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Asymptotic expansions, similar to those of Roth and Szekeres, are obtained 
for the number of partitions of a positive integer into summands from a given 
set of integers under new restrictions. 

1. INTRODUCTION 

Let A = {a, , a, ,...} be an infinite sequence of monotonically increasing 
positive integers. Under suitable restrictions on A, we shall obtain asymp- 
totic estimates for the number p,(n) of ways that it can be written in the 
form 

11 = aYr + ayz + *.. + uyu (0 d v1 B v2 < ... < vv), 

u being arbitrary. We shall assume from now on that the greatest common 
divisor of A is one. 

To state our result requires some definitions and notation that will be 
used throughout this paper: 

Let A(u) denote the number of elements of A which are <u. 
We define the function fA for real x > 0 by 

&(x) = c e-“. 

We say that A has property (I) if with E > 0 an arbitrary constant, 
p any fixed positive integer, 

and 

c (xaJU e-+=” = O(flA+‘(x)) 

fAW/fAlX(l - fA (1+c)‘3(X))] = O(1) 
389 
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as x -+ 0. It shall be proven later (see Lemmas 2.4 and 2.5) that A has 
property (I) when any of the conditions (i), (ii), (iii) below hold: 

(0 s = ]im log’Og a, exists * 
y-m log v ’ 

(ii) l&(log a,)/v > 0 ; 
v+-m 

(iii) A(2u) = O(A(u)) as u -+ cc. 

We say that A has property (II) if there exists some constant 6 with 
1 > 6 > 0 and some constant q with l/3 > 71 > 0 such that 

and 

as x -+ 0. It shall be proven later that A has property (II) when either 

(i& log a,/log v)/l& log a,/log v < g 
Y-)02 

or A(2u) = 0(&u)} as u ---f co or (i) above holds with s > 0. 
We say that A is a P-sequence if there does not exist a number p such 

that p/a” for all sufficiently large a, . Note that A is a P-sequence iff it 
has the property Pk of Bateman and Erdos [l] for all k. 

We define 01, A,, D, to be the q*, Ap*, and D,* of Roth and 
Szekeres [2], that is, CY = a(n) is determined from 

n = C uv(eaa” - 1)-l. 

A,, = A,(n) (p = 2, 3,...) is defined by 

(1.1) 

A, = 1 u/g,,(euav)(euav - I)-“, 

where g,(x) is a certain polynomial of degree Q.L - 1 and in particular 
g&c) = 1 and g&x) = x. 

D, = D,(n) (p = 1, 2,...) is defined by 

the summation being subject to 

t-h + P2 + ... fp50 = l&3, 

where the d’s are certain numerical constants. 



ASYMPTOTIC RELATIONS FOR PARTITIONS 391 

Our main result can now be stated. 

THEOREM 1.1. Let A have properties (I) and (II). Suppose that either 
A is a P-sequence or that 

li+i logf~(ff)/log Q: = 0. 

Suppose furthermore that 

liiT; ~o&g a” ( ~ 
log v  . 

Let m be any fixed integer 32. Then 

PA(n) = (27rA,)-1/z exp 
! 

f [A - log (1 - eP’u)] 1 
v=O 

m-2 

x 1 + c D0 + O{f\-(2m/3) 
P=l 

It is clear even from the statement of the theorem that we rely heavily 
upon the work of Roth and Szekeres [2]. An advantage of this theorem 
over that of Roth and Szekeres is that the condition log a, = O(log v) 
is relaxed. Another is that the theory of trigonometric sums is not required. 
(See the remark at the end of this paper.) 

The condition A(2u) = O{A(u)} as u - cc has been used previously 
by Schwarz, for example, [3-51. Theorem 1.1 is most closely related to 
Theorems 5 and 6 of [S]. We only consider the case of integral a,‘~; 
however, in this case, our restrictions complement those of Theorem 5 
and are rather more easily verified than those of Theorem 6 of [5]. 

Proof of Theorem 1.1. The proof is rather long. Thus, we sketch 
very briefly the proof before proceeding. It is well known that the 
generating function PA(z) for PA(n) (with ~~(0) = 1) is 

F&7) = C pA(n) zn = n (1 - z”)-‘, 

where the series and product converge absolutely for ) z j < 1 (see 161). 
From Cauchy’s theorem, 

p&d = & s F&3 P+l) dt, (1.2) 

where the path of integration is taken to be a circle with center at the 
origin and radius p < 1. For reasons explained in detail in [7] we set 
p = e-“, where LX is defined by 1.1. (This is a saddle-point condition.) 
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Letting [ = e-U*ie in (1.2), we obtain 

pA(n) = & exp [a~ - C log (1 - ePau) 1 

x 1-1 exp [- C log ( 
1 - exp( --ola, + iu,t9) 

1 _ exp(--dlu,) ) - jne/ 69. (1.3) 

We dissect the integration of (1.3) into 3 parts: 

I 
?I = 11 + 4 + 13 = = , 11 II, 4 jr, &I z3 = -97 0 y”. -7z 

If we set 
e, = l&‘l+“ya), (1.4) 

we may approximate the integrand of Z1 by its Taylor series about 0 = 0 
and the contributions from I, and Z3 are negligible. In all subsequent 
discussion, we assume that 8, has this value. 

Moreover, in the following discussions, all equations involving 01 may 
be satisfied only for sufficiently small cy. In view of (l.l), this is equivalent 
to sufficiently large IZ. 

2. THE ASYMPTOTIC EXPANSION OF Zl 

We now determine the asymptotic expansion of Z1 with B0 given by 
Eq. (1.4). Though Section 2 draws very heavily upon [2], there are differ- 
ences since we are not assuming that lim log aJog v exists as v ---f co. 
We attempt to indicate these while avoiding as much duplication of [2] 
as possible. The Taylor series of the integrand about B = 0 is required. 
Let 

In a manner very similar to that in 121, it can be shown that for l3 < 0112, 
we may write 

(2.1) 

where 

(2.2) 
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Thus 

b, = (eNa” - 1)~” gU(eaaV), 

where g,,(x) is that of Section 1. Proceeding as in [2], we obtain (fixed 
integral m >, 2) 

+ 0 z. [ (e!!z”e~a~$r-l + I 
(I e I 412” + (I 8 I d2m 
(e4 - 1) (eh - 1 ) II 2m (2.3) 

where j3 = oc(1 - f;(1+9)‘3 (a)). The O-term depends upon m but not of 
course a. 

The following lemma is easily established: 

LEMMA 2.1. Let p and j be integers with p 3 j. Then 

go (~4’ (eaau - I)-’ = 0 f [l + (ola,)L1] eCaV , 
I V=O i 

where the O-constant depends upon p and j but is independent of ct. 

From Lemma 2.1 and Eq. (2.3), Lemma 2.2 easily follows. 

LEMMA 2.2. Let A have property (I). Then with E > 0 an arbitrary 
constant 

We now obtain as in [2] that 

1, = i”” exp 
297-l 

-+Ase2 + zs 2 (iQW + O{(ej~>““f\+‘(4> d@j . (2.4) 
‘4, 

Note that in view of Eqs. (1 .l), (2.2), and (2.3), the coefficient of B is 0, 
which is of course the saddle-point condition at work. 
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LEMMA 2.3. Let A haveproperty (I). Let E > 0 be an arbitrary constant. 
Let p > 2 be a jxed integer. Then 

The O-constant depends upon p but not 01. 

Proof. From the definition of the A, , it easily follows that 

as 01 + 0. Since A has property (I), the lemma follows. 
From Lemma 2.3, we obtain that 

A3+jt?3+j = O{f A l+r-[(l+a)/31(3+j)(,}. 

Since we are free to choose E < 2mr)/3, we may expand the integrand in 
Eq. (2.2) as in [2] to obtain 

exp{-(-$A&W{1 + E(@ + O(f’,-(2m’3@))), 

where 

Putting 8 = t(&A2)li2, B, = &(A2/2)‘12, we obtain 

I1 = (+A,)-1’2 I-“,” e-@[l + E{t(+A2)-1/2) + O(f;-‘““‘“‘(4)l dt. 
(I 

It is easily seen that a2A2 > K&((Y) for some constant K > 0 if A has 
property (I); hence, that B0 > Kf,““(ol). We may thus replace the limits 
of integration by -cc to co. Expanding E{t(iA2)-lla} in powers of t and 
integrating termwise as in [2] yields the following. 

THEOREM 2.1. Let A have property (I). Let m 3 2 be a jixed integer. 
Then 

m-2 

I1 = (2d4,Y2 1 + c DD + O{f; 
L?=l 

1 (2~/3)(a)}] . 

We now give some sequences which have property (I). 
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LEMMA 2.4. A has property (I) if either 

exists or 

s = lim log log ‘” 
P-a log v 

lim log aV > 0. Y--130 y 

Proof. (a) Suppose first of all that s = 0. We then have Q, < exp(z?) 
for v’s greater than some lower bound v0 = q,(6). Let uYr be the largest 
element of A such that 01(1, < 1. Then 

f”(a) > 2 ePa” > e+[A(l/ol) - vO] > (e-l/2) A(l/a). 
v=vo 

Since &l/a) > l/2 log’/” l/a and since 6 > 0 was an arbitrary constant, 
we obtain that &(oI) > logllti l/a for every constant $ > 0. 

(b) Let E > 0 be for now an arbitrary constant. Let aiaye be the 
largest element of A such that ma, <pi“(a). Then 

Thus 

El = 0(01-l exp(-f+(a)/4)}. 

From part (a), it follows that this O-term is o(l). Since 

it follows that ifs = 0; then A will have property (I) iffA(/3) = O(fi+‘(+, 
where /3 = a(1 -f;(‘+‘)‘3(a)). Since fi r~ 01 as (Y -+ 0, we obtain exactly 
as above that 

(I 
Y 
,8-~fe,ri( 

A o 
) GW” e+Q = O(l). 

For @z, <f’:“(a), @aJU e-@ = O{(olqp e-aav}, since we may choose 
E small; thus, ifs = 0, then A has property (I). 

(c) Suppose now that s > 0. As in (a), we obtain, with 6 > 0 an 
arbitrary constant that 

as a-0. 
b3fA(oi) < MS + @I log log l/a 
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Now y%-” is monotonic decreasing for y 3 c (= c(p)). Let 

f,(a) = C (au,)’ eC”la~ = 1’ + C’ ; 

where C’ denotes summation over those v for which aa, < c, and C” 
denotes summation over the remaining v. Clearly C’ = O&(a)). By 
the same type of argument as in (b) 

byll-lb-ld 10 dy ( gll(s-“) y/a) dot 

< ~e4’w-le-v logll(s-8) y/a! + o{logl/(s-a) l/lx}. 

Since logl/@-*) y/f3 < log w-~) y log1/(s--6) l/a for y > e2 and sufficiently 
small 01, we obtain that CR = O{log~s-s)-’ l/ar). Hence, logf,(or) - 
s-l log log 1 /c4 - IogfA(oL). 

Since /l- CX, we may furthermore conclude that log&@) - logf,(a). 
Hence, A has property (I) when s > 0. 

(d) Suppose b,,, log a,/v > 0. Then as in (c), we obtain that 
2” = O(1); hence, logf,(a) = O{fi+:‘(a)}. Furthermore, as in (b), it can 
be proven thatfA(jg) = O{fi?(a)}. 

LEMMA 2.5. If A(2u) = O{A(u)} as u --f co, then there exists a positive 
constant c such that 

N/d > CfA(oL). 

Furthermore, A has property (I). 

Prooj: By assumption, there exists a positive constant c0 such that 
A(2u) c c,A(u) for u > er,, . 

Hence 

ay<2j+L-1 

c eeun” < ew1[A(2j+lae1) _ A(‘ia-l)] < e-z’c~A(a)-l. 

av>23e-’ 

Thus C exp(-WV) < c,A(&) C exp(2-j) c,,i = 0{A(c~l)} and the first 
part of the lemma is proven. Similarly, C (cuz~)~ exp(-m,) = O{A(u-l)). 
Furthermore, f,(p) = O{A@-l)} = O{A(c+)} with t!l = (~(1 -f(-1+E)/3(~)}. 
Clearlyf,(m) > ~,A(LY-~) and the lemma is proven. 

It seems likely to the author that a fundamentally different method is 
required if A does not have property (I). (Probably E being “small” in 
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property (I) is sufficient.) There are sets which do not possess property (I). 
Define the sequence vi (i = 0, 1, 2,...) with v0 = 0 by 

vi+1 = [ 
3 + (4 exp(“:‘2) - 4vi + 5F2 

- 
2 1. 

Define the sequence a, (v = 0, 1,2 ,...) by 

a yt = L=p(~t’“>l ; 

4, +j = avi +j, i = 1, 2 )..., Vj&, - vi - 1. 

Define 01~ by 

exp(v:‘2) = $cy;‘(log CX;’ + 3 loglog ac;l). 

Then it can be shown by straightforward though somewhat messy calcula- 
tions, again withy,(a) = C (ola,)~ exp(--ala,), thatf,(ai) >f”A/2(~i). 

Of course, one could have a,+ w vis instead of vi2 and avi m exp(viM) 
instead of exp(v:‘2). The author knows of no sequence for which 
&B loglog a,/log v > 0 that does not have property (I), however. 

3. THE ESTIMATION OF THE INTEGRALS I2 AND Z, 

Since Z3 can be treated analogously to Z, , we shall consider only I2 . 
We set Z, = Z,’ + Zi + I,“, where the range of integration in Zi is from 
B0 to CX, in Zl , from 01 to oLfs(~), and in ZT, from af”(~~) to 7r, where 6 is 
fixed and 0 < 6 -C l/S. 

Throughout this section, we define G(0) by 

G(e) = fi (1 - e-aau)(l - e-anvfjaue)--l. 

v=o 

Since Re(logf(z)) = + log if(z)12, 

Note that each term in the product is Gl in modulus. 

LEMMA 3.1. Suppose that for some constant 7 with 71 subject to 
Q>,v>O 

‘4(x-‘) > f2/3+n(x) A 
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as x + 0. Then for each constant N > 0 

13’ = Obf,%N 

as 01+ 0. The O-constant depends upon N and 77 but not cx 

ProoJ: There exists a constant K’ > 0 such that 

I - cos a,8 > K’(ap8)2 

for a,@ < 1. Also there exists a constant K” > 0 such that 

2e%(ea% _ I)-” > Kn(,aJ2. 

Thus a,8 < a,a: < 1 implies that 

I WI1 ( ewf--k/2 log(l 4 W/K”)(62/~2))), 

where k is the number of a, such that CXZ” < 1, i.e. k = A(&). This is 

< exp{-k/2 log(l + K(82/~2))}, K = K’IK” 

< exp{-kKf,‘2/3J-(211/s)(ol)). 

Since A(&) > j!j’3)+11 (CC) 

I W)l < exp{-P3(43 = W;N(41. 

Moreover, in the same way, Lemma 3.2 follows. 

LEMMA 3.2. Suppose there exists a constant 6 with 0 < 6 

4fTw (Y-1)/logL4(4 - co 

as cx + 0. Let N be any constant >O. Then 

12” = O(aj--N(a)}. 

The O-constant depends upon 6 and N but not a. 

< 1 such that 

It seems that most “commonly occurring” sequences do satisfy 
property (II). 
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LEMMA 3.3. A has property (II) if either 

. log a, (i) s = b <E 
1s 4 - < 3~12; 

“-)a log V Y-f,x log v 

(ii) A(2u) = O{A(u)} as u -+ cc ; 

(iii) I = lim 
loglog a, 

w+m log v 
exists and I > 0. 

Proof. (a) Suppose (i) holds. s >, 1 since a, > v. Reasoning as in (c) 
of Lemma 2.4, we conclude that logfA(ol) < [(l + E)/s] log(&) as 
cy. -+ 0 for each constant E > 0. 

Furthermore, it is easy to show that for each fixed q’ with 0 < 7’ < 1. 

log A(orn’-1) > 3 2 (1 - rl’)U - 4 log 1,a 
s (3.1) 

as cy -+ 0. Thus there exists an 17 > 0 such that 

A(c+) > fy3’+“(a). 

Finally, it is easy to show using (3.1) that there exists a 6 with 1 > 6 > 0 
such that A(~-lf,“(~))/logf,(~) -+ cc as OL -+ 0. Thus A has property (II). 
Case (iii) is similar. 

(b) Suppose (ii) holds. Then there exists a positive constant c > 0 
such that A(2u) < CA(U) for u > u, . This 6 < (2 log, c)-I. We may 
assume&‘(,) (Y-I > u0 . Then for ,j = I, 2 ,... 

Thus 
A(d2-j) > c-j&a-l). 

From Lemma 2.5, we obtain 

A(a-1f~6(a)) > cJy(o(). 

This coupled with Lemma 2.5 shows that A has property (II). 
The next lemma will be used repeatedly in the following. 

LEMMA 3.4. Let C$ be any constant with 0 < I$ < T. If 8 E [I$, 2~ - $1, 
then 

I(1 - e-““u)(] _ e-m+w-l < (1 _ cos 4)42 (1 _ p%)(l + p%)-112~ 
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Proof. Suppose 8 E [$, rr]. If we construct the triangle with vertices 
at 0, 1, exp(--ala, + iu,0), we obtain from the cosine law for triangles, 

) 1 - exp(--era, + ia,t9)~ 

= (1 + exp(--2olaJ - 2 exp(-au,) cos @1/Z 

- (1 + exp(-2cua,))1/2 (1 - 21e~~~~~2~~V)e )l”. - 

Since 0 < 2e-““y/(1 + e-2u%) < 1, this yields that 

j 1 - exp( -oI(E, + iuve)l > (1 + exp(-201a,))1/2 (1 - cos #)ri2 

> (1 + exp(-20uv))1/2 (1 - cos &I/2. 

The case 8 E [z-, 27~ - 41 is treated similarly. 
The estimation of I,” requires several theorems: 

THEOREM 3.1. Let A be a P-sequence. Let E > 0 be an arbitrary 
constant. Let N > 0 be an arbitrary Jixed integer. Then 

s ml,N G(8) e-n@ de = 0(&-‘) 

as 01 ---f 0. The O-constant depends upon N and E but not cx (or n). 

Proof. For each a, E A, construct the sets 

d;vJ = [j277 ; 
Y 

dN , j2n ; “““1 , 
Y 

where 1 < j < [u,/2]. We note that all 8 E Ai,, are mapped into the 
interval l-j27~ - aCfN, j2rr + &IN] under the map 0 -+ eu, . 

Let a, > 1 be some element of A and let (m, n) denote the greatest 
common divisor of the integers m and n. Suppose for some j the equation 

6) jh = kla,. 

is solvable for each a, E A with Y > E. This implies that 

for each v > 1. Since j < u,/2, we have that uJ(u$ , j) > 2 and this contra- 
dicts that A is a P-sequence. Thus, for each j there exists an u(l, j) E A 
such that (i) is not solvable for uV = u(l, j). 

If e 4 u A{,, , (j = 1, 2 ,..., [uJ2]), then from Lemma 3.4 

(1 _ e-mj(l _ e-~az+e’a~e)-l = qJ+“) 

as OL -+ 0. 
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For sufficiently small (II 

40 n tJ 4~) = @. 
k 

Thus if 8 E A{,, from Lemma 3.4, it follows that 

[I - exp(--ola(l,j))] x [l - exp(--(Z,j) + ia(& = 0(c2--(~lN)). 

We thus conclude that the product 

where ni means that the product is taken over the distinct a(l,j). 
Let a, be the smallest element of A which is greater than each of the 

a(l, j). Then we may repeat the above argument with a, replacing a, . 
Doing this N times, we obtain that G(B) = O(CY,~-‘) and the theorem 
follows at once. 

THEOREM 3.2. Let N and n be arbitrary fixed integers >O. Let 

d/4 = O{ff(a)} 

as cy --j 0 through elements of ~2, where z%’ is a subset of the positive reals 
and min ~2 = 0. Then 

as 01---f 0 through elements of J&‘. The O-constant depends upon N but 
not c1 (or n). 

ProojI (a) We obtain as in the proof of Theorem 3.1 with N = 1, 
E = l/4 that there is a subproduct of G(O) which is 0(01~/~). 

(b) Now consider some higher indexed term: 

(1 - exp(-f+)/(l - exp(-oq + ia,@). 

As in Theorem 3.1, construct the sets 

A{“) = [(j27r - d~2)/ay ) 

If 0 $ iJ Oj,V, , then 

(j27r + ca2)/a,], 

(1 - exp(-cq))/( 1 - exp(--ora, + iu,0) = O(C?/~). 
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Those 8 E u d{“, form a set of measure A@ where A = O{c#}. Let 

Then 

LI,d I G(@l de I = 0 /aal Ll,d I Gl(@I de/ from part (a) 

= 0 a3J4 I I eE”dl )I Glu9l de + a3l4 [eEUd;r) I W)l de\ 

= O{al+ll4} = d{sf;“(a)). 

THEOREM 3.3. Let N, n be arbitrary positive constants. Let 6 be any 
constant with 0 < 6 < 1. Define M = [N/6] + 1. Then 

The O-constant depends upon N and 6 but not 01 (or n). 

Proof. Since a,0 < 3~12 for v = 1,2,..., M; a,8 E [CY~ 8(~), 35r/2] for 
these v. From Lemma 3.4, it follows that if v < A4 

Thus 

1 - e-aav 
1 _ e-ua,+ia,2 = o{df~*(a)} O(a) = O{fj6(01)}. 

The theorem follows immediately. 

THEOREM 3.4. Let N and n be arbitrary constants ~0. Let # be a 
constant >0 and suppose that f”(m) = O(at-*) as 01 --t 0 through elements 
of a, where min B = 0. Let 6 be any constant 0 < 6 -=z 4. Suppose further- 
more that E loglog a,/log v < 00. Then there exists a fixed integer M 
such that 

s ~~~~~G(O) e+‘de = O{CY~;~(OL)} 

as OL -+ 0 through elements of W. The O-constant depends upon N and 6 
but not 01 or n. 
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Proof. Let K = i& loglog q/log v. Then A(x) >, (log x)l/(K+c) where 
E > 0 is an arbitrary constant. 

(a) If fAs(oL) > I+/(~+~), let M = [N/6] + [(2K + 2)/a] + 2. Since 
a,9 ,< 3~12 for v = I,2 ,..., M, we obtain that 

by the proof of Theorem 3.3. 

(b) Here we suppose that fA8(~) < ~y-l/(~~+~). Suppose that 
a, < cG+/(~+~/~)I. Then, by Lemma 3.4, as a! -+ 0 

Now 
(1 - exp(--vNl(l - exP(--a, + ia,Q <.f2(01). 

~{a-U-tW+Wl)} > log~/~2K+1~{,-(l-~~/~~+5/2)l)) 

>, [1 - [l/(K + 5/2)]]1’(=+l) Iogl~(2Kf”(l/,). 
Thus 

~(OI-w1/(~+5/2q 2 Co 1ogv2~+lyl/a), 

where co is some absolute constant >O. Now 

s 

I(fA(u))GIOg’l’“K+e’(a-l) 

a,,%) 
) G(d)] d6 < ~(fA(~))~10g”‘aK+2’(~-1) 

x (fA(OL))-8A(u’-[‘i(K+s/2)l) 

< a( fA(“))-(sC,/2)log”(“R”)(l/u) 

as a-+0. 
In the same way, we obtain 

ascu-+O;forj=O,l,...,-[-4K-2]=J.Also 

< a1-t1/(K+5/2)1 x (fA(a))- ~logrl(4K+2)(,)-lX~(o-(1-(K+5/2)), 

< &[l/~K+5/21] (fA(~))-8c,log(J+7)‘(4K+2)(,-1). 

Since (J + 1)/(4K + 2) > 1, we obtain that this last term is 

fxax~))- 6c,log1’(4K++/,j 1. 

641/7/4-4 
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Since log11(4K+2) (CC-~) > N/c,,6 as 01+ 0, we obtain 

s ~I-h/(K+s/z)l 

afy (cd 
1 G(O)1 d0 = O{c~f,~(a)}. 

The integral from ~ll--[~/(~+~/~)l to 3g/2uM may be treated as in part (a); 
thus, the theorem is proven. 

We now give our final result in the estimation of I2 . 

THEOREM 3.5. Let A have property (II). Choose N to be any fixed 
integer >O. Let A satisfy either (i) or (ii) below: 

(i) lim,,, logfa(ol)/log l/a - 0; 

(ii) A is a P-sequence. 

Suppose furthermore that Eiii log log aJog v < co. Then I2 = O(af ;“(a)}. 

Proof. Let S be any possible 6 of property (II) which is less than l/8. 
We conclude from Lemmas 3.1 and 3.2 that 

(3.2) 

(a) Suppose condition (i) holds. Then we take 9 = N-l and B 
to be the positive real in Theorem 3.4. Then it follows that 

s 3a’2aM1 G(0) e-ine de = O(af,N(a)>. 
cxf,&d 

(3.3) 

Moreover, in case (i) the set @’ in Theorem 3.2 may be chosen to be the 
positive reals. For sufficiently small CY, cN4 < 37r/2uMl , and it follows that 

s ,:,,, G(B) e-*@ de = O{~f~N(cx)}. 
1 

Equations (3.2), (3.3), and (3.4) give the theorem. 
(b) Suppose condition (ii) holds. Let 9 be those CII for which 

log fA(cx) < N-l log l/01. If min B = 0, we apply Theorem 3.4, from 
which it follows that 

s 
3n’2aMz G(e) e-i*0 de = O{~f,~(a)}. 

af,& 

as CY.-+ 0 through elements of g. If cx $8, we have fA(a) > a-l/N. With 
M2 = [2N/6] + 1, Eq. (3.5) follows from Theorem 3.3. 

Since in case (ii), we assumed that A is a P-sequence and since 
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LY. = O{~;‘(LX)}, it follows from Theorem 3.1 that for CC/(N+~) ( 3~-/2a,,,~ 

s sl,2a, G(B) e-ine de = O(~$;(~+)+~(ct)}. 
2 

(3.6) 

Theorem 3.5 follows when A is a P-sequence from Eqs. (3.2), (3.5) and 
(3.6) with E = $. 

We may now complete the proof of Theorem 1.1. If A has property (I), 
it can easily be shown that c?A, = O{fi+:‘(a)}. Hence Theorem 1.1 
follows from Theorems 2.1 and 3.5. 

Remarks. The author feels that when log a, = O(log v), the restriction 
that A is a P-sequence cannot be relaxed without modifying the theorem. 
Some preliminary investigations indicate that if the integer p divides all 
sufficiently large a, , then there are significant contributions arising at 
ej = jr/q, j = *l, f2 ,..., fq. It appears that in some cases, one may 
only obtain an asymptotic relation for log p&z). 

It is easy to show that if A is not a P-sequence, then the assumptions 
under which Roth and Szekeres obtained asymptotic relations for the 
number q,.,(n) of partitions of n into distinct summands from A are not 
satisfied. The author has not been able to show this for pA(n) but feels 
that it is quite likely so, for the reason in the preceding paragraph. 
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