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The bootstrap percolation (or threshold model) is a dynamic process modelling the propagation of
an epidemic on a graph, where inactive vertices become active if their number of active neighbours
reach some threshold. We study an optimization problem related to it, namely the determination
of the minimal number of active sites in an initial configuration that leads to the activation of the
whole graph under this dynamics, with and without a constraint on the time needed for the complete
activation. This problem encompasses in special cases many extremal characteristics of graphs like
their independence, decycling or domination number, and can also be seen as a packing problem of
repulsive particles. We use the cavity method (including the effects of replica symmetry breaking), an
heuristic technique of statistical mechanics many predictions of which have been confirmed rigorously
in the recent years. We have obtained in this way several quantitative conjectures on the size of
minimal contagious sets in large random regular graphs, the most striking being that 5-regular
random graph with a threshold of activation of 3 (resp. 6-regular with threshold 4) have contagious
sets containing a fraction 1/6 (resp. 1/4) of the total number of vertices. Equivalently these numbers
are the minimal fraction of vertices that have to be removed from a 5-regular (resp. 6-regular)
random graph to destroy its 3-core. We also investigated Survey Propagation like algorithmic
procedures for solving this optimization problem on single instances of random regular graphs.

PACS numbers:

I. INTRODUCTION

Models of epidemic spreadings as dynamical processes occurring on a graph appear in various contexts besides
epidemiology [1–5]; for instance social sciences study viral marketing campaigns aimed at propagating new social
trends, and in economy it is crucial to understand cascading effects potentially leading to the bankrupt of financial
institutions. In these models individual agents are located on the vertices of a graph, and their state (healthy
or contaminated for instance) evolve in time according to the state of their neighbours, the edges of the graph
representing the contacts between agents that can possibly transmit the illness from one contaminated agent to an
healthy one.
There is a great diversity in the details of these models: the dynamics can occur in continuous (asynchronous) or

discrete time, according to deterministic or random rules, the state of an agent can be boolean (healthy or contam-
inated) or describe several levels of contamination, and finally the dynamics can be monotonous or not. To precise
this last point, a dynamics is said monotonous if the states of an agent always occur in the same order in time,
for instance in the Susceptible-Infected-Recovered (SIR) model the only allowed transitions are S→I and I→R, a
Recovered individual being immune forever, whereas in the SIS model an agent can become infected several times in
a row. In this paper we will concentrate on a simple monotonous dynamics, that evolve deterministically in discrete
time, with inactive (Susceptible) variables becoming active (Infected) when their number of active neighbours reach
some threshold, and then remain active for ever. For this reason it is called the threshold model, see [6] for a version
introduced in sociology with an underlying complete graph, and [7] for its first appearance in physics under the name
of bootstrap percolation (on random regular graphs).
Given one specific dynamical model there are many different questions that can be asked. The first, a priori simplest,

issue concerns the time evolution of the system from a random initial condition, taking the initial state of each agent
as an independent random variable. For monotonous dynamics a stationary state is reached after some time, and one
can wonder whether the epidemic has invaded the whole graph (in other words whether it percolates) in this final
state. The probability of this event obviously depends on the fraction of infected vertices in the initial condition, and
this may lead to phase transitions for certain class of graphs; see [8–10] for such a study of the bootstrap percolation on
finite-dimensional lattices, and [7, 11–17] for various type of dynamics on random graphs. In particular one finds for
the bootstrap percolation on random regular graphs a phase transition at some initial critical density θr (dependent
on the degree of the graph and the threshold of activation): with high probability initial conditions with a fraction θ
of active vertices (without correlations between the sites) are percolating if and only if θ > θr.
Besides these studies of the “forward” (or “direct”) time evolution, which are somehow simplified by the inde-

pendence assumption for the initial state variables, one can also formulate more difficult inference and optimization
questions. An example of the former type is to infer some information on the initial state given a snapshot of the
epidemic after some time evolution [18–21]; this “inverse problem” is particularly relevant in epidemiology in the
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search of the “zero patient” who triggered the spreading of an illness. For what regards the latter type of questions,
the design of an efficient vaccination campaign can indeed be seen as an optimization problem: find the smallest set
of nodes (to minimize the economical and social cost) whose vaccination will prevent the epidemic to reach a given
fraction of the population [22]. We shall actually consider in this paper the somehow reverse optimization problem,
namely targeting a small set of initially active sites that lead to the largest possible propagation of the contagion.
This obviously makes more sense in the perspective of viral marketing, in which it was first considered [23] than in
the epidemiological one; the initial adopters of a new product, that can be financially incited to do so, are expected
to convince most of their acquaintances and progressively the largest possible part of the population. From this point
of view the additional constraint that the propagation should be as fast as possible is also a relevant one.
More precisely, one can define two versions of this optimization problem: (i) given a fixed number of initially active

agents, choose them in order to maximize the number of active agents at some fixed later time, or in the final state of
the propagation; (ii) find the minimal number of initially active agents such that all the agents are active, again after
some time or in the final state. We will concentrate on the latter version of the problem but part of our analysis applies
to both. These optimization problems are known to be hard from a (worst-case) computational complexity point of
view [23–25], even to approximate. Exhibiting minimal percolating sets for bootstrap percolation on finite dimensional
lattices is relatively easy thanks to their regular structures, but more refined extremal problems are also relevant in
this case, see for instance [26, 27]. The understanding of these optimization problems seems less advanced in the case
of sparse random graphs. There exist upper and lower bounds on the size of minimal contagious sets [25, 28, 29],
some based in particular on the expansion properties of such graphs [30]. One particular case of the optimization
problem (when the threshold of activation is equal to the degree of the vertex minus one) is actually equivalent to
the decycling number problem of graph theory [31] (also known as minimal Feedback Vertex Set), which was settled
rigorously for 3-regular random graphs in [32] (this paper also contains bounds for higher degrees). As this last point
unveils the notion of minimal contagious sets is connected in some special cases to many other problems in graph
theory; one way to see this connection is to picture the inactive sites of the initial condition as particles to be put
on the graph. One wants to pack as many as possible of them (to obtain a contagious set of minimal size), yet they
do have some kind of repulsive interactions because of the constraint of complete percolation at a later time. This is
particularly clear when the threshold of activation is equal to the degree for all vertices: the problem is then exactly
equivalent to the hard-core particle model, also known as independent set or vertex cover.
The strategy we shall follow to determine the minimal size of contagious sets of sparse random graphs will be the

same as in [33, 34], namely a reformulation under the form of a statistical mechanics model which can be treated with
the so-called cavity method [35–38]. This (heuristic) method yields predictions for any interacting model defined on
a sparse random graph; its use in the context of random constraint satisfaction problems led to the discovery of a
very rich phenomenology of phase transitions [37, 39], with many of these predictions later confirmed rigorously [40–
45]. Let us emphasise in particular the determination of the maximal size of independent sets of random regular
graphs (which as we saw is a problem related to the present one), for which the predictions of the cavity method
(see [46] and references therein) have been recently rigorously confirmed (for graphs of large enough but finite degree)
in [47]. Another example in the context of graph theory is the study of matchings in random graphs, where the cavity
method [48] has also been proved to be correct [49]. The main originality of our contribution with respect to [33, 34]
is the use of a more refined version of the cavity method (i.e. incorporating the effects of replica symmetry breaking),
and an analytical study of the limit where the time at which the complete activation is required is sent to infinity.
The rest of the article is organized as follows. In Sec. II we define precisely the dynamics under study, recall

briefly some known results for random initial conditions, formulate the optimization problem and propose various
interpretations of it, and for the convenience of the reader we summarize the main results to be obtained in the
following. In Sec. III we derive the cavity method equations, both at the replica symmetric and one step of replica
symmetry breaking level. The solution of these equations for random regular graphs is presented in Sec. IV, which
contains the main analytical results of this work. Sec. V is devoted to single sample numerical experiments, where we
confront the analytical predictions with the optimized initial configurations obtained with two kind of algorithms (a
simple greedy one and a more involved procedure based on message passing). We finally draw our conclusions and
present perspectives for future work in Sec. VI. The most technical parts of the computations are deferred to two
Appendices.

II. DEFINITIONS AND MAIN RESULTS

A. Definition of the dynamics

Let us consider a graph on N vertices (or sites), G = (V,E), with the vertices labelled as V = {1, . . . , N}, and the
number of edges denoted |E| = M . The dynamical process under study concerns the evolution of variables σt

i on the
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vertices, σt
i = 0 (resp. 1) if the vertex i is inactive (resp. active) at time t. We shall denote σt = (σt

1, . . . , σ
t
N ) the

global configuration at time t. The latter is determined by the initial condition σ at the initial time, σ0 = σ, and
then evolves subsequently in a deterministic and parallel way, in discrete time, according to the rules:

σt
i =





1 if σt−1
i = 1

1 if σt−1
i = 0 and

∑
j∈∂i

σt−1
j ≥ li

0 otherwise

, (1)

where ∂i is the set of neighbours of i on the graph, and li is a fixed threshold for each vertex; we will also use di = |∂i|
to denote the degree of vertex i. The dynamics is monotonous (irreversible), an active site remaining active at all
later times, an inactive site i becoming active if its number of active neighbours at the previous time crosses the
threshold li. Note that the configuration σt at time t is a deterministic function of the initial condition σ = σ0, and
that by monotonicity one can define the final configuration σf = lim

t→∞
σt, this stationary configuration being reached

in a finite number of steps for all finite graphs.
It turns out that the final configuration σf is also the one reached by a sequential dynamics in which at each time

step only one site i with at least li active neighbours is activated; a moment of thought reveals the independence of
the final configuration with respect to the order of the updates. σf is indeed the smallest configuration (considering
the partial order σ ≤ σ′ if and only if σi ≤ σ′

i for all vertices) larger than the initial condition σ, such that no further
site can be activated. It will sometimes be useful in the following to think of this process in a dual way, corresponding
to the original presentation of bootstrap percolation in [7], namely to consider that inactive sites are sequentially
removed if they have less than a certain number of inactive neighbours. An equivalent definition of σf is thus given
by the inactive sites it contains, that form the largest set (with respect to the inclusion partial order) contained in the
set of inactive sites of σ, and such that in their induced graph the degree of site i is larger or equal than di − li + 1;
they form thus a (generalized inhomogeneous version of the) core of the initially inactive sites.

B. Reminder of the behaviour for random initial conditions on random regular graphs

To put in perspective the optimization problem to be studied in this paper it is instructive to first recall briefly
some well-known results for the evolution from a random initial configuration [7, 11]. For the sake of simplicity let us
consider G to be a k + 1-random regular graph (i.e. a graph drawn uniformly at random among all graphs in which
every vertex has degree k + 1), with a uniform threshold for activation set to li = l for all vertices. Suppose that the
states of the vertices in the initial condition are chosen randomly, independently and identically for each vertex, with
a probability θ (resp. 1 − θ) for a vertex to be active (resp. inactive). The probability for one vertex i0 to be active
at some time t+ 1, denoted xt+1, can be computed from the following equation:

xt+1 = θ + (1− θ)

k+1∑

p=l

(
k + 1

p

)
x̃p
t (1− x̃t)

k+1−p . (2)

Indeed such a vertex was either active in the initial condition, or has seen at least l of its neighbours activate themselves
before time t, and without the participation of i0. The probability x̃t of this last event obeys the recursive equation

x̃t+1 = θ + (1− θ)

k∑

p=l

(
k

p

)
x̃p
t (1 − x̃t)

k−p , (3)

with a number of participating neighbours reduced from k+1 to k as i0 has to be supposed inactive here. The initial
condition for these equations is x0 = x̃0 = θ. In the limit t → ∞ of large times x̃t → x̃∞(θ), the smallest fixed-point
in [0, 1] of the recursion (3). For each k ≥ 2 and l with 2 ≤ l ≤ k there exists a threshold θr(k, l) such that x̃∞(θ) is
equal to 1 for θ > θr, strictly smaller than 1 for θ < θr. From Eq. (2) one realizes that the same statement applies
to x∞(θ), hence θr is the threshold for complete activation (percolation) from a Bernouilli random initial condition
with probability θ for each active site. Studying more precisely Eq. (3) one realizes that for l = k the transition
is continuous (x∞(θ−r ) = 1), with an explicit expression for the threshold, θr(k, k) = k−1

k . For 2 ≤ l ≤ k − 1 the
transition is discontinuous (x∞(θ−r ) < 1), the threshold θr is obtained as the solution of the equations:




x̃r = θr + (1− θr)

k∑
p=l

(
k
p

)
x̃p
r (1 − x̃r)

k−p

1 = (1− θr)l
(
k
l

)
x̃l−1
r (1− x̃r)

k−l

, (4)
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where x̃r = x̃∞(θ−r ) is the value of the fixed-point of (3) at the bifurcation where it disappears discontinuously. For
l = 2 these equations can be solved explicitly and yield

θr(k, l = 2) = 1− (k − 1)2k−3

kk−1(k − 2)k−2
. (5)

For generic values of the parameters k, l there is no explicit expression of θr, as (4) are algebraic equations of arbitrary
degree; some numerical values of θr will be given in Table IV. For a given value of k the threshold θr(k, l) is growing
with l: if an initial condition leads to complete activation for some parameter l it will also be activating under the
less constrained dynamics with l′ < l.
The relevant range for the threshold parameter l in this study of random initial conditions is 2 ≤ l ≤ k. Indeed for

l = 0 after one step the configuration is completely active regardless of σ0, for l = 1 a single active site (per connected
component) in the initial configuration is enough to activate the whole graph, hence in these two cases θr = 0. On the
other hand if l = k + 1 one has θr = 1: any pair of adjacent inactive sites in the initial condition will remain inactive
for ever, and the number of such pairs is linear in N as soon as θ < 1.
Note that the recursion equations (2,3) are exact if the neighbourhood up to distance t of the vertex i0 is a regular

tree of degree k + 1. The limit t → ∞ can be taken in this way only if the graph considered is an infinite regular
tree. A rigorous proof that this reasoning is in fact correct also for the large size limit of random regular graphs (that
converge locally to regular trees) can be found in [11].

C. Definition of the optimization problem over initial conditions

Let us now come back to a general graph G with some thresholds li for vertex activation, and consider the minimal
fraction of active vertices in an initial configuration that activates the whole graph, i.e.

θmin(G, {li}) =
1

N
min
σ

{
N∑

i=1

σi | σf
i = 1 ∀i

}
. (6)

This corresponds to the minimal size of a contagious (or percolating) set, divided by the total number of vertices.
Following [33, 34] it will turn out useful to introduce another parameter T (a positive integer) in this optimization
problem, and impose now that the fully active configuration is reached within this time horizon T :

θmin(G, {li}, T ) =
1

N
min
σ

{
N∑

i=1

σi | σT
i = 1 ∀i

}
. (7)

Obviously for any finite graph θmin(G, {li}, T ) decreases when T increases and has θmin(G, {li}) as its limit for T → ∞.
To turn the computation of θmin into a form more reminiscent of statistical mechanics problems we shall introduce a
probability measure over initial configurations:

η(σ) =
1

Z(G, {li}, T, µ, ǫ)
e

N∑
i=1

[µσi−ǫ(1−σT
i )]

, (8)

where σT is as above the configuration obtained after T steps of the dynamics starting from the configuration σ = σ0,
the µ and ǫ are for the time being arbitrary parameters, and the partition function Z ensures the normalization of
this law. The parameter µ is a “chemical potential” that controls the fraction of initially active vertices (if ǫ = 0 the
measure η reduces to the Bernouilli measure), while ǫ is the cost to be paid for each site i inactive at the final time
T . In particular if ǫ = +∞ one has

η(σ) =
1

Z(G, {li}, T, µ, ǫ = +∞)
e
µ

N∑
i=1

σi
N∏

i=1

I(σT
i = 1) , (9)

with I(A) is the indicator function of the event A, the measure is thus supported by activating initial configurations
(within the time horizon T ). It is then obvious that the knowledge of Z allows to deduce the sought-for minimal
density θmin, as

θmin(G, {li}, T ) = lim
µ→−∞

1

µ

1

N
lnZ(G, {li}, T, µ, ǫ = +∞) . (10)
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Actually one can gain more information from the whole dependency of the partition function on µ. Suppose indeed
that the number of initial configurations with a fraction θ of active vertices that activate the whole graph in T steps
is, at the leading exponential order, eNs(θ), with an entropy density s(θ) of order one with respect to N . Then this
entropy density can be computed, in the large N limit, as a Legendre transform of the logarithm of the partition
function. More precisely, defining the free-entropy density φ as

φ(G, {li}, T, µ, ǫ = +∞) =
1

N
lnZ(G, {li}, T, µ, ǫ = +∞) , (11)

the evaluation of the sum over configurations in the definition of Z via the Laplace method yields in the large N limit:

φ(G, {li}, T, µ, ǫ = +∞) = sup
θ∈[θmin,1]

[µ θ + s(θ)] , (12)

hence s(θ) can be obtained by an inverse Legendre transform of φ(µ), with s(θ) = φ(µ) − µ θ and θ = φ′(µ).
For completeness let us also make a similar statement when ǫ is finite, i.e. when one does not impose strictly the

constraint of complete activation at time T . Denoting s(θ, θ′) the entropy density of initial configurations that have
a fraction θ of initially active vertices and that lead after T steps of evolution to a configuration with a fraction θ′ of
active sites, one has

φ(G, {li}, T, µ, ǫ) =
1

N
lnZ(G, {li}, T, µ, ǫ) = sup

θ,θ′

[µ θ − ǫ (1− θ′) + s(θ, θ′)] . (13)

Varying the parameters µ and ǫ thus allows to reconstruct the function s(θ, θ′), and hence to solve the optimization
problem denoted (i) in the introduction, namely for a fixed value of θ find the maximal reachable θ′. We will mainly
concentrate in the following of the paper on the optimization problem denoted (ii) in the introduction, that is imposing
the full activation of the graph at time T (θ′ = 1), which as explained above can be studied via the computation of
s(θ) = s(θ, θ′ = 1) from the inverse Legendre transform of the free-entropy with ǫ = +∞.
The definitions above were valid for any graph and any choice of the activation thresholds; we shall however be

particularly interested in the case of large random regular graphs with uniform thresholds, we thus define

θmin(k, l) = lim
N→∞

E[θmin(G, {li = l})] , θmin(k, l, T ) = lim
N→∞

E[θmin(G, {li = l}, T )] , (14)

where the average is over uniformly chosen regular graphs of degree k + 1 on N vertices, with the same threshold
for activation l on every vertex. The fact that the limit in the definition of θmin(k, l, T ) exists could actually be
proven rigorously using the method developed in [50], and it is expected that θmin(G, {li = l}, T ) is self-averaging
(i.e. concentrates around its average in the large N limit). The existence of θmin(k, l) might be a more difficult
mathematical problem that we shall not discuss further; it is a reasonable conjecture that it coincides with the limit
of θmin(k, l, T ) when T → ∞, i.e. that the large size and large time limits commute. We will see in Sec. IVB 1 one
argument in favour of this conjecture. Let us emphasize that θmin(k, l) < θr(k, l), with a strict inequality. This is
indeed a large-deviation phenomenon: even if most initial configurations with density smaller than θr do not activate
the whole graph some very rare ones (with a probability exponentially small in N in the Bernouilli measure of
parameter θ < θr) are able to do so. Note also that θmin(k, l) is growing with l at fixed k, for the same reasons as
explained above in the discussion of θr. The computations of θmin we shall present will follow the strategy explained
above on an arbitrary graph, namely the computation of a free-entropy density, that we define in the case of random
regular graphs as the quenched average over the graph ensemble,

φ(k, l, T, µ, ǫ) = lim
N→∞

1

N
E[lnZ(G, {li = l}, T, µ, ǫ)] . (15)

D. Equivalence with other problems and bounds

As mentioned in the introduction the problem of minimal contagious sets can be related, for appropriate choices of
the threshold parameters li, to other standard problems in graph theory.
Consider first the case of an arbitrary graph where the thresholds li are equal to the degrees di for all vertices. An

inactive site in the initial configuration will be activated only if it is surrounded by active vertices, and it will do so in
a single step. In other words in any percolating initial condition, whatever the time horizon T , the inactive vertices
must form an independent set (no two inactive vertices are allowed to be neighbours). For regular random graphs one
has thus θmin(k, k + 1, T ) = θmin(k, k + 1) for all T , and this quantity is equal to 1 minus the density of the largest
independent sets of a k + 1-regular random graph.
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Another correspondance with previously studied models arises when T = 1, for any choice of the thresholds li.
Indeed in this case the vertex i can be inactive in a percolating initial configuration only if its number of inactive
neighbours is smaller than some value (namely, ≤ di− li). These generalized hard-core constraints (repulsion between
inactive vertices) correspond exactly to the so-called Biroli-Mézard (BM) model [51, 52] (with the correspondance
inactive vertex ↔ vertex occupied by a particle in the BM model, and di − li ↔ ℓi of the BM model). Hence for
T = 1 the minimal density θmin is 1 minus the density of a close packing of the corresponding BM model. Further
specializing this T = 1 case by setting li = 1 on each vertex leads to the constraint that every inactive site in a
percolating initial configuration has to be adjacent with at least one active site, in other words that the active sites
form a dominating set of G. The minimal density θmin is thus the domination number (divided by N) of G.
Consider now the thresholds of activation to be 1 less than the degrees, i.e. li = di − 1 on all vertices, with no

constraint on the time of activation (T = ∞). As explained at the end of Sec. II A, the inactive vertices in the final
configuration form the 2-core of the inactive ones in the initial configuration. A percolating initial configuration must
be such that this 2-core is empty, in other words the subgraph induced by the inactive sites of the initial configuration
must be acyclic (a tree or a forest), i.e. the active sites have to form a decycling set [31] (also known as a Feedback
Vertex Set), and Nθmin is the decycling number of G. This characterization leads to the following bound for every
k + 1-regular graph with thresholds k of activation on every site,

θmin(k, k) ≥
k − 1

2k
. (16)

Indeed if A denotes the number of active vertices in a percolating initial configuration, the N−A other vertices induces
a forest, the number of edges between inactive vertices is thus at most N −A− 1. On the other hand this number is
at least k+1

2 N − (k+1)A (the first term being the total number of edges, and the number of edges incident to at least
one active site being at most (k+1)A). The decycling number of random regular graphs was studied in [32], proving
in particular that the bound (16) is actually tight for 3-regular large random graphs, i.e. θmin(2, 2) = 1/4, and it was
conjectured to be also the case for 4-regular ones (i.e. θmin(3, 3) = 1/3). An asymptotic lowerbound on θmin(k, k) for
large values of k was worked out in [53] , we will come back on this result in Sec. IVB 1. Note also that the decycling
number of arbitrary sparse random graphs was studied with physics methods in [54, 55].
For general thresholds smaller than the degrees minus one the active sites of a percolating initial configuration must

form a “de-coring” set instead of a “de-cycling” set (i.e. their removal has to provoke the disappearance of a q-core
with q > 2). A generalization of the lower bound (16) to any k + 1-regular graph with uniform threshold l was given
in [25], and reads

θmin(k, l) ≥
2l − k − 1

2l
. (17)

Its proof goes as follows. Consider the sequential process explained at the end of Sec. II A in which at each time t a
single vertex gets activated, and denote E(t) the number of edges between active and inactive vertices after t steps of
this process. By definition of the activation rule E(t+ 1) − E(t) ≤ k + 1 − 2l. If as above A denotes the number of
active sites in a percolating initial configuration, by definition E(N −A) = 0, hence E(0) ≥ (N −A)(2l− k − 1). On
the other hand E(0) ≤ (k + 1)A, which gives the lower bound (17) on the possible values of A.
We should also mention an upper bound on the minimal sizes of contagious sets derived in [28, 29] for graphs of

arbitrary degree distributions, which yields in the case of k + 1-regular graphs:

θmin(k, l) ≤
l

k + 2
. (18)

To conclude this discussion let us mention that the “de-coring” perspective on the minimal contagious set problem
is somehow reminiscent (even if not directly equivalent), to the Achlioptas processes [56, 57] (more precisely of their
offline version [58]) where one looks for an extremal event avoiding the appearance of an otherwise typical structure
(a giant component in the Achlioptas processes, a core in the minimal contagious set case).

E. Main analytical results

Let us draw here a more detailed plan of the rest of the paper to make its reading easier and faster for someone
not interested in the technical details of the statistical mechanics method (who can browse quickly over the next
section and jump to the results announced in Sec. IV). In order to compute the minimal density θmin of contagious
sets we shall rephrase this problem as a statistical mechanics model and apply to it the cavity method. The latter is
based on self-consistent assumptions of various degrees of sophistication, parametrized by the so-called level of replica
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symmetry breaking. We will study the first two levels of this hierarchy, named replica symmetric (RS) and one step
of replica symmetry breaking (1RSB). These two approaches will lead to two predictions for θmin, to be denoted
respectively θmin,0(k, l, T ) and θmin,1(k, l, T ). From general bounds established in the context of disordered statistical
mechanics models (first for the Sherrington-Kirkpatrick model [59–61] and later for some models on sparse random
graphs [62–64]) it is expected that the different levels of the cavity method provide improving lower bounds on θmin,
namely

θmin,0(k, l, T ) ≤ θmin,1(k, l, T ) ≤ θmin(k, l, T ) . (19)

Our computation of θmin,0(k, l, T ) and θmin,1(k, l, T ) relies on the resolution of a set of roughly 2T algebraic equations
on 2T unknowns, explicit numbers will be given in Sec. IV. We managed to perform analytically the T → ∞ limit and
reduce the determination of θmin,0(k, l) and θmin,1(k, l) (their limit when T → ∞) to a finite number of equations, that
will also be presented along with numerical results in Sec. IV. We found four particular cases in which the predictions
of the first two levels of replica symmetry breaking coincide when T → ∞, which led us to conjecture that they are
the exact ones, namely:

θmin(2, 2) =
1

4
, θmin(3, 3) =

1

3
, θmin(4, 3) =

1

6
, θmin(5, 4) =

1

4
, (20)

all these cases saturating the lower bounds of (16,17). The first (resp. second) equality was actually proven (resp.
conjectured) in [32]. We have also performed a large degree expansion of the decycling number of random regular
graphs, yielding the conjecture

θmin(k, k) = 1− 2 ln k

k
− 2

k
+O

(
1

k ln k

)
. (21)

III. CAVITY METHOD TREATMENT OF THE PROBLEM

A. Factor graph representation

As explained in Sec. II C the central quantity to compute is the free-entropy density defined from the partition
function normalizing the probability law (8), that for completeness we shall generalize to possibly site dependent
chemical potentials µi and costs for non-activation ǫi:

η(σ) =
1

Z(G, {li}, T, {µi, ǫi})
e

N∑
i=1

[µiσi−ǫi(1−σT
i )]

. (22)

This expression is not very convenient to handle directly because the variables σi have complicated interactions under
this law: σT

i is indeed a function of all variables σj on the vertices j at distance smaller than T from i. A way to
circumvent this difficulty and to turn the interactions of the model into local ones has been proposed in [33, 34], and
we shall follow the same approach here.
Let us first define ti(σ) as the time of activation of site i in the dynamical process generated by the initial config-

uration σ, i.e. ti(σ) = min{t : σt
i = 1}, with conventionally ti(σ) = ∞ if this time is strictly greater than the time

horizon T . These variables obey the following equations:

ti(σ) = f(σi, {tj(σ)}j∈∂i; li) ∀ i ∈ V , (23)

where the function f is defined as

f(σ, t1, . . . , tn; l) =





0 if σ = 1

1 +min
l
(t1, . . . , tn) if σ = 0 and 1 +min

l
(t1, . . . , tn) ≤ T

∞ otherwise

. (24)

Here min
l
(t1, . . . , tn) is the l-th smallest ti, i.e ordering the arguments as t1 ≤ t2 ≤ · · · ≤ tn one has min

l
(t1, . . . , tn) = tl.

This translates the dynamic rules (1) in terms of the activation times, a site i activating at the time following the
first time where at least li of its neighbours are active. In the following f(0, t1, . . . , tn; l) will be abbreviated in
f(t1, . . . , tn; l). Reciprocally one can show that if a set of {ti}i∈V verifies the condition that for all i either ti = 0 or
ti = f({tj}j∈∂i; li), then they correspond to the activation times for the dynamics started from the initial condition
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FIG. 1: A portion of the factor graph corresponding to the measure (25).

σ such that σi = 1 if and only if ti = 0. These two descriptions in terms of (σ1, . . . , σN ) and (t1, . . . , tN) are thus
equivalent, yet the great advantage of the latter is that the conditions to enforce among the ti are local along the
graph, and that they contain in an obvious way the information on σT

i that was lacking to deal with (22).
Finally a last twist on Eq. (22) will be to “duplicate” the activation time ti on all edges connecting i to one of

its neighbour j, introducing redundant variables tij to be finally constrained to be all equal to ti. Let us denote
t the collective configurations of all these 2M variables tij , tji on each edge 〈i, j〉 of the graph, that take values in
{0, 1, . . . , T,∞}, and consider the following probability measure on (σ, t):

η(σ, t) =
1

Z(G, {li}, T, {µi, ǫi})

N∏

i=1

wi(σi, {tij , tji}j∈∂i) , (25)

where the functions wi are defined by

wi(σi, {tij, tji}j∈∂i) = eµiσie−ǫiI(f(σi,{tki}k∈∂i;li)=∞)
∏

j∈∂i

I(tij = f(σi, {tki}k∈∂i; li)) . (26)

The above observations imply that the marginal of σ under η(σ, t) is precisely the desired one from Eq. (22), and
that in the support of the law the t are strictly constrained to be the activation times for the dynamics starting from
σ. This correspondance being one-to-one the partition function is the same in (22) and (25). A portion of the factor
graph [65] associated to the probability law (25) is sketched in Fig. 1, with black squares representing the function
nodes (interactions) wi, black circles the variables σi, and white circles the variables tij , tji. One notes that if the
original graph G is a tree (resp. is locally a tree) then the corresponding factor graph is a tree (resp. is locally a tree).
This fact was the motivation for the “duplication” of the ti variables on the surrounding edge, without it short loops
of interactions would still be present in the factor graph.

B. Replica Symmetric (RS) formalism

Let us now explain how the probability law (25) and its associated normalization Z can be handled within the
cavity formalism, first at the simplest, so called Replica Symmetric (RS), level.

1. Single sample equations

If the graph G were a finite tree the factor graph associated to (25) would be a tree, hence Z and the marginals
of η could be computed exactly via the recursive equations that we are about to write down. If the graph is only
locally tree-like these equations are only approximate, they correspond to the (loopy) Belief Propagation equations,
valid under some assumptions of long-range correlation decay under the measure η. This recursive computation of
Z amounts to introduce on each directed edge i → j of the graph a “message” ηi→j(tij , tji), which is a normalized
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probability distribution over a pair of activation times. These messages obey recursion relations of the form ηi→j =
ĝ({ηk→i}k∈∂i\j ; li, ǫi, µi), where the mapping η = ĝ(η1, . . . , ηk; l, ǫ, µ) is given by

η(t, t′) =
1

ẑiter(η1, . . . , ηk; l, ǫ, µ)

[
δt,0e

µ
k∏

i=1

(
∑

t′′

ηi(t
′′, 0)

)

+e−ǫδt,∞
∑

t1,...,tk

η1(t1, t) . . . ηk(tk, t)I(t = f(t1, . . . , tk, t
′; l))

]
. (27)

Here and in the following unprecised summations over a time index go along {0, . . . , T,∞}. The function
ẑiter(η1, . . . , ηk; l, ǫ, µ) is defined by normalization, in such a way that

∑
t,t′ η(t, t

′) = 1.
The knowledge of the messages ηi→j on all edges of the graph allows to compute the free-entropy density, according

to the Bethe formula:

φ =
1

N
lnZ =

1

N

N∑

i=1

ln ẑsite({ηj→i}j∈∂i; li, ǫi, µi)−
1

N

∑

〈i,j〉∈E

ln ẑedge(ηi→j , ηj→i) , (28)

where the second sum runs over the (undirected) edges of the graph, and the local partition functions are

ẑsite(η1, . . . , ηk+1; l, ǫ, µ) = eµ
k+1∏

i=1

(
∑

t′

ηi(t
′, 0)

)
+

T∑

t=1

∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 +min
l
(t1, . . . , tk+1))

+e−ǫ
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l
(t1, . . . , tk+1) ≥ T ) (29)

ẑedge(η1, η2) =
∑

t,t′

η1(t, t
′)η2(t

′, t) . (30)

The marginals of the law (25) can also be deduced from the messages, for instance the probability distribution of the
activation time ti for the vertex i reads η(ti) = η̂site({ηj→i}j∈∂i; li, ǫi, µi)(ti), where

η̂site(η1, . . . , ηk+1; l, ǫ, µ)(t) =
1

ẑsite(η1, . . . , ηk+1; l, ǫ, µ)

{
δt,0e

µ
k+1∏

i=1

(
∑

t′

ηi(t
′, 0)

)

+ (1− δt,0 − δt,∞)
∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 +min
l
(t1, . . . , tk+1))

+ δt,∞e−ǫ
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l
(t1, . . . , tk+1) ≥ T )



 . (31)

The probability that the vertex i is active in the initial condition is then deduced as η(σi = 1) = η(ti = 0). As explained
above in Eq. (13), one can deduce from the above results the entropy density s(θ, θ′) for initial configurations with a
fraction θ of active sites leading to a fraction θ′ of active sites after T steps, taking µi = µ and ǫi = ǫ for all sites,
with

s(θ, θ′) = φ(µ, ǫ) − µθ + ǫ(1− θ′) , θ =
1

N

N∑

i=1

η(ti = 0) , θ′ =
1

N

N∑

i=1

η(ti ≤ T ) . (32)

Note that the derivatives of φ with respect to µ and ǫ can be taken only on the explicit dependence in (28), the
recursion equations on the messages ηi→j being precisely the stationarity condition of φ with respect to the η’s.

2. A more compact parametrization of the messages

Each probability distribution η(t, t′) is a priori described by (T + 2)2 − 1 independent real numbers (the times run
over T + 2 values, including ∞, and there is a global normalization constraint). We shall see however that a much
more compact parametrization is possible, which will be very useful for the further analytical treatment of the model.



10

From now on we shall assume that µi = µ and ǫi = ǫ for all vertices. To unveil these simplifications let us first rewrite
Eq. (27) more explicitly:

η(0, t′) =
1

ẑiter
eµ

k∏

i=1

(ηi(0, 0) + ηi(1, 0) + · · ·+ ηi(T, 0) + ηi(∞, 0)) (33)

η(t, t′) =
1

ẑiter

∑

t1,...,tk

η1(t1, t) . . . ηk(tk, t) I(t = 1 +min
l
(t1, . . . , tk, t

′)) for t ∈ {1, . . . , T } (34)

η(∞, t′) =
1

ẑiter
e−ǫ

∑

t1,...,tk

η1(t1,∞) . . . ηk(tk,∞) I(min
l
(t1, . . . , tk, t

′) ≥ T ) (35)

where in all the three cases t′ can take any value in {0, 1, . . . , T,∞}. Now the condition “min
l
(t1, . . . , tk, t

′) = t− 1”

is easily seen to be equivalent to “at least l of the time arguments are ≤ t− 1 and at most l− 1 of them are ≤ t− 2”.
Similarly the condition “min

l
(t1, . . . , tk, t

′) ≥ T ” is equivalent to “at most l − 1 times are ≤ T − 1”. This observation

allows to rewrite the above equations under the following form:

η(0, t′) =
1

ẑiter
eµ

k∏

i=1

(ηi(0, 0) + ηi(1, 0) + · · ·+ ηi(T, 0) + ηi(∞, 0)) (36)

η(t, t′) =
1

ẑiter

∑

I,J,K
|I|+I(t′≤t−2)≤l−1
|I|+|J|+I(t′≤t−1)≥l

∏

i∈I

(
t−2∑

t′′=0

ηi(t
′′, t)

)
∏

i∈J

ηi(t− 1, t)
∏

i∈K



∑

t′′≥t

ηi(t
′′, t)


 (37)

η(∞, t′) =
1

ẑiter
e−ǫ

∑

I,J
|I|+I(t′≤T−1)≤l−1

∏

i∈I

(
T−1∑

t′′=0

ηi(t
′′,∞)

)
∏

i∈J


∑

t′′≥T

ηi(t
′′,∞)


 (38)

where the summation in the second (resp. third) line is over the partitions I, J,K (resp. I, J) of {1, . . . , k}. These
expressions reveal a first simplification, as already noticed in [33, 34]: among the (T + 2)2 elements of η(t, t′) only
3T + 2 are distinct. Indeed η(0, t′) is independent of t′, for a given value of t ∈ {1, . . . , T } η(t, t′) takes at most three
distinct values, whether t′ ≥ t, t′ = t − 1, or t′ ≤ t − 2 and finally η(∞, t′) takes two values whether t′ ≤ T − 1 or
t′ ≥ T . There is however a further simplification to perform: in the right hand sides of the above equations the ηi’s
always appear under the form of particular linear combinations. In particular the elements under the diagonal of the
matrices ηi, i.e. ηi(t, t

′) with t ≥ t′, always intervene under the form
∑

t≥t′ η(t, t
′). This allows to reduce further the

number of relevant linear combinations of elements of the η’s. A convenient parametrization of the messages η is thus
provided by the numbers at for t ∈ {0, 1, . . . , T } and bt for t ∈ {1, . . . , T }, defined by:

eµat =
η(0, 0)∑
t′ η(t

′, t)
, eµbt =

η(0, 0)
∑t

t′=0 η(t
′, t)

=
η(0, 0)

∑t
t′=0 η(t

′, t′′)
∀t′′ ≥ t . (39)

One can consistently extend these definitions with b0 = 0, and it will be useful to adopt the convention e−µb−1 = 0 in
order to simplify some expressions. Let us denote h = (a0, a1, . . . , aT , bT−1, . . . , b1) the vector of 2T reals encoding in
this way a matrix η; h will be called a cavity field in the following (note that we excluded bT which disappears from
the final expressions). The recursion relations (36-38) should now be transformed into a relation between cavity fields,

i.e. h = g(h1, . . . , hk), with hi = (a
(i)
0 , a

(i)
1 , . . . , a

(i)
T , b

(i)
T−1, . . . , b

(i)
1 ). Inserting the definitions (39) into the equations

(36-38) leads to the explicit form for g,

e−µat = 1 + e−µ
T∑

t′=1

∑

I,J,K
|I|+I(t′≥t+2)≤l−1
|I|+|J|+I(t′≥t+1)≥l

Pt′(h1, . . . , hk; I, J,K) + e−µ−ǫ
∑

I,J,K
|I|+|J|+I(t≤T−1)≤l−1

PT (h1, . . . , hk; I, J,K)

e−µbt = 1 + e−µ
t∑

t′=1

∑

I,J,K
|I|≤l−1
|I|+|J|≥l

Pt′(h1, . . . , hk; I, J,K) (40)
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where we defined

Pt(h1, . . . , hk; I, J,K) = e
µ

k∑
i=1

a
(i)
0
∏

i∈I

e−µb
(i)
t−2

∏

i∈J

(e−µb
(i)
t−1 − e−µb

(i)
t−2)

∏

i∈K

(e−µa
(i)
t − e−µb

(i)
t−1) . (41)

It can be checked that for T = 1 and ǫ = +∞ these equations correspond, as they should, to the one of the Biroli-
Mézard model (see Eqs. (108,109) of [52]). One can also express the partial partition functions ẑsite and ẑedge in terms
of these fields. It will be more convenient to factor out a common part in the site and edge contributions to the
free-entropy. Denoting r(η) =

∑
t η(t, 0), we define zedge as:

zedge(h1, h2) =
ẑedge(η1, η2)

r(η1)r(η2)
(42)

= eµ(a
(1)
0 +a

(2)
0 )

{
e−µ(a

(1)
T

+a
(2)
T

) +
T−1∑

t=0

[(
e−µa

(1)
t − e−µa

(1)
t+1

)
e−µb

(2)
t + e−µb

(1)
t

(
e−µa

(2)
t − e−µa

(2)
t+1

)]}
,

where the explicit expression is obtained from Eq. (30). Similarly, exploiting Eq. (29), we get for the site term
(factoring also a contribution from the chemical potential):

zsite(h1, . . . , hk+1; l, ǫ;µ) =
e−µẑsite(η1, . . . , ηk+1; l, ǫ;µ)

r(η1) . . . r(ηk+1)
(43)

= 1 + e−µ
T∑

t=1

∑

I,J,K
|I|≤l−1
|I|+|J|≥l

Pt(h1, . . . , hk+1; I, J,K) + e−µ−ǫ
∑

I,J,K
|I|+|J|≤l−1

PT (h1, . . . , hk+1; I, J,K)

where as above in the summations I, J,K denotes a partition of {1, . . . , k + 1}.
To summarize the results of this reparametrization, on a given graph one has cavity fields hi→j on each directed

edge, obeying the Belief Propagation equations hi→j = g({hk→i}k∈∂i\j), with the g defined in Eq. (40), and the Bethe
free-entropy density is computed from these cavity fields according to

φ = µ+
1

N

∑

i

ln zsite({hj→i}j∈∂i; li, ǫ, µ)−
1

N

∑

〈i,j〉∈E

ln zedge(hi→j , hj→i) , (44)

with zsite and zedge defined in Eqs. (43) and (42) respectively. Note that the factors r introduced in the definitions
of zsite and zedge compensate because in the expression of the Bethe free-energy of Eq. (28) the messages on each
directed edge appear exactly once in the site term and once in the edge term. The marginals of the law η(σ, t) can
also be computed from the cavity fields h, in particular from the expression (31) one obtains the marginal of one
activation time from the incident cavity fields as

ηsite(h1, . . . , hk+1; l, ǫ;µ)(t) =
1

zsite(h1, . . . , hk+1; l, ǫ;µ)





δt,0 + (1− δt,0 − δt,∞)e−µ
∑

I,J,K
|I|≤l−1
|I|+|J|≥l

Pt(h1, . . . , hk+1; I, J,K)

+ δt,∞ e−µ−ǫ
∑

I,J,K
|I|+|J|≤l−1

PT (h1, . . . , hk+1; I, J,K)





. (45)

3. Random (regular) graphs

The replica symmetric cavity method, for generic models defined on sparse random graphs, postulates the asymptotic
validity of the above computations, exact on finite trees, thanks to the local convergence of random graphs to trees
and an assumption of correlation decay at large distance. The order parameter is then a probability distribution
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over cavity fields, the randomness arising from the fluctuations of the degrees of the vertices in the graph and/or the
randomness in the local interactions.
In the case of random regular graphs with no disorder in the coupling the situation is even simpler, as one can look

for a “factorized” solution with all cavity fields equal. In particular for the model at hand on a k +1 random regular
graph, with the same threshold of activation l for all vertices, the RS prediction for the typical free-entropy density
in the thermodynamic limit defined in Eq. (15) reads

φ(k, l, T, µ, ǫ) = µ+ ln (zsite(h, . . . , h))−
k + 1

2
ln (zedge(h, h)) , (46)

which is easily obtained from (44) noting that 2M = (k + 1)N in a regular graph. The field h is the fixed-point
solution of the cavity recursion (40),

h = g(h, . . . , h) . (47)

The marginal law for the activation time is obtained from (45) by setting all the fields to h, which allows finally to
compute the entropy density from the Legendre inverse transform discussed in (13).
We shall discuss the results obtained from this RS prediction in the next Section, more explicit formulas for the RS

equation in this case, along with some technical details on their resolution being displayed in the Appendix B. One
can however anticipate that in some regime of parameters the RS hypothesis will be violated. This is for instance
known for T = 1, ǫ = +∞, which corresponds to the Biroli-Mézard model; it was indeed shown in [52] that for large
negative values of µ the predictions of the RS ansatz are unphysical, the frustration arising from the contradictory
constraints of putting as few active vertices in the initial condition as possible while imposing that all vertices become
active at a latter time induces long-range correlations between variables that are incompatible with the RS ansatz.
This limit µ → −∞ being the interesting case for the computations of the minimal density of contagious sets, we shall
now see how to include the effects of replica symmetry breaking in this model.

C. One step of Replica Symmetry Breaking (1RSB) formalism

The long-range correlation decay assumption underlying the RS cavity method breaks down for models with too
much frustration. In this case one has to picture the configuration space as fractured into pure states, or clusters, that
we shall index here by γ, such that the correlation decay assumption only holds for the Gibbs-Boltzmann probability
law restricted to one pure-state. The partition function restricted to a given pure-state is denoted Zγ , in such a way
that Z =

∑
γ Zγ . The replica symmetry breaking version of the cavity method then postulates some properties of

this decomposition into pure states, which are compatible with the local convergence of the graph under study to a
tree. In the first non-trivial version of the RSB formalism, so called one-step RSB (1RSB), one assumes the existence
of a complexity function, also called configurational entropy in the context of glasses, Σ(φ), such that the number of
pure states with an internal free-entropy density φγ = 1

N lnZγ close to some value φ is, at the leading exponential

order, eNΣ(φ). The computation of Σ(φ) is performed via the 1RSB potential with a parameter m (known as the
Parisi breaking parameter), related to Σ through a Legendre transform structure [66]:

Φ(m) =
1

N
ln
∑

γ

Zm
γ = sup

φ
[Σ(φ) +mφ] . (48)

The function Σ(φ) can be reconstructed in a parametric way varying m, with

Σ(φint(m)) = Φ(m)−mφint(m) , φint(m) = Φ′(m) , (49)

φint(m) denoting the internal free-entropy density of the clusters selected by the corresponding value of m. The value
m = 1 plays a special role in this approach, as it corresponds a priori to the original computation of the free-entropy
density of the model. However a so-called condensation (or Kauzmann) transition can occur, signaled by the vanishing
of the complexity Σ associated to m = 1. In this case the Gibbs-Boltzmann measure is dominated by a sub-exponential
number of pure-states, corresponding to a parameter ms < 1 with Σ(ms) = 0. In the following paragraphs we shall
derive the 1RSB equations and the expression of the 1RSB potential for the model under study, before discussing the
concrete results for random regular graphs in the next Section.
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1. Single sample equations

Let us first discuss the 1RSB formalism with the basic messages represented in terms of the matrices η(t, t′). In
the RS description one had a message ηi→j on each directed edge of the graph, solution of the recurrence equations

ηi→j = ĝ({ηk→i}k∈∂i\j ; li, ǫ, µ), see Eq. (27). At the 1RSB level one introduces instead a distribution P̂i→j(η) on each
directed edge, the randomness being over the choice of the pure-state γ with a weight proportional to Zm

γ . These

distributions are thus found to obey the recurrence equations P̂i→j = Ĝ[{P̂k→i}k∈∂i\j ], where P̂ = Ĝ(P̂1, . . . , P̂k)
means

P̂ (η) =
1

Ẑiter(P̂1, . . . , P̂k)

∫
dP̂1(η1) . . . dP̂k(ηk) δ(η − ĝ(η1, . . . , ηk)) ẑiter(η1, . . . , ηk)

m , (50)

with ĝ and ẑiter defined in Eq. (27), and Ẑiter normalizes the distribution P̂ . The 1RSB potential Φ(m) defined above
is then computed from the solution of these equations, according to

Φ(m) =
1

N

N∑

i=1

ln Ẑsite({P̂j→i}j∈∂i; li, ǫi, µi)−
1

N

∑

〈i,j〉∈E

ln Ẑedge(P̂i→j , P̂j→i) , (51)

where

Ẑsite(P̂1, . . . , P̂k+1) =

∫
dP̂1(η1) . . . P̂k+1(ηk+1) ẑsite(η1, . . . , ηk+1)

m , (52)

Ẑedge(P̂1, P̂2) =

∫
dP̂1(η1)P̂2(η2) ẑedge(η1, η2)

m (53)

are weighted averages, over the pure-states distribution, of the site and edge contributions to the free-entropy defined
in (29,30). Similarly the marginal distribution of an activation time can be computed as a weighted average of the
RS expression in the various pure-states, i.e.

η(t) =
1

Ẑsite(P̂1, . . . , P̂k+1)

∫
dP̂1(η1) . . . P̂k+1(ηk+1) η̂site(η1, . . . , ηk+1)(t) ẑsite(η1, . . . , ηk+1)

m . (54)

Note that the derivative Φ′(m), which plays an important role to compute the complexity from Eq. (49), can be taken

in (51) on the explicit dependence on m only, the recursion relations on the P̂i→j being the stationarity conditions of

(51) with respect to the P̂ ’s.
As we have seen in the discussion of the RS cavity method the matrices η can be parametrized in a more economic

way by the fields h (vectors of 2T real numbers). The expressions of the 1RSB quantities can also be rewritten using
this parametrization. After a few lines of algebra one finds that the potential Φ(m) reads

Φ(m) = µm+

N∑

i=1

lnZsite({Pj→i}j∈∂i; li, ǫ, µ)−
∑

〈i,j〉∈E

lnZedge(Pi→j , Pj→i) , (55)

with

Zsite(P1, . . . , Pk+1) =

∫
dP1(h1) . . . Pk+1(hk+1) zsite(h1, . . . , hk+1)

m , (56)

Zedge(P1, P2) =

∫
dP1(h1)P2(h2) zedge(h1, h2)

m , (57)

the weighted averages of the quantities defined in (42,43). The field distributions Pi→j(h) are solutions of the
recurrence equations Pi→j = G({Pk→i}k∈∂i\j), where the mapping P = G(P1, . . . , Pk) is given explicitly by

P (h) =
1

Ziter(P1, . . . , Pk)

∫
dP1(h1) . . . dPk(hk) δ(h− g(h1, . . . , hk)) ziter(h1, . . . , hk)

m . (58)

Ziter is a normalizing factor ensuring that the left hand side is a probability distribution, g is the function defined in
Eq. (40), and the reweighting factor reads

ziter(h1, . . . , hk) =
e−µẑiter(η1, . . . , ηk)r(ĝ(η1, . . . , ηk))

r(η1) . . . r(ηk)
= e−µa0(h1,...,hk) , (59)

the last equality following from Eqs. (36,39).
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2. Random regular graphs

For the reasons explained in the context of the RS ansatz in Sec. III B 3 one can look for a simple factorized solution
of the 1RSB equations in the case of a k+1 regular random graph with all thresholds of activation equal to l. In this
case one has to find a distribution P (h) solution of

P (h) =
1

Ziter

∫
dP (h1) . . . dP (hk) δ(h− g(h1, . . . , hk)) ziter(h1, . . . , hk)

m , (60)

where m ∈ [0, 1] is the Parisi breaking parameter and the functions g and ziter are the ones defined in Eqs. (40,59).
The 1RSB potential is then computed as

Φ(m) = µm + ln

(∫
dP (h1) . . . dP (hk+1) zsite(h1, . . . , hk+1)

m

)

− k + 1

2
ln

(∫
dP (h1)dP (h2) zedge(h1, h2)

m

)
, (61)

with the functions zsite, zedge defined in Eqs. (42,43). As already mentioned above Φ′(m) can be computed by taking
into account only the explicit dependence on m of (61).

D. “Energetic” 1RSB formalism

Even within the simplified case of the factorized ansatz for regular graphs the 1RSB equations are relatively
complicated, as they involve the resolution of a distributional equation on P (h). However we are ultimately interested
in a particular limit for the computation of the minimal density of contagious sets, namely the case where ǫ = +∞ (to
take into account only the fully activating configurations), and in the limit µ → −∞ (to select the initial configurations
with the minimal number of active sites). It turns out that a simplified version of the 1RSB formalism can be devised
in this case, corresponding to the “energetic” version of the 1RSB cavity method, first developed in [36, 37], see in
particular Sec. 5 of [52] for such a treatment of the related Biroli-Mézard model. This simplified treatment amounts
to take simultaneously the limit m → 0 and µ → −∞, with a fixed finite value of a new parameter y = −µm. To
explain the meaning of this limit let us rewrite more explicitly the expression of the 1RSB potential of Eq. (48) in the
case ǫ = +∞, introducing the complexity Σ(s, θ) counting the (exponential) number of clusters containing a number
of order eNs of activating initial configurations with a fraction θ of active sites, hence with a free-entropy density
φ = µθ + s:

Φ(m) = sup
θ,s

[Σ(s, θ) +m(µθ + s)] . (62)

In the limit m → 0, µ → −∞ with y = −µm this function becomes

Φe(y) = sup
θ
[Σe(θ)− yθ] , Σe(θ) = sup

s
Σ(s, θ) . (63)

The “energetic” complexity Σe(θ) can thus be computed via an inverse Legendre transform of the potential Φe(y),

Σe(θ(y)) = Φe(y) + yθ(y) , θ(y) = −Φ′
e(y) . (64)

As we shall see the “energetic” 1RSB cavity equations leading to the computations of Φe(y) are much simpler than
the initial 1RSB ones at finite values of µ and m. The price to pay for this simplification is the loss of information on
the entropy of the clusters when going from Σ(s, θ) to Σe(θ). However this is not a problem for the determination of
θmin: its estimate at the 1RSB level, to be denoted θmin,1, is the smallest value of θ with Σe(θ) ≥ 0. Indeed the least
dense activating configurations have to be in some pure states, whatever their entropy.

1. Simplification of the cavity field recursion (Warning Propagation equations)

We want to simplify the equations (40) giving h = g(h1, . . . , hk) with ǫ = +∞ and in the limit µ → −∞. First let
us make some remarks, valid when ǫ = +∞ for any value of µ. From the definition (39) of the fields bt, or from their
expressions in (40), it is obvious that

e−µbT ≥ e−µbT−1 ≥ · · · ≥ e−µb1 ≥ e−µb0 = 1 . (65)
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One can also notice that for ǫ = +∞ one has, for any µ, the equality aT = bT : this appears both from the definition
(39) of the fields, as η(∞, t) = 0 when ǫ = +∞, and from the recursion relations (40), the last term in the first line
of (40) disappearing when ǫ = +∞. To continue the above chain of inequalities let us first compute from (40)

e−µaT−1 − e−µaT = e
−µ+µ

k∑
i=1

a
(i)
0
∑

I,J
|I|=l−1

∏

i∈I

e−µb
(i)
T−1

∏

i∈J

(
e−µb

(i)
T − e−µb

(i)
T−1

)
, (66)

where I, J forms a partition of {1, . . . , k}. This shows that e−µaT−1 ≥ e−µaT = e−µbT , because in the right-hand side

e−µb
(i)
T ≥ e−µb

(i)
T−1 . These inequalities can then be continued by recurrence, as for t ∈ {0, . . . , T − 2} one obtains from

(40)

e−µat − e−µat+1 = e
−µ+µ

k∑
i=1

a
(i)
0
∑

I,J
|I|=l−1

∏

i∈I

e−µb
(i)
t

(
∏

i∈J

(e−µa
(i)
t+1 − e−µb

(i)
t )−

∏

i∈J

(e−µa
(i)
t+2 − e−µb

(i)
t )

)
, (67)

hence

e−µa0 ≥ a−µa1 ≥ · · · ≥ e−µaT−1 ≥ e−µaT = e−µbT ≥ e−µbT−1 ≥ · · · ≥ e−µb1 ≥ e−µb0 = 1 , (68)

and for any µ ≤ 0:

a0 ≥ a1 ≥ · · · ≥ aT−1 ≥ aT = bT ≥ bT−1 ≥ · · · ≥ b1 ≥ b0 = 0 . (69)

Let us now take the limit µ → −∞ in the equations (40), assuming that at and bt have finite limits. Treating (40)
at the leading exponential order one obtains

at = max


0, max

t′∈[1,T ]
max
I,J,K

|I|+I(t′≥t+2)≤l−1
|I|+|J|+I(t′≥t+1)≥l

St′(h1, . . . , hk; I, J,K)


 , (70)

bt = max


0, max

t′∈[1,t]
max
I,J,K

|I|≤l−1
|I|+|J|≥l

St′(h1, . . . , hk; I, J,K)


 , (71)

where

St(h1, . . . , hk; I, J,K) = 1−
∑

i∈I

(a
(i)
0 − b

(i)
t−2)−

∑

i∈J

(a
(i)
0 − b

(i)
t−1)−

∑

i∈K

(a
(i)
0 − a

(i)
t ) . (72)

Now from the inequalities (69) it appears that St ≤ 1, hence that the a’s and b’s belong to the interval [0, 1]. It is
however natural to assume that they are integers, as in the limit µ → −∞ they can be interpreted as differences
between number of particles in constrained groundstate configurations (see [36, 52] for more details). Within this
ansatz the a’s and b’s can only be equal to 0 or 1; using in addition the inequalities (69) one realizes that the fields
h can only take 2T + 1 possible values, that we shall call At for t ∈ {0, 1, . . . , T − 1} and Bt for t ∈ {0, 1, . . . , T }.
These are defined as follows; At denotes the case where a0 = · · · = at = 1, all the other a’s and b’s vanishing. For
t ∈ {2, . . . , T }, Bt means that b1 = · · · = bt−1 = 0, all the other a’s and b’s being equal to 1. Finally B1 corresponds to
the case where all a’s and b’s are equal to 1, and B0 to the case where they all vanish. Note that one can consistently
extend these definitions to AT = BT , as by definition aT = bT .
It remains to determine the value of h = g(h1, . . . , hk) in this µ → −∞ limit, when all the fields h1, . . . , hk belong

to the set {A0, A1, . . . , AT−1, AT = BT , BT−1, . . . , B1, B0} of “hard fields”, or Warning Propagation messages. Some
algebra, sketched in Appendix A, leads to:

g(Bt1 , . . . , Btn , Atn+1 , . . . , Atk) =





B1+min
l

(t1,...,tn) if n ≥ l and min(tn+1, . . . , tk) ≥ 1 + min
l
(t1, . . . , tn)

Amin(tn+1,...,tk)−1 if n ≥ l − 1 and

1 + min
l−1

(t1, . . . , tn) ≤ min(tn+1, . . . , tk) ≤ min
l
(t1, . . . , tn)

B0 otherwise

(73)



16

where t1, . . . , tn ∈ {0, . . . , T−1} and tn+1, . . . , tk ∈ {0, . . . , T }. We assumed conventionally that min
l
(t1, . . . , tl−1) = ∞.

The equation (73) can be given a very intuitive interpretation. The messages h ∈ {A0, . . . , AT−1, B0, . . . , BT } can
be interpreted as “warnings” sent from one vertex of the graph to one of its neighbours, with the following meanings. A
vertex i sends a message hi→j = Bt to one of its neighbour j to say: “if j is kept inactive at all times the configuration
of i and of its sub-tree (the one rooted at i and excluding j) leads to complete activation of the sub-tree within the
time horizon T , and i activates itself at time t”. In particular hi→j = B0 means that i is activated in the initial
configuration. On the contrary i sends the message hi→j = At to j to express: “the complete activation of i and its
sub-tree requires that j becomes activated at time t”. The rules of Eq. (73) for the combination of these messages
are then obtained by finding the configuration compatible with them, containing the minimal number of active sites
in the initial configuration (because of the µ → −∞ limit):

• if strictly less than l − 1 incoming messages are of the type Bti , with ti ∈ {0, . . . , T − 1}, the central site i will
never have more than l active neighbours (even with the participation of the receiving site j) if it is initially
inactive, hence the only way for i to be active at time T is to be active in the initial configuration, which implies
hi→j = B0.

• if at least l of the incoming messages are of the type Bti , with ti ∈ {0, . . . , T − 1}, say (Bt1 , . . . , Btn), the
central site i will become active at time t = 1 +min

l
(t1, . . . , tn), without the “help” of the activation of the site

j receiver of the message. This situation thus leads to a message of type Bt, at the condition that all other
incoming messages of type {A0, . . . , AT } do not require the activation of the central site i at a time strictly
earlier than t = 1 +min

l
(t1, . . . , tn).

• the participation of the activation of the receiving site j is required at some time t when the above condition is
not fulfilled, i.e. when the incoming messages (Atn+1 , . . . , Atk) require the activation of the central site at some
time tact = min(tn+1, . . . , tk) < 1 + min

l
(t1, . . . , tn). This mechanism is possible if at time tact − 1 already l − 1

of the neighbours sending messages of type B are active, i.e. it requires min
l−1

(t1, . . . , tn) ≤ tact − 1. The “help”

needed from the receiving site is that it is active at some time before tact − 1; in the limit µ → −∞ the least
dense configurations, and thus the least stringent constraint on the time of activation is privileged, hence the
message sent in this case is hi→j = Atact−1.

• all cases not fulfilling one of the conditions above require that i is active in the initial configuration to be active
at time T , hence the message sent is hi→j = B0.

2. Energetic 1RSB single sample equations

Within this ansatz the 1RSB distributions P (h) greatly simplify, as they are supported on the discrete set h ∈
{A0, A1, . . . , AT−1, AT = BT , BT−1, . . . , B1, B0}. We shall denote pt the weight in P (h) of the event h = At, and
similarly qt for h = Bt (with again the convention pT = qT to simplify notations), i.e.

P (h) =

T−1∑

t=0

pt δ(h−At) +

T∑

t=0

qt δ(h−Bt) . (74)

The 1RSB recursion relation (58) now reduces to a recursion between these finite-dimensional vectors of probabilities;
inserting the definition (74) in the right hand side of (58) and exploiting the combination rule (73) between hard fields,
one obtains the following limit for the recursion relation P = G[P1, . . . , Pk]:

pt =
1

Z[P1, . . . , Pk]
ey p̃t , p̃t =

∑

I,J,K
|I|=l−1
|J|≥1

∏

i∈I

(
t∑

t′=0

q
(i)
t′

)
∏

i∈J

p
(i)
t+1

∏

i∈K

(
T∑

t′=t+1

q
(i)
t′ +

T−1∑

t′=t+2

p
(i)
t′

)
for t ∈ {0, . . . , T − 1}

qt =
1

Z[P1, . . . , Pk]
ey q̃t , q̃t =

∑

I,J,K
|I|≤l−1
|I|+|J|≥l

∏

i∈I

(
t−2∑

t′=0

q
(i)
t′

)
∏

i∈J

q
(i)
t−1

∏

i∈K

(
T∑

t′=t

q
(i)
t′ +

T−1∑

t′=t

p
(i)
t′

)
for t ∈ {1, . . . , T }

q0 =
1

Z[P1, . . . , Pk]

[
1−

T−1∑

t=0

p̃t −
T∑

t=1

q̃t

]
, Z[P1, . . . , Pk] = 1 + (ey − 1)

[
T−1∑

t=0

p̃t +

T∑

t=1

q̃t

]
(75)
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the reweighting term of Eq. (59) becoming indeed ziter(h1, . . . , hk)
m = eya0(h1,...,hk), hence the factor ey multiplying

the probabilities of all warnings except B0; this is indeed the only case where an active site has to be inserted in the
initial configuration.
To compute the 1RSB potential we have to study the limit of the contribution of site and edge terms in the limit

µ → −∞, m → 0. We have from Eq. (43)

zsite(h1, . . . , hk+1)
m → exp


ymax


0, max

t∈[1,T ]
max
I,J,K

|I|≤l−1
|I|+|J|≥l

St(h1, . . . , hk+1; I, J,K)





 , (76)

which can be simplified following the same reasoning than the one which led to (73). This yields

Zsite(P1, . . . , Pk+1) → 1 + (ey − 1)

T∑

t=1

∑

I,J,K
|I|≤l−1
|I|+|J|≥l

∏

i∈I

(
t−2∑

t′=0

q
(i)
t′

)
∏

i∈J

q
(i)
t−1

∏

i∈K

(
T∑

t′=t

q
(i)
t′ +

T−1∑

t′=t

p
(i)
t′

)
, (77)

where I, J,K is a partition of {1, . . . , k + 1}. This expression can be interpreted intuitively in terms of the warnings
defined above; the factor multiplying (ey − 1) is indeed the probability of complete activation, at time t ∈ {1, . . . , T },
for an initially empty site receiving messages (h1, . . . , hk+1) from its neighbours, with their respective distributions
P1, . . . , Pk+1. As a matter of fact, for its activation to occur at time t at least l neighbours must have activated
without any help from the central site at time t − 1, no more than l − 1 must be active at time t− 2 (otherwise the
activation time would be strictly less than t), and the neighbours sending messages of type At′ should not require
activation at a time t′ < t.
For the edge term we obtain from Eq. (42)

zedge(h1, h2)
m → exp

[
−y min

t∈[0,T ]
min((a

(1)
0 − b

(1)
t ) + (a

(2)
0 − a

(2)
t ), (a

(1)
0 − a

(1)
t ) + (a

(2)
0 − b

(2)
t ))

]
, (78)

hence

Zedge(P1, P2) → e−y + (1− e−y)

[(
T∑

t=0

q
(1)
t

)(
T∑

t=0

q
(2)
t

)
+

T−1∑

t=0

p
(1)
t

t∑

t′=0

q
(2)
t′ +

T−1∑

t=0

p
(2)
t

t∑

t′=0

q
(1)
t′

]
. (79)

One can interpret the factor multiplying (1−e−y) as the probability of complete activation when two messages (h1, h2)
drawn with the probabilities P1, P2 are sent in the two opposite directions of an edge.
Let us summarize the main findings of this subsection. In the limit µ → −∞, m → 0 with y = −µm the 1RSB

formalism simplifies in the following way. The cavity field distributions Pi→j(h) have now a discrete support with 2T
possible values, each of them is thus described by a (normalized) vector of 2T probabilities denoted {pt, qt}. These
vectors are solutions of recurrence equations of the form Pi→j = G({Pk→i}k∈∂i\j), the mapping G being defined in
Eq. (75). The energetic limit of the 1RSB potential is then computed as

Φe(y) = −y +
1

N

N∑

i=1

ln (Zsite({Pj→i}j∈∂i))−
1

N

∑

〈i,j〉

ln (Zedge(Pi→j , Pj→i)) , (80)

with the expression of Zsite and Zedge given in Eqs. (77,79). This expression of Φe is variational, its derivative with
respect to y (which is needed in the computation of the inverse Legendre transform in (64)) can be taken on the
explicit dependence only.

3. Random regular graphs

For the reasons already exposed in the context of the RS and of the full 1RSB cavity formalism a factorized solution
of the energetic 1RSB equations can be searched for when dealing with random k + 1 regular graphs with a constant
threshold of activation l. One has thus a single vector of probabilities P = ({pt, qt}), fixed-point solution of Eq. (75),
from which the energetic 1RSB potential is obtained as

Φe(y) = −y + ln (Zsite(P, . . . , P ))− k + 1

2
ln (Zedge(P, P )) , (81)

with Zsite and Zedge defined in Eqs. (77,79).
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FIG. 2: The density of initially active sites θ (left panel) and the entropy s (right panel) as a function of the chemical potential
µ, computed from the replica symmetric cavity equations, for k = l = 2 and T = 3.

IV. RESULTS OF THE CAVITY METHOD FOR RANDOM REGULAR GRAPHS

We shall present now the results of the resolution of the cavity equations for random regular graphs of degree k+1,
with an activation threshold equal to l for all vertices. In all this discussion it will be understood that ǫ = +∞, i.e.
we only consider initial configurations that activate the whole graph in T steps. We will first present in Sec. IVA the
results for finite values of T , which are qualitatively the same for all values of k, l and T ; the behaviour of the replica
symmetric cavity method are first displayed, then we turn to the effects of replica symmetry breaking, in particular in
the “energetic” limit to compute the minimal density of initially active sites in activating configurations. In a second
part (Sec. IVB) we shall discuss the limit T → ∞, in which some further analytical computations can be performed.
In this case several qualitatively distinct phenomena emerge, depending on the values of k and l.

A. Finite T results

1. Replica symmetric formalism

The technical details of the resolution of the RS equation h = g(h, . . . , h), where g is given in Eq. (40), and of the
computation of the free-entropy density, are deferred to the Appendix B. From a numerical point of view it is an
easy task, as it corresponds essentially to the resolution of a set of 2T equations on 2T unknowns. Let us discuss the
numerical results obtained in this way. On the left panel of Fig. 2 we display the curve θ(µ) of the average fraction
of initially active sites as a function of the chemical potential µ; the curve is for k = l = 2 and T = 3, the qualitative
features are independent of these precise values. This function is increasing as it should, and reaches a finite limit
when µ → −∞, that would be the candidate value for θmin if the RS computation was correct in this limit. This
however cannot be true, as revealed from the computation of the entropy, displayed in the right panel of Fig. 2: for
µ < µs=0 the RS entropy becomes negative, which is a certain indication of the inadequacy of the RS theory in this
regime. In Fig. 3 we display the results for the entropy s(θ) of the number of configurations with a fraction θ of
initially active sites, for the regime of positive entropies where the RS prediction cannot be ruled out at once (for the
cases k = l = 2 and k = 3, l = 2). For increasing values of T these curves converge to a limit, this will be further
discussed in Sec. IVB 1. The numerical values of the chemical potential and of the fraction of active sites at the
point of entropy cancellation, which would be the best guess from the RS computation of the value of θmin, denoted
respectively µs=0 and θmin,0, can be found for various values of T in the Tables I, II and III for the cases k = l = 2,
k = l = 3 and k = 3, l = 2 respectively. For T = 1 they reproduce, as they should, the results of the Biroli-Mézard
model given in [52].

2. 1RSB results

As we have seen above the hypothesis underlying the RS computation must go wrong when µ is decreased towards
−∞, as the entropy computed within the RS scheme becomes negative for µ < µs=0; a 1RSB computation is thus
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FIG. 3: The RS entropy s(θ) of configurations with a fraction θ of initially active sites able to activate completely the graph
within time T , for k = l = 2 (left panel) and k = 3, l = 2 (right panel). The curve labelled “random” is the binary entropy
function −θ ln θ − (1− θ) ln(1− θ) that counts all configurations with such an initial density. The curves in the limit T → ∞

are computed analytically, from Eq. (82) for the left panel and (101) for the right panel, see Sec. IVB for a further discussion
of this limit.

RS 1RSB energetic 1RSB

T µs=0 θmin,0 µd θd µc θc ys θmin,1

1 -7.403996 0.422251 -6.49 0.4292 -6.69 0.4275 5.563433 0.424257

2 -11.374979 0.325742 -9.89 0.3291 -11.23 0.3260 10.826348 0.325882

3 -17.292682 0.289093 -13.7 0.2922 -17.28 0.2890 17.232166 0.289097

4 -24.936318 0.271564 -20.9 0.2731 -24.93 0.2715 24.933659 0.271564

5 -34.966263 0.262167 -31.3 0.2628 -34.63 0.2622 34.966225 0.262167

6 -49.901175 0.256844 49.901175 0.256844

7 -74.984724 0.253779 74.984724 0.253779

8 -120.79085 0.252036 120.79085 0.252036

10 -378.44778 0.250553 378.44778 0.250553

15 −1.069 104 0.250018 1.069 104 0.250018

20 −3.4 105 0.250000 3.4 105 0.250000

∞ −∞ 1

4
+∞ 1

4

TABLE I: Numerical results from the cavity computations at finite T for k = l = 2; the results in the limit T → ∞ are
explained in Sec. IVB.

required to investigate the limit µ → −∞ and hence the properties of the least dense activating initial conditions, in
particular their density θmin.
We have thus solved numerically the 1RSB equations (60) using population dynamics methods [35], i.e. representing

P (h) as a weighted sample of fields hi. This method has become fairly standard and we shall not give more details
on the procedure, see for instance [35, 38] for detailed presentations. In the particularly important m = 1 case we
used a version of this procedure, inspired by the tree reconstruction problem, that allows to get rid of the reweighting
terms in (60) and is thus much more precise and efficient numerically, see [67, 68] for more technical details.
The results of these investigations follow the usual pattern encountered in constraint satisfaction problems [39]: for

large enough values of µ (i.e. for dense enough initial configurations) there is no non-trivial solution of the 1RSB
equation with m = 1; decreasing µ a non-trivial solution appears discontinuously at a threshold µd (the “dynamic”
transition). Its complexity (or configurational entropy) Σ is positive in an interval µ ∈ [µc, µd], which thus corresponds
to a “dynamic 1RSB phase” with an exponential number of clusters contributing to the Gibbs measure, see Fig. 4 for
an illustration in the case T = 1. The numerical values of µd and µc (as well as the associated densities of initially
active sites θd and θc), can be found for several values of T in the Tables I, II and III. For the values of µ in the
interval [µc, µd] the thermodynamic predictions of the RS computations are correct. Note that in all the cases we
investigated (k = 2, 3, 2 ≤ l ≤ k and T ≤ 5) we always found a discontinuous transition with µc < µd; we cannot
rule out the possibility that for other values of the parameters the replica symmetry breaking transition is continuous
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FIG. 4: The complexity at m = 1 as a function of the chemical potential µ, for k = l = 2 and T = 1. The function is defined
for µ < µd ≈ −6.49, the complexity being positive for µ > µc ≈ −6.69.
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FIG. 5: Study of the condensed phase for k = l = 2 and T = 1. Left panel: complexity as a function of m for µ = −7.5 < µc,
the complexity vanishes for ms ≈ 0.84. Right panel: Parisi parameter ms as a function of −1/µ, departing from 1 for µ < µc;
the dashed line corresponds to the linear behaviour −µms = 5.56 that fits the µ → −∞ limit.

with µc = µd (as happens for instance in the independent set problem at low degrees [46]).
Lowering further the chemical potential, i.e. in the regime µ < µc, the complexity at m = 1 becomes negative.

This is thus a true replica symmetry breaking phase with only a sub-exponential number of clusters contributing to
the Gibbs measure; µc corresponds to the “condensation” transition. In this phase the thermodynamic properties of
the model differ from the RS prediction and are given by the properties of the clusters selected by the static value
of the Parisi parameter, ms(µ), for which the complexity vanishes. This value can be determined by computing the
complexity as a function of m, for a fixed value of µ, see left panel of Fig. 5 for an example.
To compute the minimal density θmin(T ) one has to take the limit µ → −∞; we have introduced above in Sec. III D

a simplifying ansatz in this limit, assuming in particular a finite value of −µm. To check the consistency of this ansatz
we solved the complete 1RSB equations for T = 1 and several values of µ large and negative. The Parisi parameter
ms is plotted as a function of −1/µ in the right panel of Fig. 5; in the limit µ → −∞ one obtains indeed a linear
behaviour, corresponding to a finite limit of −µms.

3. Energetic 1RSB results

We turn now to the results obtained via the energetic 1RSB cavity method, i.e. taking simultaneously the limits
µ → −∞ and m → 0 with a finite value for y = −µm. The equations to solve in this case amounts to find the
fixed point of Eq. (75), from which one obtains the 1RSB potential (81) and the energetic complexity Σe(θ) from the
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FIG. 6: The complexity Σe(θ) obtained from the energetic 1RSB cavity formalism, for k = l = 2 (left panel) and k = 3, l = 2
(right panel); see Sec. IVB for explanations on the T → ∞ result.

RS 1RSB energetic 1RSB

T µs=0 θmin,0 µd θd µc θc ys θmin,1

1 -6.113951 0.479455 -5.35 0.4906 -5.39 0.4900 4.644980 0.482712

2 -8.175902 0.397326 -7.38 0.4027 -7.95 0.3988 7.485437 0.397922

3 -10.381917 0.366187 -8.63 0.3725 -10.33 0.3663 10.077681 0.366291

4 -13.140888 0.351221 -9.59 0.3583 -13.11 0.3513 13.037666 0.351234

5 -17.249334 0.343205 -10.3 0.3507 -17.36 0.3432 17.232334 0.343206

6 -24.322138 0.338721 24.321721 0.338721

7 -35.739653 0.336191 35.739653 0.336191

8 -54.198587 0.334760 54.198587 0.334760

∞ −∞
1

3
+∞

1

3

TABLE II: Numerical results from the cavity computations at finite T for k = l = 3; the results in the limit T → ∞ are
explained in Sec. IVB.

.

Legendre transform structure explained in (64), as a parametric plot varying the parameter y. The computational
complexity of this problem is drastically reduced compared to the complete 1RSB equations: as in the RS case one
has a set of (roughly) 2T equations on 2T real unknowns, instead of an equation on a probability distribution of fields.
More technical details on the procedure to solve these equations can be found in Appendix B.
Fig. 6 displays the energetic complexity Σe(θ) for a few values of T , in the cases k = l = 2 and k = 3, l = 2.

The expert reader will notice that we restricted the range of y used in this plot to the so-called physical branch, in
such a way that Σe is a concave function of θ. The most important characteristics of these curves are the values
of θmin,1 where the complexity vanishes, and the corresponding values ys of the parameter y; these are reported for
several values of T in the last columns of the Tables I, II and III. Indeed θmin,1 is the 1RSB prediction for θmin, as it
corresponds to the smallest density of active sites in initial configurations belonging to clusters with a non-negative
complexity. For T = 1 these values can be successfully cross-checked with the results of the Biroli-Mézard model [52],
and the parameter ys agrees with the fit of −µms(µ) in the limit µ → −∞ obtained from the full 1RSB equations (cf.
right panel of Fig. 5).

B. The large T limit

The limit case T → ∞ is particularly interesting as it corresponds to the original influence maximization problem
with no constraint on the time taken to activate the whole graph. This limit can be performed analytically for the RS
and energetic 1RSB formalism; the technical details of these computations can be found in Appendix B 2, we present
here the results of these analytical simplifications. It turns out that the case k = l is qualitatively different from the
case k > l, we shall thus divide this section according to this distinction.
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RS 1RSB energetic 1RSB

T µs=0 θmin,0 µd θd µc θc ys θmin,1

1 -7.730059 0.362794 -7.06 0.3681 -7.38 0.3654 6.778540 0.363813

2 -10.21534 0.236821 -9.16 0.2416 -10.12 0.2372 9.873120 0.237009

3 -11.90150 0.182272 -10.38 0.1875 -11.85 0.1824 11.72892 0.182338

4 -13.03158 0.151659 -11.45 0.1563 -13.00 0.1517 12.92114 0.151693

5 -13.80059 0.132014 -12.47 0.1354 -13.78 0.1321 13.71834 0.132036

6 -14.33193 0.118324 14.26439 0.118341

7 -14.70251 0.108237 14.64332 0.108251

8 -14.96150 0.100498 14.90729 0.100510

10 -15.26375 0.089415 15.21429 0.089425

15 -15.42086 0.074242 15.37163 0.074251

20 -15.27922 0.066569 15.22489 0.066579

30 -14.85174 0.058995 14.78367 0.059008

∞ -12.72072 0.046283 12.54796 0.046328

TABLE III: Numerical results from the cavity computations at finite T for k = 3, l = 2; the results in the limit T → ∞ are
explained in Sec. IVB.

1. The case k = l

Let us first recall that when k = l the dynamics from a random initial configuration of density θ has a continuous
transition at θr(k, k) =

k−1
k (see Sec. II B); we also saw in Sec. II D that minimal contagious sets (with no constraint

on the activation time) correspond to minimal decycling sets, which led to the bound θmin(k, k) ≥ k−1
2k = θr(k,k)

2 . In
the rest of this subsection we shall for simplicity abbreviate θr(k, k) by θr.
As suggested by the left panel of Fig. 3 in the case k = l = 2, the RS entropy s(θ) converges to a limit curve when

T → ∞. This limit curve can actually be computed analytically for all k; we defer the details of the computation
to App. B 2b and only state here the properties of this limit curve. For θ ≥ θr it coincides with the binary entropy
function −θ ln θ − (1 − θ) ln(1 − θ); this is a posteriori obvious. Indeed by definition of θr typical configurations in
this density range do activate the whole graph, hence the number of activating initial configurations coincide (at the
leading exponential order) with the total number of configurations of this density. A non-trivial portion of the limit
curve arises in the density range [θr/2, θr], where it is given by

s(θ) = −k

2
(2θ − θr) ln(2θ − θr) + kθ ln θ + (1 − θ) ln(k − 1)− k + 1

2
ln

(
k − 1

k

)
. (82)

This function has the same value and the same first derivative than the binary entropy function in θr, while at the
lower limit θr/2 of its range of definition it has an infinite derivative with a finite value

s(θr/2) = ln k − k − 1

2k
ln(k − 1)− k − 1

2
ln 2 . (83)

The parametric plot of s(θ) also contains a vertical segment for θ = θr/2, from −∞ to the value given in (83).
The complexity Σe(θ) of the energetic 1RSB formalism also converges to a limit curve when T → ∞, as shown in

Fig. 6 and obtained analytically in App. B2 b. This limit curve has the same vertical segment in θr/2 from −∞ to
the value (83); the non-trivial part of the curve is given in a parametrized form as follows:

Σe(λ̃) = lnZsite(λ̃)−
k + 1

2
lnZedge(λ̃)− y(λ̃)(1− θ(λ̃)) , (84)

θ(λ̃) = 1− ey(λ̃)

ey(λ̃) − 1

Zsite(λ̃)− 1

Zsite(λ̃)
− k + 1

2

1

ey(λ̃) − 1

1−Zedge(λ̃)

Zedge(λ̃)
, (85)

where λ̃ is the positive parameter along the curve, the Parisi parameter

y(λ̃) = ln

(
(1 + λ̃)k − k λ̃k−1 − λ̃k

(k − 1) λ̃k

)
, (86)
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is the slope of the tangent to the curve Σe(θ), and

Zsite(λ̃) = 1 +
(k + 1 + λ̃)((1 + λ̃)k−1 − k λ̃k−1)

(k − 1)(1 + λ̃)k
, (87)

Zedge(λ̃) =
λ̃

1 + λ̃

(
1 +

(1 + λ̃)k−1 − λ̃k−1

(1 + λ̃)k − k λ̃k−1 − λ̃k

)
. (88)

When λ̃ → 0+ this part of the curve connects with the vertical segment in θr/2. The large values of λ̃ yield a
non-concave branch of Σe that has to be discarded.
Depending on the value of k qualitatively different behaviours emerge from the analysis of the RS entropy and

1RSB energetic complexity:

• For k = l = 2 the entropy of the endpoint in θr/2 given in (83) is strictly positive (it is equal to (ln 2)/2);
moreover the energetic complexity curve converges, in the T → ∞ limit, to a vertical segment (the non-

trivial part parametrized by λ̃ is convex and has thus to be discarded). This leads to the conclusion that
θmin = θr/2 = 1/4 in this case, saturating the lowerbound of (16), and recovering the rigorous result of [32] on
the decycling number of 3-regular graphs. This is a reassuring evidence in favour of the validity of the approach,
in particular on the interversion of the T → ∞ and N → ∞ limit. It would be an even more challenging
computation to determine the limit of θd and θc as T diverges; we are however tempted to conjecture that
they both go to 1/4 and that the effects of replica symmetry breaking are irrelevant in this limit. A numerical
argument in favour of this conjecture will be presented in Sec. V, where it is shown that a simple greedy
algorithm is able to find contagious sets of these densities. Assuming this is true, the expression (82) would give
for k = 2 the typical (quenched) entropy of the decycling sets of 3-regular random graphs in their non-trivial
regime of densities [1/4, 1/2]. Note that the coincidence of the RS entropy and 1RSB energetic complexity at
θmin is reminiscent of the phenomenology discussed for the matching problem in [48], which might suggest that
the minimal density activating configurations are at a large Hamming distance in configuration space one from
the other.

• For k = l = 3 the expression (83) of the entropy in θr/2 is still positive (equal to ln 3 − (4/3) ln 2), hence the
endpoint of the non-trivial part of both the RS entropy and the 1RSB complexity curves occurs in θmin,0 =
θmin,1 = θr/2 = 1/3, saturating again the bound (16). This leads to the conclusion that θmin = 1/3 in this case,
as was also conjectured in [32]. However, at variance with the previous case, the energetic complexity curve has
a non-trivial part for θ > θmin, as shown in the left panel of Fig. 7. We thus expect that the limits of θd and
θc when T → ∞ are strictly greater than 1/3, hence that simple algorithms would have difficulties to find the
minimal contagious sets (see Sec. V for a numerical check of this statement), and that the RS entropy (82) is
incorrect for some regime of densities close to 1/3.

• Finally when k = l ≥ 4 the entropy in (83) is negative, the cancellation of s occurs at a value θmin,0 strictly
between θr/2 and θr, see the right panel of Fig. 7. The energetic complexity vanishes on its non-trivial part

parametrized by λ̃, at a value θmin,1 slightly larger than θmin,0, see Table IV for some numerical values. Whether
θmin,1 should be taken as a conjectured exact value for θmin or simply as a lowerbound is dubious and might
depend on the value of k. Indeed one should test the stability of the 1RSB ansatz against further levels of
replica symmetry breaking. This computation is in principle doable along the lines of [52, 69, 70], but has not
been performed yet. It is however relatively easy to set up an asymptotic expansion at large k of the thresholds
θmin,0 and θmin,1 from the expressions (82,84). One finds that the first terms of the expansion are equal at the
RS and 1RSB level, it is thus natural to conjecture that they are indeed the correct expansion of θmin, namely

θmin(k, k) = 1− 2 lnk

k
− 2

k
+O

(
1

k ln k

)
. (89)

This conjecture is in agreement with the rigorous lowerbound proven in [53],

θmin(k, k) ≥ 1− 2 lnk

k
− 4− 2 ln 2

k
+ o

(
1

k

)
. (90)

It can also be compared with the asymptotic expansion in the case l = k + 1 [71] where the inactive vertices
have to form an independent set of the graph:

θmin(k, k + 1) = 1− 2 lnk

k
+

2 ln ln k

k
+

2 ln 2− 2

k
+ o

(
1

k

)
. (91)
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FIG. 7: The RS entropy s(θ) and energetic 1RSB complexity Σe(θ) in the T → ∞ limit, for k = l = 3 (left panel) and k = l = 4
(right panel). The binary entropy function is also plotted for comparison (the RS entropy coincides with it for θ ≥ θr). The
physical part of the complexity extends on a small range of θ, on which it is only slightly smaller than the RS entropy, the inset
allows to see this small difference at the end of the domain of definition of Σe.

The third term of this expansion is of a larger order; indeed the condition imposed on the graph induced by the
inactive vertices is much more stringent when l = k + 1 (it has to be made of isolated vertices) with respect to
the case l = k (it only has to be acyclic).

Let us mention at this point that θmin(T ), the minimal density of initial configuration percolating within T steps
of the dynamics, reaches its asymptotic value θmin as T → ∞ with different finite T corrections in the various cases
listed above. The analysis of App. B 2b shows that for k = l = 2 (resp. k = l = 3) these corrections are of order 2−T

(resp. 3−T ), which is in agreement with a numerical fit of the data in Table I (resp. Table II). On the contrary for
k = l ≥ 4 these corrections are only polynomially small in T .
Finally, we could also compute analytically the distribution of activation times, within the RS formalism, for

the initial configurations with a non-trivial density θ of active vertices in the interval [θr/2, θr]. Their cumulative
distribution function Pt = η(ti ≤ t) obtained from the marginals of the law (25) reads in the T → ∞ limit with t kept
fixed:

Pt+1 = θ +
(2θ − θr)(1− θr)

θr
wk+1

t + (1− θr)(k + 1)wk
t

(
θ

θr
− 2θ − θr

θr
wt

)
, (92)

where wt is a series defined recursively by

w0 = θr , wt+1 = θr + (1− θr)w
k
t . (93)

Examples of this cumulative distribution are displayed in Fig. 8. As explained above the predictions of the RS cavity
method are not expected to be correct for θ < θc; in the particular case k = l = 2 we however expect this result
to be true down to θ = θmin = 1/4. Note that Pt goes to 1 when t → ∞, in other words in the limit T → ∞ the
support of the distribution of activation times does not scale with T and remains of order 1. One can also check that
when θ = θr, the prediction Pt of (92) coincides, as it should, with the distribution of activation times for random
initial conditions of density θr given in Eq. (2); to see this one can notice that wt is equal to the series x̃t defined in
Eq. (3) for the study of random initial conditions, when k = l and θ = θr. At the lower limit of the interval of density,
θ = θr/2, one obtains instead a simple expression,

Pt+1 =
θr
2

+ (k + 1)
1− θr

2
wk

t . (94)

A straightforward analysis of (92,93) reveals that for all θ < θr the cumulative distribution Pt reaches 1 with corrections
of order 1/t, in other words the probability Pt − Pt−1 that a vertex activates precisely at time t has a power-law tail
with exponent −2. On the contrary the random initial conditions of density θr have 1 − Pt of order 1/t2, hence the
exponent of the tail is −3; random initial conditions with θ > θr have instead an exponentially decaying tail for their
distribution of activation times.
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FIG. 8: The integrated distribution of activation times (92) for percolating initial conditions of density θ ∈ [θr/2, θr]. The
curves are presented in the case k = l = 2.

2. The case k > l

We shall now turn to a description of the limit as T → ∞ of the RS and energetic 1RSB results when k > l, with
again the technical details relegated in the Appendix B 2 c. The RS entropy s(θ) coincides with the binary entropy
function for θ ≥ θr, for exactly the same reasons as explained above in the case k = l (here and in the rest of this
subsection we denote θr the threshold θr(k, l)). The non-trivial part of s(θ) and Σe(θ) are obtained in a parametric
way, with unfortunately rather long expressions that we shall now progressively describe. We keep implicit below the
dependency of all quantities on k and l when there is no risk of confusion.
This parametrization is given in terms of a real λ in the range ]0, λr], where this upper limit is expressed in terms

of the threshold θr for activation from a random initial condition as λr = (1 − θr)θ
k−1
r . We need first to introduce

some auxiliary functions û(λ), v̂(λ), u∗(λ) and v∗(λ). The first two are given explicitly as

û(λ) =

(
1− θr
λ

) 1
k−1

, v̂(λ) = x̃r

(
1− θr
λ

) 1
k−1

, (95)

where we recall that x̃r is the fixed-point of Eq. (3) at the bifurcation θr, see also (4). The last one, v∗(λ), is defined
as the smallest positive solution of

v = 1 + λ

k∑

p=l

(
k

p

)(
λl

(
k

l

))− k−p
k−l

v
p(k−1)−k(l−1)

k−l , (96)

then u∗(λ) can be deduced as the solution of

1 = λl

(
k

l

)
v∗(λ)

l−1(u∗(λ) − v∗(λ))
k−l with u∗(λ) ≥ v∗(λ) . (97)

One can check that u∗(λ) ≥ û(λ) ≥ v̂(λ) ≥ v∗(λ) on the interval λ ∈]0, λr], and that u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr
in λ = λr. We then define two functions Fsite(λ) and Fedge(λ) through

Fsite(λ) =
λ

u∗


ûk+1 + (k + 1)

k∑

p=l

(
k

p

)[
l − 1

k − l
Ip−1 − Ip

]
 (98)

Fedge(λ) =
1

u∗

[
(û− v̂)2 + 2u∗v∗ − v2∗ + 2λl

(
k

l

)
Il−1

]
(99)
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FIG. 9: The RS entropy s(θ) and energetic 1RSB complexity Σe(θ) in the T → ∞ limit, for k = 3, l = 2, from the analytical
formulas given in (101,102).

where for clarity we kept implicit the λ dependency of û, v̂, u∗ and v∗, and we introduced

Ip =

(
λl

(
k

l

))− k−p
k−l
∫ v̂

v∗

dv v
p(k−1)−k(l−1)

k−l , (100)

=

(
λl

(
k

l

))− k−p
k−l

×





ln
(

v̂
v∗

)
if p = l − 1 and k = 2l− 1 ,

k−l
(p+1)(k−1)−(k+1)(l−1)

(
v̂

(p+1)(k−1)−(k+1)(l−1)
k−l − v

(p+1)(k−1)−(k+1)(l−1)
k−l

∗

)
otherwise .

We can finally give the parametric form of the RS entropy s(θ):

s(λ) = ln(1 + Fsite(λ))−
k + 1

2
ln

(
Fedge(λ)

u∗(λ)

)
+ µ(λ)(1 − θ(λ)) ,

θ(λ) =
1

1 + Fsite(λ)
,

µ(λ) = − ln(λu∗(λ)
k) , (101)

where µ(λ) is the opposite of the derivative of s(θ) in the point θ(λ). Thanks to the values û, v̂, u∗ and v∗ assume in
λr this curve joins the binary entropy function in θr with a continuous slope.
Similarly the 1RSB entropic complexity Σe(θ) is obtained parametrically as

Σe(λ) = ln

(
1 +

(
1− 1

λu∗(λ)k−1

)
Fsite(λ)

)
− k + 1

2
ln

(
1 + (λu∗(λ)

k−1 − 1)Fedge(λ)

λu∗(λ)k − u∗(λ) + 1

)
− y(λ)(1 − θ(λ)) ,

θ(λ) =
1− 1

λu∗(λ)k
Fsite(λ)

1 +
(
1− 1

λu∗(λ)k−1

)
Fsite(λ)

− k + 1

2

1− 1
u∗(λ)

Fedge(λ)

1 + (λu∗(λ)k−1 − 1)Fedge(λ)
,

y(λ) = ln(λu∗(λ)
k − u∗(λ) + 1) , (102)

with y(λ) giving the slope of the tangent of Σe(θ) in the point θ(λ).
An example of the limit for the RS entropy can be found in the right panel of Fig. 3 for k = 3, l = 2, along with

some finite T curves, and a similar plot for the energetic complexity is displayed in the right panel of Fig. 6. The
entropy and energetic complexity for this case in the limit are compared in Fig. 9. The values θmin,0 and θmin,1 where
s(θ) and Σe(θ) vanish are easily determined numerically from the above representation, and are collected in Table IV
for various values of k and l. For most of the cases one finds θmin,1 to be slightly larger than θmin,0; as explained
above the exactness of this 1RSB prediction has still to be assessed from a computation of the stability with respect
to further replica symmetry breaking.
There are however two special cases which stand on a different footing, namely (k, l) = (4, 3) and (k, l) = (5, 4).

Indeed in these two cases one has the same phenomenology than for k = l = 3, namely a coincidence of θmin,0 and
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k l θr µs=0 θmin,0 ys θmin,1

2 2 1

2
−∞

1

4
∞

1

4

3 2 0.111111 -12.720727 0.046283 12.547960 0.046328

3 3 2

3
−∞

1

3
∞

1

3

4 2 0.050781 -9.633812 0.013108 9.125975 0.013258

4 3 0.275158 −∞
1

6
∞

1

6

4 4 3

4
-14.904539 0.378463 14.883293 0.378465

5 2 0.029096 -9.499859 0.005715 8.891066 0.005820

5 3 0.165116 -12.395257 0.076228 12.333754 0.076247

5 4 0.397212 −∞
1

4
∞

1

4

5 5 4

5
-9.786306 0.422619 9.647302 0.422695

6 2 0.018854 -9.675930 0.003098 9.026488 0.003166

6 3 0.112870 -10.396651 0.042825 10.234248 0.042894

6 4 0.269022 -16.484079 0.150054 16.480311 0.150055

6 5 0.486312 -40.532392 0.300090 40.532392 0.300090

6 6 5

6
-8.403727 0.460014 8.191036 0.460228

TABLE IV: The predictions of the RS and energetic 1RSB cavity method in the T → ∞ limit.

θmin,1 due to a vertical segment in the curves s(θ) and Σe(θ) extending to positive values. This phenomenon can be
understood by studying the limit λ → 0 of the above representation of these curves. After some algebra one finds
indeed that for k < 2l − 1,

lim
λ→0

θ(λ) =
2l − k − 1

2l
, lim

λ→0
s(λ) = lim

λ→0
Σe(λ) =

k + 1

2l
ln

(
ll

(l − 1)l−1

(
k

l

))
− k − 1

2
ln

(
2l

2l− k − 1

)
, (103)

the limiting value for θ being valid both for the RS (101) and 1RSB (102) expressions. It turns out that for k = 4,
l = 3 and k = 5, l = 4, the latter expression for the entropy s and complexity Σe is strictly positive, hence the simple
predictions 1/6 and 1/4 for θmin in these two cases respectively, that saturate the lowerbound of (17). We did not
find any other values of k, l that produce the same phenomenon.
Finally the distribution of activation times in the RS formalism exhibits a very different pattern with respect to

the case k = l (see Fig. 10 for an illustration). As a matter of fact, in the limit T → ∞ the activation times t of the
vertices have to be divided in three categories, each of them comprising a finite fraction of the N vertices: (i) t = O(1)
(ii) t = O(T ) (iii) t = T −O(1). The category (ii) of vertices can be described by a scaling function for the cumulative
distribution, P (s) = Pt=sT , with s ∈]0, 1[ a reduced time. One has P (s = 0+) > 0 and 1− P (s = 1−) > 0, these two
numbers representing the fractions of vertices of type (i) and (iii) respectively. They can be computed following the
techniques of the Appendix B 2 c, yielding for initial configurations with a fraction θ(λ) < θr of active vertices:

P (s = 0+) = θ + θ
λ

u∗

k+1∑

p=l

(
k + 1

p

)
vp∗ (u∗ − v∗)

k+1−p ,

1− P (s = 1−) = θ
λ

u∗

(
1− θr
λ

) k+1
k−1


1−

k+1∑

p=l

(
k + 1

p

)
x̃p
r (1− x̃r)

k+1−p


 . (104)

V. ALGORITHMIC RESULTS

We shall present in this Section the results of numerical experiments performed on finite size random regular graphs,
for which we have constructed explicitly some activating initial configurations. We have used two strategies to do so,
one based on a simple greedy heuristic, the other inspired by the results of the cavity method. Both of them build
iteratively a percolating initial configuration, starting from the configuration with all vertices inactive, and adding
one active vertex at a time (another route would be to start from the all active configuration and sequentially reduce
the number of active vertices, but we did not investigate this alternative strategy). We shall denote τ the number of
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FIG. 10: An example of the cumulative distribution of activation times for k = 3, l = 2, obtained with the numerical resolution
of the RS equations for a large but finite value of T = 400, with a parameter λ = 0.005, corresponding to an initial density of
active sites of 0.089. The two horizontal lines corresponds to P (s = 0+) and P (s = 1−) from Eq. (104), delimiting the fraction
of vertices that activate within a finite time after the beginning of the process (resp. before its end).

addition steps performed by the algorithm, and σ(τ) the initial configuration considered at this point (that contains
by definition τ active vertices). The configuration denoted σT (τ) (resp. σf(τ)) is thus the configuration obtained
after T (resp. an infinite) number of steps of the dynamics defined in (1) from the initial configuration σ(τ); we will
denote |σT (τ)| the number of active vertices in this configuration. The algorithm stops when this number reaches
N , as σ(τ) is then the first percolating initial configurations encountered. The difference in the two algorithms to be
presented below lies in the rule used to choose which additional active vertex to add in the initial configuration in a
step τ → τ + 1.

A. A greedy algorithm

Let us first consider the case of a finite time horizon T , i.e. the problem of finding an initial configuration σ with
σT the fully active configuration and σ containing the smallest possible number of active vertices. The simplest
strategy is to choose at each time step τ → τ + 1 the inactive vertex of σ(τ) whose activation leads to the largest
possible value of |σT (τ + 1)|, and stop at the first time τ such that σT (τ) is the fully active configuration. This can
be immediately generalized to the case T = ∞ by including at each time step the vertex whose activation increases
most |σf(τ + 1)|; this version of the greedy procedure was actually a tool in the rigorous bounds on θmin for graphs
with good expansion properties of [30]. If several vertices lead to the same increase the ties can be broken arbitrarily.
The time complexity of the greedy algorithm is a priori cubic in the number N of vertices: a linear number of steps
τ → τ + 1 have to be performed before finding a percolating initial configuration. For each of these steps a number
of order N of candidate new configurations σ(τ + 1) have to be considered, the computation of σT (τ + 1) requiring
itself a linear number of operations for each configuration. It is however easy to reduce significantly this complexity
when T = ∞. As explained at the end of Sec. II A , in this case the final configuration of the dynamical process
can be obtained sequentially, regardless of the order of the activations. By monotonicity the configuration σf(τ + 1)
can be computed by adding one active vertex to σf(τ) (instead of σ(τ)) and determining the number (of order 1) of
additional activations that can be triggered by this addition. This reduces the total complexity to a quadratic scaling
with N .
In Fig. 11 we plot the fraction of active vertices in the configuration σT (τ) as a function of the density τ/N of

the active vertices in the initial configuration obtained after τ steps of this greedy procedure; when the curve reaches
1 we have thus obtained an initial configuration that percolates within T steps (note that the part of the curve for
smaller τ corresponds to the alternative optimization problem labelled (i) in the introduction). The density of the
contagious sets reached in this way are summarized in Table V; as expected these densities are strictly greater than
the prediction θmin,1 of the 1RSB cavity method, and also than the ones reached by more involved message-passing
algorithms (see the discussion in next subsection).
One can clearly see a qualitative difference between the cases k = l and k > l in the two panels of Fig. 11: in the

latter case as T gets larger the last active vertices added in the initial configuration before finding a percolating one
provoke a very steep increase in the final size of the activated set. As said above the greedy procedure can easily be
generalized to T = ∞; the density of the smallest contagious sets constructed in this way are presented in Table VI for
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FIG. 11: The density of active vertices in the configuration σT (τ ) after τ steps of the greedy algorithm, for k = l = 2 (left
panel) and k = 3, l = 2 (right panel). Each curve corresponds to a single run of the algorithm on a graph of N = 104 vertices.

k = l = 2 k = 3, l = 2

T θmin,1 θsp θmaxsum [72] θgreedy θmin,1 θsp θmaxsum [72] θgreedy

1 0.424257 0.426 0.427 0.482 0.363813 0.366 0.370 0.426

2 0.325882 0.328 0.330 0.376 0.237009 0.240 0.243 0.291

3 0.289097 0.291 0.293 0.335 0.182338 0.185 0.190 0.233

4 0.271564 0.273 0.275 0.311 0.151693 0.156 0.164 0.197

5 0.262167 0.263 0.266 0.296 0.132036 0.142 0.146 0.174

7 0.253779 0.257 0.278 0.108251 0.127 0.125 0.144

10 0.250553 0.251 0.265 0.089425 0.108 0.119

TABLE V: The density of (finite time) contagious sets reached by the greedy and message-passing algorithms, compared to
the predictions of the cavity method for their minimal size. The data for the algorithmic results correspond to averages over
ten graphs of size N = 104.

various values of k and l. As these results demonstrate the greedy algorithm is able, in all cases we investigated, to find
contagious sets with a density strictly smaller than θr, the density above which typical uncorrelated configurations are
percolating. However in general the density reached by this simple procedure is strictly greater than the prediction
θmin,1 of the cavity method for their minimal size; this is in agreement with the interpretation of the replica symmetry
breaking creating metastable states that trap simple local search procedures and prevent them from reaching global
optima of the cost function landscape in which the search moves. The only exception is the case k = l = 2, for which
the minimal density 1/4 (corresponding to the decycling number of 3-regular random graphs [32]) is actually reached
by the greedy procedure; this result is in line with the analysis of Sec. IVB1, which revealed a disappearance of the
RSB phase in the large T limit for this peculiar case.
Further information on the minimal contagious sets produced by the greedy algorithm with T = ∞ can be obtained

from the distribution of the activation times of the vertices they induce, which are plotted in Fig. 12. Of course as the

k l θr θmin,1 θgreedy

2 2 1

2

1

4
0.250

3 2 0.111111 0.046328 0.070

3 3 2
3

1
3

0.387

4 4 3

4
0.378465 0.482

5 5 4

5
0.422695 0.551

TABLE VI: The density of (infinite time) contagious sets reached by the greedy algorithm, compared to the predictions of the
cavity method. The algorithm was run on ten graphs of size N = 104, the last column is the average over these repetitions.
Experiments with graphs of different sizes revealed a very clear 1/N dependency of the finite-size corrections of θgreedy in the
cases with k = l. We could not get such a clear dependency when k > l, slower finite-size corrections might be at play in these
cases.
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FIG. 12: The “numerical” curves represent the distribution of activation times for the least dense activating initial configurations
found by the greedy algorithm for T = ∞, for k = l = 2 (left panel) and k = 3, l = 2 (right panel). In both cases the graph
studied contained N = 8 · 104 vertices, in the left panel the complete activation is reached in 93 steps, in the right one it takes
367 steps. For comparison in the left panel the analytical prediction is plotted both for T = ∞ (see Eq. (94)) and for T = 93,
in the right panel the analytical curve corresponds to T = 367.

N = 8 · 104N = 4 · 104

t

Pt

400350300250200150100500

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FIG. 13: The distribution of activation times for the least dense activating initial configurations found by the greedy algorithm
for T = ∞, for k = 3, l = 2, and two different sizes N of the graph. For N = 4 · 104 the complete activation took place after
T = 248 steps, while for N = 8 · 104 it occured at T = 367.

graphs under study are finite the support of these distributions is bounded; in all cases we investigated we found that
the time to reach total activation from these initial configurations scales logarithmically with the number of vertices
of the graph (see also Fig. 12 for a comparison between two different sizes of the graph). The qualitative difference
between the cases k = l and k > l expected from the discussion of the T → ∞ limit of Sec. IVB is indeed apparent on
these curves; in the latter case a finite fraction of the vertices are activated at the very end of the dynamical process.
However the activation time distributions induced by the configurations produced by the greedy algorithm are not in
quantitative agreement with the RS analytical predictions (with a value of T and θ chosen to fit the numerical ones).
A possible explanation for this discrepancy is that the greedy algorithm is a very “out-of-equilibrium” algorithm,
hence the configurations it reaches are not the typical ones of the “equilibrium” measure (8).

B. Survey propagation

The second algorithmic procedure we investigated is based on the insight provided by the statistical mechanics
analysis on the structure of the configuration space of the problem; it corresponds indeed to the Survey Propagation
algorithm introduced in [37] for the analysis of random satisfiability problem (and more precisely to its variant
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introduced in [73] for the energy minimization in the unsatisfiable phase of such problems). An idealized thought
experiment for the construction of minimal contagious sets would be to sequentially assign the values of the σi

according to their marginal probabilities in the law (8), with ǫ = +∞ and µ = −∞; the exact determination of such
marginals is in general a very hard computational tasks, and in practice one has to content oneself with approximations
provided for instance by message passing procedures. This is the road we have followed here, by implementing the
single-sample energetic 1RSB equations (75), i.e. assigning to each directed edge i → j of the graph under study a
vector Pi→j of 2T probabilities. At each step τ of the algorithm the equations (75) are iterated several times to look
for a global solution of these equations; the presence of τ active (decimated) vertices in the current configuration σ(τ)
is implemented as a boundary condition in these equations, easily seen to be Pi→j(h) = δ(h − B0) for the outgoing
messages from an activated vertex i. The information contained in such a solution of the 1RSB equations can be a
priori exploited in several ways; we chose to compute, for each vertex i not yet activated, the quantity

Wi = 1− ∂

∂y
lnZsite({Pj→i}j∈∂i) +

1

2

∑

j∈∂i

∂

∂y
lnZedge(Pi→j , Pj→i) , (105)

i.e. the contribution of the site i to the derivative of the potential Φe given in Eq. (80). This number measures
indeed the tendency of i to be active in all configurations belonging to the clusters considered in the energetic 1RSB
formalism. Accordingly we choose the vertex i with the largest value of Wi to be the new active vertice to be added
to σ(τ) in order to form σ(τ + 1). For simplicity we fixed the value of y in the whole procedure to the value ys
determined analytically, that leads to a vanishing complexity before the decimation; we also tried to recompute this
value of y during the course of the decimation but did not obtain significant improvement of the performances in the
cases considered.
The values of the density of the percolating initial configurations we managed to construct in this way are presented

in Table V for the two cases k = l = 2 and k = 3, l = 2, for several (relatively small) values of T . The results are better
than the simple greedy algorithm, and in most of the cases also than the maxsum replica-symmetric algorithm [33, 34,
72], but in some cases deviate significantly from the prediction θmin,1 for the density of minimal contagious sets. An
analytical understanding of the performances of such decimation procedures is actually a challenging open problem
(see [74, 75] for partial results in the simpler case of the Belief-Propagation guided decimation). We did not study
much larger values of T because we faced in this case convergence issues for the iterations of the equations (75), that
a simple damping did not seem to alleviate efficiently. A pragmatic, even if not completely satisfactory, position we
adopted for the results at T ≥ 4 for the case k = 3, l = 2, was to ignore somehow the convergence problems, stopping
the iterations of (75) after a time fixed beforehand, and computing the value of Wi from these unconverged messages.
As Table V demonstrates this attitude is not unreasonable as the densities reached are still better than the one of the
greedy algorithm (yet can get worse than the maxsum procedure [33, 34, 72]).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have continued the study initiated in [33, 34] of the minimal contagious sets for the bootstrap
percolation (or threshold model) dynamics on random graphs. We have shown the importance of taking into account
the phenomenon of replica symmetry breaking in the determination of the minimal density θmin of active vertices
in percolating initial conditions, and could simplify analytically the equations determining θmin in the limit T → ∞
where the constraint on the time to reach a complete activation of the graph disappears. Reformulating the problem
as the minimal number of vertices to be removed in a graph in order to destroy some specific subgraphs (its cycles
or more generically its q-core) we recovered a previously known result for the decycling number of 3-regular random
graphs [32] as well as a conjecture for 4-regular ones [32], and proposed new quantitative conjectures for the sizes of
the minimal “de-coring” sets for all pairs of degree of the graph and minimal degree of the targeted core. These take
a particularly simple rational form for the removal of the 3-core in 5- and 6- regular random graphs.
Let us sketch now some possible directions for future study. A first project would be to test the stability of the 1RSB

ansatz we used to compute θmin,1, to assess for which values of (k, l) this number should be expected to be the exact
value θmin and not only a lowerbound. This computation should be doable following the techniques of [52, 69, 70] for
all finite T , and might even be simplified in the large T limit. By analogy with the independent set problem which is
a marginal case of the problem investigated here one could surmise to find that the 1RSB ansatz is stable for large
enough values of the degree k (and maybe also of the threshold l). This is also the regime where one can hope to see a
mathematically rigorous proof of these predictions, as recently obtained for the independent sets in [47]. Asymptotic
expansions of θmin,0(k, l) and θmin,1(k, l) in the large k limit for k > l should also be performed, considering either l
fixed in this limit, l proportional to k, or k − l fixed.
For the sake of concreteness and simplicity we presented explicit results only for regular random graphs, however

we gave the intermediate equations of the RS and 1RSB cavity method under a form that can be directly applied to
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any sparse random graph ensembles with arbitrary prescribed degree distribution, and possibly fluctuating thresholds
for activation. The latter could naturally be correlated with the degree of the vertices, triggering for instance the
activation if the fraction of active neighbours reaches some fixed proportion (instead of a fixed number). It would
be interesting to see how the results presented here are qualitatively modified by the local fluctuations in the graph
structure, which would be particularly severe in the case of power-law tails in the degree distribution.
We also concentrated exclusively in this paper on the problem of optimizing the number of initially active vertices,

imposing that all vertices are active at a later time. The variant of this problem where one puts a constraint on the
maximal number of active vertices allowed in the initial configuration and try to maximize the level of activation at
a later time is also relevant, in particular for applications to real-world situations. At the RS level we have sketched
how to do this by controlling the parameter ǫ (the cost to be paid for finally inactive vertices) that we kept arbitrary
in the first steps of the computations, a systematic study and the inclusion of the effects of replica symmetry breaking
remains to be done.
Finally we believe that the message passing procedure inspired by the energetic 1RSB equations presented in

Sec. VB would be worth investigated further. One should try to study (and cure) the convergence issues that arise for
larger values of T , maybe changing the way the information provided by the messages is used. One could in particular
exploit them in a softer way by implementing a reinforcement technique [33, 34] instead of a direct decimation. A
more extensive comparison with the maxsum message passing procedure studied in [33, 34] could also be interesting.
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Appendix A: The limit µ → −∞ of the fields recursion

We justify here the equation (73) for the recursion h = g(h1, . . . , hk) between “hard fields” hi ∈
{A0, A1, . . . , AT−1, AT = BT , BT−1, . . . , B1, B0}. We can first notice that in Eqs. (70,71) the (constrained) maximum

over the partitions I, J,K of St is always reached for |I|+ |J | and |I| as small as possible (because a
(i)
t ≥ b

(i)
t−1 ≥ b

(i)
t−2),

which allows to rewrite

at = max


0, max

t′∈[1,T ]
max
J,K

|J|=l−I(t′≥t+1)

St′(h1, . . . , hk; ∅, J,K)


 , (A1)

bt = max


0, max

t′∈[1,t]
max
J,K
|J|=l

St′(h1, . . . , hk; ∅, J,K)


 , (A2)

where J,K forms a partition of {1, . . . , k}. In addition one realizes that

max
J,K
|J|=l

St(h1, . . . , hk; ∅, J,K) = 1 ⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1}) = 0 and

k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≥ l

)
, (A3)

which by logical negation leads to

max
J,K
|J|=l

St(h1, . . . , hk; ∅, J,K) ≤ 0 ⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1}) ≥ 1 or

k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≤ l − 1

)
. (A4)
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Combining these logical rules leads after a short reasoning to

g(h1, . . . , hk) = At ⇔ (at = 1 and at+1 = 0) (A5)

⇔





∑k
i=1 I(hi ∈ {B0, . . . , Bt}) = l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At}) = 0

and
∑k

i=1 I(hi = At+1) ≥ 1

, (A6)

and

g(h1, . . . , hk) = Bt ⇔ (bt = 1 and bt−1 = 0) (A7)

⇔





∑k
i=1 I(hi ∈ {B0, . . . , Bt−1}) ≥ l

and
∑k

i=1 I(hi ∈ {B0, . . . , Bt−2}) ≤ l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At−1}) = 0

. (A8)

Considering the various possible cases leading to a field of type At or Bt yields finally (73).

Appendix B: Technical details on the resolution of the factorized RS and energetic 1RSB equations

We shall present in this Appendix the details of the RS and energetic 1RSB cavity equations in the particular case
of random k + 1 regular graphs with an uniform threshold l of activations. It turns out that despite their different
interpretations these two version of the cavity method can be treated in an unified way. We thus begin by introducing
this common formulation, then we unveil the simplifications that arise in the case l = k, before finally discussing the
limit T → ∞, both in the case l = k and l < k.

1. Common formulation

a. RS cavity method

Consider the fixed-point RS equation h = g(h, . . . , h), with g defined in Eq. (40); alternatively we saw in Eqs. (66,67)
an expression for the differences e−µat − e−µat+1 . Setting hi = h in the right-hand sides of these equations, and using
the identity

∑

I,J,K
|I|≤l−1
|I|+|J|≥l

f(I, J,K) =
∑

I,J,K
|I|+|J|≥l

f(I, J,K)−
∑

I,J,K
|I|≥l

f(I, J,K) , (B1)

for any function f of a partition I, J,K, allows to show the equivalence of the fixed-point equation on h =
(a0, . . . , aT , bT−1, . . . , b1) with:

e−µat − e−µat+1 = e−µ+µka0

(
k

l − 1

)
e−µ(l−1)bt

[(
e−µat+1 − e−µbt

)k−l+1 −
(
e−µat+2 − e−µbt

)k−l+1
]
, (B2)

e−µbt+1 − e−µbt = e−µ+µka0

k∑

p=l

(
k

p

)[
e−µpbt

(
e−µat+1 − e−µbt

)k−p − e−µpbt−1
(
e−µat+1 − e−µbt−1

)k−p
]
. (B3)

These equations are valid for t ∈ {0, . . . , T − 1}, with the boundary conditions e−µb−1 = 0, b0 = 1, aT = bT ,
aT+1 = bT−1. The thermodynamic quantities can also be simplified in this factorized case, the site contribution to
the RS free-entropy reading from Eq. (43):

zsite = 1 + e−µ+µ(k+1)a0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)[
e−µpbt−1

(
e−µat − e−µbt−1

)k+1−p − e−µpbt−2
(
e−µat − e−µbt−2

)k+1−p
]
,

(B4)
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while the edge contribution of Eq. (42) becomes

zedge = e2µa0

[
e−2µaT + 2

T−1∑

t=0

(
e−µat − e−µat+1

)
e−µbt

]
. (B5)

Let us introduce some new notations and define a change of parameters on the unknowns at, bt, as ut = e−µat ,
vt = e−µbt . We also define a new parameter λ, with λ = e−µ+µka0 . In terms of these new quantities the above set of
equations becomes

ut − ut+1 = D(ut+1, vt)−D(ut+2, vt) , (B6)

vt+1 − vt = S(ut+1, vt)− S(ut+1, vt−1) , (B7)

with v−1 = 0, v0 = 1, uT = vT , uT+1 = vT−1, and

D(u, v) = λ

(
k

l− 1

)
vl−1(u− v)k−l+1 , S(u, v) = λ

k∑

p=l

(
k

p

)
vp(u− v)k−p . (B8)

In other words the u’s and v’s are solutions of a set of polynomial equations, and as such should be viewed as a
function of λ and T (and of course of k and l). They also obey, on top of the boundary conditions, the inequalities
u0 ≥ u1 ≥ · · · ≥ uT = vT ≥ vT−1 ≥ . . . v1 ≥ v0 = 1. The chemical potential µ has disappeared from this set of
equations, but actually it is now implicitly a function of λ and T , as from the definition of λ one recovers µ with
µ = − ln(λuk

0).
For future use we emphasize here an identity between the derivatives of D and S and introduce a new function

C(u, v):

C(u, v) =
∂D

∂u
=

∂S

∂v
= λl

(
k

l

)
vl−1(u − v)k−l . (B9)

Let us also rewrite the thermodynamic quantities in terms of these new variables. The expressions (B4) and (B5)
become

zsite = 1 + Fsite , zedge =
1

u0
Fedge , (B10)

where we introduced the two functions

Fsite(λ, T ) =
λ

u0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)[
vpt−1(ut − vt−1)

k+1−p − vpt−2(ut − vt−2)
k+1−p

]
, (B11)

Fedge(λ, T ) =
1

u0

[
v2T + 2

T−1∑

t=0

(ut − ut+1)vt

]
. (B12)

We emphasize here the dependency on λ and T , which was kept implicit in the ut and vt’s. One has then the final
expressions of all RS thermodynamic quantities as:

φ = µ+ ln(zsite)−
k + 1

2
ln(zedge) , µ = − ln(λuk

0) , s = φ− µθ , θ =
1

zsite
. (B13)

One can also express the probability distribution of the activation times in terms of these new variables. Denoting Pt

the cumulative distribution, i.e. the probability that the activation time of one vertex is smaller or equal than t, one
has from Eq. (45):

Pt =
1

zsite
[1 + Fsite(λ, T, t)] , (B14)

where we defined

Fsite(λ, T, t) =
λ

u0

t∑

t′=1

k+1∑

p=l

(
k + 1

p

)[
vpt′−1(ut′ − vt′−1)

k+1−p − vpt′−2(ut′ − vt′−2)
k+1−p

]
. (B15)

One can check that, as it should, P0 = θ the fraction of initially active sites (summations over empty sets being equal
to zero by convention), and PT = 1 (as ǫ = +∞ all vertices are active at the final time).
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b. Energetic 1RSB cavity method

We now turn to a similar study of the energetic 1RSB equations in the factorized case, namely the determination
of the normalized vector of probabilities P = (p0, . . . , pT−1, qT , . . . , q0), solution of the fixed-point equation P =
G(P, . . . , P ), with the mapping G defined in Eq. (75).
Let us first note that in general the normalization Z[P1, . . . , Pk] of (75) can be expressed in terms of q0,

Z = 1 + (ey − 1)(1 − Zq0) ⇒ ey

Z
= 1 + q0(e

y − 1) . (B16)

This remark allows to rewrite the fixed-point equation P = G(P, . . . , P ) as

pt = (1 + q0(e
y − 1))

(
k

l− 1

)( t∑

t′=0

qt′

)l−1


(

T∑

t′=t+1

qt′ +

T−1∑

t′=t+1

pt′

)k−l+1

−
(

T∑

t′=t+1

qt′ +

T−1∑

t′=t+2

pt′

)k−l+1

 ,

qt = (1 + q0(e
y − 1))

k∑

p=l

(
k

p

)

(

t−1∑

t′=0

qt′

)p( T∑

t′=t

qt′ +
T−1∑

t′=t

pt′

)k−p

−
(

t−2∑

t′=0

qt′

)p( T∑

t′=t−1

qt′ +
T−1∑

t′=t

pt′

)k−p

 ,

where in the first line t ∈ {0, . . . , T−1} and in the second t ∈ {1, . . . , T }. These two sets of equations are supplemented
by the normalization condition q0 + · · ·+ qT + pT−1 + · · ·+ p0 = 1.
The site and edge contributions of the energetic 1RSB potential, defined in (77,79), become in the factorized case:

Zsite = 1 + (ey − 1)

T∑

t=1

k+1∑

p=l

(
k + 1

p

)

(

t−1∑

t′=0

qt′

)p( T∑

t′=t

qt′ +

T−1∑

t′=t

pt′

)k+1−p

−
(

t−2∑

t′=0

qt′

)p( T∑

t′=t−1

qt′ +

T−1∑

t′=t

pt′

)k+1−p

 ,

Zedge = e−y + (1− e−y)



(

T∑

t=0

qt

)2

+ 2

T−1∑

t=0

pt

t∑

t′=0

qt′


 .

Now let us change variables and trade the unknowns pt, qt for some variables ut, vt, and the parameter y for some
parameter λ, according to

ut =
1

q0

(
T∑

t′=0

qt′ +

T−1∑

t′=t

pt′

)
, vt =

1

q0

t∑

t′=0

qt′ , λ = (1 + q0(e
y − 1))qk−1

0 . (B17)

Inserting these definitions in the above equations one realizes that the quantities ut and vt are solutions of exactly
the same set of equations (B6,B7) defined in the RS case, and obey the same boundary conditions and inequalities.
From the solution of these equations, for a given value of the parameter λ, one recovers the parameter y noting that
by the normalization condition one has u0 = 1/q0, hence y = ln(λuk

0 − u0 + 1). The expressions of Zsite and Zedge

within this parametrization are easily obtained from the above equations and read:

Zsite = 1 +

(
1− 1

λuk−1
0

)
Fsite , Zedge =

1 + (λuk−1
0 − 1)Fedge

λuk
0 − u0 + 1

, (B18)

with the same functions Fsite and Fedge defined in Eqs. (B11,B12) for the RS case. One has finally an expression for
the thermodynamic quantities of the energetic 1RSB formalism as

Φe = −y + lnZsite −
k + 1

2
lnZedge , y = ln(λuk

0 − u0 + 1) , Σe = Φe + yθ , (B19)

where θ is here the opposite of the derivative of Φe with respect to y, which after a short computation reads

θ = 1− ey

ey − 1

Zsite − 1

Zsite
− k + 1

2

1

ey − 1

1−Zedge

Zedge
(B20)

=
1− 1

λuk
0
Fsite

1 +
(
1− 1

λuk−1
0

)
Fsite

− k + 1

2

1− 1
u0
Fedge

1 + (λuk−1
0 − 1)Fedge

.
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c. Simplifications for l = k

In the case l = k further simplifications arise. Indeed the function S(u, v) defined in (B8) is in this case independent
of u, and the equations (B6,B7) can be rewritten as:

v0 = 1 , (B21)

vt = 1 + λ vkt−1 for t ∈ {1, . . . , T } , (B22)

uT−1 = vT + λk vk−1
T−1 (vT − vT−1) , (B23)

ut = ut+1 + λk vk−1
t (ut+1 − ut+2) for t ∈ {0, . . . , T − 2} . (B24)

This set of equations is particularly simple to solve, and admits a single solution for each value of λ. One can indeed
compute by recurrence the value of the vt for increasing values of t from 0 to T , then deduce the value of uT−1, and
finally by a downward recurrence the values of ut for t from T − 2 to 0. The thermodynamic observables are then
deduced from (B13) in the RS case or (B19) in the energetic 1RSB case, where the site contributions can be simplified
from (B11), yielding

Fsite(λ, T ) =
λ

u0

[
vk+1
T−1 + (k + 1)

T∑

t=1

(ut − ut+1)v
k
t−1

]
. (B25)

These simplifications can also be performed for the function (B15) giving the distribution of activation times, which
reads in the case k = l:

Fsite(λ, T, t) =
λ

u0

[
vk+1
t−1 + (k + 1)vkt−1(ut+1 − vt−1) + (k + 1)

t∑

t′=1

(ut′ − ut′+1)v
k
t′−1

]
. (B26)

d. Numerical resolution for l < k

In the case l < k we did not find a simple change of variables on the unknowns ut, vt that would put the system
of equations (B6,B7) in the triangular form that appeared naturally when k = l and led to a direct resolution by
successive substitutions. We therefore resorted to the Newton-Raphson iterative method for solving (B6,B7), taking
care of choosing a good initial condition for the iterations to be convergent. This guess on the solution was provided
by analytical asymptotic expansions, either in the limit λ → 0 or with T → ∞ (see next paragraph). Depending
on the values of λ and T we found either 0, 1 or 2 relevant solutions of (B6,B7), but this multi valuedness has no
physical meaning and comes only from the arbitrary choice of the parametrization in terms of λ. Indeed there is a
single solution for each value of the chemical potential µ (or y in the energetic 1RSB formalism).

2. The large T limit

In the rest of this Appendix we shall justify analytically the claims made in Sec. IVB1 and IVB2 on the behaviour
of the RS and energetic 1RSB solutions as T goes to infinity.

a. The trivial solution

As anticipated in Sec. IV, in the large T limit the portion of the curve s(θ) corresponding to θ > θr should coincide
with the entropy −θ ln θ − (1 − θ) ln(1 − θ) counting all configurations with a fraction θ of initially active sites, as
such configurations are typically activating (see the reminder on random initial configurations of Sec. II B). Let us see
how to prove this statement. A moment of thought, considering for instance the form of the RS equations at ǫ = 0,
reveals that this situation should correspond to a solution of (B6,B7) with ut = ũ, independently of t. This ansatz is
indeed consistent with Eq. (B6), and with this substitution Eq. (B7) becomes

vt+1 = 1 + S(ũ, vt) . (B27)

This last equation is a simple recursion on the v’s, with the initial value v0 = 1. For the boundary condition uT = vT ,
uT+1 = vT−1 to be asymptotically (when T → ∞) verified one has to impose the values of ũ and λ such that the
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FIG. 14: A graphical representation of the recursion vt+1 = 1 + λvkt (here for k = 2). The dashed straight line corresponds to
vt+1 = vt, the three solid curves are, from bottom to top, for λ < λc, λ = λc and λ > λc.

vt solution of (B27) converge to ũ when t → ∞, in other words that the smallest fixed point solution v ≥ 1 of
v = 1 + S(ũ, v) is precisely equal to ũ. The condition ũ = 1 + S(ũ, ũ) imposes the following relationship between ũ
and λ, ũ = 1 + λũk. Using this condition one can then rewrite (B27) as

vt+1

ũ
=

1

ũ
+

(
1− 1

ũ

) k∑

p=l

(
k

p

)(vt
ũ

)p (
1− vt

ũ

)k−p

. (B28)

Comparing this equation with (3) one realizes that by definition of θr, all the values of ũ in the interval [1, 1/θr[ are
such that the condition vt → ũ is fulfilled (with the value of λ fixed by ũ = 1 + λũk). Let us now compute the RS
thermodynamic quantities associated with this solution. As the ut are independent of t the summation in Eq. (B11)
can be performed with a telescopic identity, and yields after a short computation Fsite = ũ − 1. Similarly one sees
easily from (B12) that Fedge = ũ for this solution. This gives indeed the function s(θ) = −θ ln θ − (1 − θ) ln(1 − θ)
for θ > θr upon replacing in the expression of the RS thermodynamic potential (cf. Eq. (B13)). In addition the
cumulative distribution Pt of activation times defined in Eq. (B14) coincides on this solution with the series xt of
Eq. (2) obtained as the activation time cumulative distribution of a random initial condition.
In the following we shall describe the non-trivial part of the resolution of the RS and energetic 1RSB equations in

the large T limit, i.e. in the RS case the part of the curve s(θ) for θ < θr. The cases l = k and l < k are technically
rather different, we shall thus divide the discussion according to this distinction.

b. Asymptotics for l = k

As explained in Sec. B 1 c in the case l = k the equations on vt decouple, these quantities become independent of
T and are solutions of the recurrence vt+1 = 1 + λvkt . A straightforward study of this equation (see Fig. 14 for an
illustration) reveals the existence of a critical value λc such that vt converges to a finite value when t → ∞ if λ ≤ λc,
while it diverges when λ > λc. This critical parameter and the associated fixed-point vc of the recurrence are solution
of the equations:

vc = 1 + λcv
k
c , 1 = λck v

k−1
c , (B29)

which are easily solved and yield λc =
(k−1)k−1

kk , vc =
k

k−1 .
The case λ < λc corresponds actually to the trivial solution already discussed above, let us thus consider the

alternative situation, λ > λc. The divergence of vt is then actually very steep, with a double exponential form. Indeed
when vt ≫ 1 the recurrence becomes approximately vt+1 ≈ λvkt , which reveals that (ln ln vt)/t converges to ln k. As
u0 ≥ vT one also has a divergence of u0 with T in this regime; from (B13) (resp. (B19)) this implies that the chemical
potential µ of the RS formalism (resp. the parameter y of the energetic 1RSB one) go to −∞ (resp. +∞), i.e. that
the parametric curve s(θ) (resp. Σe(θ)) has a vertical tangent in this regime. Furthermore we shall prove now that
the corresponding density θ of initially active sites converges to (k − 1)/(2k) (both in the RS and energetic 1RSB



38

cases), hence this branch corresponds to a vertical segment. This is actually a consequence of the following statement
on the behaviour of the functions Fsite and Fedge of Eqs. (B25,B12):

∀λ > λc , lim
T→∞

Fsite(λ, T ) =
k + 1

k − 1
, lim

T→∞
Fedge(λ, T ) =

2k

k − 1
, (B30)

as can be easily deduced from the expressions of θ given in (B10,B13) and (B20), along with the divergence of u0 in
the latter case. To prove the claim of Eq. (B30), let us first note that, iterating (B24), one obtains

ut − ut+1 = (u0 − u1)
1

kt
1

(λvk−1
0 )(λvk−1

1 ) . . . (λvk−1
t−1 )

(B31)

= (u0 − u1)
1

kt
v1v2 . . . vt−1

(v1 − 1)(v2 − 1) . . . (vt − 1)
, (B32)

where we used (B22) to go from the first to the second line. We can thus write

ut − ut+1 = (u0 − u1)
1

kt
αt

1

vt
, (B33)

where we introduced the sequence αt (note its independence on T ) as

αt =

t∏

t′=1

vt′

vt′ − 1
, α0 = 1 . (B34)

We also have, in terms of this series,

u0 − u1 = kT
1

αT
vT (vT − vT−1) . (B35)

Using these relations, along with the representation u0 = vT +
∑T−1

t=0 (ut − ut+1), allows to rewrite the definition of
(B12) as:

Fedge =

αT
1
kT

vT
vT−vT−1

+ 2
T−1∑
t=0

αt
1
kt

αT
1
kT

1
vT−vT−1

+
T−1∑
t=0

αt

vt
1
kt

. (B36)

The sum in the denominator can be transformed by noting that, from the definition of αt, αt/vt = αt − αt−1. This
yields

Fedge =

αT
1
kT

vT
vT−vT−1

+ 2
T−1∑
t=0

αt
1
kt

αT
1
kT

1
vT−vT−1

+ 1
kT αT−1 +

k−1
k

T−1∑
t=0

αt
1
kt

. (B37)

Notice now that αt has a finite limit when t → ∞, thanks to the divergence of vt (for the limit of αt to exists it
is actually enough that vt ≫ t). Hence the summations in the above equation converge when T → ∞ thanks to
the exponentially decaying factor 1/kt, and all other terms in the numerator and denominator are neglectible in this
limit. This proves the limit 2k/(k− 1) for Fedge (one could also compute the main correction, of order k−T , from this
expression). The statement on Fsite is proved with similar manipulations, that brings from (B25) to the expression
(exact for all T ),

Fsite =

αT
1
kT

vT−1(vT−1)
vT (vT−vT−1)

+ k+1
k

T−1∑
t=0

αt
1
kt

αT
1
kT

1
vT−vT−1

+ 1
kT αT−1 +

k−1
k

T−1∑
t=0

αt
1
kt

. (B38)

As above the limit T → ∞ can now be taken safely, the converging summations being the only non-vanishing terms of
the numerator and denominator, hence the convergence of Fsite to (k+1)/(k−1), with corrections of order k−T . These
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corrections actually contribute to the non-trivial dependence on λ of s and Σe (which are both finite) in this regime;
we did not push their determination further, and merely observe here that their order k−T explains the statement on
the finite T corrections to θmin for k = l = 2 and k = l = 3 made in Sec. IVB 1.
We have just seen that in the T → ∞ limit the cases λ < λc and λ > λc describe, respectively, the trivial branch

θ > θr of the RS entropy and its vertical segment at θr/2. To describe the range [θr/2, θr] of non-trivial densities of
initially active sites one has thus to investigate a regime where λ is in a T -dependent scaling window around λc.
Let us denote ṽt the solution of the recursion right at the critical point, i.e. ṽt+1 = 1 + λcṽ

k
t , with ṽ0 = 1. This

series converges to vc, with an asymptotic behaviour which is easily found to be

ṽt = vc −
2k

(k − 1)2
1

t
+O

(
1

t2

)
. (B39)

Now if λ = λc + δ, with an infinitesimal positive value of δ, the solution vt of the recursion vt+1 = 1 + λvkt spends a
time of order δ−1/2 around the avoided fixed-point vc before crossing over to the doubly exponentially growing regime
investigated above (this is a general feature of such recursive equations in the neighbourhood of a bifurcation, see for

instance [76]). It is thus natural to investigate the scaling window parametrized by λ̂ as

λ = λc + 2π2 (k − 1)k−2

kk−1

λ̂2

T 2
, (B40)

the numerical prefactor and the square on λ̂ being chosen to simplify the following expressions. One can then look
for a solution of the recurrence equation under the form vt = vc+

1
T V (t/T ), with V (s) a scaling function. Expanding

at the leading order in T one obtains a differential equation on V ,

V ′(s) =
2π2kλ̂2

(k − 1)2
+

(k − 1)2

2k
V (s)2 . (B41)

The latter can be integrated into

V (s) = − 2k

(k − 1)2
πλ̂

tan(πλ̂s)
, (B42)

the constant in the solution of the differential equation being obtained by a matching argument between the regime

s → 0 and the large t asymptotics of the critical series ṽt given in (B39). Note that this form is only valid for λ̂ < 1,
otherwise one enters the regime where vT diverges with T . One can furthermore assume a similar scaling ansatz for
the ut, introducing a scaling function U(s) under the form ut = vc+U(t/T ). Inserting these forms in Eq. (B24) yields
a differential equation on U ,

U ′′(s)

U ′(s)
= − (k − 1)2

k
V (s) , (B43)

which is integrated in

U ′(s) = B sin2(πλ̂s) , U(s) = A+
B

2

(
s− sin(2πλ̂s)

2πλ̂

)
, (B44)

with A and B two constants of integration. These can be fixed by imposing the boundary conditions uT = vT and
uT+1 = vT−1, which translates here in U(1) = V (1)/T and U ′(1) = −V ′(1)/T . Solving these equations yield A and
B; considering in particular u0 = vc + U(0) one obtains, at the leading order in a large T expansion,

u0 = vc +
1

T

λ̂2

sin4(πλ̂)

(
1− sin(2πλ̂)

2πλ̂

)
π2k

(k − 1)2
− 1

T

λ̂

tan(πλ̂)

2πk

(k − 1)2
. (B45)

One realizes at this point that for any fixed λ̂ < 1, the limit of u0 coincides with vc, in other words we are describing
in this regime the end of the trivial branch, with θ ≈ θr. To describe the non-trivial regime of densities [θr/2, θr] one

has thus to further refine the scaling window, taking now λ̂ approaching 1 in a T -dependent way. The inspection of
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(B45) reveals that the correct scaling that allows to obtain a non-trivial limit of u0 corresponds to λ̂ = 1−O(T−1/4).
We shall thus set

λ̂ = 1− 1√
π

(
λ̃

(k − 1)T

) 1
4

, (B46)

with λ̃ > 0 the new parameter describing this scale, the numerical prefactor being chosen for convenience. After a
short computation one obtains the limit as T → ∞ of the thermodynamic quantities in this scaling regime of λ as

u0(λ̃) =
k

k − 1

1 + λ̃

λ̃
, Fsite(λ̃) =

1

k − 1

k + 1 + λ̃

1 + λ̃
, Fedge(λ̃) =

k

k − 1

2 + λ̃

1 + λ̃
, (B47)

the last two expressions being obtained by inserting the scaling ansatz on ut and vt in the definitions (B12,B25);
at the lowest order one can actually replace the vt’s by vc there. This yields a parametric representation of the

thermodynamic quantities of the RS (resp. energetic 1RSB) formalism in terms of λ̃, by inserting these last results in

Eq. (B13) (resp. (B19,B20)). In the RS case one can check that λ̃ → 0 corresponds to θ → θr/2, while λ̃ → ∞ yields
θ → θr, hence this scaling regime allows to cover the desired range [θr/2, θr] for the densities of initially active sites.

It is furthermore possible to invert the relation θ(λ̃), which yields finally the formula (82) announced in the main
text for the entropy of activating initial configurations of density in the non-trivial interval [θr/2, θr]. In the energetic

1RSB case this last step does not seem possible and the final result (84) is presented in a form parametrized by λ̃.
We did not embark in a systematic study of the finite T corrections in this regime, it is however clear that they are
polynomially small in T , which justifies the statement made in Sec. IVB 1 on the corrections to θmin(T ) for k = l ≥ 4.
Let us finally justify the results presented at the end of Sec. IVB1 on the distribution of activation times. Assuming

a finite value of t, the expression of (B26) becomes in the regime parametrized by λ̃:

Fsite(λ̃, t) =
λc

u0(λ̃)

[
ṽk+1
t−1 + (k + 1)ṽkt−1(u0(λ̃)− ṽt−1)

]
, (B48)

the last summation in (B26) yielding a subdominant correction of order 1/T . Note that Fsite(λ̃, t) tends to Fsite(λ̃) as
t → ∞, which means that the support of the distribution of the activation times does not scale with T in this regime.
The expression (92) for the cumulative distribution of activation times follows then easily from its generic definition

given in Eq. (B14), upon expressing all the quantities depending on λ̃ as a function of the corresponding θ. In the
main text we introduced for clarity the series wt = θrṽt, to allow for an easier comparison with the distribution of
activation times from a random initial condition.

c. Asymptotics for l < k

Let us now discuss the solution of the set of equations (B6,B7) in the limit T → ∞, in the case l < k, and justify
the statements made in Sec. IVB 2; as we shall see their behaviour and the method of study is qualitatively different
compared to the case l = k.
We shall first rephrase Eqs. (B6,B7) as a single recursive equation, by introducing a four-dimensional vector wt

defined by

wt =




ut

ut+1

vt
vt−1


 . (B49)

The recursive equations (B6,B7) on the ut’s and vt’s become a single recursion on wt, of the form wt+1 = R(wt) where
the function R is given by

R




u

u+

v

v−


 =




u+

E(u, u+, v)

v + S(u+, v)− S(u+, v−)

v


 . (B50)
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FIG. 15: The solution of the equations (B6,B7) for k = 3, l = 2, with λ = 0.005 and T = 400. Left panel: the solid curves
are ut (top) and vt (bottom) as functions of t; the dashed horizontal lines correspond, from top to bottom, to u∗, û, v̂ and
v∗, solutions of (B53,B54). Right panel: parametric plot of the same data, with symbols instead of lines to appreciate the
discreteness in t. Dashed line is the solution of the equation C(u, v) = 1, almost superimposed with most of the points (vt, ut).
The arrows point to the beginning (v∗, u∗) and end (v̂, û) of the scaling regime along the curve C(u, v) = 1.

The function S was defined in (B8), while E(u, u+, v) is given implicitly as D(E(u, u+, v), v) = D(u+, v) + u+ − u,
with the function D of (B8). Inverting this relation one obtains an explicit expression of E:

E(u, u+, v) = v +

(
(u+ − v)k−l+1 +

1

λ
(

k
l−1

) u+ − u

vl−1

) 1
k−l+1

. (B51)

We have thus a representation of the time evolution of w as the flow of a discrete dynamical system in a four-
dimensional space. The boundary conditions on the ut’s and vt’s translate into conditions on the allowed values of
w0 and wT . The former must indeed lie in the two-dimensional manifold with v = 1 and v− = 0, while the latter is
restricted to the two-dimensional manifold defined by u = v and u+ = v−. When T → ∞, for a fixed value of λ, the
solution wt of the recursion wt+1 = R(wt) must find a way to go infinitely slowly from the first manifold at t = 0 to
the second one at t = T → ∞. It must in consequence remains as close as possible to the fixed points of the evolution
map R.
The study of the equation w = R(w) is very simple and shows that these fixed points span the two-dimensional

subspace with u = u+, v = v−. One can then compute the Jacobian matrix of R on such a fixed-point, and realizes
that this matrix has two eigenvalues equal to 1 (corresponding to the invariance of the fixed-point subspace under
u → u+ δu and v → v+ δv), and two eigenvalues C(u, v) and 1/C(u, v), where C is the function defined in (B9). All
the fixed points have thus an unstable direction, except the one-dimensional set of fixed points obeying the further
condition C(u, v) = 1, which constitutes a line of marginal fixed points. In the T → ∞ limit the solution wt is thus
expected to remain close to this line, otherwise the flow along the unstable directions forbid to go from one boundary
manifold at t = 0 to the other one at t = T ≫ 1. This analysis is corroborated by the numerical results presented in
Fig. 15, where we show the solution ut, vt determined numerically for some large but finite value of T . In particular
the right panel demonstrate that for most values of t (i.e. excluding both t finite and T − t finite in the large T limit),
the couple (ut, vt) falls on the marginal fixed-point line C(u, v) = 1.
More precisely, the solution ut, vt can be described in the large T limit by two scaling functions U(s) and V (s),

function of a rescaled time s = t/T ∈]0, 1[, such that at the leading order,

ut = U

(
t

T

)
, vt = V

(
t

T

)
. (B52)

Inserting this ansatz in the equations (B6,B7), one realizes that the condition C(U(s), V (s)) = 1, that we obtained
intuitively above, is indeed precisely what is needed to enforce (B6,B7) at the leading order in the large T limit. Note
that the explicit dependency of U and V on s can be determined from the sub-dominant corrections in this limit;
however we shall not need it in what follows. It will indeed be enough to compute the value of U and V for t small and
t close to T , i.e. for s around 0 and 1. As revealed by the numerical data presented in Fig. 15, the matching between
the scaling regime described by the functions U, V (i.e. for s strictly between 0 and 1) and the boundary conditions
at t = 0 and t = T affects the series vt but not ut. In other words, for t finite while T → ∞ one has ut → u∗ = U(0)
independently of t, where u∗ is some (λ dependent) constant still to be determined, while vt converges to the solution
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FIG. 16: The functions u∗, û, v̂ and v∗ (from top to bottom) solutions of Eqs. (B53,B54) as a function of λ for k = 3, l = 2.
The upper two and lower two curves meet in λ = λr. When λ → 0 the upper three curves diverge, while v∗ converges to
l/(l − 1).

of the recursion vt+1 = vt+S(u∗, vt)−S(u∗, vt−1) obtained from (B7) by replacing ut by its limit u∗. Equivalently one
has in this regime vt+1 = 1 + S(u∗, vt). When t → ∞ (after the large T limit) this series vt converges to v∗ = V (0),
the smallest fixed-point solution of this recursion on v; for this behaviour to match the beginning of the scaling regime
(i.e. s → 0) one must impose simultaneously

C(u∗, v∗) = 1 , and v∗ = 1 + S(u∗, v∗) . (B53)

The first equation allows to express u∗ as a function of v∗; replacing in the second one leads to the single equation on
v∗ given in Eq. (96), while (97) is nothing but an explicit version of the condition C(u∗, v∗) = 1. A similar reasoning
in the regime T − t finite reveals that U(1) = û and V (1) = v̂ have to obey

C(û, v̂) = 1 , and v̂ = S(û, v̂) + û− S(û, û) . (B54)

It is easy to check that the expressions of û and v̂ given in (95) are indeed solutions of these two equations, using the
equations on θr and x̃r of Eq. (4). By definition for λ ∈]0, λr] one has u∗ ≥ û ≥ v̂ ≥ v∗, see Fig. 16 for a representation
of the solution of the equations (B53,B54) as a function of λ. In λr, where one recovers the trivial solution studied in
App. B 2 a, one has u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr.
Let us now deduce the value of Fsite and Fedge in the large T limit from the above characterization of the behaviour

of the ut’s and vt’s. From Eq. (B12) one has in this limit

lim
T→∞

Fedge(λ, T ) =
1

u∗

[
û2 − 2

∫ 1

0

dsU ′(s)V (s)

]
, (B55)

the matching regimes of t finite and T − t finite having neglectible contributions to the summation. The integral
above can be computed even if we have not determined the time-dependency of the scaling functions U(s) and V (s):
using dsU ′(s) = du and the condition C(U(s), V (s)) = 1, one has

−
∫ 1

0

dsU ′(s)V (s) =

∫ u∗

û

du v(u) = u∗v∗ − û v̂ +

∫ v̂

v∗

dv u(v) , (B56)

where u(v) (resp. v(u)) is the solution of C(u(v), v) = 1 (resp. C(u, v(u)) = 1). The equation C(u(v), v) = 1 can be
explicitly solved into

u(v) = v +

(
λl

(
k

l

))− 1
k−l

v−
l−1
k−l . (B57)

This allows to compute the integral in (B56) and to obtain (99).
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We shall now compute similarly the limit of Fsite that was defined in Eq. (B11). In that equation we shall exploit
the fact that ut − ut+1 is of order 1/T to perform the approximation

(ut − vt−2)
k+1−p = (ut−1 − vt−2)

k+1−p + (k + 1− p)(ut − ut−1)(ut−1 − vt−2)
k−p +O

(
1

T 2

)
. (B58)

Within this approximation the first term leads to a telescopic summation, we then get

Fsite ∼
λ

u0

k+1∑

p=l

(
k + 1

p

)[
vpT−1(uT − vT−1)

k+1−p − (k + 1− p)

T∑

t=1

vpt−2(ut − ut−1)(ut−1 − vt−2)
k−p

]
(B59)

As uT = vT−1 +O(1/T ) in the first summation only the term p = k + 1 survives; the second term can be rearranged
as above in terms of integrals of the scaling functions, namely

lim
T→∞

Fsite(λ, T ) =
λ

u∗


ûk+1 − (k + 1)

k∑

p=l

(
k

p

)∫ 1

0

ds U ′(s)V (s)p(U(s)− V (s))k−p
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=
λ

u∗


ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ u∗

û

du v(u)p(u− v(u))k−p
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=
λ

u∗


ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ v̂

v∗

dv (−u′(v))vp(u(v)− v)k−p


 (B62)

Inserting the expression of u(v) given in Eq. (B57) yields easily to the value of Fsite written in (98). The parametric
representations of s(θ) and Σe(θ) given in Sec. IVB2 are then direct consequences of Eqs. (B13,B19,B20).
For what concerns the distribution of activation times, one has in the regime t = sT with s ∈]0, 1[ the following

limit for the function Fsite defined in (B15):

lim
T→∞

Fsite(λ, T, t = sT ) =
λ

u∗



k+1∑

p=l

(
k + 1

p

)
V (s)p(U(s)− V (s))k+1−p

−(k + 1)

k∑

p=l

(
k

p

)∫ s

0

ds′ U ′(s′)V (s′)p(U(s′)− V (s′))k−p


 . (B63)

Studying the limit s → 0+ and s → 1− of this expression leads to the expressions (104) for the fraction of vertices
which activate at the very beginning and at the very end of the process.

[1] H. W. Hethcote, SIAM Review 42, 599 (2000).
[2] S. N. Dorogovtsev and J. F. F. Mendes, Advances in Physics 51, 1079 (2002).
[3] M. Newman, SIAM Review 45, 167 (2003).
[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Physics reports 424, 175 (2006).
[5] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks (Cambridge University Press,

Cambridge, 2008).
[6] M. Granovetter, American journal of sociology 83, 1420 (1978).
[7] J. Chalupa, P. L. Leath, and G. R. Reich, Journal of Physics C: Solid State Physics 12, L31 (1979).
[8] M. Aizenman and J. L. Lebowitz, J. Phys. A 21, 3801 (1988).
[9] A. E. Holroyd, Probab. Theory Relat. Fields 125, 195 (2003).

[10] J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris, Trans. Amer. Math. Soc. 364, 2667 (2012).
[11] J. Balogh and B. G. Pittel, Random Structures & Algorithms 30, 257 (2007).
[12] B. Karrer and M. E. J. Newman, Phys. Rev. E 82, 016101 (2010).
[13] M. Lelarge, Games and Economic Behavior 75, 752 (2012).
[14] S. Janson, T. Luczak, T. Turova, and T. Vallier, The Annals of Applied Probability 22, 1989 (2012).
[15] M. Shrestha and C. Moore, Phys. Rev. E 89, 022805 (2014).
[16] T. Bohman and M. Picollelli, Rand Struct Alg 41, 179 (2012).



44

[17] S. Janson, M. Luczak, and P. Windridge, arXiv (2013), 1308.5493.
[18] D. Shah and T. Zaman, IEEE Transactions on Information Theory 57, 5163 (2011).
[19] P. C. Pinto, P. Thiran, and M. Vetterli, Phys. Rev. Lett. 109, 068702 (2012).
[20] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and R. Zecchina, Phys. Rev. Lett. 112, 118701 (2014).
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[35] M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).
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