3F. In contrast, mLDM assumes network spar-

sity and therefore selects associations with higher weights, as

shown in Figure 3D.

The ground truth, consisting of 28 genus-level symbiotic inter-

actions, as listed in Table S4, and the top 40 highest valued

genus-level associations discovered by mLDM, are plotted in

Figures 3A and 3B, respectively. The strong negative association

between the genus Amoebophrya and the genus Alexandrium,

as given by mLDM, implies a parasitic interaction, which

matches known parasitic interactions (Chambouvet et al.,

2011). The known parasitic interactions between Amoebophrya

and Peridiniaceae, and between Amoebophrya and Acanthome-

trawere also detected bymLDMas having negative associations

(Gunderson et al., 2002). We also list the top 10 predicted OTU-

OTU associations, i.e., those with largest weights, together with

relevant citations in Table S5.

Figure 3C shows EF-OTU associations estimated by mLDM.

Compared to OTU-OTU associations estimated by mLDM, as

shown in Figure 3D, fewer EF-OTU associations are found, indi-

cating that EFs have direct effect on only some OTUs, while

OTU-OTU associations comprise the greater share of forces

that drive the changes of microbial community. Similarly, we

show the top 10 estimated EF-OTU associations in Table S5.

Some of these predictions were consistent with findings re-

ported in the literature. For example, Cope-1 (Corycaeus sp.) is

positively associated with the depth of maximum Brunt-V€ais€al€a

frequency, which is a measure of the stability of ocean’s stratifi-

cation. This discovery is consistent with a previous work about

the predictability of the depth of maximum Brunt-V€ais€al€a fre-

quency to Cope-1 (Irigoien et al. (2011). The relationships be-

tween the depth of maximum chlorophyll and Cope-2 (Oithona

sp.) and between moon phase and Cope-7 (Centropages fu.)

were also studied in other projects (Munk, 1993; Osore et al.,
2004). Figure 3G shows a non-linear association found by

mLDM, where estimated absolute abundances of Corycaeus

sp vary with concentrations of oxygen.

EF-OTU Associations on Human Gut Microbes from
Colorectal Cancer Dataset
We next evaluated EF-OTU associations estimated by mLDM on

human gut microbes from a colorectal cancer dataset (Baxter

et al., 2016). The composition of gut microbes of patients with

colorectal cancer (CRC) has been found to differ from that of

the normal gut microbial community, and some microbes, such

as Fusobacterium, Peptostreptococcus, Parvimonas, and Por-

phyromonas, have been reported to be enriched in the patients’

gut (Feng et al., 2015; Yu et al., 2015; Zeller et al., 2014). A total of

117 OTUs and five meta data (FIT results, site, Dx_Bin, age, and

gender) out of 490 samples were selected from the dataset pro-

vided by the original authors to construct association networks.

Among the meta data, ‘‘site’’ contains four cities with three cities

in the US and one in Canada, and ‘‘Dx_Bin’’ comprises five diag-

nostic states, ‘‘normal,’’ ‘‘high-risk normal,’’ ‘‘adv adenoma,’’

‘‘Adenoma,’’ and ‘‘cancer.’’ Results of mLDM and previous

studies were compared to verify our model’s effectiveness. Ta-

ble 1 lists top 12 EF-OTU associations estimated by mLDM.

We observed that four OTUs, Peptostreptococcus (OTU310),

Porphyromonas (OTU105), Parvimonas (OTU281), and Fusobac-

terium (OTU264), appear among the top 12 EF-OTU associations

and are positively associated with CRC. The unclassified Prevo-

tella (OTU57) reported by the original authors is also found to be

positively associated with CRC, and it is the 25th largest EF-OTU

association (+0.185). These results are consistent with previous

studies.We believe that this is convincing validation for the accu-

racy of EF-OTU associations estimated by mLDM.

In addition, for eight out of the 12 EF-OTU associations, p

values via the Wilcoxon rank-sum test are shown in Table 1. All

these associations are statistically significant, which again

shows the efficiency of mLDM as a predictor of EF-OTU associ-

ations. Interestingly, among the top 12 EF-OTU associations, we

also discover that two microbes are associated with the ‘‘age,’’

Veillonella (OTU66) (+0.364), and Parasutterella (OTU82)

(�0.275), and that a special species, Pasteurellaceae (OTU58),

is negatively associated (�0.298) with CRC. More studies are

needed to explain these associations.

Association Inference on West English Channel Data
Finally, we applied mLDM to other marine metagenomic

sequencing data to infer the underlying OTU-OTU associations

and EF-OTU associations. In the marine community, huge

numbers of marine microbes play important roles in ocean

food chains. However, very little is known about how marine mi-

crobes interact with each other or how they are affected by envi-

ronmental factors. Gilbert et al. (2012) studied the dynamics of

the marine microbial community in the West English Channel

by analyzing high-throughput 16S rRNA data sampled from

2003 to 2008. From these data, we extracted 48 OTUs and eight

EFs that appear in 46 samples and employed mLDM to infer

associations.

The OTU-OTU association network for the 48 OTUs is shown

in Figure 3H. In general, the number of positive associations

(brown edges) among OTUs is more than that of the negative
Cell Systems 4, 129–137, January 25, 2017 133



Figure 3. Results of Experiments on TARA Oceans Eukaryotic Dataset and West English Channel Data

(A) A network for 28 known genus-level symbiotic interactions from the TARA Oceans Eukaryotic dataset. Since the signs of the interactions are unknown, we

show them in brown for convenience. Sizes of nodes are proportional to their relative abundance.

(B) The genus-level association network (TARA Oceans Eukaryotic dataset) discovered bymLDMwhere only the top n = 40 genus-level associations are plotted.

OTUs that belong to the same genera are labeled with the same colors. The brown and blue edges represent positive and negative associations, respectively.

Thickness of an edge is proportional to its absolute edge weight.

(C) Predicted EF-OTU association network by mLDM (TARA Oceans Eukaryotic dataset).

(D) Predicted OTU-OTU association network by mLDM (TARA Oceans Eukaryotic dataset).

(E) Predicted OTU-OTU association network by SparCC (TARA Oceans Eukaryotic dataset).

(F) Predicted OTU-OTU association network by CCLasso (TARA Oceans eukaryotic dataset).

(legend continued on next page)
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Table 1. Top 12 EF-OTU Associations Estimated by mLDM on

Colorectal Cancer Data Dataset

OTU EF Association

p value

(Wilcoxon

rank-sum test)

Peptostreptococcus

(OTU310)

cancer +0.865 2.00 3 10�15

Porphyromonas

(OTU105)

cancer +0.617 2.08 3 10�14

Fusobacterium (OTU264) normal �0.463 1.74 3 10-5

Fusobacterium (OTU264) FIT positive +0.442 N/A

Parvimonas (OTU281) cancer +0.378 3.50 3 10-12

Porphyromonas

(OTU105)

normal �0.372 7.34 3 10�6

Veillonella (OTU66) age +0.364 N/A

Parvimonas (OTU281) normal �0.307 7.94 3 10-5

Pasteurellaceae (OTU58) cancer �0.298 2.95 3 10-5

Porphyromonas

(OTU105)

FIT positive +0.288 N/A

Parasutterella (OTU82) age �0.275 N/A

Fusobacterium (OTU264) cancer +0.272 2.68 3 10-7

All predicted EF-OTU associations are sorted in descending order ac-

cording to their absolute values. Wilcoxon rank-sum test is performed

on eight out of 12 EF-OTU associations where the EFs include five diag-

nostic states, ‘‘normal,’’ ‘‘high-risk normal,’’ adv Adenoma,’’ ‘‘adenoma,’’

and ‘‘cancer,’’ ‘‘FIT’’ (fecal immunochemical test), and ‘‘age.’’ The content

in the ‘‘OTU’’ column consists of annotated OTUs andOTU numbers from

the original article. Wilcoxon rank-sum test was performed on the diag-

nostic state-OTU associations but is not applicable for other types of

EF-OTU associations.
associations (blue edges). The network is clearly dominated by

OTUs from Proteobacteria, which are colored green. This result

is consistent with the original discovery by Gilbert et al. (2012).

The OTU Alphap17, which belongs to the family Rhodospirilla-

ceae, plays an important role in the network, as it is a hub

connecting most OTUs. Rhodospirillaceae is known to produce

energy through photosynthesis, which is critical to the marine

microbial community on the surface of the ocean. Gilbert et al.

(2012) also found that a single Rhodobactereaceae OTU acts

as a hub and is correlated with different groups. Although the

OTU Alphap5 from the genus Thalassobacter, the OTU Alphap2

from the family SAR11, and theOTUAlphap17 are from the same

class, Alphaproteobacteria, their associations are different. Al-

phap5 and Alphap17 have a strong negative association while

Alphap2 and Alphap17 have a positive association. The OTUs

Gammap47 and Gammap76 are from the same family, SAR86,

and both have a positive association with the OTU Alphap17. It

is remarkable that the relative abundance of Alphap17 is so

low, while still connecting many big OTUs with high relative

abundance levels, such as Alphap1, Alphap2, Gammap76, and

Gammap7, implying that we should pay more attention to rare

OTUs with low abundance in future research.
(G) Scatterplot of the concentrations of oxygen and estimated absolute abundan

(H) Estimated OTU-OTU associations bymLDMon theWest English Channel data

node is proportional to the relative abundance of the OTU. Edges in brown and

(I) Estimated EF-OTU associations by mLDM on West English Channel data.
Figure 3I shows the EF-OTUassociation network between eight

EFs and 48 OTUs. We observe that temperature has the most

significant impact on OTUs, especially on the phylum Proteobac-

teria. This is consistent with previous observations. Furthermore,

the OTU Alphap17, which connects many other OTUs, is very

strongly and positively associated with day length. This is consis-

tentwith the photosynthesis function ofOTUAlphap17 and further

confirms that the photosynthesis of Alphap17 is critical to the

wholemarinemicrobial community. Gilbert et al. (2012) also asso-

ciated day length with the variance of microbial community via

discriminant function analysis. In addition, the OTU Alphap16

from the family Rhodobacteraceae has a positive association

with temperature. The top ten OTU-OTU and EF-OTU associa-

tions are shown in Table S6. The positive associations between

temperature and both Alphap16 and Gammap58 were previously

reported by Lefort and Gasol (2013).

DISCUSSION

To discover the underlying associations among microbes from

metagenomic samples, we propose mLDM, a hierarchical

Bayesian model with sparsity constraints to discover associa-

tions among microbes and between microbes and the

environmental factors that affect them. mLDM can infer both

conditionally dependent associations among microbes and

direct associations between microbes and environmental fac-

tors, by taking into account both compositional bias and

variance of metagenomic data, an approach not previously stud-

ied. This newly discovered conditionally dependent association

provides insight into the mechanisms underlying a microbial

community by capturing the direct relationship underlying each

microbial pair and removing the indirect connection induced

from other common factors. The effectiveness of mLDM was

verified on the basis of experiments involving both synthetic

and real datasets.

To address the question whether environmental factors are

important for the inference of OTU-OTU associations, we

applied mLDM on synthetic datasets, when only one type of as-

sociations, either OTU-OTU or EF-OTU associations, was esti-

mated, similar to the approach of Ovaskainen et al. (2010). The

results are shown in Figure S1. Compared to the methods

considering both types of associations, we observe lower

ROC curves for those estimating only one type of associations.

Therefore, it can be concluded that environmental factors would

affect the estimation of OTU-OTU associations, that OTU-OTU

associations would affect EF-OTU associations, and that both

types of associations should be considered in association

estimation.

Since mLDM assumes sparsity of true association, we also

test whether the sparsity pattern of OTU-EF interactions (matrix

B) would affect association estimation by this method. In matrix

B, coefficients of a row correspond to the impact of an environ-

mental factor, and coefficients of a column correspond to the

impact of multiple environmental factors to an out. Therefore,
ces of Corycaeus sp. by mLDM (TARA Oceans Eukaryotic dataset).

. Nodes in the same color belong to the same phylum, and the diameter of each

blue colors denote positive and negative associations, respectively.
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we assumed some sparsity patterns of B by assigning some

fractions of rows or columns as nonzero and plotted the ROC

curves of estimated EF-OTU associations by mLDM, as shown

in Figure S2. Overall, mLDM is insensitive to these patterns

and works well in all cases. These results indicate that mLDM

can be applied to estimate various types of sparse associations.

mLDM assumes that microbes respond linearly to environ-

mental factors. However, the abundance of microbes may reach

optima under certain environmental conditions, such as some

range of temperature and depth. While this appears to be a lim-

itation, we argue that some nonlinear associations can, to some

extent, be captured by our model, when data points are distrib-

uted askew, which is typical in real datasets. For example,

among EF-OTU associations estimated by mLDM on the TARA

Oceans Eukaryotic Data, we observed that the OTU Cope-1 an-

notated with the strain Corycaeus sp. is negatively associated

with oxygen concentration. Almost 95% of all 221 samples of

the TARA Oceans dataset are either from the surface waters or

from the deep chlorophyll maximum subsurface, whose depths

range from 5.374 to 183.31 m. From the samples near the ocean

surface, the abundance of Corycaeus sp. does not increase lin-

early with the increase of oxygen but rather tends to be more

abundant when the concentration of oxygen is within a certain

range, as plotted in Figure 3G. This example demonstrates that

mLDM is capable of capturing some of these nonlinear

associations.

Consistency is an important property that shows the robust-

ness of methods against noise. Accordingly, we tested mLDM

on the Human Microbiome Project dataset (HMP) and con-

structed two datasets to evaluate consistency. Since some

subjects had two gut samples from two time points, we con-

structed the first dataset using the samples from the first time

point and the second dataset using those from the second time

point. Consistency was measured by Jaccard similarity, i.e., the

fraction of the number of intersections among the top 200 largest

OTU-OTU associations, as estimated from the two datasets, over

the number of the union of these two sets of associations. The

consistency of nine methods was then plotted, and it is shown

in Figure S3. We observe that the consistency of mLDM is ranked

fifth among all, and among the four methods that estimate condi-

tionally dependent associations, including glasso, SPIEC (gl),

SPIEC (ml), and mLDM, mLDM is the second best. Of the nine

methods compared, CCLasso had the highest consistency, while

glasso had the lowest consistency. Overall, methods that esti-

mate direct correlations had higher consistency than those that

estimate conditionally dependent associations. However, ap-

proaches that estimate conditionally dependent associations

are sensitive to heterogeneity or noise within the dataset, partic-

ularly in model selection. However, consistency needs not to be

the best standard to assess methods because, to some extent,

consistencymay reflect this method ismisled by systematic bias.

For future work, we will develop a more scalable mLDMmodel

to analyze large microbial network structures with tens of thou-

sands of microbes by using stochastic gradient descent and par-

allel computing techniques. For rare OTUs, which only exist in a

small fraction of the samples, the lognormal distribution may be

not suitable, and other appropriate distributions need to be

explored.Wewill also develop dynamicmLDMmodels to analyze

time series data and learning time-varying network structures.
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KEY RESOURCES TABLE
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TARA Oceans eukaryotic data (Lima-Mendez et al., 2015) http://doi.pangaea.de/10.1594/PANGAEA.843018

TARA Oceans environmental data (Lima-Mendez et al., 2015) http://www.raeslab.org/companion/ocean-interactome.html

Colorectal Cancer data (Baxter et al., 2016) https://github.com/SchlossLab/Baxter_glne007Modeling_GenomeMed_2015

West English Channel data (Gilbert et al., 2012) https://vamps.mbl.edu/

Software and Algorithms

huge (Zhao et al., 2012) https://cran.r-project.org/web/packages/huge/index.html

HMP R package https://cran.r-project.org/web/packages/HMP/index.html

CCREPE (Faust et al., 2012) http://bioconductor.org/packages/release/bioc/html/ccrepe.html

SPIEC-EASI (Kurtz et al., 2015) https://github.com/zdk123/SpiecEasi

CCLasso (Fang et al., 2015) https://github.com/huayingfang/CCLasso

lbfgs R package https://cran.r-project.org/web/packages/lbfgs/index.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Please contact the corresponding author Dr. Ting Chen (tingchen@tsinghua.edu.cn) for further information and requests about codes

and datasets.

METHODS DETAILS

The metagenomic Lognormal-Dirichlet-Multinomial Model
Suppose there are N samples X= fxigNi = 1. Each xi ˛ NP is a P-dimensional vector that contains P microbes (or Operational Taxo-

nomic Units (OTUs)), where xij represents the sequence/read count of the j-th microbes in the i-th sample. LetM= fmigNi = 1 represent

the environmental factors, where eachmi ˛ RQ is a Q-dimensional vector andmij represents the value of the j-th environmental factor

associated with the i-th sample.

Figure 1B illustrates the mLDM model for metagenomic sequencing, where xi is the read count vector of the i-th sample and mi

records values of the environmental factors corresponding to the i-th sample. The latent variable hi is the vector of the relative abun-

dance levels of P microbes in the extracted sample, and ai represents the absolute abundance levels of the microbes in the original

community. We assume that the counts xi are proportional to the latent microbial ratios hi which are determined by their absolute

abundance ai. Microbial absolute abundance ai can be influenced by two factors: 1) environmental factors mi, whose effects on

the microbes are denoted by a linear regression model BTmi, and 2) the associations among microbes encoded by a latent vector

zi, which is determined by the matrix Q that records microbial associations and the mean vector B0 that affects the basic absolute

abundance of microbes. The microbial basic absolute abundance can be regarded as the average result of effects of all other factors

that have an effect on microbial abundance, but are not included in themLDM.More specifically, the generative process of the meta-

genomic Lognormal-Dirichlet-Multinomial hierarchical model is defined as:

zi � Gaussian
�
B0;Q

�1
�

mLDM This paper https://github.com/tinglab/mLDM/
ai = exp
�
BTmi + zi

�

hi � DirichletðaiÞ
xi � MultinomialðhiÞ
where B is a Q3P parameter matrix, B0 is a P-dimensional vector, andQ is the inverse covariance matrix (i.e., precision matrix) of a

multivariate Gaussian distribution. With this model, our goal is to infer both B, the environmental factor-microbe (or EF-OTU)
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associations, andQ, themicrobe-microbe (or OTU-OTU) associations, under some sparsity regularizationwhichwill bemade clear in

next section. We now explain the design of each component in mLDM.

We assume that read count data xi follows a multinomial distribution with the microbial ratio parameter hi:

Pðxi jhiÞ=
�

sðxiÞ
xil;/; xiP

�YP
j = 1

h
xij
ij (1)

where sðxiÞ=
PP

j =1xij is the total read count of the i-th sample. Since the multinomial parameter hi is subject to the constraint thatPP
j = 1hij = 1, we assume it follows a Dirichlet distribution

Pðhi jaiÞ= 1

TðaiÞ
YP
j =1

h
aij�1

ij (2)

where TðaiÞ= ðQP
j =1GðaijÞ=GðsðaiÞÞÞ, Gð,Þ is the Gamma function and sðaiÞ=

PP
j = 1aij. Based on the conjugacy of Dirichlet and multi-

nomial distribution, we can obtain the following Dirichlet-Multinomial distribution via integrating hij out

Pðxi jaiÞ=
Z

Pðxi jhiÞPðhi jaiÞdhi =

�
sðxiÞ

xil;/; xip

�
Tðai + xiÞ
TðaiÞ (3)

The flexible variance-covariance property of the Dirichlet-multinomial distribution is suitable for modeling the sequencing data. A

simple explanation is as follow.We calculate the variance of the read count xij, VarðxijÞ= sðxiÞ,C,rij,ð1� rijÞ, and the covariance of two

read counts xij and xik , Covðxij; xikÞ= � sðxiÞ,C,rij,rik , where C= ðsðxiÞ+ sðaiÞ=1+ sðaiÞÞ and rij =aij=sðaiÞ, rik =aik=sðaiÞ are true rela-

tive abundance levels. We can see that both the variance and covariance of microbial counts are regulated by the sequencing depth

sðxiÞ and the true relative abundance rij of the microbes. Moreover, the coefficient between xij and xik is negative, which models the

compositional negative bias.

We further assume that the absolute abundance ai for all microbes in the i-th sample follows the multivariate lognormal distribution

with mean mi and covarianceQ�1 which is commonly used to model most microbial abundance except for some occasional species

(Hong et al., 2006; Ulrich and Ollik, 2004; Unterseher et al., 2011). Microbes survive in a community through conditionally dependent

associations. However, at the same time, microbes are also subjected to unpredictable fluctuations impacted by their microenviron-

ment. Therefore, we record associations amongmicrobes in thematrixQ and let themean mi vary with the environmental data vector

mi by a linear regression model. Then the prior distribution is defined as

Pðai jB;B0;Q;miÞ= 1

ð2pÞP2 jQ j �1
2

exp

�
� 1

2
ðlogai � miÞTQðlogai � miÞ

�YP
j = 1

1

aij

(4)

where mi =BTmi +B0. Using the relationship between the lognormal and Gaussian distributions, it is also equivalent to the

following form:

ai = exp
�
BTmi + zi

�
(5)

where zi � NðB0;Q
�1Þ. This formulation avoids positivity constraint in the lognormal distribution. This is beneficial for finding the es-

timates, e.g., by using some unconstrained optimization algorithms, as explained in the next section.

With the above model, we capture both the conditionally dependent associations amongmicrobes and the direct associations be-

tween microbes and environmental factors. More specifically, the conditionally dependent associations among microbes are en-

coded in the precision matrix Q. To visualize the microbial association network, we use an undirected graph denoted as

Gð1Þ = ðV ð1Þ;Eð1ÞÞ employed in the Gaussian Markov random field (Murphy, 2012) to representQ, where V ð1Þ represents the set of no-

des denoting P microbes and Eð1Þ is the set of conditionally dependent associations with each element e
ð1Þ
ij representing the asso-

ciation between the i-th and j-th microbes. IfQij = 0, then the i-th and the j-th microbes are conditionally independent, and hence, no

edge exists between the twomicrobes in graphGð1Þ. Theweight of edge e
ð1Þ
ij ,w

ð1Þ
ij = � ðQij=

ffiffiffiffiffiffiffiffiffiffiffiffi
QiiQjj

p Þ, is the strength of the association
between the two microbes.

The direct associations between microbes and environmental factors are encoded in weight matrix B. The association between

the i-th microbe and the j-th environmental factor is Bij, and we can plot them in another bipartite graph Gð2Þ = ðV ð2Þ;Eð2ÞÞ, where

the set of nodes V ð2Þ represents both P microbes and Q environmental factors, and the edge e
ð2Þ
ij in Eð2Þ represents the direct asso-

ciation between the j-th environmental factor and the i-th microbe. The weight of edge e
ð2Þ
ij equals w

ð2Þ
ij =Bji.

Overall, our metagenomic association network consists of these two graphs Gð1Þ and Gð2Þ, as illustrated in Figures 1D and 1E.

Sparse association estimation
We now explain how to estimate the metagenomic association network by using sparsity regularization. Given metagenomic data X

and environmental factors M, the posterior distribution of the latent factors Z is

PðZ jX;M;B;B0;QÞfPðX;Z jB;B0;Q;MÞfPðX jaÞPða jZ;B;B0;MÞPðZ jB0;QÞ (6)
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where PðX jaÞ can be calculated with Equation 3, and PðZ jB0;QÞ=QN
i = 1Pðzi jB0;QÞ with each factor Pðzi jB0;QÞ being a Gaussian

distribution. As a consequence of the deterministic relationship ai = expðBTmi + ziÞ, it should be noted that the distribution

Pða jZ;B;B0;MÞ is a Dirac delta function. In general, associations amongmicrobes are not expected to be dense and only a few envi-

ronmental factors will predominate. This motivated us to identify a sparse association network which could be effectively achieved by

sparse learning techniques (Tibshirani, 1996). Also, in practice, the number of samples is usually smaller than the number of mi-

crobes, or N<<P. Therefore, introducing sparsity regularization helps avoid overfitting. Specifically, we estimate the sparse associ-

ation network by solving the following problem:

min
B;B0 ;Q;Z

fðB;B0;Q;ZÞ+ l1

2
kQ k 1 + l2kB k 1 (7)

where fðB;B0;Q;ZÞ= � ð1=NÞlogPðZ jX;M;B;B0;QÞ= � ð1=NÞPN
i =1ð

PP
j = 1

~Gðaij + xijÞ � ~GðsðaiÞ+ sðxiÞÞ �
PP

j = 1
~GðaijÞ+ ~GðsðaiÞÞÞ

�ð1=2ÞlogjQ j + ð1=2NÞPN
i = 1ðzi � B0ÞTQðzi � B0Þ, ~Gð,Þ= log Gð,Þ is the log gamma function, and the positive parameters l1 and l2

are used to control the sparsity of the solution with larger values representing sparser results. Then, the model parameters can be

estimated by optimizing the objective function with respect to Z,B,B0 and Q alternately.

1) For Z, we minimize the objective function in Equation 7 with respect to Z. Because of independence, we can solve for each zi
independently by the gradient descent methods. Here, we adopt the limited-memory quasi-Newton (L-BFGS) algorithm (Liu

and Nocedal, 1989), which is a quasi-Newton method and converges fast. L-BFGS requires the derivative of zij, which is

computed as follows:
vf

vzij
= � 1

N

�
~G
0ðaij + xijÞ � ~G

0ðsðaiÞ+ sðxiÞÞ � ~G
0ðaijÞ � ~G

0ðsðaiÞÞ
�
aij +

1

N
Qj:ðzi � B0Þ (8)

where ~G
0ðaijÞ is the digamma function and Qj is the j-th row of the matrix Q.

2) For B, we minimize Equation 7 with respect to B. The objective is not differentiable by the existence of the L1 norm reg-

ularizer. Therefore we use the orthant-wise limited-memory quasi-Newton (OWL-QN) algorithm (Andrew and Gao, 2007),

which is based on L-BFGS and can minimize the log likelihood function with L1 regularization for optimization. The deriv-

ative of Bij is
8

dijðBÞ=

<
:

v�ij fðBÞ if v�ij fðBÞ>0
v+
ij fðBÞ if v+

ij fðBÞ<0
0 otherwise

(9)

where

v±
ij fðBÞ=

vfðBÞ
vBij

+

�
l2signðBijÞ if Bijs0

± l2 if Bij = 0
;

and ðvfðBÞ=vBijÞ= ð1=NÞPN
k = 1ð~G

0ðaij + xijÞ � ~G
0ðsðaiÞ+ sðxiÞÞ � ~G

0ðaijÞ+ ~G
0ðsðaiÞÞÞakjmkj.

3) For B0, we have the update rule B0 = ð1=NÞPN
i= 1zi, which is the mean of the latent vectors zi.

4) For Q, this step is equal to solving the classical problem of a graphical lasso (glasso):
min
Q

�logjQ j + trðSQÞ+ l1kQ k 1; (10)

where the empirical covariance S= ð1=NÞPN
i =1ðzi � B0Þðzi � B0ÞT . This problem is also termed as sparse inverse covariance

estimation and can be solved with a standard graphical lasso (glasso) algorithm by (Friedman et al., 2008). However, different

from the fully observed glasso, where the empirical covariance is computed once, we should note that our S depends on the

inferred latent vectors z and needs to update at each iteration. Since zi and mi mutually influence each other in explaining the

observed data x (see the Figure 1B), the learned sparse graph (i.e., Q) is affected by environmental factors, matching our intuition

in Figure 1C.

For model selection, we choose the best parameters for l1 and l2 via extended Bayesian information criteria (EBIC) (Chen and

Chen, 2008). EBIC improves the original BIC by assigning larger prior to lower dimension models, a strategy more suitable for model

selection in large model spaces.
e3 Cell Systems 4, 129–137.e1–e5, January 25, 2017



QUANTIFICATION AND STATISTICAL ANALYSIS

Data Generation and Evaluation Metrics in Synthetic Experiment
The synthetic data can be naturally produced via our generative process. First, the environmental factor matrixM is sampled from the

multivariate normal distribution Nð0; IÞ and then normalized with
PN

i = 1Mij = 0 and ð1=N� 1ÞPN
i = 1M

2
ij = 1. The element Bij of matrix B is

sampled from the uniform distribution of ½�0:5; 0:5� and set to 0 with probability of 0.85. Since dominant microbes are found in some

microbial communities, we produce vector B0 by uniformly sampling from ½6; 8� with probability of 0.2 and ½2; 4; 5� with probability of

0.8 to affect the distribution of absolute abundance of microbes. To evaluate the ability of mLDM to recover network structures, we

follow Kurtz et al. (2015) and use five different precision matrices Q whose adjacency matrices are as follows:

Random Graph: Edge e
ð1Þ
ij in Eð1Þ is set to nonzero with probability ð3=PÞ and about ð3=2ÞðP� 1Þ edges are produced.

Cluster Graph: Nodes V ð1Þ are randomly split into PP=20R groups and within the same group the nodes i and j are connected

with probability of 0.3.

Scale-free Graph: The B-A algorithm (Albert and Barabasi, 2001) is used to produce a graph in which a) initially two nodes inGð1Þ

are connected and b) every new node is added in by linking to a node in the current graph with probability proportional to the

degree of the node.

Hub Graph: Nodes V ð1Þ are randomly split into PP=20R groups, and within the same group, every node is connected with a center

node with probability of 1. Finally, random P� PP=20R edges are included in the Eð1Þ.
Band Graph: Each adjacent node pair i and j in V ð1Þ is connected if ji � j j = 1 and P�1 edges are generated in Eð1Þ.

We use the huge package (Zhao et al., 2012) to generate Q and obtain the positive definite covariance matrix S=Q�1. In order to

make the covariancematrixS sparse, and thus beneficial tomethods estimating the correlations, we setSij = 0 if
��Sij

��<0:1. Then, zi is

sampled from the normal distribution Nð0;SÞ, and ai is calculated via Equation 5. Next, we generate the Dirichlet-multinomial sam-

ples xi from Equation 3. This process relies on the R package ‘HMP’, which includes the generation of Dirichlet-multinomial samplers.

For B, B0 and Q with five structures, all methods are compared with the following four experimental settings: P = 50, Q = 5 and

N = 25,50,200 and 500. We use public codes glasso, CCREPE, SPIEC-EASI, CCLasso and the implementation of SparCC in

SPIEC-EASI. Here PCC and SCC are implemented in R language, and the candidates of associations are selected via p value.

We set p value at 0.05 for PCC, SCC and CCREPE, and the threshold of correlation for SparCC is 0.1. For each parameter setting,

we randomly generate 20 sets of data for evaluation. For all experimental results, it should be noted that we show the mean and vari-

ance of evaluation results from the 20 synthetic datasets.

We use three metrics for evaluation:

ROC curve: We plot the ROC curves using two criteria. For PCC, SCC, CCREPE, SparCC and CCLasso, which estimate pairwise

correlations, we compare their results with the true correlationmatrix rwith each element being rij = ðSij=
ffiffiffiffiffiffiffiffiffiffiffi
SiiSjj

p Þði < jÞ. For glasso,
SPIEC-EASI and mLDM, which estimate conditional independence, we compare their results with the true precision matrix Q.

AUC score: We compute the area under the ROC curves directly. The AUC scores are calculated by ignoring the sign of edges.

D1 distance: It is defined as the L1 distance between the estimated edge weights and the true weights in the graph. A smaller D1

distance indicates a higher accuracy. Let D
ð1Þ
1 and D

ð2Þ
1 denote the D1 distance for the OTU-OTU and EF-OTU association graphs,

respectively. For the pairwise correlation methods, D
ð1Þ
1 = ð2=PðP� 1ÞÞPi < j

��br ij � rij
�� , where br is the estimated value and r is the

true value. For the conditional independencemethods,D
ð1Þ
1 = ð2=PðP� 1ÞÞPi < j

�� bQ ij �Qij

�� , and D
ð2Þ
1 = ð1=QPÞPQ

i =1

PP
j = 1

��� bBij � Bij

��� .
Preprocessing of TARA Oceans Eukaryotic Data
The TARA Oceans eukaryotic OTU table and environmental data, including the known genus-level eukaryotic symbiotic

interactions were downloaded from the PANGAEA website (https://doi.pangaea.de/10.1594/PANGAEA.843018) and the TARA

OCEANS project website (http://www.raeslab.org/companion/ocean-interactome.html). A total of 91 genus-level mapped

eukaryotic symbiotic interactions that consist of both parasitism and mutualism were collected based on the literature (Lima-

Mendez et al., 2015) and were used to evaluate the effectiveness of all methods. Samples with missing environmental factor

values or with too large or small read counts were removed. OTUs that appear in less than 40% of the samples were omitted.

For comparison, we chose OTUs that were involved in known genus-level symbiotic interactions. Finally we constructed a

dataset consisting of 67 OTUs with 28 known genus-level interactions and 17 environmental factors from 221 samples for

evaluation.

Preprocessing of Colorectal Cancer Data
We adopted the dataset directly from Baxter et al. (2016) and downloaded the OTU and meta data from the github (https://github.

com/SchlossLab/Baxter_glne007Modeling_GenomeMed_2015). We selected a total of 117 OTUs, including 112 that existed in at

least half of all 490 samples, and 5 that were CRC-associated OTUs reported in the article, including Prevotella (OTU57), Porphyr-

omonas (OTU105), Fusobacterium (OTU264), Parvimonas (OTU281) and Peptostreptococcus (OTU310).

Preprocessing of West English Channel Data
For the West English Channel data, we downloaded the OTU table from the VAMPS website (https://vamps.mbl.edu/). Forty-seven

samples from position L4 ð50�25:180N;4�21:890WÞwere selected for association estimation. We extracted 48 OTUs that appeared in
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at least 46 samples, and the total abundance of these OTUs exceeds 50% of the total read counts. This dataset has 8 EFs, including

temperature, day length, as well as concentrations of salinity, ammonia, chlorophyll, nitrate, phosphate and silicate, which were used

to infer EF-OTU associations.

DATA AND SOFTWARE AVAILAVILITY

The program of mLDM is freely available at https://github.com/tinglab/mLDM/. Now, for the synthetic dataset with 50 OTUs, 5 EFs

and 500 samples, mLDM runs about 20 min on a server with an Intel Xeon v3 2.5GHz CPU and 128G RAM.
e5 Cell Systems 4, 129–137.e1–e5, January 25, 2017
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