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Abstract Bien and Tibshirani (Biometrika, 98(4):807–820,
2011) have proposed a covariance graphical lasso method
that applies a lasso penalty on the elements of the covari-
ance matrix. This method is definitely useful because it not
only produces sparse and positive definite estimates of the
covariance matrix but also discovers marginal independence
structures by generating exact zeros in the estimated covari-
ance matrix. However, the objective function is not convex,
making the optimization challenging. Bien and Tibshirani
(Biometrika, 98(4):807–820, 2011) described a majorize-
minimize approach to optimize it. We develop a new opti-
mization method based on coordinate descent. We discuss
the convergence property of the algorithm. Through sim-
ulation experiments, we show that the new algorithm has
a number of advantages over the majorize-minimize ap-
proach, including its simplicity, computing speed and nu-
merical stability. Finally, we show that the cyclic version of
the coordinate descent algorithm is more efficient than the
greedy version.

Keywords Coordinate descent · Covariance graphical
lasso · Covariance matrix estimation · L1 penalty ·
MM algorithm · Marginal independence · Regularization ·
Shrinkage · Sparsity

1 Introduction

Bien and Tibshirani (2011) proposed a covariance graph-
ical lasso procedure for simultaneously estimating covari-

H. Wang (�)
Department of Statistics, University of South Carolina, Columbia,
SC 29208, USA
e-mail: haowang@sc.edu

ance matrix and marginal dependence structures.1 Let S be
the sample covariance matrix such that S = Y′Y/n where
Y(n × p) is the data matrix of p variables and n samples.
A basic version of their covariance graphical lasso problem
is to minimize the following objective function:

g(�) = log(det�) + tr
(
S�−1) + ρ‖�‖1, (1)

over the space of positive definite matrices M+ with ρ ≥ 0
being the shrinkage parameter. Here, � = (σij ) is the
p × p covariance matrix and ‖�‖1 = ∑

1≤i,j≤p |σij | is the
L1-norm of �. A general version of the covariance graph-
ical lasso in Bien and Tibshirani (2011) allows different
shrinkage parameters for different elements in �. To ease
exposition, we describe our methods in the context of one
common shrinkage parameter as in (1). All of our results
can be extended to the general version of different shrink-
age parameters with little difficulty.

Because of the L1-norm term, the covariance graphical
lasso is able to set some of the off-diagonal elements of
� exactly equal to zero in its minimum point of (1). Ze-
ros in � encode marginal independence structures among
the components of a multivariate normal random vector with
covariance matrix �. It is distinctly different from the con-
centration graphical models (also referred to as covariance
selection models due to Dempster 1972) where zeros are in
the concentration matrix �−1 and are associated with con-
ditional independence.

The objective function (1) is not convex, imposing com-
putational challenges for minimizing it. Bien and Tibshirani
(2011) proposed a majorize-minimize approach to approxi-

1An unpublished Ph.D. dissertation Lin (2010) may consider the
covariance graphical lasso method earlier than Bien and Tibshirani
(2011).
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mately minimize (1). In this paper, we develop the coordi-
nate descent algorithm for minimizing (1). We discuss the
convergence property and investigate its computational effi-
ciency through simulation studies. In comparison with Bien
and Tibshirani (2011)’s algorithm, the coordinate descent al-
gorithm is vastly simpler to implement, substantially faster
to run and numerically more stable in our tests.

Coordinate descent is not new to the model fitting for reg-
ularized problems. It is shown to be very competitive for
solving convex and some non-convex penalized regression
models (Fu 1998; Sardy et al. 2000; Friedman et al. 2007;
Wu and Lange 2008; Breheny and Huang 2011) as well as
the concentration graphical models (Friedman et al. 2008).
However, the development of this general algorithm to co-
variance graphical lasso models is new and unexplored be-
fore. In this sense, our work also contributes to the literature
by documenting the usefulness of this important algorithm
for the class of covariance graphical lasso models.

Finally, we investigate if the proposed coordinate descent
can be further improved by comparing it with two additional
competitors: a greedy coordinate descent algorithm and a
new majorize-minimize algorithm. We show that the cyclic
coordinate descent algorithm remains to be superior to these
competitors in efficiency.

2 Coordinate descent algorithm

2.1 Algorithm description

To minimize (1) based on the simple idea of coordinate de-
scent, we show how to update � one column and row at a
time while holding all of the rest elements in � fixed. With-
out loss of generality, we focus on the last column and row.
Partition � and S as follows:

� =
(

�11,σ 12

σ ′
12, σ22

)

, S =
(

S11, s12

s′
12, s22

)

, (2)

where (a) �11 and S11 are the covariance matrix and the
sample covariance matrix of the first p − 1 variables, re-
spectively; (b) σ 12 and s12 are the covariances and the sam-
ple covariances between the first p −1 variables and the last
variable, respectively; and (c) σ 22 and s22 are the variance
and the sample variance of the last variable, respectively.

Let

β = σ 12, γ = σ22 − σ ′
12�

−1
11 σ 12,

and apply the block matrix inversion to � using blocks
(�11,β, γ ):

�−1 =
(

�−1
11 + �−1

11 ββ ′�−1
11 γ −1, −�−1

11 βγ −1

−β ′�−1
11 γ −1, γ −1

)

. (3)

The three terms in (1) can be expressed as a function of
(β, γ ):

log(det�) = log(γ ) + c1,

tr
(
S�−1) = β ′�−1

11 S11�
−1
11 βγ −1 − 2s′

12�
−1
11 βγ −1

+ s22γ
−1 + c2,

ρ‖�‖1 = 2ρ‖β‖1 + ρ
(
β ′�−1

11 β + γ
) + c3,

where c1,c2 and c3 are constants not involving (β, γ ). Drop-
ping off c1,c2 and c3 from (1), we have the following objec-
tive function with respect to (β, γ ):

min
β,γ

{
log(γ ) + β ′�−1

11 S11�
−1
11 βγ −1 − 2s′

12�
−1
11 βγ −1

+ s22γ
−1 + 2ρ‖β‖1 + ρβ ′�−1

11 β + ργ
}
. (4)

For γ , removing terms in (4) that do not depend on γ

gives

min
γ

{
log(γ ) + aγ −1 + ργ

}
,

where a = β ′�−1
11 S11�

−1
11 β − 2s12�

−1
11 β + s22. Clearly, it is

solved by:

γ̂ =
{

a if ρ = 0,

(−1 + √
1 + 4aρ)/(2ρ) if ρ �= 0.

(5)

For β , removing terms in (4) that do not depend on β

gives

min
β

{
β ′Vβ − 2u′β + 2ρ‖β‖1

}
, (6)

where V = (vij ) = �−1
11 S11�

−1
11 γ −1 + ρ�−1

11 , u =
�−1

11 s12γ
−1. The problem in (6) is a lasso problem and

can be efficiently solved by coordinate descent algorithms
(Friedman et al. 2007; Wu and Lange 2008). Specifically,
for j ∈ {1, . . . , p − 1}, the minimum point of (6) along the
coordinate direction in which βj varies is:

β̂j = S
(

uj −
∑

k �=j

vkj β̂k, ρ

)
/vjj , (7)

where S is the soft-threshold operator:

S(x, t) = sign(x)
(|x| − t

)
+.

The update (7) is iterated for j = 1, . . . , p−1,1,2, . . . , until
convergence. We then update the column as (σ 12 = β, σ22 =
γ +β ′�−1

11 β) followed by cycling through all columns until
convergence. This algorithm can been viewed as a block co-
ordinate descent method with p blocks of β’s and another p

blocks of γ ’s. The algorithm is summarized as follows:



Stat Comput (2014) 24:521–529 523

Coordinate descent algorithm Given input (S, ρ), start
with �(0), and at the (k + 1)th iteration (k = 0,1, . . .)

1. Let �(k+1) = �(k).
2. For i = 1, . . . , p,

(a) Partition �(k+1) and S as in (2).
(b) Compute γ as in (5).
(c) Solve the lasso problem (6) by repeating (7) until

convergence.
(d) Update σ

(k+1)
12 = β,σ

(k+1)
21 = β ′, σ

(k+1)
22 = γ +

β ′�−1
11 β .

3. Let k = k + 1 and repeat (1)–(3) until convergence.

2.2 Algorithm convergence

The convergence of the proposed block coordinate descent
algorithm to a stationary point can be addressed by the the-
oretical results for block coordinate descent methods for
non-differentiable minimization by Tseng (2001). The key
to applying the general theory there to our algorithm is the
separability of the non-differentiable penalty terms in (1).
First, from (5) and (6), the objective function g has a unique
minimum point in each coordinate block. This satisfies the
conditions of Part (c) of Theorem 4.1 in Tseng (2001) and
hence implies that the algorithm converges to a coordinate-
wise minimum point. Second, because all directional deriva-
tives exist, by Lemma 3.1 of Tseng (2001), each coordi-
natewise minimum point is a stationary point. A similar ar-
gument has been given by Breheny and Huang (2011) to
show the convergence of coordinate decent algorithm to a
stationary point for nonconvex penalized regression mod-
els.

3 Comparison of algorithms

We conduct a simulation experiment to compare the perfor-
mance of the proposed coordinate descent algorithm with
Bien and Tibshirani (2011)’s algorithm. We consider two
configurations of �:

– A sparse model taken from Bien and Tibshirani (2011)
with σi,i+1 = σi,i−1 = 0.4, σii = δ and zero otherwise.
Here, δ is chosen such that the condition number of �

is p.
– A dense model with σii = 2 and σij = 1 for i �= j .

The algorithm of Bien and Tibshirani (2011) is coded in
R with its built-in functions. To be comparable to it, we im-
plement the coordinate descent algorithm in R without writ-
ing any functions in a compiled language. All computations
are performed on a Intel Xeon X5680 3.33 GHz proces-
sor.

For either the sparse model or the dense model, we con-
sider problem sizes of (p,n) = (100,200) and (p,n) =

(200,400), thus a total of four scenarios of model and size
combinations. For each scenario, we generate 20 datasets
and apply the two algorithms to each of them under a range
of ρ values. All computations are initialized at the sam-
ple covariance matrix, i.e., �(0) = S. For Bien and Tib-
shirani (2011)’s algorithm, we follow the default setting of
tuning parameters provided by the “spcov” package (http://
cran.r-project.org/web/packages/spcov/index.html). For the
coordinate descent algorithm, we use the same criterion as
Bien and Tibshirani (2011)’s algorithm to stop the iterations:
The procedure stops when the change of the objective func-
tion is less than 10−3.

First, we compare the computing speed. The four pan-
els in Fig. 1 display the CPU time under the four scenar-
ios, respectively. In each panel, CPU time in seconds of
the two algorithms for each of the 20 datasets is plotted
against the shrinkage parameter ρ which is set at five dif-
ferent values that result in a wide range of sparsity levels
in the estimated �. As can be seen, the coordinate descent
algorithm is in general substantially faster than Bien and
Tibshirani (2011)’s algorithm except when a tiny shrinkage
parameter is applied to the dense model, i.e., ρ = 0.01 in
Panel (c) and (d). Moreover, the coordinate descent algo-
rithm seems to be particularly attractive for sparser models
as its run time generally decreases when the sparsity level in-
creases. In contrast, the computing time of Bien and Tibshi-
rani (2011)’s algorithm significantly increases as the sparsity
level increases under the two dense scenarios. Finally, the
computing time of the coordinate descent algorithm appears
to have less variability across multiple replications than that
of Bien and Tibshirani (2011)’s algorithm, particularly when
the estimated � is sparse. This suggests that the coordinate
descent algorithm has more consistent computing time per-
formance.

Next, we examine the ability of the algorithms to find
minimum points. To do so, we compute the minimum values
of the objective functions achieved by each algorithm. For
each dataset and each ρ, We calculate the relative minimum
values of the objective function defined as:

g(�̂CD) − g(�̂BT), (8)

where �̂BT and �̂CD are the minimum points found by Bien
and Tibshirani (2011)’s algorithm and the coordinate de-
scent algorithm, respectively. Thus, a negative value of (8)
indicates that the coordinate descent algorithm finds better
points than Bien and Tibshirani (2011)’s algorithm, and a
smaller relative minimum value indicates a better perfor-
mance of the coordinate descent algorithm. The four pan-
els in Fig. 2 display the relative minimum values of (8) as
functions of the shrinkage parameter ρ for the four scenar-
ios, respectively. As can be seen, the coordinate descent al-
gorithm tends to outperform Bien and Tibshirani (2011)’s

http://cran.r-project.org/web/packages/spcov/index.html
http://cran.r-project.org/web/packages/spcov/index.html
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Fig. 1 CPU time is plotted against the shrinkage parameter ρ un-
der four different scenarios for two algorithms. The x axis shows
both the shrinkage parameter ρ and the average percentage of non-
zero off-diagonal elements across the replicates at that ρ (in paren-
theses). The y axis shows the computing time in seconds. The four
scenarios are: sparse � and (p,n) = (100,200) (a); sparse � and

(p,n) = (200,400) (b); dense � and (p,n) = (100,200) (c), and
dense � and (p,n) = (200,400) (d). The two algorithms are: Bien and
Tibshirani (2011) (BT, dashed gray line), and coordinate descent (CD,
solid black line). Each line represents results of one of the 20 repli-
cates. Each computation is initialized at the sample covariance matrix
�(0) = S

algorithm, as the value of (8) tends to be negative. The
only exceptions occur when the shrinkage parameter is tiny
(i.e., ρ = 0.01) and the estimated � has a high percent-
age of non-zero elements (i.e., about 90%). When the es-
timated � is highly sparse, the coordinate descent algorithm
consistently finds points that are more optimal than Bien
and Tibshirani (2011)’s algorithm, as is evident from the
negative values at the right endpoints of the lines in each
panel.

Finally, it is known that, for nonconvex problems, any
optimization algorithms are not guaranteed to converge to a
global minimum. It is often recommended to run algorithms
at multiple initial values. Thus we wish to compare the per-
formance of the algorithms under different initial values. In
the previous experiments, all computations are initialized at
the full sample covariance matrix �(0) = S. To be different,
it is natural to initialize them at the other extreme case in

which �(0) = diag(s11, . . . , spp). For each of the four sce-
narios, we select three different values of ρ such that they
represent low-, medium- and high-levels of sparsity, respec-
tively. We repeat the previous experiment at the new initial
value of a diagonal matrix �(0) = diag(s11, . . . , spp).

We record the CPU time, sparsity of the minimum points
and the minimum value of the objective function. Table 1
summarizes the observed values of these measures based
on 20 replicates by sample mean and sample standard de-
viation. Three things are worth noting. First, Bien and Tib-
shirani (2011)’s algorithm seems to get stuck at the initial
value of a diagonal matrix in all cases. In contrast, the pro-
posed algorithms work fine and find reasonable minimum
points of �, because the minimum values of the objective
function and the level of sparsity are quite close to those ob-
tained from starting at the full sample covariance matrix. We
have also tried to initialize Bien and Tibshirani (2011)’s al-
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Fig. 2 Relative minimum value of the objective function, defined
in (8), is plotted against the shrinkage parameter ρ under four different
scenarios for two algorithms. The x axis shows both the shrinkage
parameter ρ and the average percentage of non-zero off-diagonal el-
ements across the replicates at that ρ (in parentheses). The y axis
shows the relative minimum value of the objective function. The four
scenarios are: sparse � and (p,n) = (100,200) (a); sparse � and

(p,n) = (200,400) (b); dense � and (p,n) = (100,200) (c), and
dense � and (p,n) = (200,400) (d). The two algorithms are: Bien
and Tibshirani (2011) (BT, dashed gray line), and coordinate descent
(CD, solid black line). Each line represents results of one of the 20
replicates. Each computation is initialized at the sample covariance
matrix �(0) = S

gorithm at �
(0)
BT = diag(s11, . . . , spp)+ 10−3, but found that

it still gets stuck after a few iterations. Although it may be
possible to alleviate this issue by adjusting some of Bien and
Tibshirani (2011)’s algorithm’s tuning parameters, it may be
safe to conclude that Bien and Tibshirani (2011)’s algorithm
requires either very careful tuning or performs badly at this
important initial value. Second, initial values indeed matter.
Comparing the results between full and diagonal initial val-
ues, we see substantial differences in all three measures. For
example, the limiting points from the diagonal initial ma-
trices are sparser than those from the full initial matrices.
This is not surprising because of the drastic difference in
sparsity between these two starting points. Third, compar-
ing the minimum values of the objective function achieved
by the two algorithms (last two columns), we see that coor-
dinate descent often finds the smaller minimum values than

Bien and Tibshirani (2011)’s algorithms. The few exceptions
seem to be the cases when ρ is small and the fraction of the
number of non-zero elements is large.

4 Alternative algorithms

The coordinate descent algorithm described in Sect. 2 is
indeed a cyclic algorithm because it systematically cycles
through coordinate directions to minimize the lasso objec-
tion function (6). Although we have demonstrated that it
outperforms Bien and Tibshirani (2011)’s algorithm, it is
of interest to investigate whether this cyclic coordinate de-
scent algorithm can be further improved by alternative al-
gorithms. We propose and explore two additional competi-
tors: a greedy coordinate descent algorithm and a majorize-
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Table 1 Performance of the
two algorithms starting at two
different initial values: “Full”,
�(0) = S; and “Diag”,
�(0) = diag(s11, . . . , spp). The
“CPU Time” columns present
the CPU run time in seconds;
the “% Nonzero” columns
present the percentage of
nonzero elements in the
minimum points; the “Objective
Func” columns present the
minimum value of the objective
function. The two algorithms
are: Bien and Tibshirani (2011)
(BT) and coordinate descent
(CD) of Sect. 2. For each
measure, we report sample
mean and sample standard
deviation (in parentheses) based
on 20 replicates

Model p ρ Method CPU Time % Nonzero Objective Function

Full Diag Full Diag Full Diag

Sparse 100 0.01 BT 126 30 0.916 0.000 2.916 79.251
(7) (1) (0.00) (0.00) (0.97) (1.20)

CD 42 126 0.922 0.924 2.945 2.917
(3) (10) (0.00) (0.00) (0.97) (0.97)

Sparse 100 0.49 BT 53 27 0.148 0.000 57.961 79.251
(3) (1) (0.01) (0.00) (1.19) (1.20)

CD 14 13 0.145 0.145 57.961 57.961
(1) (1) (0.01) (0.01) (1.19) (1.19)

Sparse 100 0.97 BT 172 27 0.058 0.000 82.890 79.251
(138) (1) (0.01) (0.00) (1.37) (1.20)

CD 16 0 0.056 0.000 82.805 79.251
(10) (0) (0.01) (0.00) (1.34) (1.20)

Sparse 200 0.01 BT 2677 253 0.885 0.000 −4.089 156.586
(88) (10) (0.00) (0.00) (1.18) (0.97)

CD 967 942 0.891 0.896 −4.071 −4.101
(72) (60) (0.00) (0.00) (1.18) (1.18)

Sparse 200 0.49 BT 483 173 0.084 0.000 106.455 156.586
(45) (5) (0.00) (0.00) (1.15) (0.97)

CD 101 115 0.084 0.084 106.456 106.456
(4) (4) (0.00) (0.00) (1.15) (1.15)

Sparse 200 0.97 BT 365 174 0.037 0.000 157.203 156.586
(108) (4) (0.00) (0.00) (1.26) (0.97)

CD 62 4 0.036 0.000 157.199 156.586
(8) (0) (0.00) (0.00) (1.26) (0.97)

Dense 100 0.01 BT 30 24 0.963 0.000 90.048 169.474
(6) (1) (0.00) (0.00) (1.23) (4.05)

CD 97 52 0.962 0.961 90.048 90.048
(8) (3) (0.00) (0.00) (1.23) (1.23)

Dense 100 0.17 BT 74 28 0.361 0.000 151.377 169.474
(6) (3) (0.01) (0.00) (2.75) (4.05)

CD 19 18 0.359 0.358 151.374 151.374
(2) (1) (0.02) (0.02) (2.75) (2.75)

Dense 100 0.33 BT 162 23 0.013 0.000 169.372 169.474
(23) (1) (0.00) (0.00) (4.06) (4.05)

CD 31 5 0.012 0.002 169.362 169.397
(5) (3) (0.00) (0.00) (4.06) (4.06)

Dense 200 0.01 BT 269 166 0.930 0.000 180.248 340.339
(49) (14) (0.00) (0.00) (1.36) (5.44)

CD 503 291 0.930 0.929 180.248 180.248
(28) (9) (0.00) (0.00) (1.36) (1.36)

Dense 200 0.15 BT 610 161 0.287 0.000 302.595 340.339
(58) (24) (0.01) (0.00) (3.64) (5.44)

CD 145 128 0.287 0.286 302.590 302.590
(9) (8) (0.01) (0.01) (3.63) (3.63)

Dense 200 0.29 BT 983 139 0.031 0.000 339.466 340.339
(98) (3) (0.00) (0.00) (5.38) (5.44)

CD 241 200 0.030 0.022 339.457 339.473
(33) (43) (0.00) (0.00) (5.38) (5.39)
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Table 2 Performance of alternative algorithms under four scenarios
in Sect. 3. The four scenarios are: sparse � and p = 100 (Panel a);
sparse � and p = 200 (Panel b); dense � and p = 100 (Panel c);
and dense � and p = 200 (Panel d). The three algorithms are: the
cyclic coordinate descent (CD) of Sect. 2, the greedy coordinate de-
scent algorithm (GD) and the majorize-minimize MM algorithm (MM)

of Sect. 4. The “Time” columns present the CPU run time in seconds;
the “% Nonzero” columns present the percentage of nonzero elements
in the minimum points; the “Objective Func” columns present the mini-
mum value of the objective function. For each measure, we report sam-
ple mean and sample standard deviation (in parentheses) based on 20
replicates

ρ Method Time % Nonzero Obj Func

Panel a: Sparse p = 100

0.01 CD 42 0.924 2.917
(3) (0.00) (0.97)

MM 16 0.923 2.906
(1) (0.00) (0.97)

GD 313 0.917 2.908
(22) (0.00) (0.97)

0.49 CD 14 0.145 57.961
(1) (0.01) (1.19)

MM 24 0.179 58.333
(1) (0.01) (1.19)

GD 52 0.145 57.961
(4) (0.01) (1.19)

0.97 CD 16 0.000 79.251
(10) (0.00) (1.20)

MM 68 0.073 83.678
(53) (0.01) (1.36)

GD 24 0.056 82.805
(9) (0.01) (1.34)

Panel c: Dense p = 100

0.01 CD 97 0.961 90.048
(8) (0.00) (1.23)

MM 19 0.967 90.049
(1) (0.00) (1.23)

GD 266 0.963 90.055
(20) (0.00) (1.23)

0.17 CD 19 0.358 151.374
(2) (0.02) (2.75)

MM 38 0.431 151.491
(1) (0.01) (2.75)

GD 45 0.360 151.375
(3) (0.01) (2.75)

0.33 CD 31 0.002 169.397
(5) (0.00) (4.06)

MM 86 0.058 169.783
(10) (0.01) (4.06)

GD 32 0.012 169.361
(5) (0.00) (4.05)

ρ Method Time % Nonzero Obj Func

Panel b: Sparse p = 200

0.01 CD 967 0.896 −4.101
(72) (0.00) (1.18)

MM 306 0.887 −4.139
(7) (0.00) (1.18)

GD 2959 0.885 −4.134
(159) (0.00) (1.18)

0.49 CD 101 0.084 106.456
(4) (0.00) (1.15)

MM 358 0.086 107.231
(11) (0.00) (1.15)

GD 383 0.084 106.455
(20) (0.00) (1.15)

0.97 CD 62 0.000 156.586
(8) (0.00) (0.97)

MM 369 0.036 158.669
(52) (0.00) (1.25)

GD 122 0.036 157.199
(8) (0.00) (1.26)

Panel d: Dense p = 200

0.01 CD 503 0.929 180.248
(28) (0.00) (1.36)

MM 257 0.933 180.250
(9) (0.00) (1.36)

GD 1566 0.932 180.263
(86) (0.00) (1.36)

0.15 CD 145 0.286 302.590
(9) (0.01) (3.63)

MM 583 0.326 302.823
(14) (0.01) (3.63)

GD 305 0.287 302.592
(16) (0.01) (3.63)

0.29 CD 241 0.022 339.473
(33) (0.00) (5.39)

MM 1104 0.066 340.081
(57) (0.01) (5.38)

GD 240 0.030 339.459
(27) (0.00) (5.38)

minimize MM algorithm. We briefly describe these two al-
gorithms below.

The greedy coordinate descent algorithm updates along
the coordinate direction that gives the largest gradient de-
scent. It has been implemented and explored, for example, in
nonparametric wavelet denoising models (Sardy et al. 2000)

and in l1 and l2 regressions (Wu and Lange 2008). In the
covariance graphical lasso model, we implement a version
of the greedy coordinate descent algorithm based on the
theoretical results of directional derivatives (Wu and Lange
2008) for identifying the deepest gradient descent coordi-
nate in each iteration for solving (6).
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The majorize-minimize MM algorithm is a general op-
timization algorithm that creates a surrogate function that
is easier to minimize than the original objection function
(Hunter and Lange 2004). The design of the surrogate func-
tion is key to its efficiency. For the covariance graphical
lasso model, Bien and Tibshirani (2011)’s MM algorithm
uses a surrogate function that is minimized by elementwise
soft-thresholding. We consider an alternative surrogate func-
tion that can be minimized by updating one column and one
row at a time. The details of our new MM algorithm is pro-
vided in the Appendix.

We use the greedy coordinate descent algorithm and the
new MM algorithm for fitting the covariance graphical lasso
model in the same experiment in Table 1. The results are
presented in Table 2. For easy comparison, the results of the
cyclic coordinate descent algorithm in Table 1 is also shown.
Only results from runs initialized at the sample covariance
matrix are reported. The relative performance of computing
time from runs initialized at the diagonal covariance matrix
is similar. Comparing algorithms at a fixed ρ within each
scenario, we observe that the cyclic coordinate descent algo-
rithm is the fastest except when the shrinkage parameter is
tiny (i.e., ρ = 0.01) and the resulted estimate of � has a high
percentage of non-zero elements (i.e., about 90%). In these
exceptions, the new MM algorithm seems to be the fastest.
Since sparse estimates of � is more interesting than dense
estimates, the cyclic coordinate descent algorithm is perhaps
the most desirable algorithm among the three. The greedy
coordinate descent algorithm is substantially slower than the
cyclic coordinate descent algorithm. This is consistent with
Wu and Lange (2008) which report a better performance of
the cyclic coordinate descent algorithm over the greedy co-
ordinate descent algorithm for fitting l2 regressions under
lasso penalty, and may indicate that the extra computational
cost of finding the deepest gradient descent is not compen-
sated by the reduced number of iterations until convergence.

5 Discussion

We have developed a coordinate descent algorithm for fit-
ting sparse covariance graphical lasso models. The new al-
gorithm is shown to be much easier to implement, signif-
icantly faster to run and numerically more stable than the
algorithm of Bien and Tibshirani (2011). Both MATLAB
and R software packages implementing the new algorithms
for solving covariance graphical models are freely available
from the author’s website of the paper.

Appendix: Details of the majorize-minimize MM
algorithm in Sect. 4

Consider
√

σ 2
ij + ε as an approximation to |σij | for a small

ε > 0. Consequently, the original objective function (1) can

be approximated by

log(det�) + tr
(
S�−1) + 2ρ

∑

i<j

√
σ 2

ij + ε + ρ
∑

i

σii . (9)

Note the inequality

√
σ 2

ij + ε ≤
√(

σ
(k)
ij

)2 + ε + σ 2
ij − (σ

(k)
ij )2

2
√

(σ
(k)
ij )2 + ε

,

for a fixed σ
(k)
ij and all σij . Then (9) is majorized by

Q
(
� | �(k)

) = log(det�) + tr
(
S�−1)

+ ρ
∑

i<j

σ 2
ij√

(σ
(k)
ij )2 + ε

+ ρ
∑

i

σii . (10)

The minimize-step in MM then minimizes (10) along each
column (row) of �. Without loss of generality, consider the
last column and row. Partition � and S as in (2) and consider
the same transformation from (σ 12, σ22) to (β = σ 12, γ =
σ22 − σ ′

12�
−1
11 σ 12). The four terms in (10) can be written as

functions of (β, γ )

log(det�) = log(γ ) + c1,

tr
(
S�−1) = β ′�−1

11 S11�
−1
11 βγ −1 − 2s′

12�
−1
11 βγ −1

+ s22γ
−1 + c2,

ρ
∑

i<j

σ 2
ij√

(σ
(k)
ij )2 + ε

= ρβ ′D−1β,

D = diag
(√(

σ
(k)
ij

)2 + ε
)
,

ρ
∑

i

σii = ρ
(
β ′�−1

11 β + γ
) + c3,

where c1, c2 and c3 are constants not involving (β, γ ).
Dropping off c1,c2 and c3 from (10), we only have to mini-
mize

Q
(
β, γ | �(k)

) = log(γ ) + β ′�−1
11 S11�

−1
11 βγ −1

− 2s′
12�

−1
11 βγ −1 + s22γ

−1

+ ρβ ′D−1β + ρβ ′�−1
11 β + ργ. (11)

For γ , it is easy to derive from (11) that the conditional min-
imum point given β is the same as in (5). For β , (11) can be
written as a function of β ,

Q
(
β | γ,Σ(k)

) = β ′(V + ρD−1)β − 2u′β,

where V and u are defined in (6). This implies that the condi-
tional minimum point of β is β = (V + ρD−1)−1u. Cycling
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through every column always drives down the approximated
objective function (9). In our implementation, the value of ε

is chosen as follows. The approximation error of (9) to (1) is

2ρ
∑

i<j

(√
σ 2

ij + ε − |σij |
)

= 2ρ
∑

i<j

ε
√

σ 2
ij + ε + |σij |

< 2ρ
∑

i<j

ε√
ε

= ρp(p − 1)
√

ε.

Note that the algorithm stops when the change of the ob-
jective function is less than 10−3. We choose ε such that
ρp(p − 1)

√
ε = 0.001, i.e., ε = (0.001/(ρ(p − 1)p))2, to

ensure that the choice of ε has no more influence on the es-
timated � than the stopping rule.
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