Electronic Journal of Probability
- Electron. J. Probab.
- Volume 19 (2014), paper no. 82, 37 pp.
Random partitions in statistical mechanics
Nicholas Ercolani, Sabine Jansen, and Daniel Ueltschi
Full-text: Open access
Abstract
We consider a family of distributions on spatial random partitions that provide a coupling between different models of interest: the ideal Bose gas; the zero-range process; particle clustering; and spatial permutations. These distributions are invariant for a "chain of Chinese restaurants" stochastic process. We obtain results for the distribution of the size of the largest component.
Article information
Source
Electron. J. Probab. Volume 19 (2014), paper no. 82, 37 pp.
Dates
Accepted: 9 September 2014
First available in Project Euclid: 4 June 2016
Permanent link to this document
http://projecteuclid.org/euclid.ejp/1465065724
Digital Object Identifier
doi:10.1214/EJP.v19-3244
Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B05: Classical equilibrium statistical mechanics (general)
Keywords
Spatial random partitions Bose-Einstein condensation (inhomogeneous) zero-range process chain of Chinese restaurants sums of independent random variables heavy-tailed variables infinitely divisible laws
Rights
This work is licensed under a Creative Commons Attribution 3.0 License.
Citation
Ercolani, Nicholas; Jansen, Sabine; Ueltschi, Daniel. Random partitions in statistical mechanics. Electron. J. Probab. 19 (2014), paper no. 82, 37 pp. doi:10.1214/EJP.v19-3244. http://projecteuclid.org/euclid.ejp/1465065724.
References
- Aigner, Martin. A course in enumeration. Graduate Texts in Mathematics, 238. Springer, Berlin, 2007. x+561 pp. ISBN: 978-3-540-39032-9. Mathematical Reviews (MathSciNet): MR2339282
- Aldous, David J. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5 (1999), no. 1, 3–48. Mathematical Reviews (MathSciNet): MR1673235
Digital Object Identifier: doi: 10.2307/3318611
Project Euclid: euclid.bj/1173707093 - Armendáriz, Inés; Loulakis, Michail. Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Related Fields 145 (2009), no. 1-2, 175–188. Mathematical Reviews (MathSciNet): MR2520125
Digital Object Identifier: doi: 10.1007/s00440-008-0165-7 - Armendáriz, Inés; Grosskinsky, Stefan; Loulakis, Michail. Zero-range condensation at criticality. Stochastic Process. Appl. 123 (2013), no. 9, 3466–3496. Mathematical Reviews (MathSciNet): MR3071386
Digital Object Identifier: doi: 10.1016/j.spa.2013.04.021 - Armendáriz, Inés; Loulakis, Michail. Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Related Fields 145 (2009), no. 1-2, 175–188. Mathematical Reviews (MathSciNet): MR2520125
Digital Object Identifier: doi: 10.1007/s00440-008-0165-7 - Arratia, Richard; Barbour, A. D.; Tavaré, Simon. Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2003. xii+363 pp. ISBN: 3-03719-000-0. Mathematical Reviews (MathSciNet): MR2032426
- T. Bak sajeva, E. Manstavi cius, On statistics of permutations chosen from the Ewens distribution, arXiv:1303.4540 [math.CO] (2013)arXiv: 1303.4540
Mathematical Reviews (MathSciNet): MR3265833
Digital Object Identifier: doi: 10.1017/S0963548314000376 - Ball, J. M.; Carr, J.; Penrose, O. The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions. Comm. Math. Phys. 104 (1986), no. 4, 657–692. Mathematical Reviews (MathSciNet): MR841675
Digital Object Identifier: doi: 10.1007/BF01211070
Project Euclid: euclid.cmp/1104115173 - R. Becker, W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. (Leipzig) 24, 719–752 (1935)
- Benfatto, Giuseppe; Cassandro, Marzio; Merola, I.; Presutti, E. Limit theorems for statistics of combinatorial partitions with applications to mean field Bose gas. J. Math. Phys. 46 (2005), no. 3, 033303, 38 pp.
- van den Berg, M.; Lewis, J. T.; Pulé, J. V. The large deviation principle and some models of an interacting boson gas. Comm. Math. Phys. 118 (1988), no. 1, 61–85. Mathematical Reviews (MathSciNet): MR954675
Digital Object Identifier: doi: 10.1007/BF01218477
Project Euclid: euclid.cmp/1104161908 - Bertoin, Jean. Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2. Mathematical Reviews (MathSciNet): MR2253162
- Betz, Volker; Ueltschi, Daniel. Spatial random permutations and infinite cycles. Comm. Math. Phys. 285 (2009), no. 2, 469–501. Mathematical Reviews (MathSciNet): MR2461985
Digital Object Identifier: doi: 10.1007/s00220-008-0584-4 - V. Betz, D. Ueltschi, Critical temperature of dilute Bose gases, Phys. Rev. A 81, 023611 (2010)
- Betz, Volker; Ueltschi, Daniel. Spatial random permutations and Poisson-Dirichlet law of cycle lengths. Electron. J. Probab. 16 (2011), no. 41, 1173–1192.
- Betz, Volker; Ueltschi, Daniel; Velenik, Yvan. Random permutations with cycle weights. Ann. Appl. Probab. 21 (2011), no. 1, 312–331. Mathematical Reviews (MathSciNet): MR2759204
Digital Object Identifier: doi: 10.1214/10-AAP697
Project Euclid: euclid.aoap/1292598036 - L. Bogachev, D. Zeindler, Asymptotic statistics of cycles in surrogate-spatial permutations, to appear in Commun. Math. Phys. (2014); doi:10.1007/s00220-014-2110-1Mathematical Reviews (MathSciNet): MR3304271
Digital Object Identifier: doi: 10.1007/s00220-014-2110-1 - Buffet, E.; Pulé, J. V. Fluctuation properties of the imperfect Bose gas. J. Math. Phys. 24 (1983), no. 6, 1608–1616.
- Burke, C. J.; Rosenblatt, M. A Markovian function of a Markov chain. Ann. Math. Statist. 29 1958 1112–1122. Mathematical Reviews (MathSciNet): MR101557
Digital Object Identifier: doi: 10.1214/aoms/1177706444
Project Euclid: euclid.aoms/1177706444 - Chatterjee, Sourav; Diaconis, Persi. Fluctuations of the Bose-Einstein condensate. J. Phys. A 47 (2014), no. 8, 085201, 23 pp. Mathematical Reviews (MathSciNet): MR3165088
Digital Object Identifier: doi: 10.1088/1751-8113/47/8/085201 - M. Chen, Dirichlet forms and symmetrizable jump processes, Chinese Quart. J. Math. 6, 83–104 (1991)
- Chleboun, Paul; Grosskinsky, Stefan. Condensation in stochastic particle systems with stationary product measures. J. Stat. Phys. 154 (2014), no. 1-2, 432–465. Mathematical Reviews (MathSciNet): MR3162548
Digital Object Identifier: doi: 10.1007/s10955-013-0844-3 - A. Cipriani, D. Zeindler, The limit shape of random permutations with polynomially growing cycle weights, arXiv.org/1312.3517 [math.PR]Mathematical Reviews (MathSciNet): MR3457548
- Denisov, D.; Dieker, A. B.; Shneer, V. Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36 (2008), no. 5, 1946–1991. Mathematical Reviews (MathSciNet): MR2440928
Digital Object Identifier: doi: 10.1214/07-AOP382
Project Euclid: euclid.aop/1221138771 - S. Dereich, P. Mörters, Cycle length distributions in random permutations with diverging cycle weights, to appear in Random Struct. Algor. (2014)
- Doney, R. A. A large deviation local limit theorem. Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 3, 575–577. Mathematical Reviews (MathSciNet): MR985693
Digital Object Identifier: doi: 10.1017/S030500410007794X - Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8. Mathematical Reviews (MathSciNet): MR2722836
- Durrett, Rick. Probability models for DNA sequence evolution. Probability and its Applications (New York). Springer-Verlag, New York, 2002. viii+240 pp. ISBN: 0-387-95435-X. Mathematical Reviews (MathSciNet): MR1903526
- Durrett, Richard; Granovsky, Boris L.; Gueron, Shay. The equilibrium behavior of reversible coagulation-fragmentation processes. J. Theoret. Probab. 12 (1999), no. 2, 447–474. Mathematical Reviews (MathSciNet): MR1684753
Digital Object Identifier: doi: 10.1023/A:1021682212351 - Embrechts, Paul; Hawkes, John. A limit theorem for the tails of discrete infinitely divisible laws with applications to fluctuation theory. J. Austral. Math. Soc. Ser. A 32 (1982), no. 3, 412–422. Mathematical Reviews (MathSciNet): MR652419
Digital Object Identifier: doi: 10.1017/S1446788700024976 - Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas. Modelling extremal events. For insurance and finance. Applications of Mathematics (New York), 33. Springer-Verlag, Berlin, 1997. xvi+645 pp. ISBN: 3-540-60931-8. Mathematical Reviews (MathSciNet): MR1458613
- N. Ercolani, S. Jansen, D. Ueltschi, Lindelöf integrals for combinatorics and probability theory, in preparation
- Ercolani, Nicholas M.; Ueltschi, Daniel. Cycle structure of random permutations with cycle weights. Random Structures Algorithms 44 (2014), no. 1, 109–133. Mathematical Reviews (MathSciNet): MR3143592
- Erlihson, Michael M.; Granovsky, Boris L. Reversible coagulation-fragmentation processes and random combinatorial structures: asymptotics for the number of groups. Random Structures Algorithms 25 (2004), no. 2, 227–245. Mathematical Reviews (MathSciNet): MR2076340
- Erlihson, Michael M.; Granovsky, Boris L. Limit shapes of Gibbs distributions on the set of integer partitions: the expansive case. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 5, 915–945. Mathematical Reviews (MathSciNet): MR2453776
Digital Object Identifier: doi: 10.1214/07-AIHP129
Project Euclid: euclid.aihp/1222261918 - M. R. Evans, Phase transitions in one-dimensional non-equilibrium systems, Braz. J. Phys. 30, 42–57 (2000)
- Flajolet, Philippe; Sedgewick, Robert. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. xiv+810 pp. ISBN: 978-0-521-89806-5. Mathematical Reviews (MathSciNet): MR2483235
- Ford, Walter B. Studies on divergent series and summability & The asymptotic developments of functions defined by Maclaurin series. Chelsea Publishing Co., New York 1960 x+342 pp. Mathematical Reviews (MathSciNet): MR115035
- Gnedenko, B. V.; Kolmogorov, A. N. Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Revised edition Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills., Ont. 1968 ix+293 pp. Mathematical Reviews (MathSciNet): MR233400
- Godrèche, C.; Luck, J. M. Condensation in the inhomogeneous zero-range process: an interplay between interaction and diffusion disorder. J. Stat. Mech. Theory Exp. 2012, no. 12, P12013, 45 pp. Mathematical Reviews (MathSciNet): MR3036143
- Grosskinsky, Stefan; Schätz, Gunter M.; Spohn, Herbert. Condensation in the zero range process: stationary and dynamical properties. J. Statist. Phys. 113 (2003), no. 3-4, 389–410. Mathematical Reviews (MathSciNet): MR2013129
Digital Object Identifier: doi: 10.1023/A:1026008532442 - Ibragimov, I. A.; Linnik, Yu. V. Independent and stationary sequences of random variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman. Wolters-Noordhoff Publishing, Groningen, 1971. 443 pp. Mathematical Reviews (MathSciNet): MR322926
- Jansen, Sabine; König, Wolfgang. Ideal mixture approximation of cluster size distributions at low density. J. Stat. Phys. 147 (2012), no. 5, 963–980. Mathematical Reviews (MathSciNet): MR2946631
Digital Object Identifier: doi: 10.1007/s10955-012-0499-5 - S. Jansen, W. König, B. Metzger, Large deviations for cluster size distributions in a continuous classical many-body system, preprint, arXiv:1107.3670 (2011)arXiv: 1107.3670
- Maples, Kenneth; Nikeghbali, Ashkan; Zeindler, Dirk. On the number of cycles in a random permutation. Electron. Commun. Probab. 17 (2012), no. 20, 13 pp. Mathematical Reviews (MathSciNet): MR2943103
- Nagaev, A. V. Local limit theorems with regard to large deviations when Cramér's condition is not satisfied. (Russian) Litovsk. Mat. Sb. 8 1968 553–579. Mathematical Reviews (MathSciNet): MR243590
- Nikeghbali, Ashkan; Zeindler, Dirk. The generalized weighted probability measure on the symmetric group and the asymptotic behavior of the cycles. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 4, 961–981. Mathematical Reviews (MathSciNet): MR3127909
Digital Object Identifier: doi: 10.1214/12-AIHP484
Project Euclid: euclid.aihp/1380718733 - Nikeghbali, Ashkan; Zeindler, Dirk. The generalized weighted probability measure on the symmetric group and the asymptotic behavior of the cycles. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 4, 961–981. Mathematical Reviews (MathSciNet): MR3127909
Digital Object Identifier: doi: 10.1214/12-AIHP484
Project Euclid: euclid.aihp/1380718733 - Pitman, J. Combinatorial stochastic processes. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7-24, 2002. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1875. Springer-Verlag, Berlin, 2006. x+256 pp. ISBN: 978-3-540-30990-1; 3-540-30990-X Mathematical Reviews (MathSciNet): MR2245368
- Pitman, Jim; Yor, Marc. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997), no. 2, 855–900. Mathematical Reviews (MathSciNet): MR1434129
Digital Object Identifier: doi: 10.1214/aop/1024404422
Project Euclid: euclid.aop/1024404422 - Sator, N. Clusters in simple fluids. Phys. Rep. 376 (2003), no. 1, 1–39. Mathematical Reviews (MathSciNet): MR1977747
Digital Object Identifier: doi: 10.1016/S0370-1573(02)00583-5 - Sütó, András. Percolation transition in the Bose gas. II. J. Phys. A 35 (2002), no. 33, 6995–7002. Mathematical Reviews (MathSciNet): MR1945163
Digital Object Identifier: doi: 10.1088/0305-4470/35/33/303 - Vershik, A. M. Statistical mechanics of combinatorial partitions, and their limit configurations. (Russian) Funktsional. Anal. i Prilozhen. 30 (1996), no. 2, 19–39, 96; translation in Funct. Anal. Appl. 30 (1996), no. 2, 90–105
- B. Waclaw, L. Bogacz, Z. Burda, W. Janke, Condensation in zero-range processes on inhomogeneous networks, Phys. Rev. E 76, 046114 (2007)
- Zhao, James Y. Universality of asymptotically Ewens measures on partitions. Electron. Commun. Probab. 17 (2012), no. 16, 11 pp.
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Reversible Markov structures on divisible set partitions
Crane, Harry and McCullagh, Peter, Journal of Applied Probability, 2015 - Size of the largest cluster under zero-range invariant
measures
Jeon, Intae, March, Peter, and Pittel, Boris, The Annals of Probability, 2000 - Cycles and eigenvalues of sequentially growing random regular graphs
Johnson, Tobias and Pal, Soumik, The Annals of Probability, 2014
- Reversible Markov structures on divisible set partitions
Crane, Harry and McCullagh, Peter, Journal of Applied Probability, 2015 - Size of the largest cluster under zero-range invariant
measures
Jeon, Intae, March, Peter, and Pittel, Boris, The Annals of Probability, 2000 - Cycles and eigenvalues of sequentially growing random regular graphs
Johnson, Tobias and Pal, Soumik, The Annals of Probability, 2014 - Trickle-down processes and their boundaries
Evans, Steven, Grübel, Rudolf, and Wakolbinger, Anton, Electronic Journal of Probability, 2012 - Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation
Lifshits, Mikhail and Shi, Zhan, The Annals of Probability, 2005 - On a deposition process on the circle with disorder
Huillet, Thierry, Advances in Applied Probability, 2004 - Regenerative tree growth: Binary self-similar continuum random trees and Poisson–Dirichlet compositions
Pitman, Jim and Winkel, Matthias, The Annals of Probability, 2009 - Regenerative composition structures
Gnedin, Alexander and Pitman, Jim, The Annals of Probability, 2005 - Clustering in a stochastic model of one-dimensional gas
Vysotsky, Vladislav V., The Annals of Applied Probability, 2008 - Minimal clade size in the Bolthausen-Sznitman coalescent
Freund, Fabian and Siri-Jégousse, Arno, Journal of Applied Probability, 2014